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This work applies the Ritz method to accurately determine the frequencies and nodal

patterns of thick, cracked rectangular plates analyzed using Mindlin plate theory. Two

types of cracked configuration are considered, namely, side crack and internal crack. To

enhance the capabilities of the Ritz method in dealing with cracked plates, new sets of

crack. The proposed admissible functions appropriately describe the stress singularity

behaviors around a crack tip and the discontinuities of transverse displacement and

bending rotations across the crack. The present solutions monotonically converge to the

exact frequencies as upper bounds when the number of admissible functions increases.

The validity and accuracy of the present solutions are confirmed through comprehensive

convergence studies and comparison with the published results based on the classical

thin plate theory. The proposed approach is further employed to investigate the effects of

the length, location, and orientation of crack on frequencies and nodal patterns of simply

supported and cantilevered cracked rectangular plates. The results shown are the first

ones available in the published literature.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

A plate may be ceaselessly subjected to an irregular load induced by waves or subjected to a cyclic load induced by a
machine, and fatigue cracks may be finally initiated. A crack in a plate can make its dynamic characteristics significantly
different from those for an intact plate. Hence, it is important to clarify the dynamic characteristics of cracked plates.

Although static analyses of cracked plates (i.e., determining stress intensity factors) have intensively been performed,
investigations of their free vibrations are rather little. Most of these works considered thin plates and employed the classical
thin plate theory. To solve for vibrations of cracked rectangular thin plates with simply supported conditions at all edges or
two opposite edges and having cracks parallel to one of the edges, Lynn and Kumbasar [1], Stahl and Keer [2], Aggarwala and
Ariel [3], Neku [4], and Solecki [5] applied different techniques on establishing integral equations, while Hirano and Okazaki
[6] established their solutions starting from Levy’s solution and fitting the mixed boundary conditions on the line of the crack
by means of a weighted residual method. Qian et al. [7] and Krawczuk [8] proposed a stiffness matrix for the element with
crack in a finite element solution. Yuan and Dickinson [9] and Liew et al. [10] employed the Ritz method in conjunction with
different domain decomposition techniques. Huang and Leissa [11] used the Ritz method with thin plate theory and proposed
a new set of admissible functions for rectangular plates with side cracks. Bachene et al. [12] applied the extended finite
element method to analyze the free vibrations of thin rectangular plates with horizontal cracks. Ma and Huang [13] simply
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used the commercial finite element computer program ABAQUS and selected eight-node two-dimensional shell elements
(S8R5) to determine natural frequencies of cantilevered thin plates with horizontal or vertical side cracks to verify the
correctness of their experimental results.

Several experiment works on vibrations of thin, cracked plates were reported. Maruyama and Ichinomiya [14] employed
the real-time technique of time averaged holographic interferometry to determine the natural frequencies and correspond-
ing mode shapes of clamped rectangular thin plates with straight cracks. Ma and Huang [13] and Ma and Hsieh [15] utilized
the amplitude fluctuation electronic speckle pattern interferometry to determine the natural frequencies and corresponding
mode shapes of cantilevered rectangular thin plates with horizontal or vertical side cracks.

Very little published research is available about the vibrations of thick, cracked plates. Based on the simplified Reissner
theory, Lee and Lim [16] used the Ritz method with a domain decomposition technique to determine the fundamental
frequencies of center-cracked rectangular plates with simply support conditions.

The purpose of the present paper is twofold: (1) to propose sets of admissible functions for the Ritz method to deal with a
straight crack in a thick plate, using the Mindlin plate theory; (2) to provide new accurate natural frequencies of cracked
plates with moderate thickness for expanding the currently available data base. The Ritz method has been popular in
analyzing free vibrations of plates with simple geometry because of its simplicity in formulation and rigorous mathematic
background. The available solutions using the Ritz method for cracked rectangular plates cooperates with various domain
decomposition techniques (i.e., [9,10,16]). These solutions lose an important property of the Ritz method in providing
monotonically convergent upper-bound solutions for vibration frequencies because the admissible functions are not
continuous everywhere along the interconnecting boundaries between two adjacent sub-domains or because artificial
springs are installed along the interconnecting boundaries, and the accuracy of solutions depend on whether the springs are
stiff enough or not. To remedy the main drawback of these solutions, the present paper investigates the vibrations of thick
plates with side cracks and internal cracks and proposes new sets of admissible functions that properly describe the stress
singularity behaviors at the neighborhood of a crack tip and show the discontinuities of transverse displacement and bending
rotations across the crack.

The validity and correctness of the proposed solution are confirmed by convergence studies and comparison with the
published results. The proposed methodology is further applied to investigate the effects of the length, position, and
inclination angle of crack on the vibration frequencies of simply supported and cantilevered cracked rectangular plates with
thickness to side length ratio equal to 1/10. Accurate frequencies are tabulated and some corresponding nodal patterns are
also shown for the first five modes. The results shown are the first ones available in the published literature.

2. Methodology

Two types of cracked configuration are considered, namely, side crack and internal crack. The geometry and dimension of a
cracked rectangular plate are shown in Figs. 1 and 2. The natural frequencies of the cracked plates are determined via the
famous Ritz method using Mindlin plate theory. For the free vibration of a plate in Cartesian coordinates (x, y), the energy
functional in the Ritz method is defined as

P¼ Vmax�Tmax, (1)

where the maximum strain energy (Vmax) and the maximum kinetic energy (Tmax) are [17]
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Fig. 1. Dimensions and coordinates for a rectangular plate with a side crack: (a) a plate with a crack intersecting x=a and (b) a plate with a crack

intersecting y=b.
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Fig. 2. Dimensions and coordinates for a rectangular plate with an internal crack (x0 and y0 locate the center of the crack).
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where w is the transverse displacement of the mid-plane;cx andcy are the bending rotations of the mid-plane normal in the x

and y directions, respectively; h is the thickness of the plate; D¼ Eh3=12ð1�u2Þ is the flexural rigidity; E is the modulus of
elasticity; u is Poisson’s ratio ; k2 is the shear correction factor and set to p2=12; G is the shear modulus; r is the mass density
of the plate;o is a free vibration frequency, and the subscript comma denotes partial derivative with respect to the coordinate
defined by the variable after the comma. The vibration frequencies of the plate are obtained by minimizing the energy
functional.

In Eqs. (2) and (3), wðx,yÞ, cxðx,yÞ and cyðx,yÞ are approximated by finite series of admissible functions, which must satisfy
the geometric boundary conditions under consideration, and are expressed as

cx ¼F1pþF1c , cy ¼F2pþF2c , w¼F3pþF3c , (4)

where Fkp (k=1, 2 and 3) consist of algebraic polynomials, and Fkc (k=1, 2 and 3) consist of special functions, which account
for the singular behaviors of moments and shear forces at a crack tip and are discontinuous across the crack. These special
functions are simply called crack functions in the following.

In Eqs. (4) Fkp are expressed as

Fkpðx,yÞ ¼
XIk

i ¼ 1,2

XJk

j ¼ 1,2

AðkÞij PkiðxÞQkjðyÞ, (5)

where PkiðxÞ and QkjðyÞ (k=1, 2 and 3) are sets of orthogonal polynomials in the x and y directions of the rectangular plate under
consideration (Figs. 1 and 2), respectively. These orthogonal polynomials are generated by using a Gram–Schmidt process
[18] and satisfy the geometrical boundary conditions of the rectangular plate. These polynomials construct functions which
become mathematically complete if infinite terms are used. Notably, using orthogonal polynomials results in considerably
less ill-conditioning of the matrix than using ordinary polynomials.

The polynomials in Eqs. (5) are continuous and are not singular anywhere in the domain under consideration. To enhance
the capabilities of the Ritz method on dealing with cracked plates, one needs other admissible functions to help the
Ritz method to recognize the existence of a crack. The asymptotic solutions at the neighborhood of the crack tip are usually
good candidates for these admissible functions. According to Huang [19] in considering moment singularities at the
neighborhood of the crack tip, the asymptotic solutions for the bending rotations and transverse displacement in a polar
coordinate system are

craðr,yÞ ¼ ðA1 cosðlþ1ÞyþA2 sinðlþ1ÞyþA3 cosðl�1ÞyþA4 sinðl�1ÞyÞrl, (6a)

cyaðr,yÞ ¼ ðA2 cosðlþ1Þy�A1 sinðlþ1Þyþk2A4 cosðl�1Þy�k2A3 sinðl�1ÞyÞrl, (6b)

waðr,yÞ ¼ ðC1 cosðlþ1ÞyþC2 sinðlþ1Þyþg1A3 cosðl�1Þyþg1A4 sinðl�1ÞyÞrlþ1, (6c)

where

k2 ¼�
½2ð1�uÞþð1þuÞðlþ1Þ�

½2ð1�uÞ�ð1þuÞðl�1Þ�
, g1 ¼

u�1

�3þlþuþul
,

where l and coefficients Ai and Cj (i=1, 2, 3, 4 and j=1, 2) are determined from the boundary conditions along the crack. For the
free edges of the crack it is found that l¼ n=2 (n=1, 2, 3,y) and the relations between coefficients Ai and Cj are given in Huang
[19]. When considering shear force singularities around the crack tip, one can find the asymptotic solutions

craðr,yÞ ¼ ½A1 coslyþA2 sinlyþA3 cosð2þlÞyþA4 sinð2þlÞy�rlþ1, (7a)

cyaðr,yÞ ¼ ½B1 coslyþB2 sinlyþA4 cosð2þlÞy�A3 sinð2þlÞy�rlþ1, (7b)



C.S. Huang et al. / Journal of Sound and Vibration 330 (2011) 2079–20932082
waðr,yÞ ¼ ½l1ðA1 coslyþA2 sinlyÞþ l2ðB2 cosly�B1 sinlyÞ�rl, (7c)

where

l1 ¼
�D

2k2Gh
ð3�uþð1þuÞð1þlÞÞ, l2 ¼

D

2k2Gh
ð2ð1�uÞ�ð1þuÞlÞ,

l¼ n=2 (n=1, 2, 3,y) and the relations between coefficients A1,A2,A3,A4,B1, and B2 are also given in Huang [19].
But, it is complicated to introduce the asymptotic solutions given in Eqs. (6) and (7) into the admissible functions. Instead,

the following, much less complicated, set of crack functions is proposed for admissible functions:

rð2n�1Þ=2 cos
2lþ1

2
y and rð2n�1Þ=2 sin

2lþ1

2
y9, l¼ 0, 1, 2,. . .,n and n¼ 1, 2, 3,. . .

� �
: (8)

Apparently, the asymptotic solutions given in Eqs. (6) and (7) for l and l equal to ð2kþ1Þ=2 (k=0,1,2,y) can be linearly
expanded into this new set of crack functions. In Eqs. (6), cra and cya are linear combinations of rl cosðlþ1Þy, rl sinðlþ1Þy,
rl cosðl�1Þy, and rl sinðlþ1Þy, which are included in the set of functions in Eq. (8). Similar situations happen to wa in Eq. (6c)
and the asymptotic solutions in Eqs. (7). For plates with side cracks (see Fig. 1), Fkc in Eq. (4) are expressed as

Fkcðr,yÞ ¼ gk ðx,yÞ
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where functions gkðx,yÞ are inserted to satisfy the geometric boundary conditions along the edges of a rectangular plate.
When plates with internal cracks (Fig. 2) are under consideration, Eq. (9) is not suitable for the admissible functions. There

are two crack tips, so one needs admissible functions that can properly describe the singularity behaviors around both tips.
Hence, the following admissible functions are proposed:

Fkc ¼ gkðx,yÞ
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where the origins of coordinates ðr1,y1Þ and ðr2,y2Þ are at the two crack tips, respectively, (see Fig. 2). Since sinððð2lþ1Þ=2Þy1Þ

are discontinuous at y1 ¼ 7p, sin2
ðy2=2Þ is multiplied to these functions to ensures that the resulting functions are

continuous along the segment of y2 ¼ 0. Furthermore, sin2
ðy2=2Þ is symmetric with respect to y2 ¼ 0 so that it does not change

the symmetry feature of sinððð2lþ1Þ=2Þy1Þ. That means sin2
ðy2=2Þsin 2lþ1ð Þ=2

� �
y1

� �
are still anti-symmetric with respect to

the line including the crack. Because the first derivatives of sin2
ðy2=2Þ with respect to x and y yield another singularity at

r2 ¼ 0, rb2 with bZ0:5 is multiplied by sin2
ðy2=2Þ to avoid yielding incorrect singular behaviors for stress resultants at r2 ¼ 0.

Similar situations are also applied to sinððð2lþ1Þ=2Þy2Þ terms. In the following analyses, b=1.5 is used so that no moment and
shear singularities will result from rbi sin2

ðyi=2Þ (i=1 and 2).
For simplicity of notation, Ik and Jk (k=1, 2, 3) in Eq. (5) are set equal to I and J, respectively, and N1k and N2k in Eq. (9) are set

equal to N when considering a rectangular plate with a side crack. Substituting Eqs. (5) and (9) into Eqs. (1)–(3) and
minimizing the energy functional P with respect to coefficients AðkÞij , BðkÞnl and CðkÞnl yields 3IJ+3N(N+3) linear algebraic
equations for those coefficients to be determined, and results in an eigenvalue problem with the eigenvalues describing the
natural frequencies of plate. Similarly, when considering a rectangular plate with an internal crack, one sets all N1k_1, N1k_2,
N2k_1, and N2k_2 (k=1, 2, 3) in Eq. (10) equal to N. Then, one obtains 3IJ+6N(N +3) linear algebraic equations for those
coefficients to be determined, and an eigenvalue (frequency) determinant of this same order.
3. Convergence studies

The Ritz method always gives upper bounds on vibration frequencies, and these upper-bound solutions converge to the
exact solution as the number of appropriate admissible functions increases sufficiently. This important feature provides an
excellent way to verify the correctness of the proposed solutions. Convergence studies of side-cracked and internal-cracked
rectangular plates were carried out herein to confirm the accuracy of the present solutions. Poisson’s ratio for the plate
material is set equal 0.3 for all the results shown here.

In the present section and the following section, simply supported and cantilevered plates are under investigation. The
geometric boundary conditions for a simply supported plate are

cxðx,0Þ ¼ 0, cxðx,bÞ ¼ 0, cyð0,yÞ ¼ 0, cyða,yÞ ¼ 0,

wðx,0Þ ¼ 0, wðx,bÞ ¼ 0, wð0,yÞ ¼ 0, wða,yÞ ¼ 0: (11)
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Accordingly, to make the admissible functions in Eq. (9) satisfy the geometric boundary conditions of simple support, the
following gkðx,yÞ (k=1, 2, 3) are simply used:

g1ðx,yÞ ¼ yðb�yÞ, g2ðx,yÞ ¼ xða�xÞ, and g3ðx,yÞ ¼ xyða�xÞðb�yÞ: (12)

The cantilevered plates are clamped at the edge with x=0, and gkðx,yÞ (k=1, 2, 3) are set as

gkðx,yÞ ¼ x:

3.1. Side-cracked plates

Table 1 presents the convergence studies of a simply supported rectangular thin plate (a/b=2 and h/b=0.01) having a
horizontal side crack at cy /b=0.5 with a length of d/a=0.5 (Fig. 1a), while Table 2 shows the convergence studies of a plate with
Table 1

Convergence of frequency parameters oa2
ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
for a simply supported rectangular plate with a horizontal side crack (a=b¼ 2:0, cy=b¼ 0:5, d=a¼ 0:6,

h=b¼ 0:01), as in Fig. 1a.

Mode no. No. of corner function N
� �

Order of polynomial (I� J) Published results

5�5 6�6 7�7 8�8 9�9 10�10

1(S) 0 49.35 49.34 49.34 49.34 49.34 49.34 [36.17]

1 49.30 49.29 49.28 49.28 49.27 49.27 (37.44)

2 42.49 42.23 39.92 39.78 38.52 38.46

3 36.85 36.60 36.45 36.38 36.32 36.29

4 36.24 36.20 36.16 36.16 36.14 36.14

5 36.16 36.15 36.14 36.14 36.13 36.13

6 36.15 36.14 36.13 36.13 36.12 36.12

7 36.14 36.13 36.12 36.12 36.11 36.11

8 36.13 36.12 36.11 36.11 36.10 36.10

2(A) 0 79.04 79.03 78.93 78.93 78.93 78.93 [57.49]

1 79.01 79.00 78.89 78.89 78.89 78.89 (59.31)

2 76.06 75.95 75.21 75.17 74.88 74.86

3 70.36 68.74 68.02 67.63 67.36 67.07

4 57.93 57.75 57.69 57.65 57.63 57.61

5 57.45 57.40 57.39 57.37 57.37 57.35

6 57.40 57.37 57.37 57.36 57.35 57.34

7 57.37 57.36 57.35 57.33 57.33 57.31

8 57.36 57.34 57.34 57.32 57.31 57.30

3(S) 0 164.2 129.5 129.5 128.2 128.2 128.2 [72.59]

1 164.1 129.5 129.5 128.2 128.2 128.2 (72.62)

2 148.4 129.3 129.3 128.1 128.1 128.1

3 74.04 73.84 73.51 73.43 73.27 73.23

4 72.87 72.77 72.66 72.66 72.62 72.62

5 72.65 72.55 72.54 72.54 72.53 72.53

6 72.60 72.54 72.53 72.53 72.53 72.53

7 72.58 72.53 72.53 72.53 72.52 72.52

8 72.57 72.53 72.52 72.52 72.52 72.52

4(S) 0 168.3 168.3 167.7 167.7 167.7 167.7 [121.3]

1 167.7 167.5 166.8 166.7 166.6 166.5 (121.0)

2 162.9 143.3 142.0 138.3 137.1 134.0

3 137.3 125.2 124.0 123.3 122.7 122.6

4 122.6 122.0 121.9 121.6 121.5 121.5

5 122.0 121.7 121.4 121.3 121.3 121.3

6 121.9 121.5 121.2 121.2 121.2 121.2

7 121.8 121.4 121.2 121.2 121.2 121.2

8 121.8 121.3 121.2 121.2 121.2 121.2

5(A) 0 197.8 197.8 197.2 197.2 197.2 197.2 [141.4]

1 197.4 197.3 196.6 196.5 196.5 196.4 (145.8)

2 186.0 184.7 184.0 183.2 183.1 182.6

3 177.9 177.4 176.9 176.7 176.6 176.4

4 169.9 165.7 163.4 162.5 161.9 161.3

5 142.4 142.1 141.9 141.7 141.6 141.6

6 141.7 141.6 141.5 141.4 141.4 141.4

7 141.4 141.3 141.3 141.3 141.3 141.2

8 141.3 141.3 141.3 141.2 141.2 141.2

Note: [ ]: results from Stahl and Keer [2]; ( ): results from Liew et al. [10].



Table 2

Convergence of frequency parameters oa2
ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
for a simply supported rectangular plate with a horizontal side crack (a=b¼ 2:0, cy=b¼ 0:5, d=a¼ 0:6,

h=b¼ 0:1), as in Fig. 1a.

Mode no. No. of corner functions (N) Order of polynomial (I� J)

5�5 6�6 7�7 8�8 9�9 10�10

1(S) 0 48.27 48.26 48.26 48.26 48.26 48.26

1 44.88 44.87 44.34 44.33 43.85 43.84

2 35.32 35.27 35.04 35.02 34.91 34.90

3 34.70 34.68 34.58 34.57 34.51 34.51

4 34.51 34.49 34.45 34.44 34.42 34.41

5 34.46 34.44 34.41 34.41 34.40 34.39

6 34.42 34.41 34.39 34.39 34.38 34.38

7 34.41 34.40 34.39 34.38 34.38 34.38

8 34.40 34.39 34.38 34.38 34.38 34.38

2(A) 0 76.34 76.33 76.23 76.23 76.23 76.23

1 74.71 74.68 74.39 74.38 74.20 74.19

2 61.86 60.27 59.73 59.16 58.93 58.59

3 54.09 53.74 53.64 53.46 53.40 53.29

4 53.06 52.90 52.85 52.78 52.75 52.71

5 52.83 52.74 52.72 52.68 52.67 52.66

6 52.73 52.69 52.68 52.67 52.66 52.65

7 52.68 52.67 52.66 52.65 52.65 52.65

8 52.66 52.65 52.65 52.65 52.65 52.65

3(S) 0 150.7 122.4 122.4 121.4 121.4 121.4

1 106.7 100.9 99.58 96.03 95.00 92.63

2 71.47 71.43 71.28 71.27 71.20 71.19

3 70.22 70.17 70.04 70.03 69.98 69.98

4 69.83 69.81 69.77 69.76 69.75 69.74

5 69.78 69.74 69.72 69.71 69.71 69.70

6 69.74 69.71 69.70 69.70 69.70 69.70

7 69.72 69.70 69.70 69.70 69.69 69.69

8 69.72 69.70 69.69 69.69 69.69 69.69

4(S) 0 156.8 156.8 156.3 156.3 156.3 156.3

1 150.5 122.4 122.4 121.4 121.4 121.4

2 129.7 119.7 119.2 118.5 118.2 118.2

3 118.8 115.1 114.8 114.5 114.4 114.4

4 114.6 114.6 114.4 114.3 114.2 114.2

5 114.4 114.2 114.1 114.1 114.1 114.1

6 114.2 114.1 114.1 114.1 114.1 114.1

7 114.2 114.1 114.1 114.1 114.1 114.1

8 114.2 114.1 114.1 114.1 114.1 114.1

5(A) 0 182.3 182.3 181.8 181.8 181.8 181.8

1 173.1 172.8 172.3 172.1 172.1 172.0

2 158.5 155.9 155.5 154.3 154.1 153.4

3 144.9 142.1 141.4 140.4 140.0 139.6

4 129.6 128.4 128.2 127.8 127.7 127.6

5 127.0 126.6 126.6 126.4 126.4 126.4

6 126.4 126.3 126.2 126.2 126.2 126.2

7 126.2 126.2 126.2 126.2 126.2 126.2

8 126.2 126.2 126.2 126.2 126.2 126.2
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the same geometry as that in Table 1 except for h/b=0.1. The convergence properties for the first five nondimensional
frequency parameters oa2

ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
are examined in terms of the number of admissible functions. The results were obtained

using 5�5, 6�6, y,10�10 orthogonal polynomials in conjunction with sets of crack functions with N =0, 1, 2, 3,y, 8 in
Eqs. (9) for each of cx, cy and w. It should be noted that N =0 means no crack function is used.

In Table 1, the results of Stahl and Keer [2] and Liew et al. [10] are also listed. Employing the classical thin plate theory,
Stahl and Keer [2] developed solutions using an accurate Fredholm integration approach, while Liew et al. adopted the Ritz
method in conjunction with a domain decomposition technique. Liew et al. [10] utilized the domain decomposition
technique, so that they did not need any crack functions to help the Ritz method to identify the existence of a crack. However,
Liew et al. [10] required the continuities of displacement and slope in a sense of integration along the interconnecting
boundaries. The continuities of displacement and slope are not satisfied at every point along the interconnecting boundaries,
so that their solutions are not guaranteed to be the upper-bound solutions for vibration frequencies and cannot properly
describe the stress singularity behaviors around the crack tip.
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Tables 1 and 2 reveal that the results obtained using polynomial admissible functions only are substantially larger than
those obtained using both of polynomials and crack functions. As a matter of fact, the former converges to the exact solutions
for simply supported intact plates because the Ritz method with only those polynomial admissible functions does not
recognize the existence of a crack. Adding a small number of crack functions into the admissible functions significantly
improves the accuracy of the results. Increasing both of the numbers of polynomials and crack functions up to I, J and N larger
than 7 yield accurate numerical results that converge to at least 3 significant figures. In Table 1, the convergent results show
excellent agreement with those of Stahl and Keer [2], and are slightly smaller than the latter. This is because Stahl and Keer [2]
adopted the classical plate theory, which ignores the shear deformation and rotary inertia of the plate. Comparison of Tables 1
and 2 finds that the convergence rate of the results for a moderately thick plate (Table 2) is slightly better than that for a thin
plate (Table 1).
Table 3

Convergence of frequency parameters oa2
ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
for a simply supported square thin plate (h=b¼ 0:01) having a horizontal internal crack with d=a¼ 0:6 at

x0=a¼ y0=a¼ 0:5

Mode no. No. of corner functions N
� �

order of polynomial (I� J) Published results

5�5 6�6 7�7 8�8 9�9 10�10

1(S) 0 19.74 19.73 19.73 19.73 19.73 19.73 [17.19]

1 19.68 19.67 19.67 19.67 19.66 19.66 (17.33)

2 19.46 19.45 19.40 19.40 19.37 19.37

3 17.64 17.54 17.51 17.47 17.44 17.42

4 17.19 17.19 17.18 17.18 17.17 17.17

5 17.17 17.16 17.15 17.15 17.15 17.15

6 17.16 17.15 17.15 17.15 17.14 17.14

7 17.15 17.14 17.14 17.14 17.14 17.14

8 17.15 17.14 17.13 17.13 17.13 17.13

2(A) 0 49.45 49.45 49.30 49.30 49.30 49.30 [37.98]

1 49.08 49.04 48.85 48.82 48.79 48.76 (37.75)

2 43.63 43.00 42.76 42.43 42.23 41.96

3 38.38 38.18 38.16 38.12 38.10 38.08

4 37.94 37.92 37.89 37.87 37.86 37.83

5 37.83 37.82 37.80 37.79 37.78 37.77

6 37.79 37.78 37.77 37.75 37.74 37.73

7 37.77 37.75 37.75 37.72 37.71 37.71

8 37.74 37.73 37.72 37.70 37.69 37.69

3(S) 0 49.45 49.45 49.30 49.30 49.30 49.30 [48.22]

1 49.43 49.42 49.28 49.28 49.27 49.27 (48.26)

2 49.39 49.38 49.25 49.24 49.24 49.24

3 49.06 48.99 48.93 48.91 48.89 48.87

4 48.24 48.22 48.22 48.21 48.20 48.19

5 48.15 48.15 48.15 48.15 48.15 48.14

6 48.15 48.15 48.14 48.14 48.14 48.14

7 48.14 48.14 48.13 48.13 48.13 48.13

8 48.14 48.14 48.13 48.13 48.13 48.13

4(A) 0 79.05 79.05 78.84 78.84 78.84 78.84 [75.58]

1 79.01 79.00 78.79 78.78 78.78 78.77 (75.23)

2 78.83 78.79 78.64 78.61 78.61 78.58

3 77.07 76.81 76.55 76.44 76.41 76.34

4 75.56 75.43 75.43 75.41 75.41 75.39

5 75.41 75.38 75.37 75.35 75.35 75.34

6 75.37 75.35 75.35 75.32 75.32 75.31

7 75.35 75.34 75.33 75.31 75.31 75.30

8 75.32 75.32 75.31 75.30 75.29 75.28

5(S) 0 139.1 99.93 99.93 98.54 98.54 98.52 [79.59]

1 137.8 99.32 99.26 97.86 97.81 97.78 (80.32)

2 106.1 96.96 96.35 95.24 94.95 94.94

3 83.03 81.93 81.66 80.93 80.78 80.65

4 79.79 79.66 79.57 79.46 79.43 79.42

5 79.38 79.36 79.34 79.33 79.32 79.32

6 79.33 79.31 79.31 79.30 79.30 79.29

7 79.31 79.29 79.28 79.27 79.26 79.25

8 79.31 79.26 79.25 79.24 79.22 79.22

Note: [ ]: results from Stahl and Keer [2]; ( ): results from Liew et al. [10]
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3.2. Internal-cracked plates

Tables 3 and 4 summarize the convergence studies of the first five nondimensional frequency parameters,oa2
ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
, for

square plates having centrally located horizontal internal cracks (x0=a¼ 0:5, y0=b¼ 0:5 and a¼ 0o) with d/a=0.6. Table 3
considers a thin plate (h/b=0.01) with simple supports, while Table 4 is for a thick plate (h/b=0.1) with cantilevered boundary
conditions. The results are obtained using 5�5, 6�6, y,10�10 orthogonal polynomials in conjunction with sets of crack
functions with N=0, 1, 2, 3,y,8 in Eqs. (10) for each of cx, cy and w.

As observed in the convergence studies for side-cracked plates, adding the crack functions in Eqs. (10) into the admissible
functions considerably enhances the accuracy of the numerical solutions. The numerical results monotonically converge
from the upper bounds as the number of polynomials and crack functions increases. The excellent agreement between the
convergent results and the results of Stahl and Keer [2] in Table 3 demonstrates the validity of the present solutions for plates
with internal cracks. Using polynomials with I and J larger than 8 and crack functions with N larger than 6 gives results which
are exact to at least 3 significant figures.
Table 4

Convergence of frequency parameters oa2
ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
for a cantilevered square plate with a horizontal central internal crack (x0=a¼ y0=a¼ 0:5, d=a¼ 0:6,

h=a¼ 0:1)

Mode no. No. of corner functions N
� �

Order of polynomial (I� J)

5�5 6�6 7�7 8�8 9�9

1(S) 0 3.433 3.433 3.431 3.431 3.431

1 3.430 3.429 3.427 3.427 3.426

2 3.424 3.423 3.421 3.421 3.421

3 3.422 3.421 3.420 3.420 3.419

4 3.420 3.419 3.418 3.418 3.418

5 3.419 3.418 3.418 3.418 3.418

6 3.418 3.418 3.418 3.418 3.418

7 3.418 3.418 3.418 3.418 3.418

8 3.418 3.418 3.418 3.418 3.418

2(A) 0 8.170 8.091 8.088 8.063 8.063

1 8.092 7.955 7.953 7.949 7.948

2 7.945 7.924 7.922 7.882 7.881

3 7.929 7.905 7.902 7.877 7.877

4 7.897 7.880 7.878 7.875 7.875

5 7.879 7.877 7.876 7.872 7.872

6 7.877 7.873 7.873 7.872 7.872

7 7.872 7.872 7.872 7.872 7.871

8 7.872 7.872 7.871 7.871 7.871

3(S) 0 20.17 20.11 20.09 20.09 20.08

1 20.14 20.09 20.06 20.06 20.05

2 20.03 20.00 19.98 19.97 19.95

3 19.93 19.92 19.88 19.88 19.87

4 19.89 19.88 19.87 19.86 19.86

5 19.87 19.87 19.86 19.86 19.85

6 19.86 19.86 19.85 19.85 19.85

7 19.86 19.85 19.85 19.85 19.85

8 19.85 19.85 19.85 19.85 19.85

4(A) 0 25.81 25.68 25.51 25.51 25.49

1 23.23 23.16 22.98 22.94 22.79

2 21.38 21.28 21.21 21.20 21.10

3 20.86 20.84 20.80 20.80 20.78

4 20.77 20.76 20.75 20.75 20.74

5 20.74 20.74 20.74 20.74 20.73

6 20.74 20.73 20.73 20.73 20.73

7 20.73 20.73 20.73 20.73 20.73

8 20.73 20.73 20.73 20.73 20.73

5(S) 0 28.60 28.35 28.30 28.25 28.24

1 27.58 27.18 27.09 26.95 26.92

2 26.49 26.34 26.28 26.26 26.25

3 26.24 26.16 26.15 26.13 26.13

4 26.16 26.14 26.13 26.11 26.11

5 26.13 26.12 26.11 26.10 26.10

6 26.11 26.10 26.10 26.10 26.10

7 26.10 26.10 26.10 26.10 26.10

8 26.10 26.10 26.10 26.10 26.10
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4. Frequencies and mode shapes

After the correctness and accuracy of the proposed approach was verified by performing the convergence studies,
this approach was further applied to study the effects of location, length and orientation of cracks on the free vibration
frequencies and mode shapes of simply supported and cantilevered rectangular plates. Only plates with h/b=0.1 are
considered herein.
4.1. Side-cracked rectangular plates

Table 5 presents the first five nondimensional frequency parameters oa2
ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
for thick, simply supported rectangular

plates (a/b=2) with side cracks of various lengths (d/b=0.1, 0.2,y,0.6), orientations (a=901and 1351), and locations
(cx/a=0.25 and 0.5) (Fig. 1b), while Table 6 lists the results for cantilevered rectangular plates. The results for plates with crack
Table 5

Frequency parameters oa2
ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
for simply supported rectangular plates with side cracks (a/b=2, h/b=0.1), as in Fig. 1b.

a cx=a d=b Mode

1 2 3 4 5

0 48.26 76.23 121.4 156.3 181.8

901 0.5 0.1 48.26 76.10 121.4 156.3 181.4

0.2 48.22 75.92 121.1 156.1 180.7

0.3 48.10 75.68 120.2 155.6 178.8

0.4 47.85 75.17 118.2 155.0 172.1

0.5 47.44 73.98 115.2 154.8 156.9

0.6 46.91 71.49 111.9 138.2 154.8

901 0.25 0.1 48.23 76.22 121.3 156.2 181.6

0.2 48.18 76.11 121.0 155.7 180.2

0.3 48.08 75.70 120.3 155.7 180.0

0.4 47.90 74.84 118.5 155.0 175.3

0.5 47.58 73.51 114.8 152.5 163.6

0.6 47.07 71.86 107.5 142.0 157.3

1351 0.25 0.1 48.22 76.22 121.3 156.1 181.6

0.2 48.07 76.17 121.0 155.4 180.6

0.3 47.75 76.00 120.3 153.4 178.6

0.4 47.17 75.67 118.9 150.2 176.1

0.5 46.30 75.08 116.1 146.9 173.4

0.6 45.15 74.08 111.3 144.8 165.0

Table 6

Frequency parameters oa2
ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
for cantilevered rectangular plates with side cracks (a/b=2, h/b=0.1), as in Fig. 1b, with x=0 clamped.

a cx=a d=b Mode

1 2 3 4 5

0 3.422 14.18 21.09 45.72 58.00

901 0.5 0.1 3.413 14.10 20.86 45.44 57.84

0.2 3.390 13.84 20.35 44.75 57.03

0.3 3.352 13.37 19.63 43.66 54.90

0.4 3.296 12.72 18.77 41.80 51.33

0.5 3.219 11.89 17.81 38.58 48.28

0.6 3.114 10.92 16.80 34.68 46.74

901 0.25 0.1 3.390 14.08 21.05 45.49 57.57

0.2 3.314 13.71 20.91 44.69 56.57

0.3 3.204 13.08 20.63 43.36 55.23

0.4 3.063 12.20 20.20 41.67 53.78

0.5 2.892 11.11 19.65 39.98 52.34

0.6 2.693 9.881 19.03 38.59 50.92

1351 0.25 0.1 3.406 14.12 21.06 45.60 57.72

0.2 3.372 13.92 20.92 45.11 56.92

0.3 3.330 13.56 20.57 44.13 55.82

0.4 3.283 13.05 19.93 42.60 54.81

0.5 3.233 12.38 18.97 40.69 54.08

0.6 3.182 11.55 17.79 38.75 53.38
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length d=br0.3 were obtained using polynomials with 9�9 terms and crack functions with N¼ 7 in Eqs. (9) yielding a total
of 453 degrees of freedom in the resulting eigenvalue problems in the Ritz method; the results for d=bZ0.4 were obtained
using polynomials with 9�9 terms and crack functions with N¼ 8 in Eqs. (9) resulting in a total of 507 degrees of freedom.
Extensive convergence studies, not presented here, indicate that the frequencies are exact to at least three significant figures.

As expected, the frequency of each mode reduces as the crack length increases because increasing the crack length reduces
the stiffness of the plate. A crack with d/a=0.6 can reduce the frequencies up to more than 14% and 30% for simply supported
plates and cantilevered plates, respectively. Moving the crack from cx/a=0.25 to 0.5 increases the frequencies of the first two
modes and reduces the frequency of the third mode for cantilevered plates. Changing the crack orientation from a=901 to
1351 increases the frequencies of the first two modes, the fourth and the fifth modes for cantilevered plates, while the change
of a reduces the frequency of the first mode and increases the frequencies of the second and third modes for simply supported
plates. A small crack d/a=0.1 in various locations and orientations results in frequencies which slightly differ from those for
intact plates, with differences of less than 0.22% and 1.1% for simply supported plates and cantilevered plates, respectively.

Figs. 3 and 4, respectively, display nodal patterns for simply supported and cantilevered rectangular plates having side
cracks at different locations (cx/a=0.25 and 0.5), with various lengths (d/b=0.2 and 0.6) and orientations (a=901and 1351). In
these figures, dashed lines denote the nodal lines where transverse displacement equals zero, and solid lines represent non-
zero contours. The crack destroys the symmetry of plate with respect to the horizontal line passing the center of the plate.
Therefore, the nodal lines for the cracked plates are no longer symmetric to the horizontal line. Nevertheless, the nodal lines
for a simply supported plate with a vertical crack at cx/a=0.5 are still symmetric with respect to the vertical line including the
crack. The nodal patterns for the higher modes (i.e., the fourth and fifth modes) are rather sensitive to the location, length and
orientation of the crack.
4.2. Internal-cracked square plates

Table 7 presents the first five nondimensional frequency parameters oa2
ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
for simply supported square plates with

centrally located cracks of various lengths (d/b=0.1, 0.2,y, 0.6) and orientations (a=01, 151, 301 and 451) (Fig. 2), while Table 8
shows the results for cantilevered square plates. The results for plates with crack length d=br0.3 were obtained using
polynomials with 8�8 terms and crack functions with N¼ 5 in Eqs. (10) yielding a total of 432 degrees of freedom; the results
for d=bZ0.4 were obtained using polynomials with 8�8 terms and crack functions with N¼ 6 in Eqs. (10) resulting in a total
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Fig. 3. Nodal patterns for simply supported rectangular plates with side cracks (a/b=2, h/b=0.1).
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Fig. 4. Nodal patterns for cantilevered rectangular plates with side cracks (a/b=2, h/b=0.1).

Table 7

Frequency parameters oa2
ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
for simply supported square plates (h/b=0.1) with central internal cracks (x0=a¼ y0=a¼ 0:5).

a d=a Mode

1 2 3 4 5

0 19.06 45.45 45.45 69.72 84.93

0o 0.1 18.86 45.35 45.45 69.56 83.20

0.2 18.43 44.84 45.41 69.28 79.70

0.3 17.88 43.46 45.28 68.91 76.00

0.4 17.29 40.65 45.02 68.22 72.87

0.5 16.72 36.43 44.62 66.81 70.50

0.6 16.23 31.65 44.10 64.16 68.77

15o 0.1 18.85 45.35 45.44 69.54 83.13

0.2 18.44 44.85 45.41 69.19 80.06

0.3 17.85 43.47 45.28 68.52 76.61

0.4 17.24 40.65 44.98 67.42 74.11

0.5 16.66 36.40 44.51 65.90 72.09

0.6 16.13 31.67 43.91 63.78 69.88

30o 0.1 18.88 45.35 45.44 69.54 83.59

0.2 18.43 44.84 45.40 68.99 80.60

0.3 17.85 43.44 45.24 67.96 78.07

0.4 17.21 40.63 44.88 66.47 76.49

0.5 16.55 36.42 44.29 64.81 74.48

0.6 15.92 31.69 43.48 63.16 69.55

45o 0.1 18.87 45.35 45.44 69.52 83.53

0.2 18.43 44.84 45.40 68.89 80.93

0.3 17.85 43.44 45.22 67.71 78.87

0.4 17.18 40.62 44.83 66.07 77.88

0.5 16.49 36.42 44.17 64.39 74.22

0.6 15.80 31.69 43.25 62.87 69.19
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Table 8

Frequency parameters oa2
ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
for cantilevered square plates (h/b=0.1) with central internal cracks (x0=a¼ y0=a¼ 0:5).

a d=a Mode

1 2 3 4 5

0 3.430 8.057 20.08 25.49 28.22

0o 0.1 3.430 8.038 20.08 25.21 28.21

0.2 3.429 8.005 20.08 24.58 28.16

0.3 3.428 7.971 20.08 23.72 28.02

0.4 3.426 7.937 20.07 22.71 27.71

0.5 3.422 7.904 20.03 21.65 27.13

0.6 3.418 7.871 19.85 20.73 26.10

15o 0.1 3.430 8.035 20.07 25.21 28.22

0.2 3.428 8.000 20.05 24.64 28.17

0.3 3.424 7.949 20.04 23.79 28.04

0.4 3.419 7.900 20.02 22.84 27.77

0.5 3.413 7.842 20.00 21.85 27.26

0.6 3.402 7.774 19.94 20.85 26.31

30o 0.1 3.428 8.036 20.04 25.28 28.22

0.2 3.422 7.987 19.97 24.75 28.18

0.3 3.414 7.907 19.90 24.07 28.09

0.4 3.400 7.822 19.80 23.05 27.90

0.5 3.382 7.711 19.70 22.44 27.55

0.6 3.356 7.576 19.58 21.62 26.86

45o 0.1 3.428 8.041 20.00 25.33 28.22

0.2 3.415 7.986 19.84 24.96 28.20

0.3 3.403 7.922 19.69 24.51 28.15

0.4 3.373 7.795 19.36 23.86 28.06

0.5 3.336 7.648 19.07 23.26 27.86

0.6 3.287 7.395 18.64 22.46 27.38
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of 516 degrees of freedom. The frequencies of intact plates (i.e., d=b=0) were obtained using only orthogonal polynomials
with I= J=10. The frequencies are exact to at least three significant figures.

Increasing the crack length reduces the frequency of each mode. The frequencies of the third mode in Table 7 are less
sensitive to the crack length than the other modes, and the reduction in frequency is less than 5% even when the crack length
d=b=0.6. The frequencies of the fourth mode in Table 8 are affected the most by the crack length among the first five modes. A
small crack (d/b=0.1) reduces the frequencies of the first four modes for simply supported cracked plates and the frequencies
of the first five modes for cantilevered cracked plates by only less than 1.1%. Changing the crack orientation from a=01, 151,
301, and to 451 generally reduces the frequencies of the first, third and fourth modes in Table 7 and the first three modes in
Table 8. It is seen that the frequencies for simply supported cracked plates are more affected by the length and orientation of
crack than are those for cracked cantilevered plates, except for the fourth mode.

Figs. 5 and 6 depict the nodal patterns of the first five modes for some of the plates considered in Tables 7 and 8,
respectively. Contours of the transverse displacement are given by the solid lines, while the dashed lines denote the nodal
lines. For square plates with center cracks (ðx0=a,y0=bÞ=(0.5, 0.5)) on one of their symmetry axes, the vibration mode shapes
are still either symmetric or anti-symmetric to the axes. This is found in the nodal patterns for a=0o and 45o in Fig. 5 and for
a=0o in Fig. 6. A crack with aa0o makes the otherwise crossing nodal lines for an intact plate veer with each other (i.e., the
fourth mode in Fig. 5 and the fifth mode in Fig. 6).
5. Concluding remarks

This work has been demonstrated that accurate nondimensional frequencies of thick, cracked rectangular plates can be
obtained by means of the Ritz method with appropriate admissible functions. In the present solutions, the admissible
functions for bending rotations (cx and cy) and transverse displacement (w) in Mindlin plate theory consist of
mathematically complete polynomials and new sets of functions (crack functions) proposed to properly describe the
important features of true solutions along a crack. The proposed new sets of functions appropriately represent the stress
singularity behaviors around a crack tip and elucidate the discontinuities of transverse displacement and bending rotations
across the crack. The efficiency of the proposed crack functions has been substantiated through extensive convergence
studies of nondimensional frequencies for simply supported and cantilevered rectangular plates with side cracks and internal
cracks. The convergent results for simply supported cracked thin plates (h/b=0.01) agree excellently with previously
published results based on the classical thin plate theory, confirming the correctness and accuracy of the present solutions.
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Fig. 5. Nodal patterns for simply supported square plates with central internal cracks.
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Accurate nondimentional frequency data and nodal patterns and contours of transverse displacement have been provided
for simply supported and cantilevered rectangular thick plates (h/b=0.1) with side cracks or internal cracks of various lengths
(d/b=0.1, 0.2,y, 0.6), orientations (a=01, 151, 301, 451, 901 and 1351) and locations (cx/a=0.25 and 0.5). These results are exact
to at least three significant figures and are the first ones shown in the literature. These data illustrate the effects of crack
length, orientation and location on the natural frequencies. A small crack (i.e., d/a=0.1) only slightly reduces the frequencies
of the first five modes.

Although the present approach employs the Ritz method that is a traditional and popular method in analyzing the free
vibrations of plates with geometry not too complicated, this work has proposed new sets of crack functions to promote the
capabilities of the Ritz method in accurately finding the frequencies and nodal patterns of cracked plates. It will be interesting
to see how the proposed approach is applied to determine stress intensity factors of plates under various loading conditions.
The proposed crack functions can also be used in numerical methods other than the Ritz method, such as the element-free
Galerkin method and meshless collocation method to study the static and dynamic problems of cracked plates with
complicated geometry.
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