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ABSTRACT
Surface painting is a procedure that allows the users to paint
onto a surface directly. The painting strokes are stored in
a texture via surface parameterization techniques. In cur-
rent surface painting systems, the underlying surface para-
meterization is fixed during the painting process. Such a
parameterization is not sensitive to the frequency spectrum
of the color signal introduced by painting strokes. To asso-
ciate the regions of higher color signal variation with more
texture samples, we need to do the re-parameterization ac-
cording to user’s strokes at interactive rates. We propose
a re-parameterization scheme that is based on an iterative-
optimization aiming to allocate more texture samples for
regions of high signal variation and to perform at an inter-
active rate as well.

Keywords
surface parameterization, surface painting, texture mapping

1. INTRODUCTION
Surface painting(also called 3D painting) is a technique

that allows the users to paint directly onto a 3D surface.
If the discretization of the surface is fine enough, user can
directly paints on the vertices of the surface. However, in
general, the desired precision for the color is greater than
the geometric detail of the model. Assuming that a surface
is provided with a parameterization, it is convenient to store
colors in the parameterized texture space. In current surface
painting systems, the underlying mesh parameterization is
predefined and fixed during the painting process. Such a
parameterization is not sensitive to the frequency spectrum
of the color signal as the result of painting strokes, and in
consequence, may introduce distortion at arbitrary locations
and waste texture space in areas of no stroke. Moreover,
current surface painting systems parameterize the surface
only based on the geometric aspects. Even though these
systems provide tools allowing users to adjust the underlying
parameterization, but it is not intuitive for normal users.

Most surface parameterization schemes assume no prior
know-ledge of the signal, and take only surface’s geometry
information into account. For surface painting, we want to
allocate more texture samples in regions of greater signal
detail by doing the re-parameterization on the fly according
to the painting strokes. Moreover, the re-parameterization
should be fast enough to achieve an interactive rate.

Our proposed method first derives an initial parameteriza-
tion, and then, during the painting process, analyze the color
signal frequency introduced by painting strokes, and utilizes
an iterative optimization to do the re-parameterization to

interactively allocate more texture samples for regions with
high color signal variation. The proposed method is simple
to implement and works well for models with either low or
large polygon count.

We describes a novel and simple framework of the re-
param- eterization necessary for future surface painting sys-
tems. Along the way to achieve this goal, we present the
following contributions:

• Propose a modified signal metric L2
s that measures the

geometry and signal stretch of a parameterization.

• Propose an interactive approach for the re-parameter-
ization aiming to increase the sampling ratio in regions
with high signal variation.

2. PREVIOUS WORK
Parameterization is a mapping from two dimension to

higher dimension. Several schemes have been proposed that
flatten a surface region and establish a parameterization over
the last decade in computer graphics [3, 4, 7, 12, 13]. Sander
et al. proposed a non-linear stretch that integrate the sum
of squared singular values over the map [10]. We refer to
this metric as geometry stretch. The parameterization is
derived by a coarse-to-fine optimization scheme that min-
imizes the geometry stretch over the map. Note that the
resulting parameterization may encounter parametric crack
problem.

Sander et al. developed a signal-stretch metric that com-
bines both surface area and surface signal bandwidth [9]. It
is shown that the stretch metric is related to SAE (Signal-
Approximation Error) - the difference between a signal de-
fined on the surface and its reconstruction. Sander’s sig-
nal stretch can be seen as the extension of the geometry
stretch. It is, however, not suitable for surface painting since
it utilizes an expensive global optimization, and cannot sup-
port the interactive re-parameterization required after each
stroke is painted.

Hanrahan and Haeberli firstly proposed the concept of
three dimensional surface painting, in which the color sig-
nal is stored directly in mesh vertices [6]. Based on this
method, the shading result is interpolated between mesh
vertices, though we could not reveal rich texture detail.
Igarashi and Cosgrove stored the paint strokes image that
occurred for each pose as separate charts packed into a tex-
ture atlas [8]. Mesh triangles affected by painting strokes
are found and projected onto a two dimensional domain to
form an atlas. Similarly, each subsequent stroke is stored
in a new atlas. When the painting process complete, all
the atlas are packed together to form the final texture atlas.
The major disadvantage of the method is that a stroke that
overlapping other strokes may appear in more than one at-
las. In such cases, texture space may be wasted. Carr and
Hart proposed a method aiming to derive a parameterization
that is sensitive to signal distribution [2] base on their prior
work, multi-resolution meshed atals (MMA) [1]. In their
method, the mesh is first divided into several charts based
on the method proposed by Sander et al. [11] to form the
MMA tree hierarchy. During the surface painting process,
all painting strokes are rendered into texture and then the
stroke frequency distributed on the texture is analyzed using
graphics hardware. After the analysis, an importance value
computed from frequency analysis for previous strokes



Figure 1: The overall process of our method.

is attached to each chart and the MMA hierarchy (quater-
nary tree) is re-balanced to generate a new parameterization.
Each chart should consist of a quite large number of faces
in order to reduce distortion introduced by the parameteri-
zation. Moreover, the re-balancing is more significant with
more number of charts. Therefore this method is suitable
for meshes with large number of triangles.

3. A RE-PARAMETERIZATION FRAME-
WORK FOR SURFACE PAINTING

To optimize the sampling resolution in parametric space,
our basic idea is to increase the resolution of regions with
high signal variation while decreasing the resolution of oth-
ers. Our parameterization optimization framework for sur-
face painting comprises the following steps as shown in Fig-
ure 1:

1. Transform the closed-surface ΩT into an open-surface
Ω′T using topological surgery, construct a global initial
parameterization for the surface mesh, and generate a
base texture based on the parameterization.

2. Resample painting strokes into the base texture. Ana-
lyze the signal frequency on base texture, generate im-
portance map and geometry stretch map using graph-
ics hardware.

3. Apply a uniform grid G underlying the parameteri-
zation domain, in which each point of G is assigned
a L2

s stretch value derived from importance map and
geometry stretch map, and then perform a two-stage
optimization to get an optimized uniform grid Gopt.

4. Re-parameterize Ω′T according to the optimized uni-
form grid Gopt, and resample the painting strokes ac-
cording to the new parameterization.

3.1 Initial parameterization
To parameterize surface ΩT onto a planar domain, ΩT

should be topologically equivalent to a disk. If ΩT is a
closed-surface, we perform the topological surgery proposed
in [5] to transform ΩT to an open-surface Ω′T that is equiv-
alent to a topological disk.

Although many parameterization techniques are adequate
to derive a global initial parameterization, the one aiming
to guarantee uniform sampling and preserve conformality
structure of the input mesh is most preferable. Here, we
use the method proposed by Yoshizawa et al. [13] due to its
preferable properties and requires solving a simple, sparse
linear system, which is usually handled in a matter of sec-
onds using Conjugate Gradient solver with good precondi-
tioning.

3.2 Stroke sampling
During painting process, we use the method proposed by

Carr et al. [2] to sample painting stroke into texture. Each
paint stroke applied in the same object pose (i.e. modelview
coordinates of the model) is rendered directly into base tex-
ture map using graphics hardware. For this task, we need a
stroke buffer for storing the painting data and a depth buffer
for the depth of current object pose.

The resampling is done by a vertex shader and a frag-
ment shader. The vertex shader transforms the world space
position into model view coordinates and then swaps each
vertex’s model view coordinates with its texture coordinates.



(a) (b)

Figure 2: Problems of four-tap filter.

The fragment shader is applied to render the new base tex-
ture by taking the stroke buffer, depth buffer, and the origi-
nal base texture as input. The alpha channel in stroke buffer
represents the existence of paint strokes to ensure that only
the strokes can overwrite the existing base texture. The
depth buffer is used to prevent paint being applied to invisi-
ble portions of the model. This process is performed for the
stroke painted at each pose.

3.3 Importance map and geometry stretch map
To analyze the base texture for finding regions that re-

quires additional samples, a four-tap gradient magnitude
filter is used in [2] to find undersampled regions. The four-
tap filter fetches four samples from the input texture, and
outputs the result in half resolution. For the four-tap gradi-
ent magnitude filter, some gradient features will be missed.
For example, as shown in Figure 2, each red rectangle repre-
sents 4 pixels on the texture, and we detected the gradient
in s-direction of paint (a), but not in paint (b).

Here we modify previous four-tap filter. For each pixel on
the base texture, we calculated its magnitude of the gradi-
ent using fragment shader arithmetic by central difference.
Actually, this is the Sobel Filter in the filed of image process-
ing. The filter is applied for each pixel of the base texture,
therefore the output image is the same resolution as the
base texture. Figure 3 demonstrates the result of two filters
which shows that our modified filter is more accurate than
four-tap filter.

Besides the importance map, another map called geom-
etry stretch map is also computed. This geometric stretch
map stores L2 stretch value for each face on parametric do-
main as shown in Figure 1(g). We normalize the value of
geometric stretch of each face to lie between 0 and 1. Next,
we render the mesh on parametric domain using the nor-
malized geometric stretch value as the color of the face.

3.4 TheL2
s stretch

After the generation of importance map and geometry
stretch map, the L2

s stretch is derived from these two maps.
As mentioned in [9], the signal stretch can have zero gradient
since the signal may be locally constant on a region of the
surface. Therefore, a tiny fraction of geometry stretch is
added into the energy function to be minimized. The L2

s

stretch is defined as follows:

L2
s(s, t) =

�
1− L2(s, t) , if Eh(s, t) = 0
1− (α · L2(s, t) + β · Eh(s, t)) , otherwise.

where Eh(s, t) is the signal stretch proposed by Sander et al.
[9], and L2(s, t) is the geometry stretch [10]. The two values

Figure 3: Four-tap filter and our filter.

are obtained from importance map and geometry stretch
map, respectively. In the region with signal variation, we
use the weighted geometric stretch and signal stretch as in
[9]. Otherwise, in the region without signal variation, we
purely take the geometry stretch into account to prevent
undersampling in regions with no signal variation. The L2

s

stretch could be considered as the extension of signal stretch.

3.5 Iterative optimization based on uniform
grid

For interactive applications, the parameterization proposed
by Sander et al. [9] has two major problems when it is ap-
plied to surface painting systems. First, since the signal
introduced by painting strokes is not constant over the tri-
angle, numerical integration is used to compute the signal
stretch on each triangle. All the mesh triangles are subdi-
vided into 64 sub-triangles and the signal stretch are eval-
uated at all the vertices. The second drawback is that the
optimization process proposed by Sander et al. is a non-
linear, global optimization. As a result, the parameteriza-
tion is expensive and therefore not suitable for interactive
surface painting applications.

To reduce the cost of computing signal stretch, instead
of subdividing each triangle, we derive the signal stretch on
parametric domain. We apply an N ×N uniform grid G to
the parametric domain in which the initial parameterization
lies as shown in Figure 4. These grid points, rather than the
mapping of mesh vertices, are used to sample L2

s stretch on
parametric domain, that is, we compute L2

s stretch for each
grid point. Such an approach allows us to control the sam-
pling resolution. Moreover, the grid is used to be the target
for stretch optimization. By doing this, the computational
complexity of performing optimization will be dependent on
the resolution of the grid, rather than the mesh.

We then optimize G by the following steps:

1. For each point N ∈ G, derive L2
s(N) from importance

map and geometry stretch map using graphics hard-
ware.



2. For each interior point Ni ∈ G in turn,

compute fNi =

P
N′∈1-ring of Ni

L2
s(N

′) ·N ′
P

N′∈1-ring of Ni
L2

s(N ′)
,

set Ni = fNi.

3. Repeat 1 and 2 until ‖fNi −Ni‖ < ε for every i.

(a) The face model
with a painting
stroke.

(b) Initial parame-
terization.

(c) Initial uniform
grid G.

(d) Importance
map.

(e) Stretch on sam-
ple points (64×
64).

(f) Optimized sam-
ple points Gopt.

Figure 4: The optimization result base on one iter-
ation.

Figure 4(a) illustrates the face model with a red painting
stroke and the resulting importance map is shown in Figure
4(d). A 64× 64 uniform grid G is applied to the parametric
domain, where each sample point is assigned a L2

s stretch
value as shown in Figure 4(e) (we take only signal stretch
into account in this case). Figure 4(f) shows the optimized
grid Gopt, where the sample points are more sparse in the
regions with signal variation. The optimization procedure
on the grid points is illustrated in Figure 5. Figure 5(a)
depicts the grid points and the corresponding parametric
domain with signal distributed. Since the L2

s stretch values
of p2, p7 and p12 are smaller than that of p0, p5 and p10, p1,
p6 and p11 are moved toward p0, p5 and p10. Similarly, p3,
p8 and p13 are moved toward p4, p9 and p14; as shown in
Figure 5(b)(c).
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(b) The optimiza-
tion process.
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(c) The optimized
grid.

Figure 5: Chart diagram of the optimization
process.

The optimization procedure is an iterative optimization
process, in which the local optimization optimizes a grid

point in one iteration. After the optimization, we will get
an optimized uniform grid Gopt. On Gopt, grid points will
become dense in the regions with high L2

s stretch (lower sig-
nal variation), and sparse otherwise. After the optimiza-
tion process, the underlying parameterization will be re-
computed by barycentric interpolation according to the op-
timized grid points as described in next section.

3.6 Re-parameterization
After optimizing the initial uniform sample points G, we

re-parameterize the parameterization by the barycentric in-
terpolation based on the optimized uniform sample points
Gopt. For each vertex vj ∈ VI , let N j0 , N j1 , N j2 and N j3 be
the sample points of the cell that contains vj . Barycentric
coordinates w0, w1, w2 and w3 are derived such that

vj =

3X
i=0

wi ·N ji .

The new position of vj will be

vopt
j =

3X
i=0

wi ·N ji
opt,

where N j0
opt, N j1

opt, N j2
opt and N j3

opt are the homologous points

of N j0 , N j1 , N j2 and N j3 in Gopt.

3.7 Stroke resampling over optimized para-
meterization

Finally, we resample the base texture based on the opti-
mized parameterization. The sampling process is similar to
the method mentioned in section 3.2. The only difference is
that now we have two texture coordinates, i.e. parameter
values tprev and topt for each vertex, which are derived from
initial parameterization φ and optimized parameterization
φopt, respectively. As described in section 3.2, we first swap
each vertex’s model view coordinates with its current tex-
ture coordinates topt in vertex shader, and then we resample
painting strokes to form a new base texture. The resampling
procedure here consists of two step. The first step resamples
current painting strokes stored in stroke buffer; step two re-
samples previous painting strokes stored in the previous base
texture. Therefore current model view coordinates and topt

are used to sample current stroke from stroke buffer and
tprev is used to sample previous stroke form previous base
texture.

3.8 Two-stage re-parameterization framework
Compared to Sander’s signal-specialized parameterization

[9], the proposed framework tends to be a local optimization
process. Figure 6 shows the re-parameterization result us-
ing a 256x256 uniform sample points. We can see that the
relaxation of sample points is bounded inside the cell it lies.
As shown by the red arrow in Figure 6, there should be
less sample space in these regions with lower signal gradi-
ent. However, the movement of the sample points in these
regions is not much due to the fact that the L2

s stretch of
these points are almost the same. Therefore the relaxation
works well in the regions with high gradient, but may not
work well in the other regions. To solve this problem, a two
stage optimization framework is used instead of the single
stage optimization.

In the two-stage optimization, we expect that the first
stage diminishes the texture sample space in region with



lower signal gradient and the second stage magnifies the tex-
ture space in regions with high signal gradient. To achieve
this goal, a lower resolution uniform grid is used in the first
stage and a high resolution grid in the second stage. Figure
7 illustrates the optimization result using a high resolution
grid. As shown in Figure 7(c), only these sample points near
the regions of low L2

s stretch value (high signal variation)
will be moved after the iterative optimization. Other sample
points will remain fixed in other regions where neighboring
points have the same L2

s stretch value. Figure 7(d) shows
the final result of the optimization. The regions with lower
signal stretch are expected to obtain less texture space. Ap-
parently, optimization using a high resolution grid does not
work well for this purpose, see the comparison highlighted
by the blue circle in Figure 7(a) and Figure 7(d).

The optimization resulting from using a lower resolution
grid will have more convergence effect in the regions of high
L2

s stretch (lower signal variation), and allocate less texture
space in these regions. See the comparison shown in Figure
8(a) and Figure 8(d).

(a) Parasaur model(b) Optimized uni-
form sample
points

(c) Base texture

Figure 6: Parasaur model : single stage optimization
using 256x256 uniform sample points

(a) Initial grid. (b) The optimization
process.

(c) The relaxed grid points. (d) The optimization result.

Figure 7: High resolution uniform grid points.

Figure 9(b) shows that the sample points of 16 × 16 res-
olution int the first stage and Figure 9(d) is the result of
using the sample points of 256 × 256 resolution in the sec-
ond stage. We see that the texture space in regions of lower
signal gradient is diminished in stage one; as shown in Figure
9(c), while in stage two, more texture space in the regions
of high signal gradient are allocated; see Figure 9(e). Fig-
ure 10 shows the result of single stage optimization and two
stage optimization for comparison. Obviously, the texture

(a) Initial grid. (b) The optimization
process.

(c) The relaxed grid points. (d) The optimization result.

Figure 8: Low resolution uniform grid points.

space is used more efficiently using the two stage optimiza-
tion method, especially in the regions of lower signal gra-
dient, see the comparison highlighted by the red arrows in
Figure 10.

(a) Parasaur model.(b) Optimized 16 ×
16 grid in the
first stage.

(c) Base texture
(Stage 1).

(d) Optimized
256 × 256 grid
in the second
stage.

(e) Base texture
(Stage 2).

Figure 9: Parasaur model : Two-stage optimization
using 16× 16 and 256× 256 grids.

4. RESULTS AND PERFORMANCE ANALY-
SIS

All results are performed with a AMD Athlon64 3000+
PC, 512 MB RAM and an NVIDIA GeForce 6800 graphics
card. It is running Windows XP with NVIDIA Cg 1.3 com-
piler, vp40 vertex shader profile and fp40 fragment shader
profile. We use the pBuffer extension for efficient texture
rendering.

We compare our result with that based on static para-
meterization in current surface painting systems. Figure 11
and Figure 12 show the painting result of our surface paint-



(a) Single stage optimiza-
tion

(b) Two stage optimization

Figure 10: Comparison of single and two stage op-
timization

ing system on the venus model. The left columns show the
result of current surface painting systems, i.e. with fixed
underlying parameterization. The right columns show the
result of our two-stage optimization process. Our method
depicts better texturing quality than that for current surface
painting systems.

Figure 13 and Figure 14 demonstrate the painting results
of other models. Aliasing occurs in undersampling regions
and our method alleviate this problem efficiently.

The strokes of all the results shown in Figure 11 to Figure
14 are painted manually. Figure 15 shows the result where
four images is texture mapped to simulate painting strokes.
The artifact, blur, occurs due to the fact that texture is
undersampled using fixed parameterization as shown in the
left column of Figure 15. The right column shows that the
result of two-stage optimization is much more better.

Table 1 lists the computation time for initial parameter-
ization, two-stage optimization and re-parameterization oc-
curs during surface painting process. Because the optimiza-
tion procedure is done on parametric domain, the compu-
tation cost of two-stage optimization is independent on the
face number of input model. The timing required by the
two-stage optimization is reasonable for the interactive ap-
plication of surface painting systems. Figure 16 shows the
optimization time after each stroke is applied on the tricer-
atops model. Since the geometry stretch is minimized in the
first optimization process, the timing is higher than succeed-
ing optimizations.

The signal-specialized parameterization proposed by Sander
et al.[9] is thought to be the state-of-art work in mesh pa-
rameterization which is sensitive to surface signal. We com-
pare the parameterization performance between our two-
stage optimization framework and signal-specialized para-
meterization.

Figure 17(a)(b) show the result of signal-specialized para-
meterization using 2048×2048 and 128×128 texture maps,
respectively. Figure 17(c)(d) shows the result of our two-
stage optimization under two different texture map resolu-
tions. Our result is pretty good under resolution of 256x256
and still fine under resolution of 128x128.

5. CONCLUSION
We have proposed a rapidly re-parameterization frame-

work for surface painting which redistributes texture sample
space according to the surface signal variation. A two stage

Figure 11: Painting results of the venus model. Re-
sult of a fixed-parameterization (left column) and
the result of our two-stage optimized parameteriza-
tion (right column).

uniform grid optimization framework is proposed which di-
minished sample space in lower gradient regions in stage
one and magnifies sample space for high gradient regions in
stage two. In addition, this two stage optimization frame-
work is suitable for interactive use required by surface paint-
ing. For the optimization process, we derived the modified
L2 metric denoted as L2

s. The L2
s metric takes signal stretch

into account in the regions of signal variation and combines
geometry stretch in the regions without signal variation.

Some potential future work are listed as follows:

• Better stroke sampling method The stroke sam-
pling method[2] based on graphics hardware is simple
and fast for interactive use. However the result is bad
when the resampling was done under either magnifi-
cation or minification. Perhaps some filter on image
space could alleviate this problem.

• Better parameterization metric Since the same
value of geometry and signal stretch does not imply
the equal significance, our proposed L2

s stretch ac-
tially works in a heuristic manner. A good study on
the weighted relationship between geometry and sig-
nal stretch may enhance the theoretical background of
our method. Furthermore, a better metric, especially
the one which is more sensitive for the anisotropical
distribution of surface signal on parametric domain is
a chance to improve the overall quality.

• Hierarchical optimization Optimization based on
adaptive sample points can be utilized to improve the
performance. In our two-stage optimization frame-
work, the sample points are uniformly distributed on
parametric domain at each step. To use the sam-
ple points more efficiently, we distribute more sample



Model face Init-param.
Two-stage Optimization

Re-param.
range avg.

venus 1396 0.625 0.718 - 3.843 1.784 0.016
triceratops 5660 3.234 0.625 - 3.156 1.739 0.063

face 1162 0.5 1.531 - 3.828 1.690 0.016
horse 7500 4.906 1.031 - 3.125 1.375 0.078

Table 1: Statistics of initial parameterization, two-stage optimization and re-parameterization time (sec.) for
four different models.

Figure 12: Back-view of the painting results of the
venus model. Result of a fixed-parameterization
(left column) and the result of our two-stage op-
timized parameterization (right column).

points on the regions of high signal gradient to accu-
rately grab the signal variation. Less sample points
are distributed on the regions of lower signal gradient,
thus these regions will be converged more quickly. To
achieve the goal, a hierarchy architecture of uniform
grid is required to maintain the different resolution of
grid points. For sampling, there are two major prob-
lems of the hierarchical method. The first one is the
determination of high gradient region and lower gra-
dient region. A two-pass method will be practical to
accomplish this. The second problem is that a theoret-
ical and efficient method to propagate the L2

s stretch
from high resolution grid pints to lower resolution grid
points is required. In addition to the problems of sam-
pling, an efficient optimization algorithm for the hier-
archical gird architecture is also required.
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Figure 15: Four images are texture mapped to
simulate painting strokes. Result of a fixed-
parameterization (left column) and the result of
our two-stage optimized parameterization (right col-
umn).

Figure 16: The optimization process of triceratops
model.



(a) Signal-specialized (b) Signal-specialized

(c) Two-stage optimiza-
tion

(d) Two-stage optimiza-
tion

Figure 17: Comparison of our result with signal
specialized parameterization under different texture
map resolutions.


