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二、關鍵詞 
本文關鍵詞—次線性時間、Bloom filter、字串比對、

硬體 
Keywords—sub-linear time, Bloom filter, string 
matching, hardware 
三、中英文摘要 
一般處理器跑字串比對演算法，由於其大計算量

和頻繁的記憶體存取使得字串比對的處理速度存在

一定的上限，所以在高速應用中已走向使用硬體加

速器來加速字串比對的運算。我們提出了一個應用

Bloom filter 的特性實作表格的查詢來達到次線性

比對時間的硬體架構。此架構中利用二個機制來克

服原本次線性時間演算法不適於硬體實作的因素，

分別是：一、以平行詢問(parallel query)多個

Bloom filter 來取代原本演算法中需要存取在於外

部記憶體的表格查詢動作。二、設計一個非阻斷式

(non-blocking) 的驗證介面，使得最差情況下的處

理速度仍達到線性時間。本實作經過軟體模擬和

Xilinx FPGA 合成模擬後驗證無誤，最高速度可達

將近 9.2Gbps；完全是病毒碼的驗證速度是

600Mbps。 

Because of the intensive computation and memory 
access on a general-purpose processor, software-based 
implementations may not meet the high-performance 
requirements. Instead, adopting hardware to take 
advantage of the parallelism is a promising solution 
recently to inspect the packet payload at line rate. This 
work proposes an innovative memory-based 
architecture using Bloom filters to realize a sub-linear 
time algorithm. The two key ideas to adopt the 
sub-linear time algorithm into the proposed 
architecture are (1) replacing the slow table lookup in 
the external memory with simultaneous queries of 
several Bloom filters and (2) designing a non-blocking 
verification interface to keep the worst-case 
performance in linear time. The proposed architecture 
is verified in both behavior simulation in C and 
timing simulation in HDL. The simulation result 
shows that the throughput is up to almost 10Gbps 
when the text using windows executable files and 
600 Mbps in the worst case. 
四、計畫目的 

String matching algorithms implemented on general 
purpose processors are often not efficient enough to 
afford the escalating amount of Internet traffic, so 
several specialized hardware-based solutions have 
been proposed for high-speed applications. A study in 
[1] surveys and summarizes several architectures of 
string matching engines. As far as we know, existing 
solutions all implement linear time algorithms, say the 
well-known Aho-Corasick (AC) algorithm [2], that 
have to read every character in the text, and hence the 
time complexity is O(n), where n is the text length. 
Although some designs can process multiple characters 
at a time at the cost of duplicating matching hardware 
components, the number of characters under 
simultaneous processing is quite limited in practice due 
to hardware complexity. 

Unlike linear time algorithms, many existing 
sub-linear time algorithms can skip characters that can 
not be a match so that multiple characters are 
processed at a time in effect [2], [3]. Although they 
generally have higher performance than a linear time 
algorithm in software [4], [5], they are rarely 
implemented in hardware, probably because of two 
reasons. First, sub-linear time algorithms skip 
unnecessary characters according to some heuristics, 
typically by looking up a large table. The table may be 
too large to fit on the embedded memory, and thus be 
stored in external memory which is time-consuming to 
access. Second, although the average time complexity 
of the sub-linear time algorithms is roughly O(n/m), 
where m is the pattern length, the worst-case time 
complexity is O(mn), worse than O(n) in linear time 
algorithms. Therefore, sub-linear time algorithms are 
less resilient to algorithmic attacks that exploit the 
worst case of an algorithm to reduce its performance. 

This work proposes an innovative memory-based 
architecture using Bloom filters [6] to realize a 
sub-linear time algorithm enhanced from the 
Wu-Manber (WM) algorithm [7], namely the Bloom 
Filter Accelerated Sub-linear Time (BFAST) algorithm 
herein. The proposed architecture stores the signatures 
in the Bloom filters that can represent a set of strings in 
a space-efficient bit vector for membership query, so 
this proposed architecture can accommodate a large 
pattern set and have low cost in pattern reconfiguration. 
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The proposed architecture replaces the table lookup in 
the WM algorithm with simultaneous queries of 
several Bloom filters to derive the same shift distance 
of the search window. Thanks to the space efficiency 
of Bloom filters, the required memory space can fit 
into the embedded memory. To handle the worst case, a 
heuristic similar to the bad-character heuristic in the 
Boyer-Moore algorithm [8] is adopted to reduce the 
number of required verifications in the WM algorithm. 
When a suspicious match is found in a position called 
the anchor, the anchor is passed to a verification engine 
without blocking the scan. The system also supports 
searching for a simplified form of regular expressions 
specified in terms of a sequence of sub-patterns spaced 
by bounded gaps, which can be found in some virus 
patterns [9]. 

五、研究方法及結果 
I. The rationale of the BFAST algorithm 

A large shift table in the WM algorithm is unable 
to fit into the embedded memory, but if the table is 
stored in the external memory, the slow memory access 
will slow down the overall performance. Moreover, the 
shift values in the shift table can be indexed only from 
the rightmost block of the search window. If a shift 
value of zero happens frequently, the frequent 
verifications will slow down the overall performance. 
The BFAST algorithm keeps the positions of the 
blocks in the patterns so that not only the rightmost 
block, but also the other blocks in the search window 
can derive their position in the patterns. Therefore, the 
algorithm can use a heuristic similar to the 
bad-character heuristic in the Boyer-Moore algorithm 
to determine a better shift value. 

We can replace the shift table lookup operation 
with membership query of parallel Bloom filters. 
Bloom filtering is a space-efficient approach to store 
strings in the same length for membership query, i.e. to 
check if one string belongs the string set or not. By 
grouping the blocks in different position of the patterns 
and storing these groups in separate Bloom filters, we 
can know a block belongs to the pattern or not and its 
position by querying these Bloom filters in parallel.  

Fig. 1 is a diagram describing how to establish an 
implicit shift table using Bloom filters. Assume the 
pattern set is {P1, P2, P3}. After dividing by the position, 
the Group 0 is {efgh,mnop,vuts}, Group 1 is 
{defg,lmno,wvut}, etc. If the block of text is “cdef”, 
the query result will be Group 2 hit, so the shift 
distance is 2. If there is no hit reported, then it means 
there is no such block in the patterns, we can safely 
shift maximum shift distance or 8 in this example. 

 
Figure 1. Grouping of blocks in the patterns for deriving 
the shift distance from querying Bloom filters. The shift 
table in the WM algorithm becomes implicit in the 
Bloom filters herein. 
II. Additional checking and worst-case handling 

Although G0 is rarely hit for random samples, i.e. 
the block is not in the rightmost block of the pattern, 
this is not always the case in practice. Therefore, 
unlike the original WM that verifies the possible match 
immediately, the BFAST algorithm continues checking 
the block B1, B2, …, Bm-|B| like the bad-character 
heuristic in the Boyer-Moore algorithm, where Bj 
stands for the |B| characters that are j characters away 
from the rightmost character backward in the search 
window. If the Bloom filter of Gi is hit, where i > j, the 
shift distance can be i - j. The reason is much like the 
bad-character heuristic in the Boyer-Moore algorithm. 
A shift less than i - j cannot lead to a match because Bj 
cannot match any blocks in groups from Gi-1 to Gj. The 
verification procedure will follow to check whether a 
true match occurs only if every block from B0 to Bm-|B| 
is in Bloom filters of G0 to Gm-|B|.  

For example, assume the text is abcdefghijklmn…. 
When the querying result of a block hijk is reported hit 
in the group 0, i.e. the shift distance equals to 0, we 
take the preceding block ghij to query the bloom filter 
of group 1. If it is still a hit, we continue to use the 
preceding block fghi to query group 2; otherwise, we 
claim failure and move on to scan the block ijkl which 
is the next block of the one causing the verification, i.e. 
the block which shift distance is 0. The verification 
procedure repeats until querying the last group. If all 
the groups are hit, Anchored AC verification is 
involved. This further verification can reduce 
significantly the number of verifications in the WM 
algorithm. In the simulation using 10,000 patterns, this 
approach can reduce the number of verifications by 
around 50%. 

 



 3

The performance of a sub-linear time algorithm, say 
the WM algorithm, may be low in some cases. First, 
when the pattern length is close to the block size, the 
shift distance of m - |B0| + 1 will be very short, given m 
≥ |B0|. The BFAST algorithm can process at least four 
characters in each shift of the search window, while the 
shift distance in the WM algorithm can be as short as 
one or two characters in the same case. Second, the 
worst case time complexity can be as high as O(mn) if 
the patterns occur in the text frequently. Consider the 
extreme case that the characters both in the text and in 
some patterns are all a’s, verification is required after 
each shift of only one character. To increase the 
performance in the worst case, this work uses a linear 
time algorithm, Anchored-AC, to co-work with this 
sub-linear time algorithm for the verification. The 
verification result is reported to software (upper-layer 
applications) directly by the verification engine. The 
interface between the search engine and verification 
engine communicates through a descriptor buffer. As 
long as the buffer is not full, the search engine can 
always offload the verification and move on to scan the 
next block without blocking after finding a potential 
match. 
 
III. String matching architecture 

The string matching architecture includes two main 
components: (1) the scanning module, which is the 
main block performing the proposed algorithm that 
queries Bloom filters and shifts the text according to 
this querying result, and (2) the verification module 
and interface. When the scanning module finds a 
potential match, it instructs a verification job by filling 
an entry in verification job buffer in the verification 
interface. Fig. 2 shows the block diagram of the entire 
architecture. Each component in this architecture is 
described in following sections. 

 
Figure 2. Overview of the string matching architecture 

Each shift in the text includes three operations 
implemented in three separate sub-modules in the 

scanning module. 
1. TextMemoryFetch fetches the suffix block of the 
search window in the text memory. 
2. BloomFilterQuery queries the Bloom filters to find 
which group(s) the block belongs to. 
3. TextPositionController calculates the location 
(address) of the search window in the text memory on 
the next round according to querying result from the 
Bloom filters. 
 
A. Text memory fetching 

The block size is set to a word of four bytes for 
accessing memory efficiently and reducing matching 
probability of a random block. For parallel accessing 
four continuous memory bytes, the text memory is 
divided into four interleaving banks. Fig. 3 illustrates 
an example of fetching a word of ‘BCDE’ starting with 
the byte addresses 00012. Note that the characters in 
the text are interleaved in each memory bank and the 
first character to fetch locates in bank1. The underlined 
bits in the address except the last two are word address. 
The byte offset is decoded to fetch the correct byte in 
each bank. The fetched word is rotated according to the 
byte offset from a multiple of four. 

 
Figure 3. An example of fetching four bytes in 0001, 0010, 
0011 and 0100. 
 

B. Bloom filter querying 

There are N independent Bloom filters storing 
different block sets in the patterns grouping with their 
positions in the patterns, where N corresponds to the 
group number. The block fetched by the 
TextMemoryFetch module queries these N Bloom 
filters in parallel to get the membership information. 
After the query, the priority encoder in 
TextPositionController encodes the membership 
information into the shift distance. The block diagram 
of the BloomFilterQuery module is presented in Fig. 4. 
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Figure 4. BloomFilterQuery module architecture 

Because the bit vector has to be long enough to 
reduce the false positive rate, the on-chip dual-port 
block RAM is a lower cost way to implement it than 
flip-flops. Fig 6 is a example using 16kb block RAM 
on Xilinx XCV2P30 to implement one Bloom filter. 
Each block RAM is configured as a single bit wide and 
16kb long bit array, and can be read write on two port 
simultaneously to support two hash function. Thus, the 
false positive rate f of ONE block memory is 

2

16384
2n-

e-1 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
, where n is the number of pattern blocks 

stored in that bit vector. Using k block memory can 
reduce this rate to f k, it is very close to the false 
positive rate of one k*16kb memory of 2k ports. The 
hash functions are independent, so they can be 
calculated and fetch the M-bit bit vector in parallel.  
 

C. Text position controller  

The TextPositionController maintains the position of 
the suffix block in the search window of the text and 
calculate the next position according to the 
membership information of the BloomFilterQuery and 
current matching state. A finite state machine keeps 
five states to control how the position is calculated. Fig. 
7 illustrates the state transition diagram. 

 
Figure 5. Text position controller state transition 
diagram. 
 
1. In the beginning, set the initial address according 

to the scan window size and block size. For 

example, the scan windows size is l and the block 
size = b, the initial text position is l – b. 

2. When the shift distance is non-zero, i.e. no 
potential match, it adds the shift distance to the 
text position to get the next one. 

3. When the shift distance is zero, it substrates 1 from 
the text position to get the preceding block in the 
text to take additional checking illustrated in 
Section 3.2.2 and stores the text position of this hit 
block for going to next block as verification 
finished. 

4. When the additional checking finished, it shifts by 
the shift distance of the non-hit block if no match 
or report a match and just shift one byte to find 
next match. 

When there is a potential match, i.e. additional 
checking reporting match, but the verification job 
buffer is full and thus there is no space for instructing a 
verification job. TextPositionController halts to wait 
for a free entry to be filled, so the text position is not 
change in this state. 
 
D. Verification module 

This work takes anchored Aho-Croasick algorithm 
to verify the suspicious data for two reasons. (1) Its 
data structure allows high compression rate. It 
compresses the original AC date structure to 1 Mb that 
stores 1000 patterns, almost 0.2%, that can be put into 
the Virtex-II Pro platform we used for experiment. (2) 
Its time complexity is linear in the worst case. Due to 
the potential match is very possible to be a true match, 
i.e. a virus; a linear worst case time algorithm is 
efficient to discover it.  

There are two parts in the verification interface: 
JobDispatcher and VerificationJobBuffer (VJB). When 
the scanning module discovers a potential match, it 
instructs the JobDispatcher to fill the verification job 
descriptor (VJD), composed of text position, length 
and other related information to the VJB. 
 
E. Integration with Xilinx Virtex II Pro 

Besides the string match module, this work needs 
additional efforts to integrate it into the system to test 
its functionality on FPGA chip. This work is 
implemented on a Xilinx SOC FPGA development 
platform XCV2P30. The well-tested soft IP supported 
by Xilinx with this chip can be used to quickly integrat 
the user-defined logic using Xilinx development tool 
EDK to become a complete and customized system. 
The user-defined logic only needs to use a generalized 
IP interface (IPIF) as a wrapper to communicate with 
the other components in the system without dealing 
with the timing. The functions in the IPIF can also 
been customized using the EDK, such as interrupt 
supporting, S/W register supporting, address range 
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supporting, or DMA supporting. Therefore, we only 
need to define the communication interface, use the 
template files generated by development tool, and 
connect the I/O between IPIF and our designs. 
 
IV. Experimental results 
 

To verify the design, this work runs a behavior 
simulation in C to measure the performance in 
different pattern count. Besides, this work also runs a 
timing simulation in HDL to find the critical path delay 
to estimate the clock rate. 

 
A. C Simulation result 

Setting the same false positive rate of each group of 
Bloom filter by let the m/n and k are all the same in the 
Bloom filter false positive rate formula 

k

m
nk-

e-1f ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= , where m is memory size, n is pattern 

count, k is hash function number, we measured the 
shift distance in different pattern count showed in Fig. 
6. We use both windows executive files and random 
generated data as scanning text to run simulations. 
Although the shift distance becomes smaller as the 
pattern set going larger decreasing the performance, it 
maintains in greater than 5 that means five times faster 
than traditional linear time algorithm as the pattern 
count is 52k larger than 30k in Anti-Virus. 
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Figure 6. Shift distance in different pattern counts 
(read/random). 

The scanning module positive rate and the single 
Bloom filter positive rate of different pattern count is 
showed in Fig. 7. The single Bloom filter false positive 
rate is set to constant as before. There are three 
observations in this false positive simulation result: 
1. Positive rate of the result confirms to theoretical 

false positive rate when the text is random 
generated files, but goes much higher when the text 
is Windows executive files because the same reason 
mentioned in Section 3.2.1. Therefore, we can 
simply take the curve of random generated files as 
false positive rate curve and take the curve of 
Windows executive files as the true positive plus 

false positive rate in this figure. 
2. The positive rate of scanning Windows executable 

files increases as the pattern set going larger, but 
keeps almost the same in scanning the random 
generated files whatever the single Bloom filter or 
entire scanning module. Taking the observation in 1, 
we verify the positive reported and we find that this 
difference is also induced by many true positive 
happening as the pattern count growing. 

3. The additional check of checking the preceding 
block of the first hitting block is useful as the pattern 
count growing. When the pattern count is 52k, it 
almost filters the verification to 50%. 
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Figure 7. Scanning module false positive rate in different 
pattern counts 

 
B. HDL simulation result 

Xilinx XCVP30 FPGA has 136 dual-port embedded 
block memories. Each of it can be configured single bit 
wide, 16384 bit long array. We use 16 block memories 
which implement 8 Bloom filter groups, two for each 
that supporting 4 hash functions and storing 1000 
blocks. The theoretical positive rate of each Bloom 
filter is 0.017%, and becomes 0.498% in the simulation 
of the windows executive files and 0.0015% of random 
generated files. Besides the m-bit vector of Bloom 
filters, this works takes 2*4 or 8 to implement two 
four-bank text memories. Furthermore, for fast 
prototyping, the state transition data needed by 
verification module, Anchored AC, is moving into the 
FPGA embedded memory. That costs almost 1Mb to 
store 1000 patterns which is the reason why the pattern 
count of this HDL simulation is limited in 1000. The 
total account of memory is about 1.4Mb in this 
implementation. If the verification data keeps in 
external memory, the pattern set of scanning module 
using this platform can be scale to about 10k and 
maintaining the scanning performance. The penalty is 
the longer worst case running time.  

This architecture implementation takes 16% usage 
of LUT of XCV2P30 and the system clock is 150 MHz, 
and the average shift distance is 7.71 bytes. If the 
scanning module is not blocked by the verification 
module, the throughput can be up to 150*7.71*8 or 
9.26 Gbps. In our simulation of clean windows 
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executive files, the verification module needs 5 cycles 
to verify one entry is not virus in average, but the 
scanning module issues a verification job every 26 
cycles in average. The assumption of not being 
blocked is established in average case.  

The worst case that occurs when the text is full of 
viruses depends on the virus ratio in the text, the 
signature length and the matching policy, i.e. one 
match or multiple matches. The throughput in different 
parameter combinations is aimed to be implemented in 
the future work and not being analyzed in this work. 
We simply measure the worse case performance in one 
condition: when the VJB is full. Verification speed is 
the bottleneck of entire system, which is one character 
for two clock cycles equaling to 150/2*8 or 600Mbps. 

 
C. Comparison with other architectures 

Fig. 8 and Fig. 9 show the pattern size and the 
throughput of several accelerators of string matching. 
The architecture of the researches may have high 
performance like Tan’s Bit-split AC or accommodate 
large pattern set like Dharmapurikar’s but there are few 
architectures can both accommodate large pattern set 
and maintain a high throughput like BFAST. One thing 
need to be mentioned in this figure is the throughput of 
the BFAST is depending on the verification rate. We 
assume the verification rate is low enough (<0.4%) 
herein so that the scanning module will not be blocked 
by the verification module, and thus the throughput is 
full-speeding 9.2Gbps. 
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Figure 8. The pattern size comparison of different 
hardware architectures. 
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Figure 9. The throughput comparison of different 
hardware architectures. 

V. Conclusion 
This work implement an implicit shift table using 

Bloom filters to realize a sub-linear time algorithm 
with hardware. It processes multiple bytes a time based 
on the theory of the sub-linear time algorithm to 
increase the performance and utilize the efficient 
memory-usage Bloom filter to increase the pattern 
capacity. The simplicity of the circuit design of this 
architecture makes this design can be integrated into 
the Xilinx XC2VP30 SOC platform to become a 
customized anti-virus chip. After coordinating the 
packet flow and the other processor communication, it 
can become a complete security system.  

After the implementation, we find that although the 
performance of this design is good in average case, but 
it will decrease when the verification rate going higher, 
i.e. when the virus appearing more often. The slow 
verification speed will slowdown overall system 
performance. It can be fixed by utilizing more than one 
verification engine to balance the speed between 
verification and scanning. Analysis of the speed 
differencing in various virus appearing ratio and the 
different packet lengths is also interesting in this topic. 
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