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Because of the intensive computation and memory
access on a general-purpose processor, software-based
implementations may not meet the high-performance
requirements. Instead, adopting hardware to take
advantage of the parallelism is a promising solution
recently to inspect the packet payload at line rate. This
work  proposes an innovative  memory-based
architecture using Bloom filters to realize a sub-linear
time algorithm. The two key ideas to adopt the
sub-linear time algorithm into the proposed
architecture are (1) replacing the slow table lookup in
the external memory with simultaneous queries of
several Bloom filters and (2) designing a non-blocking
verification interface to keep the worst-case
performance in linear time. The proposed architecture
is verified in both behavior simulation in C and
timing simulation in HDL. The simulation result
shows that the throughput is up to almost 10Gbps
when the text using windows executable files and
600 Mbps in the worst case.
T ~3PEpen
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purpose processors are often not efficient enough to
afford the escalating amount of Internet traffic, so
several specialized hardware-based solutions have
been proposed for high-speed applications. A study in
[1] surveys and summarizes several architectures of
string matching engines. As far as we know, existing
solutions all implement linear time algorithms, say the
well-known Aho-Corasick (AC) algorithm [2], that
have to read every character in the text, and hence the
time complexity is O(n), where n is the text length.
Although some designs can process multiple characters
at a time at the cost of duplicating matching hardware
components, the number of characters under
simultaneous processing is quite limited in practice due
to hardware complexity.

Unlike linear time algorithms, many existing
sub-linear time algorithms can skip characters that can
not be a match so that multiple characters are
processed at a time in effect [2], [3]. Although they
generally have higher performance than a linear time
algorithm in software [4], [5], they are rarely
implemented in hardware, probably because of two
reasons. First, sub-linear time algorithms skip
unnecessary characters according to some heuristics,
typically by looking up a large table. The table may be
too large to fit on the embedded memory, and thus be
stored in external memory which is time-consuming to
access. Second, although the average time complexity
of the sub-linear time algorithms is roughly O(n/m),
where m is the pattern length, the worst-case time
complexity is O(mn), worse than O(n) in linear time
algorithms. Therefore, sub-linear time algorithms are
less resilient to algorithmic attacks that exploit the
worst case of an algorithm to reduce its performance.

This work proposes an innovative memory-based
architecture using Bloom filters [6] to realize a
sub-linear time algorithm enhanced from the
Wu-Manber (WM) algorithm [7], namely the Bloom
Filter Accelerated Sub-linear Time (BFAST) algorithm
herein. The proposed architecture stores the signatures
in the Bloom filters that can represent a set of strings in
a space-efficient bit vector for membership query, so
this proposed architecture can accommodate a large
pattern set and have low cost in pattern reconfiguration.



The proposed architecture replaces the table lookup in
the WM algorithm with simultaneous queries of
several Bloom filters to derive the same shift distance
of the search window. Thanks to the space efficiency
of Bloom filters, the required memory space can fit
into the embedded memory. To handle the worst case, a
heuristic similar to the bad-character heuristic in the
Boyer-Moore algorithm [8] is adopted to reduce the
number of required verifications in the WM algorithm.
When a suspicious match is found in a position called
the anchor, the anchor is passed to a verification engine
without blocking the scan. The system also supports
searching for a simplified form of regular expressions
specified in terms of a sequence of sub-patterns spaced
by bounded gaps, which can be found in some virus
patterns [9].

I~ P22 8%

I. The rationale of the BFAST algorithm

A large shift table in the WM algorithm is unable
to fit into the embedded memory, but if the table is
stored in the external memory, the slow memory access
will slow down the overall performance. Moreover, the
shift values in the shift table can be indexed only from
the rightmost block of the search window. If a shift
value of zero happens frequently, the frequent
verifications will slow down the overall performance.
The BFAST algorithm keeps the positions of the
blocks in the patterns so that not only the rightmost
block, but also the other blocks in the search window
can derive their position in the patterns. Therefore, the
algorithm can wuse a heuristic similar to the
bad-character heuristic in the Boyer-Moore algorithm
to determine a better shift value.

We can replace the shift table lookup operation
with membership query of parallel Bloom filters.
Bloom filtering is a space-efficient approach to store
strings in the same length for membership query, i.e. to
check if one string belongs the string set or not. By
grouping the blocks in different position of the patterns
and storing these groups in separate Bloom filters, we
can know a block belongs to the pattern or not and its
position by querying these Bloom filters in parallel.

Fig. 1 is a diagram describing how to establish an
implicit shift table using Bloom filters. Assume the
pattern set is {P1, P,, Ps}. After dividing by the position,
the Group 0 is {efgh,mnop,vuts}, Group 1 is
{defg,Imno,wvut}, etc. If the block of text is “cdef”,
the query result will be Group 2 hit, so the shift
distance is 2. If there is no hit reported, then it means
there is no such block in the patterns, we can safely
shift maximum shift distance or 8 in this example.

* Py = abedefgh
*+ P, = ijklmnop
* P; = zyxwvuts
* Grouping:
=G, lefgh, mnop, vutsi, G, idefg, lono, wvut;,
= G, = lcdef, klwn, xwvul, Gy = lbode, jklm, yxwyi,
- G, = {abed, ijkl, zyxw}, G; = labe, ijk, zyxi,
=Gy = lab,ij, 2y;, G= im,1,2)
g
a
- 2
e 8 _
‘cdef P hit
a
0
SHIFT TABLE -
(A) Explicit Shift table lookup (B) uplucit shift tale Jookap

using mmltiple bloom flters query

Figure 1. Grouping of blocks in the patterns for deriving
the shift distance from querying Bloom filters. The shift
table in the WM algorithm becomes implicit in the
Bloom filters herein.
I1. Additional checking and worst-case handling

Although G is rarely hit for random samples, i.e.
the block is not in the rightmost block of the pattern,
this is not always the case in practice. Therefore,
unlike the original WM that verifies the possible match
immediately, the BFAST algorithm continues checking
the block B, B, ..., Bng like the bad-character
heuristic in the Boyer-Moore algorithm, where B;
stands for the |B| characters that are j characters away
from the rightmost character backward in the search
window. If the Bloom filter of G; is hit, where i > j, the
shift distance can be i - j. The reason is much like the
bad-character heuristic in the Boyer-Moore algorithm.
A shift less than i - j cannot lead to a match because B;
cannot match any blocks in groups from Gi.; to G;. The
verification procedure will follow to check whether a
true match occurs only if every block from By to By g
is in Bloom filters of Gy to Gy g

For example, assume the text is abcdefghijklmn....
When the querying result of a block hijk is reported hit
in the group 0, i.e. the shift distance equals to 0, we
take the preceding block ghij to query the bloom filter
of group 1. If it is still a hit, we continue to use the
preceding block fghi to query group 2; otherwise, we
claim failure and move on to scan the block ijkl which
is the next block of the one causing the verification, i.e.
the block which shift distance is 0. The verification
procedure repeats until querying the last group. If all
the groups are hit, Anchored AC verification is
involved. This further verification can reduce
significantly the number of verifications in the WM
algorithm. In the simulation using 10,000 patterns, this
approach can reduce the number of verifications by
around 50%.



The performance of a sub-linear time algorithm, say
the WM algorithm, may be low in some cases. First,
when the pattern length is close to the block size, the
shift distance of m - |Bo| + 1 will be very short, given m
> |By|. The BFAST algorithm can process at least four
characters in each shift of the search window, while the
shift distance in the WM algorithm can be as short as
one or two characters in the same case. Second, the
worst case time complexity can be as high as O(mn) if
the patterns occur in the text frequently. Consider the
extreme case that the characters both in the text and in
some patterns are all a’s, verification is required after
each shift of only one character. To increase the
performance in the worst case, this work uses a linear
time algorithm, Anchored-AC, to co-work with this
sub-linear time algorithm for the verification. The
verification result is reported to software (upper-layer
applications) directly by the verification engine. The
interface between the search engine and verification
engine communicates through a descriptor buffer. As
long as the buffer is not full, the search engine can
always offload the verification and move on to scan the
next block without blocking after finding a potential
match.

I11. String matching architecture

The string matching architecture includes two main
components: (1) the scanning module, which is the
main block performing the proposed algorithm that
gueries Bloom filters and shifts the text according to
this querying result, and (2) the verification module
and interface. When the scanning module finds a
potential match, it instructs a verification job by filling
an entry in verification job buffer in the verification
interface. Fig. 2 shows the block diagram of the entire
architecture. Each component in this architecture is
described in following sections.

Scanning module
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Figure 2. Overview of the string matching architecture
Each shift in the text includes three operations
implemented in three separate sub-modules in the

scanning module.

1. TextMemoryFetch fetches the suffix block of the
search window in the text memory.

2. BloomFilterQuery queries the Bloom filters to find
which group(s) the block belongs to.

3. TextPositionController calculates the location
(address) of the search window in the text memory on
the next round according to querying result from the
Bloom filters.

A. Text memory fetching

The block size is set to a word of four bytes for
accessing memory efficiently and reducing matching
probability of a random block. For parallel accessing
four continuous memory bytes, the text memory is
divided into four interleaving banks. Fig. 3 illustrates
an example of fetching a word of ‘BCDE’ starting with
the byte addresses 0001,. Note that the characters in
the text are interleaved in each memory bank and the
first character to fetch locates in bank1. The underlined
bits in the address except the last two are word address.
The byte offset is decoded to fetch the correct byte in
each bank. The fetched word is rotated according to the
byte offset from a multiple of four.

[0

01
‘0001 {Decoder)
Word addr: ‘000 ] i .
Byte offset: ‘01’ y r A |00
N3] e |
h [ [ =il Rotate
e A iy =] |2 ]
) 01
: A & |
R L R =] a
— [
2] s o
o oo
I Ll
e Ll

Fetch 0001, 0010, 0011, 0100 four bytes

Figure 3. An example of fetching four bytes in 0001, 0010,
0011 and 0100.

B. Bloom filter querying

There are N independent Bloom filters storing
different block sets in the patterns grouping with their
positions in the patterns, where N corresponds to the
group number. The Dblock fetched by the
TextMemoryFetch module queries these N Bloom
filters in parallel to get the membership information.
After the query, the priority encoder in
TextPositionController encodes the membership
information into the shift distance. The block diagram
of the BloomFilterQuery module is presented in Fig. 4.
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Figure 4. BloomFilterQuery module architecture

Because the bit vector has to be long enough to
reduce the false positive rate, the on-chip dual-port
block RAM is a lower cost way to implement it than
flip-flops. Fig 6 is a example using 16kb block RAM
on Xilinx XCV2P30 to implement one Bloom filter.
Each block RAM is configured as a single bit wide and
16kb long bit array, and can be read write on two port
simultaneously to support two hash function. Thus, the
false positive rate f of ONE block memory is

2n 2
[1- e 16384} , where n is the number of pattern blocks

stored in that bit vector. Using k block memory can
reduce this rate to f* it is very close to the false
positive rate of one k*16kb memory of 2k ports. The
hash functions are independent, so they can be
calculated and fetch the M-bit bit vector in parallel.

C. Text position controller

The TextPositionController maintains the position of
the suffix block in the search window of the text and
calculate the next position according to the
membership information of the BloomFilterQuery and
current matching state. A finite state machine keeps

five states to control how the position is calculated. Fig.

7 illustrates the state transition diagram.
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Figure 5. Text position controller state transition
diagram.

VIB not full & Shift 1=0

1. In the beginning, set the initial address according
to the scan window size and block size. For

example, the scan windows size is | and the block
size = b, the initial text position is | — b.

2. When the shift distance is non-zero, i.e. no
potential match, it adds the shift distance to the
text position to get the next one.

3. When the shift distance is zero, it substrates 1 from
the text position to get the preceding block in the
text to take additional checking illustrated in
Section 3.2.2 and stores the text position of this hit
block for going to next block as verification
finished.

4. When the additional checking finished, it shifts by
the shift distance of the non-hit block if no match
or report a match and just shift one byte to find
next match.

When there is a potential match, i.e. additional
checking reporting match, but the verification job
buffer is full and thus there is no space for instructing a
verification job. TextPositionController halts to wait
for a free entry to be filled, so the text position is not
change in this state.

D. Verification module

This work takes anchored Aho-Croasick algorithm
to verify the suspicious data for two reasons. (1) Its
data structure allows high compression rate. It
compresses the original AC date structure to 1 Mb that
stores 1000 patterns, almost 0.2%, that can be put into
the Virtex-11 Pro platform we used for experiment. (2)
Its time complexity is linear in the worst case. Due to
the potential match is very possible to be a true match,
i.e. a virus; a linear worst case time algorithm is
efficient to discover it.

There are two parts in the verification interface:
JobDispatcher and VerificationJobBuffer (VJB). When
the scanning module discovers a potential match, it
instructs the JobDispatcher to fill the verification job
descriptor (VJD), composed of text position, length
and other related information to the VJB.

E. Integration with Xilinx Virtex Il Pro

Besides the string match module, this work needs
additional efforts to integrate it into the system to test
its functionality on FPGA chip. This work is
implemented on a Xilinx SOC FPGA development
platform XCV2P30. The well-tested soft IP supported
by Xilinx with this chip can be used to quickly integrat
the user-defined logic using Xilinx development tool
EDK to become a complete and customized system.
The user-defined logic only needs to use a generalized
IP interface (IPIF) as a wrapper to communicate with
the other components in the system without dealing
with the timing. The functions in the IPIF can also
been customized using the EDK, such as interrupt
supporting, S/W register supporting, address range



supporting, or DMA supporting. Therefore, we only
need to define the communication interface, use the
template files generated by development tool, and
connect the 1/O between IPIF and our designs.

IV. Experimental results

To verify the design, this work runs a behavior
simulation in C to measure the performance in
different pattern count. Besides, this work also runs a
timing simulation in HDL to find the critical path delay
to estimate the clock rate.

A. C Simulation result

Setting the same false positive rate of each group of
Bloom filter by let the m/n and k are all the same in the
Bloom filter false positive rate  formula

nk k
f= [1-6 mj , Where m is memory size, n is pattern

count, k is hash function number, we measured the
shift distance in different pattern count showed in Fig.
6. We use both windows executive files and random
generated data as scanning text to run simulations.
Although the shift distance becomes smaller as the
pattern set going larger decreasing the performance, it
maintains in greater than 5 that means five times faster
than traditional linear time algorithm as the pattern
count is 52k larger than 30k in Anti-Virus.

shift dist.

—— win exec file

—# random data

L6k 3% 6.4k 128k 25.6k 5Lk

pattern count

Figure 6. Shift distance in different pattern counts

(read/random).

The scanning module positive rate and the single
Bloom filter positive rate of different pattern count is
showed in Fig. 7. The single Bloom filter false positive
rate is set to constant as before. There are three
observations in this false positive simulation result:

1. Positive rate of the result confirms to theoretical
false positive rate when the text is random
generated files, but goes much higher when the text
is Windows executive files because the same reason
mentioned in Section 3.2.1. Therefore, we can
simply take the curve of random generated files as
false positive rate curve and take the curve of
Windows executive files as the true positive plus

false positive rate in this figure.

2. The positive rate of scanning Windows executable
files increases as the pattern set going larger, but
keeps almost the same in scanning the random
generated files whatever the single Bloom filter or
entire scanning module. Taking the observation in 1,
we verify the positive reported and we find that this
difference is also induced by many true positive
happening as the pattern count growing.

3. The additional check of checking the preceding
block of the first hitting block is useful as the pattern
count growing. When the pattern count is 52k, it
almost filters the verification to 50%.

Positive rate
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Figure 7. Scanning module false positive rate in different
pattern counts

B. HDL simulation result

Xilinx XCVP30 FPGA has 136 dual-port embedded
block memories. Each of it can be configured single bit
wide, 16384 bit long array. We use 16 block memories
which implement 8 Bloom filter groups, two for each
that supporting 4 hash functions and storing 1000
blocks. The theoretical positive rate of each Bloom
filter is 0.017%, and becomes 0.498% in the simulation
of the windows executive files and 0.0015% of random
generated files. Besides the m-bit vector of Bloom
filters, this works takes 2*4 or 8 to implement two
four-bank text memories. Furthermore, for fast
prototyping, the state transition data needed by
verification module, Anchored AC, is moving into the
FPGA embedded memory. That costs almost 1Mb to
store 1000 patterns which is the reason why the pattern
count of this HDL simulation is limited in 1000. The
total account of memory is about 1.4Mb in this
implementation. If the verification data keeps in
external memory, the pattern set of scanning module
using this platform can be scale to about 10k and
maintaining the scanning performance. The penalty is
the longer worst case running time.

This architecture implementation takes 16% usage
of LUT of XCV2P30 and the system clock is 150 MHz,
and the average shift distance is 7.71 bytes. If the
scanning module is not blocked by the verification
module, the throughput can be up to 150*7.71*8 or
9.26 Gbps. In our simulation of clean windows



executive files, the verification module needs 5 cycles
to verify one entry is not virus in average, but the
scanning module issues a verification job every 26
cycles in average. The assumption of not being
blocked is established in average case.

The worst case that occurs when the text is full of
viruses depends on the virus ratio in the text, the
signature length and the matching policy, i.e. one
match or multiple matches. The throughput in different
parameter combinations is aimed to be implemented in
the future work and not being analyzed in this work.
We simply measure the worse case performance in one
condition: when the VJB is full. Verification speed is
the bottleneck of entire system, which is one character
for two clock cycles equaling to 150/2*8 or 600Mbps.

C. Comparison with other architectures

Fig. 8 and Fig. 9 show the pattern size and the
throughput of several accelerators of string matching.
The architecture of the researches may have high
performance like Tan’s Bit-split AC or accommodate
large pattern set like Dharmapurikar’s but there are few
architectures can both accommodate large pattern set
and maintain a high throughput like BFAST. One thing
need to be mentioned in this figure is the throughput of
the BFAST is depending on the verification rate. We
assume the verification rate is low enough (<0.4%)
herein so that the scanning module will not be blocked
by the verification module, and thus the throughput is
full-speeding 9.2Gbps.
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Figure 8. The pattern size comparison of different
hardware architectures.
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Figure 9. The throughput comparison of different
hardware architectures.

V. Conclusion

This work implement an implicit shift table using
Bloom filters to realize a sub-linear time algorithm
with hardware. It processes multiple bytes a time based
on the theory of the sub-linear time algorithm to
increase the performance and utilize the efficient
memory-usage Bloom filter to increase the pattern
capacity. The simplicity of the circuit design of this
architecture makes this design can be integrated into
the Xilinx XC2VP30 SOC platform to become a
customized anti-virus chip. After coordinating the
packet flow and the other processor communication, it
can become a complete security system.

After the implementation, we find that although the
performance of this design is good in average case, but
it will decrease when the verification rate going higher,
i.e. when the virus appearing more often. The slow
verification speed will slowdown overall system
performance. It can be fixed by utilizing more than one
verification engine to balance the speed between
verification and scanning. Analysis of the speed
differencing in various virus appearing ratio and the
different packet lengths is also interesting in this topic.
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