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Abstract

This plan is about to develop a global optimization method in identifying a set of protein binding
sites in a set of unaligned DNA fragments. The identification of common sites in multiple sequences
is frequently encountered in the analysis of biopolymer sequence data. In several cases there exists
various kind of structural constraints in such a problem. An example is the stem-loop motifs in
mRNA molecules.

Firstly the problem is formulated as a nonlinear 0-1 optimization model. This model is then
converted into a linear 0-1 problem solvable by distributed computation system. The technique is
guaranteed to find a global optimum. In additional, the computational speed of this technique is much
faster than current methods in literature.



In first year we develop this methodology and verify the performance. And in the following two
years we will apply this method to various types of practical use. Meanwhile a distributed
computation system will developed to enhance the computation.

Keywords: Optimization, Bioinformatics, Molecular biology, Protein binding

1. Introduction

The methods for determining a consensus pattern can be split into two parts. The first part is the
model for describing the shared pattern; the second part is the algorithm for identifying the optimal
common site according to its shared pattern. This study belongs to the second part. A consensus
sequence identification (CSI) problem is, given a set of sequences known to contain binding sites for
a common factor but not knowing where the site are, discover the location of the sites in each
sequence (Stormo, 2000).

The CSI problem is critical in research on gene expression such as the protein-binding site in a
DNA strand. For the last decade several good methods have been developed for solving such
problems (Brazma et al., 1998). Of those methods, the maximum likelihood approach (Stormo et al.,
1989; Hertz et al., 1990) is the best known. The traditional maximum likelihood approach, which
measures information content to determine alignments, works fairly well and is reliable on
discovering the common sites. However, they are still not able to determine the complete set of
regulatory interactions for complicated promoters typical of metazoans (Stormo, 2000).

Recently, Ecker et al. (2002) utilized optimization techniques to reformulate the maximum
likelihood approach for solving CSI problems. They adopted a probabilistic model and formulated a
well-designed nonlinear model with reference to the expectation maximization algorithm of Lawrence
and Reilly (1990). Their method, however, occasionally only finds a feasible solution or a local
optimum: which means the best solution may not be found. Additionally, no further structural feature
in a CSI problem can be embedded conveniently in their model.

This study proposes a linear programming method for solving a CSI problem to reach the
globally optimal consensus sequence. Two examples of searching for CRP-binding sites and for
FNR-binding sites in the Escherichia coli genome are used to illustrate the proposed method. The CSI
problem is firstly formulated as a nonlinear mixed 0-1 program for alignment of DNA sequences,
each of the four bases are coded with two binary variables and a matching score is designed. This
nonlinear mixed 0-1 program is then converted into a linear mixed 0-1 program by linearization
techniques. This study decomposes a CSI problem into several subprograms to be solved by a set of
distributed computers linked via internet. Owing to some special features of the binary relationships,
this linear 0-1 program includes 2m binary variables where m is the number of active letters in the
common site. Some very attractive properties of this method are firstly that the required number of
binary variables is independent of the number of sequences and the size of each sequence. That means,
the proposed method is computationally efficient in solving a CSI problem with a large data size.
Secondly, the proposed method is guaranteed to find the global optimum instead of a local optimum.
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Thirdly, many kinds of specific features accompanied with a CSI problem can be formulated straight
forwardly as logical constraints and embedded into the linear program.

An example of searching CRP-binding sites, as discussed in Stormo et al. (Stormo et al., 1989)
and Ecker et al. (Ecker et al., 2002), is described as follows. Given eighteen letter sequences each 105
positions long, where each position contains a letter from the set {A, T, C, G}, find a common site of
length16 with the pattern

LiLy Ly L, L L) Lo Ly Lg Lo Ly

where L, [ ] € {A T, C,G}and [ ]'s mean the positions of ignored letters.

Restated, the problem is to specify

(i) the L, ’sof the common site pattern

(i)  the location of the site in each given sequence, which can fit most closely the common

site.

The following are difficulties associated with the method of Ecker et al. (2002) and other
maximum likelihood methods (as reviewed in Brazma et al., 1998) for solving a CSI problem:

(i)  Only a local optimal or feasible solution is obtained

Since Ecker et al. (2002) formulated a CSI problem as a non-convex nonlinear program, their
method may only find local optima, as has been acknowledged (Ecker et al., 2002). Other maximum
likelihood methods, which intend to maximize the probability of binding to the promoters in the
sequences, may only find a feasible solution instead of finding a local optimal solution. It is not
guaranteed that current maximum likelihood methods can reach the global optimum for general CSI
problems.

(ii)  Heavy computational burden

The nonlinear program in Ecker et al. (2002) contains too many nonlinear terms. The heavy
computational burden in their method prohibits it from treating a CSI problem with a large number of
sequences.

(iii)  Difficulty of adding logical constraints

When identifying protein binding sites, there usually exists some specific features to be
considered as logical constraints. For example, the letters of position L, and L, , are expected to
be complement (i.e. G with C and A with T). Formulating such a constraint in maximum likelihood
approaches is a complex task. It is even impossible to formulate more complicated logical constraints
(e.g. those with some ambiguity) when applying these approaches.

(iv) Fixed number of ignored letters

Maximum likelihood methods are mainly used to solve CSI problems with fixed number of
ignored letters (e.g. six in the above example). However, in real world this number is unknown and
need to be found by some preliminary processes.

(v) Difficulty of finding the second and the third best solutions

Since current methods may only find a local optimum. It is hard to find other solutions next to
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the best solution.

In order to overcome the above difficulties of solving a CSI problem, this study proposes a
novel method to treat the same problem that molecular biologists actually are interested in solving.
We formulate a CSI problem as the identification of a consensus sequence that minimizes the number
of differences between the proposed sites. Our basic concept is to reformulate a CSI problem as a
mixed 0-1 linear program which only contains a limited number of 0-1 variables and most variables
are continuous. Such a mixed 0-1 linear program can be solved effectively by commonly used
branching-and-bound algorithms or a branch-cut algorithm (Balas et al. 1996). The advantages of the
proposed method are listed below:

(i)  Itis guaranteed to find the globally optimal solution. Since the objective function and

constraints are all linear, the program should converge to the global optimum.

(i) It can effectively solve a CSI problem by a set of on-line computers as illustrated by our
numerical experiments.

(iii) It is convenient to add logical constraints. Since the binary variables are very suitable to
express logical relationship, various complicated constraints can be embedded directly
into the proposed method.

(iv) It can be extended to treat CSI problems with unknown number of ignored letters.

(v) Itis very straight forward to find the complete set of the second, third, etc. best consensus
sequences.

In the following section we will discuss the linear programming technique for solving a CSI

problem.

2. Proposed Method

This study firstly formulates a CSI problem as a nonlinear mixed 0-1 program. Then it converts
this nonlinear mixed 0-1 program into a linear mixed 0-1 program using linearization techniques. To
reduce the computational burden, many 0-1 variables in this linear mixed 0-1 program can actually be
solved as continuous variables by an all or nothing assignment technique which improves greatly the
computational efficiency of this program.

Nonlinear mixed 0-1 program
Here we use the example data in Stormo (1989), as listed in Appendix, to describe the proposed
method. Firstly, represent the data in Appendix as an 18*105 data matrix D:

bl,l b1,2 "' b1,105
_ bZ,l bz,z o b2,105 (1)
blB,l b18,2 "' b18,105



where b, , is the letter in the position p of the sequence /.

Recall the example discussed in previous section, the common site we want to find has 16
positions (ten L,’s and six ignored letters), a sequence has 90 corresponding sites, so an 18*900 data
matrix D’ is generated from D.

1 10 1 10 1 10
d1,1 "' d1,1 dl,z o d1,2 t d1,90 t d1,90
1 10 1 10 1 10
- dz,l dZ,l dz,z dz,z dz,go dz,go
D'= . . 2
1 10 1 10 1 10
d18,1 o d18,1 dls,z o d18,2 t d18,90 t d18,90

di bl,i+s—1 (fOV l :1,2,-..,5)
" ks (for i=67,..,10)

and s = 1...90 is the starting position of each candidate site.
For L, e{A, T, C, G}, two binary variables u, and v, can be used to express L., an element
of the consensus sequence, as shown in Tab. 1.
Tab. 1 indicates that if L, is A, T, C, or G respectively, then a,=1, ¢t,=1, ¢,=1or g,=1,
which implies following conditions.
a; =(1-u;)1-v,)

I, =u,v, @)
¢, =[0—u,)v,
g =U; (1_ Vi)
Now let Score, be the degree of fitting to the found common site, specified as
90
Score, = ZZ,'S(QI{S + 9,%3 + e + 0,12) (4)
s=1

where 0;‘“( is the element of candidate sites extracted from D’. The constraints associated with

(4) are below:



(a)
AAGACTGTTTTTTTGATC
GATTATTTGCACGGCGTC
(b)
[=1,s5=1 AAGACTGTTTTTTTGATC
[=1,5=2 AAGACTGTTTTTTTGATC
[=1,5=3 AAGACTGTTTTTTTGATC
[=2,5s=1 GATTATTTGCACGGCGTC
[=2,5=2  GATTATTTGCACGGCGTC
[=2,5=3 GATTATTTGCACGGCGTC
(c)
AAGACTTTGA AGACTTTGAT GACTGTGATC
{GATTACGGCG ATTATGGCGT TTATTGCGTC}
Fig. 1. A small example of finding consensus sequence: (a) two sequences to be compared;
(b) Schematic representation of the candidate sites; (c) The associated D’ matrix

90

(i) Yz, =1 1z, e{0forall/ands. (5)
s=1
a[ l.f‘ dli,s = A
y . t, ifd, =T
@ .= (6)
ci U[ dl,s = C
gi lf dli,s = G

Clearly, 0< Score, <10. And the objective is to maximize the total sum of Score,.

Consider the sample data in Fig. 1 for instance:

Score, = zl,l(a1 ta,+gyta, tog g+t g+ gy +ay) @)
+zlyz(al+g2 ‘astCy s+ttt +ggtag i)

+zl'3(gl+a2+c3+t4+g5+t6+g7+a8+t9+cm)

Tab. 1. Base code in the determined common site

Base u; v a, t, ¢ g
A 0 O 1 0 0 O
T 1 1 0 1 0 O
C 0 1 0 0 1 0
G 1 0 0 0 0 1




Score, = z,,(g, +a,+ty+t,+ag+c,+g;+8g5+Cy+gy) (8)
+zy,(a +t, Aty va, vitg+ g+ 8, +Cg 8y )
+2Z,5(t Ht, Fag +t, g+ g+, + gy g +Cyp)
All z, = in (4) are binary variables. Equation (5) implies that for a sequence /, only one site is
chosen and no other sites contribute to Score, . Suppose the & 'th site is selected, then z,, =1 and
z,, =0 forall sefl,2,..,90}, s=k.Sinceahugeamountof z, (ie |I|*|s|)areinvolved,

to treat z, as binary variables would cause a heavy computational burden. Therefore z, — should

be resolved as continuous variables rather than binary variables. An important proposition is
introduced below:

Proposition 1 (All or nothing assignment) Let z, >0 be continuous variables instead of binary

variables. If  there is a k ke{l1,2,..,90} such that

11,210,’1,{ :max{ijlef’S fors=12,..90}, then assigning z,, =1 and z,, =0
forall s#k, se{l,2,..,90}, can maximize the value of Score, .

Proof Since zs z,, =1 and z,,20 it is true that

max{) (z,>. 0;,)}<max{D) 6, fors=12,..90}=>" 0,

Remark 1 The objective function of a CSI problem f{x) can be rewritten as

10
f(x)= Z{ai Zzl,s +1 zzl,s +¢ Zzl,s +8; Zzl,s} 9)

i=1 (1,5)e84; (1,5)eST; (1,5)eSC; (1,5)eSG;
where S4, ={(l,s)|d;, =4} , ST, ={(l,s)|d/, =T} :
SC, ={(l,s)|d,, =C},and SG, ={(l,s)|d,, =G} fori=12,...10.

This result implies that S4, (or ST, SC,, SG,) is a set composed of (/, s) in which the

product term z, a, (or z,t;, z,.c;, z, g respectively) appears on the right hand side of (4)



because that 6, =
For instance, the sum of Score, and Score, in (7)and (8) becomes

Score +Score, = a,(zy, +2,, +2,,) + e+ a2z,

ot @1 (Z1g +251) F o+ 810701 (10)

Some logical constraints can be conveniently expressed by binary variables. For instance, the
constraint that a CRP dimer binds a symmetrical site requires that

_ A thenZ, =T,
if L, =
C thenL,, =G.

Such a logical structure can be formulated conveniently as the following constraints.

U, =
i }fori:l,2,3,4,5

VitV = (11)

whereu,, v, u, ;, vy, ; €{0,1}.

With reference to Tab. 1, clearly if L, =4 (i.e, u,=0andv, =0) then L, , =T (ie,
u,, , =landv,,_, =1) and vice versa; (ii) if L, =C (i.e, u, =0andv, =1)then L, , =G (i.e,
u,, , =landv,,_, =0) and vice versa. A CSI problem can then be formulated as a nonlinear mixed
0-1 program below based on these constraints:

Program 1 (Nonlinear 0-1 CSI program)

Maximize ZScore, Z{a Zz“+t 2215+c 2215+g1 Zzls (12)

=1 (1,5)eS4; (1,5)eST; (1,)eSC; (1,5)eSG;

subject to 0
ZZZVS =1 z,20 forall s

a =(-u)A-v,)

t,=u,v, Conservative constraints
c, =1—u,)v, fori=12,...,10

g =u,(1-v,)

u, +u, , =1 Logical constraints

v, +v,, =1 } fori=12,...,5

u,,v, {0,y fori=12..5
0<u,,v,<1 fori=6,7,..,10
0<a,,t, c,g <1 fori=12,..10

This program intends to solve {a,, ¢, c;, g, } for i =1,2, ...10 thus to maximize the total degree

of fitting to the common site for the given 18 sequences, subjected to a possible logical constraint. A



very important feature of Program 1 is that we can treat z, as continuous variables rather than

binary variables, which can improve the computational efficiency dramatically. We can ensure all

found z, still have binary values as discussed in the next section.

Linearization of Program 1

Program 1 is a mixed nonlinear 0-1 program where q[ZzLS for g, €{a,,t,,g,,c;} and
u,v, are product terms. These product terms can be linearized directly by the following propositions:
Proposition 2 The product term A, = q[zzm where A, is to be maximized and ¢, €{0,1}can

be linearized as follows:

A=Yz, +M(q, -1)
4,20

A < ZZ,YS
A <Mgq,

(13)

where M is a big constant larger than or equal to the number of sequences.
Proof If g,=1then A, =) z,, ;andotherwise A,=0.

Proposition 3 The product term w, =u,v, where u,,v, €{0,1}can be linearized as follows:
w; < u,

w;, <V,

w, 20

Wl

c2u; +v, =1,

(14)

Denote Z(ai):aiz(me% Z, Z(ti):tiz(z,s)esr,. Z, Z(Ci):ciZu,x)esq z,, , and

Z(g,) = g"zu yesq, Zhs Program 1 is then linearized into Program 2 below based on Proposition 2

and Proposition 3.

Program 2 (Linear mixed 0-1 CSI program)

Maximize iScore, =i(Z(a,.)JrZ(ti)+Z(ci)+Z(g,.)) (15)

i=1



subject to 90

z z,, =1
s=1

a, =1-u, —v, +w,

>0

Z;, forall/ s

L, =w,
C, =V, =W,
g =u,—w
w, <u,
w, <V

Conservative constraints
fori=12,...,10

u,+uy, =1 : . .
Logical constraints fori =1, 2, ..., 5
v,+v, =1
ZZ,YS +M(a, -1)<Z(a,) < ZZM
(1,5)eS4; (1,s)eS4;
0<Z(a,)<Ma,
zzl,s +M(tl_1)SZ(tl)S ZZI,S
(1,5)eST; (1,5)eST;
0<Z(t,)< My, Constraints for linearizing
>z +Me,~)<Z(e;)< Yz, | product terms
(1,5)eSC; (1,5)eSC;
0<Z(c,)<Mc,
zzl,€+M(gl_1)SZ(g1)S zzl,s
(1,5)eSG; (1,5)eSG;
0<Z(g)<Mg,
u,v, {0, fori=12,..5
O0<u,,v,<1 fori=6,7,..,10
0<a,,t, c,g <1 fori=12,..10
z,,’s are treated as non-negative continuous variables for / =1,2, ... ,18 and s

=1,2, ... ,90 where M can be any value greater than or equal to 18.

In Program 2, since u, and v, are binary variables, a,, ¢

;» ¢;, and g, should have

binary values following (3). Although z, are treated as continuous variables, the values of z,

should be 0 or 1. This is because the optimal solution of a linear program should be a vertex point

satisfying > z, =1 forall .

Consider the following proposition.
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Proposition 4 Let the optimal solution of Program 2 be x = (Z",u",v") and ZSZ,VS =1. Assume

that a sequence / contains sites s, s,,..., s, such that 0< Z;s. <1 forj=1, 2, ... k,

then,
zielivsl = Zi Hlivfz T Zi Hliysk - max{zzﬂ;vs}’

where g, are specifiedin (6).
Proof For Y z, =1, if 5,5, €{s;,5,,..55} where > 6/ >> 6 . then to
maximize Score, =)z, Y 0, requires z,, =0. This conflicts with the

observation that0 <z, <1, therefore > 6 => 6/ =..=> 6, .
After solving Program 2 we can obtain the globally optimum solution
“TGTGAL LI JITCACA” with objective value 147. The related nonzero z,, values indicate
the starting positions of the binding sites in the 18 sequences, as listed below:

Zip64 = 2258 = 2379 = Z466 — 2553 = Zp63 — 27,21 — 2842 — Z912 = Z1017

= 21164 T 212,44 = Z1351 = Z1474 T 21520 — Z1656 — 217,87 — 218,81 — 1
All other z, ’s have value 0.
.S

In Program 2 the total number of 0-1 variables is 2m and the total number of the continuous

variables is 20m+ || * |s| . Since the number of 0-1 variables is independent of the lengths of / and s,

a CSI problem with many long sequences can be solved effectively.

Suboptimal common sites

Program 2 can find the exact global optimum solution. Sometimes the second best and the third
best solution may also be useful. It is very convenient for the proposed method to find a complete set
of common sites by adding some extra constraints. For instance, the second best solution of Program
2 can be obtained conveniently by solving the following program:

18
Maximize z Score, (16)
=1
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subject to
(i) The same constraints in Model 1

(i) t,+ g, +t;+g, +as +t;+c, +ag+cg +a,, <9 (new constraint)

The new constraint is used to force the program to find a new solution different from the
solution of Program 2. The found second best common site is “TTTGA[L ][ | ][ [ I [TTCAAA” with
score 129. Similarly we can find another solution by adding following constraint into (16).

o+t +t,+ g, va+tg+c; +ag+ag+ay <9
The found third best common site is “AAATTL ]I _JAATTT” with score 129.

3. Implementation

Several experiments are tested here, using the example in the Appendix, to analyze the effect of
sequence length and number of sequences on the computational time. All examples are solved by
LINGO (Schrage, 1999), a widely used optimization software, on a personal computer with a Pentium
4 2.0G CPU. A software package named “Global Site Seer” is developed based on Program 2 for
solving CSI problems. This software is available from http://www.iim.nctu.edu.tw/~cjfu/gss.htm.

Fig. 2 illustrates the experimental results for analyzing the time complexity. Fig. 2(a) is the
computational time given various sequence lengths, where the number of sequences is fixed at 18.
The results show that the computational time changes slightly even if the sequence length is increased
from 105 to 1050. Fig. 2(b) is the computational time with various numbers of sequences. It shows
that the solving time is roughly proportional to the number of sequences. The proposed model is quite
promising for treating CSI problems with large sequence length and a large number of sequence
number. Fig. 2(c) shows that the computational time rises exponentially as the number of independent
positions increases.
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(a) Computational time versus sequence length

Sequence  Solving Time

Length (mm:ss) 220

105 1:39 g 200

210 1:21 E 140

315 1:44 § 1:20

420 1:43 ‘_SU 100

525 1:48 =

630 1:54 2 0:40

735 1:48 8 020

840 1:56 0:00

945 1:59 0 105 210 315 420 525 630 735 840 945 1050 1155
1050 2:04 Length of a single sequence

(b) Computational time versus number of sequences

Number of Solving Time

Sequences (mm:ss) 12:00

9 0:30 ‘% 10:00

. £
18 1:39 £ 08:00
27 3:21 §
36 4:32 5 0600
45 6:15 '% 04:00
54 6:01 g

£ 02:00

63 8:16 O
72 10:29 00:00
81 10:01 0 9 18 27 36 45 54 63 72 81 90 99
90 9:37 [I'] : Number of sequences

(c) Computational time versus number of independent positions

Number of  Solving Time

Indep Pos (h:mm:ss) 100000.0
2 0:00:01 B 10000.0
3 0:00:03 ;% 10000
4 0:00:21 2
5 0:01:23 £ 1000
6 0:03:38 % 10.0
7 0:05:18 2
8 oog2s § 1P
9 0:15:52 0.1
10 0:53:27 1 2 3 4 5 6 7 8 9 10 11 12 13
1 2:33:20 m : Number of independent positions

Fig. 2. The relationship between computational time and various factors involved in a CSI
problem. This figure illustrates the computational time of solving Program 2 with (a) various
sequences sizes; (b) various number of sequences and (c) various independent positions.
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Time complexity and distributed computing

From the result of Fig. 2 we know that the time complexity is roughly proportional to the
number of sequences and is influenced slightly by the length of sequences. However, the
computational time rises exponentially as the number of independent positions increases. The worst

case of time complexity of solving Program 2 on a single machine is estimated as O(| l| 2°" ), where

|l| is the number of sequences and m is the number of independent positions.

To treat CSI problems with more independent positions, a method of distributed computing is
discussed in this section. Suppose there are n PCs available for solving Program 2, we can decompose
Program 2 into n subprograms by specifying different values on some u,’sand v, ’s. For instance, if

n = 32 then the first subprogram can be formulated as
Subprogram 1

Maximize  /(x) =D Score, (17)
!
subject to

(i) The same constraint sets as in Program 2
(i) uy=v,=u, =v, =uy; =0 (new constraint)

The new constraint (ii) is used to reduce the number of 0-1 variables from 10 to 5. Similarly,

constraint (ii) for the second subprogram can be setas u;=1and v, =u, =v, =u, = 0. Constraint

(i) for the 32¢h subprogram could be u, =v, =u, =v, =u, =1. All these 32 subprograms are
solved simultaneously. Such a distributed computation algorithm can enhance the computational
efficiency greatly. The computational time of Program 2 can be estimated as follows:

Time(l,m,n) — Of| l| Zﬁ(anUogsz) (18)

where a and £ are parameters, m is the number of independent positions, » is the number of
available PCs.

Fig. 3 is the results of some experiments for solving Problem 2 with various m and » while |/| =
18. For the example of finding CRP-binding sites, the estimated a and 5 values are a = 0.014 and g =
0.621.

4. Extend to Find Unknown Binding Sites

14



Computational
time
m 1 2 4 8 16 32
3 0:00:03  0:00:01 0:00:01 0:00:01 0:00:01 0:00:01
4 0:00:21  0:00:22 0:00:07 0:00:12 0:00:08 0:00:11
5 0:01:23  0:01:20 0:00:57  0:00:25 0:00:18  0:00:17
6 0:03:38  0:02:34  0:01:13  0:00:34  0:00:33  0:00:27
7 0:05:18  0:02:50  0:01:53  0:01:15 0:01:28  0:01:05
8 0:08:25  0:05:24  0:05:08 0:04:12 0:04:10 0:01:42
9 0:15:52  0:09:40 0:07:20 0:06:45 0:04:30 0:03:31
10 0:53:27 0:35:32  0:24:21  0:18:42  0:09:44  0:06:40
11 2:33:20  1:33:44  1:10:25  0:52:35  0:28:15  0:19:01
12 3:08:.04 2:07:53  1:17:32  0:40:54
13 7:12:31 2:44:19

100000

= 10000

1000

100

Computational time (seconds

=
o

6

m: Number of independent positions

8

9

11

12

13

Fig. 3. Computational time of distributed computing with various m (independent
positions) and n (hnumber of available PCs)

A more complicated CSI problem is to search for the common site in an uncertain
pattern format where the number of ignored letters between the two half sites is unknown. An

example is to find a common site of length 2*5+k with the pattern

LL,L,L, L[ ]....[ ]L;L,LyLyL,,
where k, the number of [ _]’s, is an unknown integer between 0 and 10.
Program 2 can be modified slightly to treat this type of extended CSI problems. Firstly

we expand D in (1) as D’ below:

D'=[D(0)D'QL)DQ)......

in which

D(10) ]
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1 10 1 10 1 10
dl,l,k dl,l,k d1,2,k dl,Z,k d1,90,k dl,90,k

1 10 1 10 1 10
' d2,1,k dz,l,k d2,2,k d2,2,k d2,90,k d2,90,k
D'(k) = . .
1 10 1 10 1 10
dl&l,k t dls,l,k dls,z,k e d18,2,k "' dls,go,k o dls,go,k

where k£ €{0,1,...,10}.

. b, ... (fori=1,2,3,4,5)
d, — li+s-1
YT by e (fOri=6,7,8,9,10)

0 ..,=a,, t, c,,or g, when d/  =‘A ‘T, ‘C’, or ‘G’ respectively.

The cases with & larger than 10 are not considered since they are relatively rare. A linear
mixed 0-1 program for solving this example is formulated below:
Program 3
2m

Maximize D (Z(a,)+Z(1,)+ Z(c,) + Z(g,)) (15)

i=1

. 10 96—k
subject to (i) Z szk -1, z,,20 foralll sk

k=0 s=1

(i) Doz =D 200 == 2y, for kef0,1,..,10}
(iii) the same conservative and logical constraints in Program 2

(iv) the same constraints for linearizing product terms in Program 2 but

replacez, byz, ..

Constraints (i) and (ii) are used to ensure that when a specific £ is chosen then
d.z=land > z . =0fork'=k.

Using Program 3 to search CRP binding sites we obtain the globally optimal solution as
“TGTGAL [ I JL L ITCACA” with score 147, which is exactly the solution found in
Program 2. And the second best solution is “GTGAAL | | ][ JTTCAC” with score 134. The
relationship between the computational time and the number of possible £’s (i.e. |4]) is linear,
as shown in the experiment result listed in Fig. 4. The number of ignored letter £ is between 0
and k , the upper bound of &, and thus we have |k| =k + 1 in this experiment.
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k K| Common Site Score  Computational Time
0 1 TGTTT(O0)AAACA 126 4:51
2 3 TGAAA(2)TTTCA 129 12:32
4 5 GTGAA(4)TTCAC 134 19:46
6 7 TGTGA(6)TCACA 147 24:28
8 9 TGTGA(6)TCACA 147 25:49
10 11 TGTGA(6)TCACA 147 32:35
35:00
.
_30:00
g 25:00 - *
£ 20:00 .
=
S 15:00
£ .
32 10:00
£
o
O 05:00 | IS
00:00 ‘
0 1 2 3 4 5 6 7 8 9 10 11 12
|k |: Number of possible k's

Fig. 4. Computational time of Program 3 with various numbers of possible £’s. The
number enclosed in the common site is the solution of %.

Finding FNR-binding sites

Program 3 is also applied to solve an example of searching for binding sites of fumarate
and nitrate reduction regulatory protein (FNR) in E. coli. Both CRP and FNR belong to the
CRP/FNR helix-turn-helix transcription factor superfamily (Tan et al., 2001). The sequence
data, which is taken from GenBank, contains 12 DNA sequences with lengths varied from 96
to 781. Owing to the dimer structure of the binding protein, the common site in this example
also has a constraint of inverse symmetry. The RegulonDB database (Huerta et al., 1998) lists
the found regulatory binding sites for eight of these twelve sequences while the exact
positions of other four sequences are not listed yet. Solving this example by Program 3 we
obtained the global optimal common site as “TTGAT[ ][ ][ || JATCAA” with score 107,
which is the same common site as indicated by Tan et al. (2001). Tab.2 illustrates the result
including the common site and the predicted binding sites for all of the 12 sequences. Some
sites downstream of the transcription start (i.e. with positive indices) are also listed because
there are a few known cases in which regulatory sites appear within transcription units (Tan
et al., 2001). The proposed method has found some sites not listed in RegulonDB but having
scores higher than those listed in RegulonDB (e.qg. the third solution in the Operon ansB row
of Tab.2). The best predicted sites in the four undetermined sequences are also listed in Tab.2.
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5. Discussion
This study proposes a linear mixed 0-1 programming approach for solving CSI
problems. Comparing with the widely used maximum likelihood methods, the proposed

method can reach a global optimum rather than finding a local optimum or a feasible solution.

Additionally, by utilizing binary variables some logical constraints can be embedded into the
models. It is also convenient to find the complete set of the second, third, etc. best common
sites. Since the number of binary variables is fully independent of the number of sequences
and the length of a sequence, the proposed method can treat a large CSI problem with many
long sequences. For treating a CSI problem with many independent positions in an
acceptable time, this study also proposes a method for distributed computing.

The proposed method can also be conveniently extended to treat more complicated CSI
problems. In this study an extension of the linear program is designed to solve CSI problems
with an unknown number of ignored letters between the two half sites. The result of
searching for FNR-binding sites shows that the extended model can find not only the
locations of known binding sites listed in the RegulonDB database but also those not yet

Tab. 2. FNR binding sites found by Program 3

Operon I esrfgt.h Sltepsreoqgrigmurgd by Pprgtsjilggend Score Site seq. listed in RegulonDB*
Common site: TTGAT----ATCAA
narK 338 ATGAT----ATCAA -86 9 actatgGGTAATGATAAATATCAATGATagataa
TTGAT----ATCAA -48 10 atcttaTCGTTTGATTTACATCAAATTGccttta
ansB 345 TTGTT----GTCAA -48 8 acgttgTAAATTGTTTAACGTCAAATTTcccata
TTGTA----TCCAA -81 6 gCCtctAACTTTGTAGATCTCCAAAATAtattca
TTTAT----TTTAA  -123 7
narG 525 TTGAT----ATCAA -55 10 ctcttgATCGTTATCAATTCCCACGCTGtttcag
dmsA 325 TTGAT----AACAA -48 9 ctttgaTACCGAACAATAATTACTCCTCacttac
frd 781 TTCAG----ATCCA -37 7 AAAAATCGATCTCGTCAAATTTcagacttatcca
TTAAT----TTCAG -98 7
nirB 262 TTGAT----ATCAA -48 10 aaaggtGAATTTGATTTACATCAATAAGcggggt
sodA 284 TTGAT----ATTTT -42 7 agtacgGCATTGATAATCATTTTCAATAtcattt
fnrx* 96 TTGAC----ATCAA -7 9 atgttaAAATTGACAAATATCAATTACGgcttga
ccttaaCAACTTAAGGGTTTTCAAATAGatagac
(cyoA) 599 CTTCT----ATCAA  -113 7 N/A
TTGTT----TTCAC -198 7
(icdA) 290 ATGAC----AACAA 16 7 N/A
TTGCT----AGCAT 73 7
(sdhC) 708 TTGAT----AATAA  -330 8 N/A
(ulaA) 346 TCAAT----ATCAA  -278 8 N/A
TTGGT----ATTAA  -257 8

Center
Position

-79.5
-41.5
-41.5
-714.5

415
-33
-47

-41.5
-34
1
-103.5
N/A

N/A

N/A
N/A

* For visualizing the comparison, the letters in uppercase represent the binding site listed in RegulonDB; the letter in bold face is the

center of the site sequence; and the encompassed letters represent the exact binding site obtained by Program 3.
** The second site listed in RegulonDB is not contained in the sequence data, which is only 96 bases long, from GenBank.
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delimitated.

Two issues remaining for further study. The first is to extend this method to treat various
practical CSI problems. The second is to develop a more refined distributed algorithm to
solve some CSI problems by numerous computers via internet.

Appendix
The 18 unaligned DNA sequences containing CRP binding sites are used as the
example throughout this paper. It is taken from Stormo et al. (1989)

colel TAATGTTTGTGCTGGTTTTTGTGGCATCGGGCGAGAATAGCGCGTGGTGTGAAAGACTGTTTTTTTGATCGTTTTCACAAAAATGGAAGTCCACAGTCTTGACAG
ecoarabop GACAAAAACGCGTAACAAAAGTGTCTATAATCACGGCAGAAAAGTCCACATTGATTATTTGCACGGCGTCACACTTTGCTATGCCATAGCATTTTTATCCATAAG
ecobglrl ACAAATCCCAATAACTTAATACTTGACATTTGTTATATATAACTTTATAAATTCCTAAAATTACACAAAGTTAATAACTGTGAGCATGGTCATATTTTTATCAAT
ecocrp CACAAAGCGAAAGCTATGCTAAAACAGTCAGGATGCTACAGTAATACATTGATGTACTGCATGTATGCAAAGGACGTCACATTACCGTGCAGTACAGTTGATAGC
ecocya ACGGTGCTACACTTGTATGTAGCGCATCTTTCTTTACGGTCAATCAGCAAGGTGTTAAATTGATCACGTTTTAGACCATTTTTTCGTCGTGAAACTAAAAAAACC
ecodeop  AGTGAATTATTTGAACCAGATCGCATTACAGTGATGCAAACTTGTAAGTAGATTTCCTTAATTGTGATGTGTATCGAAGTGTGTTGCGGAGTAGATGTTAGAATA
ecogale  GCGCATAAAAAACGGCTAAATTCTTGTGTAAACGATTCCACTAATTTATTCCATGGCACACTTTTCGCATCTTTGTTATGCTATGGTTATTTCATACCATAAGCC
ecoilvbpr GCTCCGGCGGGGTTTTTTGTTATCTGCAATTCAGTACAAAACGTGATCAACCCCTCAATTTTCCCTTTGCTGAAAAATTTTCCATTGTCTCCCCTGTAAAGCTGT
ecolac AACGCAATTAATGTGAGTTAGCTCACTCATTAGGCACCCCAGGCTTTACACTTTATGCTTCCGGATCGTATGTTGTGTGGAATTGTGAGCGGATAACAATTTCAC
ecomale  ACATTACCGCCAATTCTGTAACAGAGATCACACAAAGCGACGGTGGGGCGTAGGGGCAAGGAGGATGGAAAGAGGTTGCCGTATAAAGAAACTAGAGTCCGTTTA
ecomalk  GGAGGAGGCGGGAGGATGAGAACACGGCTTCTGTGAACTAAACCGAGGTCATGTAAGGAATTTCGTGATGTTGCTTGCAAAAATCGTGGCGATTTTATGTGCGCA
ecomalt  GATCAGCGTCGTTTTAGGTGAGTTGTTAATAAAGATTTGGAATTGTGACACAGTGCAAATTCAGACACATAAAAAAACGTCATCGCTTGCATTAGAAAGGTTTCT
ecoompa  GCTGACAAAAAAGATTAAACATACCTTATACAAGACTTTTTTTTCATATGCCTGACGGAGTTCACACTTGTAAGTTTTCAACTACGTTGTAGACTTTACATCGCC
ecotnaa  TTTTTTAAACATTAAAATTCTTACGTAATTTATAATCTTTAAAAAAAGCATTTAATATTGCTCCCCGAACGATTGTGATTCGATTCACATTTAAACAATTTCAGA
ecouxul CCCATGAGAGTGAAATTGTTGTGATGTGGTTAACCCAATTAGAATTCGGGATTGACATGTCTTACCAAAAGGTAGAACTTATACGCCATCTCATCCGATGCAAGC
pbr-p4 CTGGCTTAACTATGCGGCATCAGAGCAGATTGTACTGAGAGTGCACCATATGCGGTGTGAAATACCGCACAGATGCGTAAGGAGAAAATACCGCATCAGGCGCTC
trn9cat  CTGTGACGGAAGATCACTTCGCAGAATAAATAAATCCTGGTGTCCCTGTTGATACCGGGAAGCCCTGGGCCAACTTTTGGCGAAAATGAGACGTTGATCGGCACG

(tdc) GATTTTTATACTTTAACTTGTTGATATTTAAAGGTATTTAATTGTAATAACGATACTCTGGAAAGTATTGAAAGTTAATTTGTGAGTGGTCGCACATATCCTGTT
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