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本研究為三年期計畫，目的在於發展全域最佳化技術來解決基因序列共同區間的尋找問

題。在多組基因序列間尋找共同區間的問題，在生物資訊的分析上是相當常見的。部分案例中

這個共同區間還需要包含結構性的限制，mRNA 中 stem-loop motifs 的尋找即為其中一例。 
在本計畫中這類問題首先將被轉換成非線性 0-1 的數學模式。該模式經過轉換後可以變成

包含有限個 0-1 變數的線性模式，且可利用分散式計算來快速求解。此方法保證可以找到全域

最佳解，其運算速度也遠優於任何現今被提出的方法。 
第一年本計畫將進行該方法的發展及驗證，第二年與第三年針對各種在生物資訊分析方面

可能的應用來延伸開發其應用的作法，且發展自動化的應用程式系統來完成分散運算的能力。 

 
關鍵詞：最佳化、生物資訊、分子生物學、蛋白質鍵結 

 

Abstract 
 

This plan is about to develop a global optimization method in identifying a set of protein binding 
sites in a set of unaligned DNA fragments. The identification of common sites in multiple sequences 
is frequently encountered in the analysis of biopolymer sequence data. In several cases there exists 
various kind of structural constraints in such a problem. An example is the stem-loop motifs in 
mRNA molecules. 

Firstly the problem is formulated as a nonlinear 0-1 optimization model. This model is then 
converted into a linear 0-1 problem solvable by distributed computation system. The technique is 
guaranteed to find a global optimum. In additional, the computational speed of this technique is much 
faster than current methods in literature. 
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In first year we develop this methodology and verify the performance. And in the following two 
years we will apply this method to various types of practical use. Meanwhile a distributed 
computation system will developed to enhance the computation. 

 
Keywords: Optimization, Bioinformatics, Molecular biology, Protein binding 

 
1. Introduction 

The methods for determining a consensus pattern can be split into two parts. The first part is the 
model for describing the shared pattern; the second part is the algorithm for identifying the optimal 
common site according to its shared pattern. This study belongs to the second part. A consensus 
sequence identification (CSI) problem is, given a set of sequences known to contain binding sites for 
a common factor but not knowing where the site are, discover the location of the sites in each 
sequence (Stormo, 2000). 

The CSI problem is critical in research on gene expression such as the protein-binding site in a 
DNA strand. For the last decade several good methods have been developed for solving such 
problems (Brazma et al., 1998). Of those methods, the maximum likelihood approach (Stormo et al., 
1989; Hertz et al., 1990) is the best known. The traditional maximum likelihood approach, which 
measures information content to determine alignments, works fairly well and is reliable on 
discovering the common sites. However, they are still not able to determine the complete set of 
regulatory interactions for complicated promoters typical of metazoans (Stormo, 2000). 

Recently, Ecker et al. (2002) utilized optimization techniques to reformulate the maximum 
likelihood approach for solving CSI problems. They adopted a probabilistic model and formulated a 
well-designed nonlinear model with reference to the expectation maximization algorithm of Lawrence 
and Reilly (1990). Their method, however, occasionally only finds a feasible solution or a local 
optimum: which means the best solution may not be found. Additionally, no further structural feature 
in a CSI problem can be embedded conveniently in their model. 

This study proposes a linear programming method for solving a CSI problem to reach the 
globally optimal consensus sequence. Two examples of searching for CRP-binding sites and for 
FNR-binding sites in the Escherichia coli genome are used to illustrate the proposed method. The CSI 
problem is firstly formulated as a nonlinear mixed 0-1 program for alignment of DNA sequences, 
each of the four bases are coded with two binary variables and a matching score is designed. This 
nonlinear mixed 0-1 program is then converted into a linear mixed 0-1 program by linearization 
techniques. This study decomposes a CSI problem into several subprograms to be solved by a set of 
distributed computers linked via internet. Owing to some special features of the binary relationships, 
this linear 0-1 program includes 2m binary variables where m is the number of active letters in the 
common site. Some very attractive properties of this method are firstly that the required number of 
binary variables is independent of the number of sequences and the size of each sequence. That means, 
the proposed method is computationally efficient in solving a CSI problem with a large data size. 
Secondly, the proposed method is guaranteed to find the global optimum instead of a local optimum. 
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Thirdly, many kinds of specific features accompanied with a CSI problem can be formulated straight 
forwardly as logical constraints and embedded into the linear program. 

An example of searching CRP-binding sites, as discussed in Stormo et al. (Stormo et al., 1989) 
and Ecker et al. (Ecker et al., 2002), is described as follows. Given eighteen letter sequences each 105 
positions long, where each position contains a letter from the set {A, T, C, G}, find a common site of 
length16 with the pattern 

 

54321 LLLLL □□□□□□  109876 LLLLL
 
where , □  {A, T, C, G}and □’s mean the positions of ignored letters. iL ∈

Restated, the problem is to specify 
(i) the ’s of the common site pattern iL
(ii) the location of the site in each given sequence, which can fit most closely the common 

site. 
The following are difficulties associated with the method of Ecker et al. (2002) and other 

maximum likelihood methods (as reviewed in Brazma et al., 1998) for solving a CSI problem: 
(i) Only a local optimal or feasible solution is obtained 

Since Ecker et al. (2002) formulated a CSI problem as a non-convex nonlinear program, their 
method may only find local optima, as has been acknowledged (Ecker et al., 2002). Other maximum 
likelihood methods, which intend to maximize the probability of binding to the promoters in the 
sequences, may only find a feasible solution instead of finding a local optimal solution. It is not 
guaranteed that current maximum likelihood methods can reach the global optimum for general CSI 
problems. 

(ii) Heavy computational burden 
The nonlinear program in Ecker et al. (2002) contains too many nonlinear terms. The heavy 

computational burden in their method prohibits it from treating a CSI problem with a large number of 
sequences. 

(iii) Difficulty of adding logical constraints 
When identifying protein binding sites, there usually exists some specific features to be 

considered as logical constraints. For example, the letters of position  and  are expected to 

be complement (i.e. G with C and A with T). Formulating such a constraint in maximum likelihood 
approaches is a complex task. It is even impossible to formulate more complicated logical constraints 
(e.g. those with some ambiguity) when applying these approaches. 

iL iL −11

(iv) Fixed number of ignored letters 
Maximum likelihood methods are mainly used to solve CSI problems with fixed number of 

ignored letters (e.g. six in the above example). However, in real world this number is unknown and 
need to be found by some preliminary processes. 

(v) Difficulty of finding the second and the third best solutions 
Since current methods may only find a local optimum. It is hard to find other solutions next to 
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the best solution. 
 
In order to overcome the above difficulties of solving a CSI problem, this study proposes a 

novel method to treat the same problem that molecular biologists actually are interested in solving. 
We formulate a CSI problem as the identification of a consensus sequence that minimizes the number 
of differences between the proposed sites. Our basic concept is to reformulate a CSI problem as a 
mixed 0-1 linear program which only contains a limited number of 0-1 variables and most variables 
are continuous. Such a mixed 0-1 linear program can be solved effectively by commonly used 
branching-and-bound algorithms or a branch-cut algorithm (Balas et al. 1996). The advantages of the 
proposed method are listed below: 

(i) It is guaranteed to find the globally optimal solution. Since the objective function and 
constraints are all linear, the program should converge to the global optimum. 

(ii) It can effectively solve a CSI problem by a set of on-line computers as illustrated by our 
numerical experiments. 

(iii) It is convenient to add logical constraints. Since the binary variables are very suitable to 
express logical relationship, various complicated constraints can be embedded directly 
into the proposed method. 

(iv) It can be extended to treat CSI problems with unknown number of ignored letters. 
(v) It is very straight forward to find the complete set of the second, third, etc. best consensus 

sequences. 
In the following section we will discuss the linear programming technique for solving a CSI 

problem. 

 
2. Proposed Method 

This study firstly formulates a CSI problem as a nonlinear mixed 0-1 program. Then it converts 
this nonlinear mixed 0-1 program into a linear mixed 0-1 program using linearization techniques. To 
reduce the computational burden, many 0-1 variables in this linear mixed 0-1 program can actually be 
solved as continuous variables by an all or nothing assignment technique which improves greatly the 
computational efficiency of this program. 

 

Nonlinear mixed 0-1 program 
Here we use the example data in Stormo (1989), as listed in Appendix, to describe the proposed 

method. Firstly, represent the data in Appendix as an 18*105 data matrix D: 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
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⎡

=

105,182,181,18
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105,12,11,1

bbb

bbb
bbb

D  (1) 
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where  is the letter in the position p of the sequence l.  plb ,

Recall the example discussed in previous section, the common site we want to find has 16 
positions (ten ’s and six ignored letters), a sequence has 90 corresponding sites, so an 18*900 data 

matrix D’ is generated from D. 
iL
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1
2,18
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1,18
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90,2

1
90,2

10
2,2

1
2,2

10
1,2
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1,2

10
90,1

1
90,1

10
2,1

1
2,1
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1,1

1
1,1

'

dddddd

dddddd
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D  (2) 

where 

⎩
⎨
⎧

=
=

=
++

−+

)10,...,7,6(
)5,...,2,1(

5,

1,
, iforb

iforb
d

sil

sili
sl  ,  

and s = 1…90 is the starting position of each candidate site. 
For {A, T, C, G}, two binary variables  and  can be used to express , an element 

of the consensus sequence, as shown in Tab. 1. 

∈iL iu iv iL

Tab. 1 indicates that if  is A, T, C, or G respectively, then = 1, = 1, = 1 or = 1, 

which implies following conditions. 
iL ia it ic ig

  (3) 

)1(
)1(

)1)(1(

iii
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vug
vuc

vut
vua

−=
−=
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−−=

Now let  be the degree of fitting to the found common site, specified as lScore

∑
=

+++=
90

1

10
,

2
,

1
,, )......(

s
slslslsll θθθzScore  (4) 

where  is the element of candidate sites extracted from D’. The constraints associated with 

(4) are below: 

i
slθ ,
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(i) for all l and s. (5) ∑
=

∈=
90

1
,, }1,0{,1

s
slsl zz

(ii)  (6) 
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Clearly, . And the objective is to maximize the total sum of . 100 ≤≤ lScore lScore
 
Consider the sample data in Fig. 1 for instance: 

1Score  =  )( 109876543211,1 agtttcagaaz +++++++++  (7) 

  )( 109876543212,1 tagtttcagaz ++++++++++  

  )( 109876543213,1 ctagtgtcagz ++++++++++  

Tab. 1. Base code in the determined common site 
Base iu iv  ia it ic ig

A 0 0  1 0 0 0

T 1 1  0 1 0 0

C 0 1  0 0 1 0

G 1 0  0 0 0 1

(a) 
AAGACTGTTTTTTTGATC 
GATTATTTGCACGGCGTC 

(b) 
l = 1, s = 1 AAGACTGTTTTTTTGATC 
l = 1, s = 2 AAGACTGTTTTTTTGATC 
l = 1, s = 3 AAGACTGTTTTTTTGATC 
l = 2, s = 1 GATTATTTGCACGGCGTC 
l = 2, s = 2 GATTATTTGCACGGCGTC 
l = 2, s = 3 GATTATTTGCACGGCGTC 

(c)  

⎥
⎦

⎤
⎢
⎣

⎡
TTATTGCGTCATTATGGCGTGATTACGGCG
GACTGTGATCAGACTTTGATAAGACTTTGA

 
Fig. 1. A small example of finding consensus sequence: (a) two sequences to be compared; 
(b) Schematic representation of the candidate sites; (c) The associated D’ matrix 
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2Score  =  )( 109876543211,2 gcggcattagz +++++++++  (8) 

  )( 109876543212,2 tgcggtattaz ++++++++++  

  )( 109876543213,2 ctgcgttattz ++++++++++  

All  in (4) are binary variables. Equation (5) implies that for a sequence l, only one site is 

chosen and no other sites contribute to . Suppose the k’th site is selected, then  and 

 for all {1, 2, ..., 90}, . Since a huge amount of  (i.e, 

slz ,

lScore 1, =klz

0, =slz ∈s ks ≠ slz , sl * ) are involved, 

to treat  as binary variables would cause a heavy computational burden. Therefore  should 

be resolved as continuous variables rather than binary variables. An important proposition is 
introduced below: 

slz , slz ,

Proposition 1 (All or nothing assignment) Let  be continuous variables instead of binary 

variables. If there is a k, 

0, ≥slz

}90...,,2,1{∈k , such that 

, then assigning  and }90,...,2,1max{ 10

1 ,
10

1 , == ∑∑ ==
sforθθ

i
i

sli
i

kl 1, =klz 0, =slz  

for all ks ≠ , , can maximize the value of . }90,...,2,1{∈s lScore

Proof  Since  and , it is true that 1, =∑s slz 0, ≥slz

∑∑∑ ∑ ==≤
i

i
kli

i
sls i

i
slsl θsθθz ,,,, }90,...,2,1for{max})({max  

 
Remark 1 The objective function of a CSI problem f(x) can be rewritten as 

∑ ∑∑∑∑
= ∈∈∈∈

+++=
10

1 ),(
,

),(
,

),(
,

),(
, }{)(

i Ssl
sli

SCsl
sli

STsl
sli

SAsl
sli

iiii

zgzcztzaxf
G

 (9) 

where , , 

, and  for i=1,2,…10.  

}|),{( , AdslSA i
sli == }|),{( , TdslST i

sli ==

}|),{( , CdslSC i
sli == }|),{( , GdslSG i

sli ==

 
This result implies that (or , , ) is a set composed of (l, s) in which the 

product term  (or , ,  respectively) appears on the right hand side of (4) 

iSA iST iSC iSG

isl az , isl tz , isl cz , isl gz ,
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because that .  i
i

sl aθ =,

For instance, the sum of  and  in (7) and (8) becomes 1Score 2Score

1Score +  = 2Score 1,1102,22,11,11 ......)( zazzza ++++  

 1,2101,23,11 ......)(...... zgzzg +++++  (10) 

Some logical constraints can be conveniently expressed by binary variables. For instance, the 
constraint that a CRP dimer binds a symmetrical site requires that 

⎩
⎨
⎧

=
=

=
−

−

G.thenC
T,thenA

if
11

11

i

i
i L

L
L  

Such a logical structure can be formulated conveniently as the following constraints. 

}.1 ,0{ , , , where

5,4,3,2,1for
1
1

1111

11

11

∈

=
⎭
⎬
⎫

=+
=+

−−

−

−

iiii

ii

ii

vuvu

i
vv
uu

 (11) 

With reference to Tab. 1, clearly if ALi =  (i.e, 0 and 0 == ii vu ) then  (i.e, 
) and vice versa; (ii) if 

TL i =−11

1 and 1 1111 == −− ii vu CLi =  (i.e, 1 and 0 == ii vu ) then  (i.e, 
) and vice versa. A CSI problem can then be formulated as a nonlinear mixed 

0-1 program below based on these constraints: 

GL i =−11

0 and 1 1111 == −− ii vu

Program 1 (Nonlinear 0-1 CSI program) 

Maximize ∑ ∑ ∑∑∑∑
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This program intends to solve { } for i =1,2, …10 thus to maximize the total degree 

of fitting to the common site for the given 18 sequences, subjected to a possible logical constraint. A 
iiii gcta ,,,
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very important feature of Program 1 is that we can treat  as continuous variables rather than 

binary variables, which can improve the computational efficiency dramatically. We can ensure all 

found  still have binary values as discussed in the next section. 

slz ,

slz ,

 

Linearization of Program 1 

Program 1 is a mixed nonlinear 0-1 program where ∑ sli zq ,  for  and 

 are product terms. These product terms can be linearized directly by the following propositions: 

},,,{ iiiii cgtaq ∈

iivu

Proposition 2 The product term ∑= slii zq ,λ  where iλ  is to be maximized and can 

be linearized as follows: 

}1,0{∈iq

  (13) 
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  where M is a big constant larger than or equal to the number of sequences. 

Proof If = 1 then ; and otherwise iq ∑= sli z ,λ iλ = 0.  

Proposition 3 The product term  where iii vuw = }1,0{, ∈ii vu can be linearized as follows: 

  (14) 
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Denote , ∑ ∈
=

iSAsl slii zaaZ
),( ,)( ∑ ∈

=
iSTsl slii zttZ

),( ,)( , , and 

. Program 1 is then linearized into Program 2 below based on Proposition 2 

and Proposition 3. 

∑ ∈
=

iSCsl slii zccZ
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=

iSGsl slii zggZ
),( ,)(

 
Program 2 (Linear mixed 0-1 CSI program) 

Maximize ∑ ∑
= =

+++=
18
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iiiil gZcZtZaZScore  (15)
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subject to 

10...,,2,1for 
sconstraint veConservati
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slz , ’s are treated as non-negative continuous variables for l =1,2, … ,18 and s

=1,2, … ,90 where M can be any value greater than or equal to 18. 
In Program 2, since  and  are binary variables, , , , and  should have 

binary values following (3). Although  are treated as continuous variables, the values of  

should be 0 or 1. This is because the optimal solution of a linear program should be a vertex point 

satisfying  for all l. 

iu iv ia it ic ig

slz , slz ,

1, =∑s slz

Consider the following proposition. 
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Proposition 4  Let the optimal solution of Program 2 be and . Assume 

that a sequence l contains sites  such that  for j=1, 2, … k, 

then, 

),,(* ∗∗∗= vuZx 1, =∑s slz

ksss ...,,, 21 10 *
, <<

jslz

∑∑∑∑ ====
i

i
sli

i
sli

i
sli

i
sl k

}max{... ,,,, 21
θθθθ , 

(6)in  specified are  where ,
i

sl j
θ . 

Proof For , if 1, =∑s slz },...,{, 21 kqp sssss ∈  where ∑∑ >
i

i
sli

i
sl qp ,, θθ , then to 

maximize ∑∑= i
i

sljl sll jj
θzScore ,, ,  requires 0, =

qslz . This conflicts with the 

observation that 10 , <<
qslz , therefore ∑∑∑ ===

i
i

sli
i

sli
i

sl k,,, ...
21

θθθ . 

After solving Program 2 we can obtain the globally optimum solution 

“TGTGA□□□□□□TCACA” with objective value 147. The related nonzero  values indicate 

the starting positions of the binding sites in the 18 sequences, as listed below: 

slz ,

181,1887,1756,1620,1574,1451,1344,1264,11

17,1012,942,827,763,653,566,479,358,264,1

=========

=========

zzzzzzzz
zzzzzzzzzz  

All other ’s have value 0. 
slz ,

In Program 2 the total number of 0-1 variables is 2m and the total number of the continuous 

variables is 20m+ sl * . Since the number of 0-1 variables is independent of the lengths of l and s, 

a CSI problem with many long sequences can be solved effectively. 
 

Suboptimal common sites 
Program 2 can find the exact global optimum solution. Sometimes the second best and the third 

best solution may also be useful. It is very convenient for the proposed method to find a complete set 
of common sites by adding some extra constraints. For instance, the second best solution of Program 
2 can be obtained conveniently by solving the following program: 

Maximize ∑
=

18

1l
lScore  (16)
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subject to  
(i) The same constraints in Model 1 
 
(ii) 910987654321 ≤+++++++++ acactagtgt    (new constraint) 

The new constraint is used to force the program to find a new solution different from the 
solution of Program 2. The found second best common site is “TTTGA□□□□□□TCAAA” with 

score 129. Similarly we can find another solution by adding following constraint into (16). 
910987654321 ≤+++++++++ aaactagttt  

The found third best common site is “AAATT□□□□□□AATTT” with score 129. 

 
3. Implementation 
 

Several experiments are tested here, using the example in the Appendix, to analyze the effect of 
sequence length and number of sequences on the computational time. All examples are solved by 
LINGO (Schrage, 1999), a widely used optimization software, on a personal computer with a Pentium 
4 2.0G CPU. A software package named “Global Site Seer” is developed based on Program 2 for 
solving CSI problems. This software is available from http://www.iim.nctu.edu.tw/~cjfu/gss.htm. 

Fig. 2 illustrates the experimental results for analyzing the time complexity. Fig. 2(a) is the 
computational time given various sequence lengths, where the number of sequences is fixed at 18. 
The results show that the computational time changes slightly even if the sequence length is increased 
from 105 to 1050. Fig. 2(b) is the computational time with various numbers of sequences. It shows 
that the solving time is roughly proportional to the number of sequences. The proposed model is quite 
promising for treating CSI problems with large sequence length and a large number of sequence 
number. Fig. 2(c) shows that the computational time rises exponentially as the number of independent 
positions increases. 
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(a) Computational time versus sequence length 

Sequence 
Length 

Solving Time 
(mm:ss) 

105 1:39 
210 1:21 
315 1:44 
420 1:43 
525 1:48 
630 1:54 
735 1:48 
840 1:56 
945 1:59 
1050 2:04  
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(b) Computational time versus number of sequences 

Number of 
Sequences 

Solving Time 
(mm:ss) 

9  0:30 
18  1:39 
27  3:21 
36  4:32 
45  6:15 
54  6:01 
63  8:16 
72 10:29 
81 10:01 
90  9:37  
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(c) Computational time versus number of independent positions 

Number of 
Indep Pos 

Solving Time 
(h:mm:ss) 

2 0:00:01 
3 0:00:03 
4 0:00:21 
5 0:01:23 
6 0:03:38 
7 0:05:18 
8 0:08:25 
9 0:15:52 

10 0:53:27 
11 2:33:20  
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Fig. 2. The relationship between computational time and various factors involved in a CSI 
problem. This figure illustrates the computational time of solving Program 2 with (a) various 
sequences sizes; (b) various number of sequences and (c) various independent positions. 

 
  13



Time complexity and distributed computing 
From the result of Fig. 2 we know that the time complexity is roughly proportional to the 

number of sequences and is influenced slightly by the length of sequences. However, the 
computational time rises exponentially as the number of independent positions increases. The worst 

case of time complexity of solving Program 2 on a single machine is estimated as O( ml 22 ), where 

l  is the number of sequences and m is the number of independent positions.  

To treat CSI problems with more independent positions, a method of distributed computing is 
discussed in this section. Suppose there are n PCs available for solving Program 2, we can decompose 
Program 2 into n subprograms by specifying different values on some ’s and ’s. For instance, if 

n = 32 then the first subprogram can be formulated as 
iu iv

Subprogram 1 

Maximize ∑=
l

lScorexf )(  (17)

subject to  
(i) The same constraint sets as in Program 2 
(ii) 032211 ===== uvuvu       (new constraint) 

 
The new constraint (ii) is used to reduce the number of 0-1 variables from 10 to 5. Similarly, 

constraint (ii) for the second subprogram can be set as =1 and 1u 03221 ==== uvuv . Constraint 

(ii) for the 32th subprogram could be 132211 ===== uvuvu . All these 32 subprograms are 

solved simultaneously. Such a distributed computation algorithm can enhance the computational 
efficiency greatly. The computational time of Program 2 can be estimated as follows: 

⎣ ⎦)log2( 22),,( nmlnmlTime −= βα  (18) 

where α and β are parameters, m is the number of independent positions, n is the number of 
available PCs. 

Fig. 3 is the results of some experiments for solving Problem 2 with various m and n while |l| = 
18. For the example of finding CRP-binding sites, the estimated α and β values are α = 0.014 and β = 
0.621. 

 

4. Extend to Find Unknown Binding Sites 
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Computational 
time   n   

m 1 2 4 8 16 32 
3 0:00:03 0:00:01 0:00:01 0:00:01 0:00:01 0:00:01 
4 0:00:21 0:00:22 0:00:07 0:00:12 0:00:08 0:00:11 
5 0:01:23 0:01:20 0:00:57 0:00:25 0:00:18 0:00:17 
6 0:03:38 0:02:34 0:01:13 0:00:34 0:00:33 0:00:27 
7 0:05:18 0:02:50 0:01:53 0:01:15 0:01:28 0:01:05 
8 0:08:25 0:05:24 0:05:08 0:04:12 0:04:10 0:01:42 
9 0:15:52 0:09:40 0:07:20 0:06:45 0:04:30 0:03:31 

10 0:53:27 0:35:32 0:24:21 0:18:42 0:09:44 0:06:40 
11 2:33:20 1:33:44 1:10:25 0:52:35 0:28:15 0:19:01 
12   3:08:04 2:07:53 1:17:32 0:40:54 
13     7:12:31 2:44:19  
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Fig. 3. Computational time of distributed computing with various m (independent 
positions) and n (number of available PCs) 

A more complicated CSI problem is to search for the common site in an uncertain 
pattern format where the number of ignored letters between the two half sites is unknown. An 
example is to find a common site of length 2*5+k with the pattern 
 

54321 LLLLL □ ......□  109876 LLLLL
where k, the number of □’s, is an unknown integer between 0 and 10. 
Program 2 can be modified slightly to treat this type of extended CSI problems. Firstly 

we expand D in (1) as D’ below: 
D’ = [ D’(0) D’(1) D’(2) …… D’(10) ] 
 
in which 
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The cases with k larger than 10 are not considered since they are relatively rare. A linear 
mixed 0-1 program for solving this example is formulated below: 
Program 3 

Maximize ∑
=

+++
m

i
iiii gZcZtZaZ

2

1

))()()()((  (15) 

subject to (i)  ksl,zz ksl
k

k

s
ksl ,allfor0,1 ,,

10

0

96

1
,, ≥=∑∑

=

−

=

(ii) ∑∑∑ ===
s

ks
s

ks
s

ks zzz ,,18,,2,,1 ...  for }10...,,1,0{∈k  

(iii) the same conservative and logical constraints in Program 2 
(iv) the same constraints for linearizing product terms in Program 2 but 

replace by . slz , kslz .,

Constraints (i) and (ii) are used to ensure that when a specific k is chosen then 

 and . 1,, =∑s kslz kk'z
s ksl ≠=∑ for   0',,

Using Program 3 to search CRP binding sites we obtain the globally optimal solution as 
“TGTGA□□□□□□TCACA” with score 147, which is exactly the solution found in 
Program 2. And the second best solution is “GTGAA□□□□TTCAC” with score 134. The 
relationship between the computational time and the number of possible k’s (i.e. |k|) is linear, 
as shown in the experiment result listed in Fig. 4. The number of ignored letter k is between 0 
and k , the upper bound of k, and thus we have |k| = k + 1 in this experiment. 
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k  |k| Common Site Score Computational Time 

0 1 TGTTT(0)AAACA 126 4:51 
2 3 TGAAA(2)TTTCA 129 12:32 
4 5 GTGAA(4)TTCAC 134 19:46 
6 7 TGTGA(6)TCACA 147 24:28 
8 9 TGTGA(6)TCACA 147 25:49 

10 11 TGTGA(6)TCACA 147 32:35  
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Fig. 4. Computational time of Program 3 with various numbers of possible k’s. The 
number enclosed in the common site is the solution of k. 

Finding FNR-binding sites 
Program 3 is also applied to solve an example of searching for binding sites of fumarate 

and nitrate reduction regulatory protein (FNR) in E. coli. Both CRP and FNR belong to the 
CRP/FNR helix-turn-helix transcription factor superfamily (Tan et al., 2001). The sequence 
data, which is taken from GenBank, contains 12 DNA sequences with lengths varied from 96 
to 781. Owing to the dimer structure of the binding protein, the common site in this example 
also has a constraint of inverse symmetry. The RegulonDB database (Huerta et al., 1998) lists 
the found regulatory binding sites for eight of these twelve sequences while the exact 
positions of other four sequences are not listed yet. Solving this example by Program 3 we 
obtained the global optimal common site as “TTGAT□□□□ATCAA” with score 107, 
which is the same common site as indicated by Tan et al. (2001). Tab.2 illustrates the result 
including the common site and the predicted binding sites for all of the 12 sequences. Some 
sites downstream of the transcription start (i.e. with positive indices) are also listed because 
there are a few known cases in which regulatory sites appear within transcription units (Tan 
et al., 2001). The proposed method has found some sites not listed in RegulonDB but having 
scores higher than those listed in RegulonDB (e.g. the third solution in the Operon ansB row 
of Tab.2). The best predicted sites in the four undetermined sequences are also listed in Tab.2. 
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5. Discussion 
This study proposes a linear mixed 0-1 programming approach for solving CSI 

problems. Comparing with the widely used maximum likelihood methods, the proposed 
method can reach a global optimum rather than finding a local optimum or a feasible solution. 
Additionally, by utilizing binary variables some logical constraints can be embedded into the 
models. It is also convenient to find the complete set of the second, third, etc. best common 
sites. Since the number of binary variables is fully independent of the number of sequences 
and the length of a sequence, the proposed method can treat a large CSI problem with many 
long sequences. For treating a CSI problem with many independent positions in an 
acceptable time, this study also proposes a method for distributed computing. 

The proposed method can also be conveniently extended to treat more complicated CSI 
problems. In this study an extension of the linear program is designed to solve CSI problems 
with an unknown number of ignored letters between the two half sites. The result of 
searching for FNR-binding sites shows that the extended model can find not only the 
locations of known binding sites listed in the RegulonDB database but also those not yet 

 
Tab. 2. FNR binding sites found by Program 3 

Operon Seq. 
length 

Site seq. found by 
Program 3 

Predicted 
Position Score Site seq. listed in RegulonDB* Center 

Position 
Common site: TTGAT----ATCAA     

narK 338 ATGAT----ATCAA 
TTGAT----ATCAA 

-86 
-48 

9 
10 

actatgGGTAATGATAAATATCAATGATagataa
atcttaTCGTTTGATTTACATCAAATTGccttta

-79.5 
-41.5 

ansB 345 TTGTT----GTCAA 
TTGTA----TCCAA 
TTTAT----TTTAA 

-48 
-81 
-123 

8 
6 
7 

acgttgTAAATTGTTTAACGTCAAATTTcccata
gcctctAACTTTGTAGATCTCCAAAATAtattca

-41.5 
-74.5 

narG 525 TTGAT----ATCAA -55 10 ctcttgATCGTTATCAATTCCCACGCTGtttcag -41.5 
dmsA 325 TTGAT----AACAA -48 9 ctttgaTACCGAACAATAATTACTCCTCacttac -33 

frd 781 TTCAG----ATCCA 
TTAAT----TTCAG 

-37 
-98 

7 
7 

AAAAATCGATCTCGTCAAATTTcagacttatcca -47 

nirB 262 TTGAT----ATCAA -48 10 aaaggtGAATTTGATTTACATCAATAAGcggggt -41.5 
sodA 284 TTGAT----ATTTT -42 7 agtacgGCATTGATAATCATTTTCAATAtcattt -34 
fnr** 96 TTGAC----ATCAA -7 9 atgttaAAATTGACAAATATCAATTACGgcttga

ccttaaCAACTTAAGGGTTTTCAAATAGatagac
1 

-103.5 
(cyoA) 599 CTTCT----ATCAA 

TTGTT----TTCAC 
-113 
-198 

7 
7 

N/A N/A 

(icdA) 290 ATGAC----AACAA 
TTGCT----AGCAT 

16 
73 

7 
7 

N/A N/A 

(sdhC) 708 TTGAT----AATAA -330 8 N/A N/A 
(ulaA) 346 TCAAT----ATCAA 

TTGGT----ATTAA 
-278 
-257 

8 
8 

N/A N/A 

* For visualizing the comparison, the letters in uppercase represent the binding site listed in RegulonDB; the letter in bold face is the 
center of the site sequence; and the encompassed letters represent the exact binding site obtained by Program 3. 

** The second site listed in RegulonDB is not contained in the sequence data, which is only 96 bases long, from GenBank. 
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delimitated. 
Two issues remaining for further study. The first is to extend this method to treat various 

practical CSI problems. The second is to develop a more refined distributed algorithm to 
solve some CSI problems by numerous computers via internet. 

 
 
Appendix 

The 18 unaligned DNA sequences containing CRP binding sites are used as the 
example throughout this paper. It is taken from Stormo et al. (1989) 

 
cole1 TAATGTTTGTGCTGGTTTTTGTGGCATCGGGCGAGAATAGCGCGTGGTGTGAAAGACTGTTTTTTTGATCGTTTTCACAAAAATGGAAGTCCACAGTCTTGACAG 

ecoarabop GACAAAAACGCGTAACAAAAGTGTCTATAATCACGGCAGAAAAGTCCACATTGATTATTTGCACGGCGTCACACTTTGCTATGCCATAGCATTTTTATCCATAAG 

ecobglr1 ACAAATCCCAATAACTTAATACTTGACATTTGTTATATATAACTTTATAAATTCCTAAAATTACACAAAGTTAATAACTGTGAGCATGGTCATATTTTTATCAAT 

ecocrp CACAAAGCGAAAGCTATGCTAAAACAGTCAGGATGCTACAGTAATACATTGATGTACTGCATGTATGCAAAGGACGTCACATTACCGTGCAGTACAGTTGATAGC 

ecocya ACGGTGCTACACTTGTATGTAGCGCATCTTTCTTTACGGTCAATCAGCAAGGTGTTAAATTGATCACGTTTTAGACCATTTTTTCGTCGTGAAACTAAAAAAACC 

ecodeop AGTGAATTATTTGAACCAGATCGCATTACAGTGATGCAAACTTGTAAGTAGATTTCCTTAATTGTGATGTGTATCGAAGTGTGTTGCGGAGTAGATGTTAGAATA 

ecogale GCGCATAAAAAACGGCTAAATTCTTGTGTAAACGATTCCACTAATTTATTCCATGGCACACTTTTCGCATCTTTGTTATGCTATGGTTATTTCATACCATAAGCC 

ecoilvbpr GCTCCGGCGGGGTTTTTTGTTATCTGCAATTCAGTACAAAACGTGATCAACCCCTCAATTTTCCCTTTGCTGAAAAATTTTCCATTGTCTCCCCTGTAAAGCTGT 

ecolac AACGCAATTAATGTGAGTTAGCTCACTCATTAGGCACCCCAGGCTTTACACTTTATGCTTCCGGATCGTATGTTGTGTGGAATTGTGAGCGGATAACAATTTCAC 

ecomale ACATTACCGCCAATTCTGTAACAGAGATCACACAAAGCGACGGTGGGGCGTAGGGGCAAGGAGGATGGAAAGAGGTTGCCGTATAAAGAAACTAGAGTCCGTTTA 

ecomalk GGAGGAGGCGGGAGGATGAGAACACGGCTTCTGTGAACTAAACCGAGGTCATGTAAGGAATTTCGTGATGTTGCTTGCAAAAATCGTGGCGATTTTATGTGCGCA 

ecomalt GATCAGCGTCGTTTTAGGTGAGTTGTTAATAAAGATTTGGAATTGTGACACAGTGCAAATTCAGACACATAAAAAAACGTCATCGCTTGCATTAGAAAGGTTTCT 

ecoompa GCTGACAAAAAAGATTAAACATACCTTATACAAGACTTTTTTTTCATATGCCTGACGGAGTTCACACTTGTAAGTTTTCAACTACGTTGTAGACTTTACATCGCC 

ecotnaa TTTTTTAAACATTAAAATTCTTACGTAATTTATAATCTTTAAAAAAAGCATTTAATATTGCTCCCCGAACGATTGTGATTCGATTCACATTTAAACAATTTCAGA 

ecouxul CCCATGAGAGTGAAATTGTTGTGATGTGGTTAACCCAATTAGAATTCGGGATTGACATGTCTTACCAAAAGGTAGAACTTATACGCCATCTCATCCGATGCAAGC 

pbr-p4 CTGGCTTAACTATGCGGCATCAGAGCAGATTGTACTGAGAGTGCACCATATGCGGTGTGAAATACCGCACAGATGCGTAAGGAGAAAATACCGCATCAGGCGCTC 

trn9cat CTGTGACGGAAGATCACTTCGCAGAATAAATAAATCCTGGTGTCCCTGTTGATACCGGGAAGCCCTGGGCCAACTTTTGGCGAAAATGAGACGTTGATCGGCACG 

(tdc) GATTTTTATACTTTAACTTGTTGATATTTAAAGGTATTTAATTGTAATAACGATACTCTGGAAAGTATTGAAAGTTAATTTGTGAGTGGTCGCACATATCCTGTT 

 
References 
 
Balas,E., Ceria,S. and Cornuéjols,G. (1996) Mixed 0-1 Programming by Lift-and-Project in a 

Branch-and-Cut Framework. Management Science, 42, 1229-1246. 
Brazma,A., Jonassen,I., Eidhammer,I. and Gilbert,D. (1998) Approaches to the automatic 

discovery of patterns in biosequences. J. Comput. Biol., 5, 279-305. 
Ecker,J.G., Kupferschmid,M., Lawrence,C.E., Reilly, A.A. and Scott, A.C.H. (2002) An 

application of nonlinear optimization in molecular biology. European Journal of 
Operational Res., 138, 452-458. 

Hertz,G.Z., Hartzell,G.W. and Stormo,G.D. (1990) Identification of consensus patterns in 

 19



unaligned DNA sequences known to be functionally related. Computa. Appl. Biosci., 6, 
81-92. 

Huerta,A.M., Salgado,H., Thieffry,D. and Collado-Vides,J. (1998) RegulonDB: a database on 
transcriptional regulation in Escherichia coli. Nucl. Acids Res., 26, 55-59. 

Lawrence,C.E. and Reilly,A.A. (1990) An expectation maximization (EM) algorithm for the 
identification and characterization of common sites in unaligned biopolymer sequences. 
PROTEINS: Structure, Function, and Genetics, 7, 41-51. 

Schrage,L. (1999) Optimization Modeling With Lingo, LINDO Systems Inc., Chicago. 
Stormo,G.D. and Hartzell,G.W. (1989) Identifying protein-binding sites from unaligned DNA 

fragments. Proceedings of the National Academy of Sciences of the USA, 86, 1183-1187. 
Stormo,G.D. (2000) DNA binding sites: representation and discovery. Bioinformatics, 16, 

16-23. 
Tan,K., Moreno-Hagelsieb,G., Collado-Vides,J. and Stormo,G.D. (2001) A comparative 

genomics approach to prediction of new members of regulons. Genome Research, 11, 
566-584. 

 
八、計畫成果自評 

 
1、 本研究已發展以全域最佳化方法求解 DNA 序列之共同區間定址問題，研究成果也已發表於

生物資訊之國際知名頂級期刊 Bioinformatics： 

 
Han-Lin Li, and Chang-Jui Fu, “A Linear Programming Approach for Identifying a Consensus 
Sequence on DNA Sequences”, Bioinformatics, 21, 1838-1845, May 2005. 
 

2、 本研究正陸續求解更深入的課題，並將於 INFORMS 2006 H.K. Conference 發表： 

 
Han-Lin Li, and Chang-Jui Fu, “Identifying DNA Consensus Sequence Without Shared Patterns 
Using Linear Programs”, INFORMS International Conference, Hong Kong, June 25-28, 2006. 

 
3、 本研究已訓練數位博士研究生完成撰寫論文中。 

 
 

 20


