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Abstract

Wireless sensor network is a rapidly growing discipline with new technologies
emerging, and new applications under development. Wireless sensor nodes deposited
in various places can measure light, humidity, temperature, etc. and can therefore be
used in applications such as security surveillance, environmental monitoring and
wildlife watching. A communication channel is generally shared among many sensor
nodes in wireless sensor networks. Such sharing reduces the network performance due
to aggravated radio interference. At same time it raises energy consumption since
packet retransmission is needed when interference occurs. Moreover, the energy
consumption could be skyrocket if we don’t limit number of active sensor nodes for
the data relays. Topology control can be utilized to address the above problems.
Topology control will remove unnecessary transmission links by shutting down some
of redundant nodes. Nevertheless topology control will still guarantee network
connectivity in order to deliver data efficiently in a wireless sensor network. This
report proposes two topology control schemes, namely SmartBone and HCR (Hop
Count based Routing) separately, in wireless sensor networks. The first scheme in the
report, SmartBone, proposes a novel mechanism to construct a backbone. Some nodes
are chosen as coordinators (i.e. backbone nodes) in the backbone construction process.
All nodes then can directly or indirectly communicate with other nodes via these
coordinators. The coordinators form the backbone, and the non-selected nodes can
perform sleeping schedule or turn off the radio to save the energy consumption.
Another potential application model for a sensor network is transmitting packets
efficiently from Single-Source to Multi-Sinks. It is to gather data from a single sensor
node and deliver it to multiple clients who are interested in the data. This in wireless
sensor network model is called Single-Source to Multi-Sinks (SSMS). The difficulty
of handling the model is in how to arrange the minimum-cost transmission path. The
second proposed scheme in the report, HCR, simultaneously addresses energy-cost

and end-to-end delay to solve the above problem.
Keywords:  backbone, topology control, distributed DFS, flow-bottleneck

preprocessing, critical nodes, density cutback, multi-path routing, path aggregation,

prune vector, set cover, grouping, robustness, wireless sensor networks
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Chapter 1: Introduction

Wireless sensor network is a rapidly growing discipline with new technologies
emerging, and new applications under development. Wireless sensor nodes deposited
in various places enable the measurement of light, temperature, humility, etc. In
addition to providing light and temperature measurements, wireless sensor nodes have
applications such as security surveillance, environmental monitoring, and wildlife
watching. The nodes in a wireless network generally to communicate with each other
along the same wireless channel. Unfortunately, sharing among wireless channels
decreases network performance due to radio interference, and also raises energy
consumption due to packet retransmission when interference occurs. Many topology
control algorithms have been proposed to solve these problems. One widely used
strategy is the backbone method. Backbone algorithms aim to reduce the backbone
size. However, poor performance may be explored if only few backbone nodes are
selected. Therefore, several heuristic algorithms such as SBC have been proposed.
However, these algorithms cannot efficiently eliminate redundant nodes, and
dramatically decrease performance especially in sparse networks. The first scheme in
the report proposes a novel backbone algorithm called SmartBone to choose proper
backbone nodes from a network. SmartBone includes two major mechanisms.
Flow-Bottleneck preprocessing is adopted to find critical nodes, which act as
backbone nodes to improve connectivity. Dynamic Density Cutback is adopted to
reduce the number of redundant nodes depending on area node density of network.
SmartBone simultaneously considers the balance of network performance and energy
savings. Significantly, the proposed algorithm has a 50% smaller backbone size than
SBC, and improves the energy saving ratio from 25% using SBC to 40% using
SmartBone. Moreover, SmartBone improves the packet delivery ratio from 40% to

90% even in the sparse networks.

Another important problem in a sensor network is how to transmit packets
efficiently from Single-Source to Multi-Sinks. It is to gather data from a single sensor
node and deliver it to multiple clients who are interested in the data. The difficulty of
handling such a scenario is in finding the minimum-cost multiple transmission paths.
Many routing algorithms have been proposed to solve this problem. Most current
algorithms address the reduction of power consumption. Therefore, a large delay can
be explored if only the energy factor is considered. The second scheme in the report
proposes a novel multi-path routing algorithm in wireless sensor networks. A routing
algorithm called Hop-Count based Routing (HCR) algorithm, which considers energy

cost and transmission delay simultaneously, is provided. A hop count vector (HCV) is



introduced to support routing decision. Moreover, an additional pruning vector (PV)
can further enhance routing performance. The proposed algorithm also provides a
maintenance mechanism to handle the consequence of faulty nodes. A failure of a
node leads to an inaccurate HCV. Therefore, an efficient correction algorithm is
necessary. An Aid-TREE (A-TREE) is applied to facilitate restricted flooding. This
correction mechanism is more efficient than full-scale flooding for correcting the
limited inaccurate HCVs. Finally, the impact of failed nodes is studied, and an

algorithm, called Lazy-Grouping, is proposed to enhance the robustness of HCR.



Chapter 2: SmartBone: An Energy-Efficient Smart
Backbone Construction in Wireless Sensor Networks

2.1 Introduction

Wireless sensor network is a rapidly growing discipline with new technologies
emerging, and new applications under development. Wireless sensor nodes deposited
in various places can measure light, humidity, temperature, etc. and can therefore be
used in applications such as security surveillance, environmental monitoring and
wildlife watching [20], [28], [34], and [27]. A communication channel is generally
shared among many sensor nodes in wireless sensor networks. Such sharing reduces
the network performance due to aggravated radio interference. At same time it raises
energy consumption since packet retransmission is needed when interference occurs.
Moreover, the energy consumption could be skyrocket if we don’t limit number of
active sensor nodes for the data relays. Topology control can be utilized to address the
above problems. Topology control will remove unnecessary transmission links by
shutting down some of redundant nodes. Nevertheless topology control will still
guarantee network connectivity in order to deliver data efficiently in a wireless sensor

network.

The following criteria are typically applied to evaluate the performance of the
topology control [1]: connectivity, energy-efficiency, throughput and robustness.
Energy consumption is the most significant issue in wireless sensor networks, since
most sensors are powered by batteries. Power supply issue is a severe limitation in
sensor application, since sensors must operate for a long time (i.e., for many years)

and can not be recharged while they are operating.

Topology control for energy-saving can be accomplished in two ways. The first
method involves adjusting the radio power to maintain the proper number of
neighbors [21][22]. The second method involves turning off the radio power or
performing some sleeping schedules for some redundant nodes to reduce the
unnecessary energy consumption [6]. At some time maintain a sufficient number of

active nodes to perform data forwarding.

An effective topology control can enhance network performance by reducing
interference and increase network life time by saving energy. Adjusting the
transmission range and reducing the number of redundant nodes are both methods for

achieving this goal. The first method saves less energy than the second, because



adjusting the transmission range does not turn the radio off. Turning off the radio in
the redundant nodes is a rational idea, since nodes incur the same energy costs both in
active communication and in the idle state. Estrin et. Al. [2] indicates that the energy
consumption in the transmission and idle states are similar. However, the energy
consumption of a sleeping node is 1000 times less than that of an active node [3]. This
large ratio can be exploited to economize on energy. Several methods exist to reduce
the number of redundant nodes such as a backbone-based [6][7][10][4] or
cluster-based algorithms [12][13].

In this section, we propose a novel mechanism called SmartBone to construct a
backbone. Some nodes are chosen as coordinators (i.e. backbone nodes) in the
backbone construction process. All nodes then can directly or indirectly communicate
with other nodes via these coordinators. The coordinators form the backbone, and the
non-selected nodes can perform sleeping schedule or turn off the radio to save the

energy consumption.

The backbone-based algorithms can be classified based on size of constructed
backbone. According to backbone size, the schemes can be divided into non-constant
[6][14][15][16][17] and constant ratio schemes [4][9][18][19]. The backbone size
needs to be reduced to maximize the energy saving. Therefore, minimizing the
backbone is normally the best policy. However, the problem of constructing minimum
backbone is equivalent to the problem of finding the minimum connected dominating
set (MCDS) in the graph theory. Unfortunately it is a classic NP-hard optimization
problem. Constant ratio schemes ensure that the constructed backbone size should be
bounded by a certain ratio against size of MCDS. Non-constant schemes would not

have above property.

Although minimizing the backbone size can save a large amount of energy, it
also causes poor network performance due to resource competition and network
congestion. Algorithms that simultaneously optimize the energy consumption and
network performance have proved impossible to obtain [5]. However, a trade-off does
exist between the minimum energy cost and minimum congestion. In SmartBone, we

attempt to balance of the sustainability of energy cost and network performance.

SBC [6] is a heuristic-based non-constant backbone construction method. It
constructs a backbone by determining which node should be selected as coordinator
of backbone. SBC divides all nodes into two groups and judges within the same group

whether a node are a redundant node. Redundant nodes are those that are close to each



other in the same group, and will not be chosen as coordinators. A drawback of the
SBC algorithm is its lack of a good overlap detection method. SBC cannot efficiently
delete nodes that are very close to each other locally, because it considers the global
redundancy threshold which determined the ratio of common neighbors. However,
SmartBone adopts a Dynamic Density Cutback (DDC) mechanism to reduce the
number of redundant nodes according to the dynamic thresholds which is determined
by node density of network topology. In SmartBone, node degree is used as the

indicator of node density.

Another drawback of SBC is its partition method. SBC partitions nodes into two
groups, and picks up some nodes individually from both groups to form the backbone.
Therefore, the nodes chosen from one group may be too close the nodes chosen from
the other group. The third drawback is also a problem exists in most of backbone
methods. Currently most of backbone methods work inefficiently in sparse topology
due to the lack of critical nodes awareness mechanism. That is, when choosing nodes
as the backbone nodes, the methods do not consider which nodes have critical
property such as cut points of the network. Therefore, more coordinators are needed

to ensure acceptable network performance such as packet delivery ratio.

However, SmartBone adopts an efficient mechanism to choose coordinators. We
observe that choosing articulation points (cut points) as backbone nodes is just a
rudimentary requirement. We grantee that the nodes (containing cut points) which on
the critical communication paths would be selected as backbone nodes. Therefore,
packet deliver is not restricted to only few transmission paths. Choosing necessary
critical nodes for the backbone is useful, particularly in a sparse topology which has

few communication links.

SmartBone provides a general backbone solution, and can efficiently control the
backbone nodes selection. The DDC feature of SmartBone can delete many redundant

nodes in a dense topology without affecting network performance.

It is noteworthy that backbone algorithm generally starts by electing several
backbone seeds in the topology and then completes backbone construction by making
a sweep of the network spreading outwards from the backbone seeds. Backbone seeds
choose appropriate neighbor nodes as coordinators to connect to remote nodes.
Therefore, it is discussible with the selection of backbone seeds. Ideal backbone seeds
should have high priority such as high residual energy or large coverage. SBC

chooses backbone seeds from an area of high node density so that more nodes can be



covered quickly. SmartBone extends the consideration advisedly. Backbone seeds are
chosen based on the 2-hop neighbors’ information. After collecting neighborhood
information, SmartBone performs FlowBP to choose critical nodes. Therefore, these
critical nodes are especially chosen to act as the backbone seeds. Subsequently,
SmartBone starts from these seeds. We would present the significance of the critical

nodes in later section.

The rest of this section is organized as follows. Section II presents a
SmartBone example, and elaborates on the design of the SmartBone protocol,
problems encountered in the design, and the novel way in which these problems were
solved. Next, Section III describes our simulation setup and reports the simulation

results in detail. Conclusions are finally drawn in Section IV.

2.2 SmartBone Design

The proposed algorithm assumes that each device has the same transmission
range. Hence, the connection between any pair of nodes is bidirectional. Each node
needs to be prioritized to select appropriate nodes from entire network to build up the
backbone and to maintain an appropriate backbone size. The priority of nodes can be
calculated in various ways. Bao and Garcia-Luna-Aceves [8] proposed some criteria
for setting the priorities of nodes such as residual energy. In order to extend network
life time, we do not hope only few nodes exhaust their power as coordinators.
Therefore, the energy threshold is set. When the node’s energy is below the threshold,
it can still perform the regular routine, but is not suitable as coordinator to relay

packets.

SmartBone considers two factors, namely the residual energy and the coverage.
The priority is a linear combination of these two factors. The proportion of the two
factors is adjusted by network designer according to network characteristics. The
general recommended criteria are as follows. When residual energy accounts for a
large proportion, it generally balances the power consumption of nodes in the network.
Since every round picks out coordinator, the nodes with the superior residual energy
are chosen as backbone nodes. These nodes consume energy by relaying packets, and
then have lower priority than their neighbor nodes in the next round. When coverage
accounts for a large proportion, it generally reduces the backbone size. Since the
nodes chosen from candidates in each round are those with the largest coverage, it
causes many redundant nodes to be deleted. Then, after picking out nodes with largest

coverage for backbone each round, fewer nodes are available to be selected as



coordinators. SmartBone adopts a linear combination of these two factors. Many other
approaches, including the exponential form, were tried in SmartBone. Finally, the

simplest approach has been found to work best.

SmartBone is partitioned into three phases. The first phase is the Neighborhood
information collection, in which the 2-hop neighbor information of each node is
gathered to support necessary operations for later steps. The second phase is the
Flow-Bottleneck Preprocessing (FlowBP), in which the whole network topology is
checked, and critical nodes are collected based on the flow threshold. These critical
nodes are act as backbone seeds and backbone selection algorithm starts from these
seeds. The third phase is the Backbone selecting procedure, which is further
subdivided into Backbone node selection and Dynamic Density Cutback (DDC).
Backbone node selection selects coordinators according to the priority determined by
linear combination of residual energy and coverage. Finally, the DDC procedure is

performed to remove redundant nodes based on a cutback threshold.

2.2.1 Neighborhood Information Collection

To ensure that the SmartBone can make the appropriate decision, the necessary
2-hop neighbors’ information needs to be obtained. This information includes
neighbors’ priority, and whether neighbors are the backbone nodes. Each node collects
2-hop neighbors’ information by exchange 1-hop neighbors’ information. Several
approaches exist to obtain 1-hop neighbor information. For example, each node
broadcasts hello packet periodically, or neighbors’ information piggyback with the

data packets. SmartBone adopts the former approach.

2.2.2 Flow-Bottleneck Preprocessing

Backbone seeds are chosen based on the 2-hop neighbors’ information. After
collecting neighbor information, SmartBone performs FlowBP to choose critical
nodes. It is noticeable that those critical nodes contain articulation points. Therefore,
these critical nodes are especially chosen to act as the backbone seeds. The
connectivity can be improved in several ways, such as adding nodes [23], deploying
MicroRouters [24], and using movable mobile routers [25]. SmartBone adopts
Flow-Bottleneck to ensure critical nodes to be selected as coordinators. Critical nodes
are nodes which on the critical communication paths in the network, and critical

nodes contain cut points deservedly.

SmartBone exists additional communication overhead in Flow-Bottleneck

5



Preprocessing which other methods (ex: SBC) does not cost. However, FlowBP only
runs once after network deployment in a topology. Hence, the overhead of FlowBP is
negligible regarding the whole communication lifetime. In addition, the dense
topology would become a sparse topology as time goes by, since it always exist nodes
which consume a significant amount of energy in the network. The FlowBP would

have to run again to accommodate to the new topology in such circumstances.

As noted previously, FlowBP allows SmartBone to maintain necessary
connectivity, particularly in a sparse topology. FlowBP can detect the fragile part of
many possible link paths, and make sure those links are includes in the backbone. The

following is the detail procedure.

1) Distributed Depth First Search (DDFS)

The purpose of Distribute Depth First Search (DDFS) is to find the number of
different possible paths to reach each node. DDFS extended the Depth First Search
(DFS) algorithm to find N spanning trees in the network topology, where N is number
of nodes. We emulate a situation that each node of network sends a packet to entire
network through a spanning tree. Each node records its parents for each spanning
trees. Number of different parents for each node gives us how many possible links to
reach this node. The node with small number of different parents indicates that most
of packets reach this node by few bridges. Therefore, it’s important to identify two
end nodes of the bridge as critical nodes. FlowBP has two main steps. The first step is
the Distributed Depth First Search (DDFS) processing, and the second is
Flow-Bottleneck checking. In the first step, the DDFS algorithm is performed on each
node. The following is the data structure used, and the detailed DDFS procedure as

illustrated in Fig. 1.

% The following is pseudo-code for DDFS

% procedure. We emulate the operation of stack

% to perform distributed DFS algorithm. The data
% structure of DDFS is defined as follows:

%

% PRED : the parent node ID
% CHILD : the child node ID
% VISITED - has been visited or not

% NEIGHBOR_LIST : 1-hop neighbor list




% DISCOVER : the order of visit
% NOWT IME : virtual visited order

% In the beginning, the DFS_ROOT performs

% DFS_ROOT_TASK() to launch the DFS_SPANNING()

% procedure. IT a node is DFS _ROOT, it sets PRED
% as i1tself and notifies i1ts 1-hop

% neighbors with "DFS_VISITED" message.

PROCEDURE DFS_ROOT_TASK(Q):

PRED := DFS_ROOT

VISITED =1

DISCOVER =1

NOWT IME = 2

broadcast ( "DFS_VISITED" )

performs DFS_SPANNING() PROCEDURE
ENDPROCEDURE

% PROCEDURE DFS_SPANNINGQ)

% When node-v performs DFS_SPANNING(), it checks
% whether 1t can choose a non-visited node-w

% from NEIGHBOR_LIST. ITf exists such node-w then
% node-v notifies node-w with "DFS_BEGIN*

% message. It is equivalent to the "PUSH"

% operation on the stack% Otherwise, i1t equals
% to the "POP" operation and node-v notifies

% 1ts parent with "DFS_BACK" message.

PROCEDURE DFS_SPANNING(Q):
IF ( select non-visited w from NEIGHBOR _LIST )
{
add w to CHILD
% "PUSH®" operation
send ( "DFS_BEGIN", NOWTIME) to w

}
ELSE

{

% "POP" operation




send ( "DFS_BACK" ) to PRED

}
ENDPROCEDURE

% IT a node receives "DFS_VISITED"™ message from
% node-p, It removes node-p from Its own
% NEIGHBOR_LIST.

PROCEDURE DFS_VISITED():
removes p from NEIGHBOR_LIST
ENDPROCEDURE

% If a node receives "DFS BEGIN® from node-v,
% 1t"s 1ts turn to perform DFS_SPANNING()
% procedure.

PROCEDURE DFS_BEGINQ):

PRED = Vv

VISITED =1

DISCOVER = NOWTIME + 1

broadcast ( "DFS_VISITED" )

performs DFS_SPANNING() PROCEDURE
ENDPROCEDURE

% ITf node-p receives "DFS_BACK®" which send to

% itself from node-v, 1t means that node-v

% Finishes the exploration of spanning tree which rooted from
% itself. Hence, node-p proceeds to DFS_SPANNING

% to explore the remainder network topology.

PROCEDURE DFS_BACK(Q):
performs DFS_SPANNING() PROCEDURE
ENDPROCEDURE

Fig. 1. DDFS procedure

Table I. FLOW TH used during simulation
Average Network Density 20 15 10 8

FLOW_TH 0 2 5 9




The conventional DFS algorithm often utilizes recursion, and it generally
manipulates the stack to simulate recursion. DDFS simulates stack operation by
sending control messages between nodes. For example, a PUSH stack operation
corresponds to selecting a node from the NEIGHBOR LIST and marking it as visited.
At this moment, the visited nodes send DFS BEGIN messages to non-visited nodes,
as shown in ‘IF’ segment of Fig. 1. Conversely, a POP stack operation indicates that
non-visited nodes can no longer be found in the NEIGHBOR LIST, that is, the
NEIGHBOR LIST is null. The node with a null NEIGHBOR LIST sends
DFS BACK message to DFS PRED, as shown in ‘ELSE’ segment of Fig. 1. DDFS
can simulate stack operation entirety, so the DFS algorithm can be applied on each

node in a distributed fashion.
2) FlowBP Checking

The DDFS procedure is finished N times, where N represents the number of
network nodes so that the information needed by FlowBP can be obtained. All nodes
are then checked to determine which critical nodes are. The DFS_PRED of each node
is checked after repeating DDFS N times. DFS PRED records the parent IDs of each
node. If the number of different parents of one node as recorded in DFS PRED is
below a threshold (FLOW _TH), then the node and corresponding parent node are
selected as critical nodes. Since the FlowBP can identify these critical nodes,
particularly in sparse topology, sufficient nodes are in the awaken state can be found
to act as coordinators and relay packets. However, a node with large different parents
under DDFS indicates that it can be reached through many possible paths. Therefore,
if some of the paths are failed or obstructed, then the packets can still reach the same
destination node through other paths. In general, network designers deploy sensor
networks with different average network density according to their deployment
consideration. If a sensor network was deployed with sparse topology, FLOW_ TH
should be higher, thus large number of critical nodes can be found. On the contrary, in
dense topology, FLOW_ TH is decreased. Table I is the multiple levels of FLOW_ TH

used during our simulation.

2.2.3 BackBone Selecting Procedure

In the first phase of SmartBone as we previous presented, neighborhood
information is collected and recorded into the neighbor list. In the second phase of

SmartBone, critical nodes are selected as backbone seeds. The backbone seeds in the



network topology include the sensor gateways and the critical nodes selected via
FlowBP. Subsequently, backbone selection algorithm starts from these seeds in the
third phase of SmartBone. According to the priority of nodes, some high priority
nodes are picked out as backbone nodes, and some nodes are eliminated as redundant
nodes via DDC. The following is the selecting and cutback procedure described in
detail.

In the backbone selecting procedure, backbone seed checks its 1-hop neighbor
list, and the neighbor node with maximum priority is picked out. However,
disregarding the priority, the nodes with degree = 1 would not be the candidates for
the coordinators. The reason is obvious that these kinds of nodes are on the edge of
network and can not provide relaying service to other nodes. The selected nodes are
placed in the backbone set and deleted from the neighbor list. The DDC procedure is
then performed to determine whether two nodes have a redundancy relationship. At
this moment, the nodes too close to the backbone node are deleted from the neighbor
list. The selecting process is repeated until the neighbor list is empty and neighbor

nodes are either chosen to the backbone set or deleted due to the redundancy.

Subsequently, final result of the backbone set is then broadcast to the neighbors.
All 1-hop neighbors receive the message, and check whether they are in the backbone
set. If a node finds itself in the backbone set, then it knows that it has been chosen as a
backbone node, and changes its state to backbone and starts to relay passing packets.
Simultaneously, the selected backbone nodes continue with the selecting procedure to
extend the backbone as backbone seed performs described above. Conversely, if a
node cannot find its ID in the backbone set, then it knows that it has not been chosen
to be a backbone node. Such situation happens due to the node’s priority is not high
enough, or the node itself is too close to other backbone nodes. Noticeably, regular
operations of redundant nodes such as sensing and processing data can be switched on.
However, their radio can be turn off to save the energy consumption. It is always
helpful to lower the interference with proper number of nodes relaying packets.
Usually a node waits for a random time period before forwarding the packet to the
next hop. Too many nodes relaying packets increase the possibility of two nodes

waiting for the same time slot, thus causing the data collision.

Redundant nodes must be deleted. Haitao Liu and Rajiv Gupta in [6] determine
whether nodes are too close to each other by checking whether the proportion of
common neighbors exceeds a threshold. However, this method is not satisfactory.

Decisions must be made based on the network condition. SmartBone adopts a
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procedure called Dynamic Density Cutback (DDC). The rules are tightened for dense
topologies, meaning that more nodes are deleted (i.e., more nodes are considered too
close). On the contrary, the rules are loosen for sparse topologies, meaning that fewer
nodes are deleted for being too close to each other, in order to maintain an acceptable
network performance even under poor network conditions such as a sparse topology.
Therefore, multiple levels of threshold called CUT TH are set, and are utilized in
DDC to determine how many nodes are deleted. A CUT_TH value of » means if the
number of different neighbors of two nodes is less than or equal to », then they are too
close. CUT TH can determine the acceptable level of closeness. For instance,
consider two nodes, named node-k and node-m, and & is a backbone node. The goal is
to determine whether m is too close to k. If CUT _TH is set to 0, which means if all
neighbors of m are subset of neighbors of k& (i.e. the number of different neighbors =
0), then m and £ are said to be too close, and m is therefore deleted. Otherwise, m and
k are not too close, and m may be chosen as the coordinator or deleted by other
coordinators later. If CUT TH is set to 2, then if m’s neighbors include more than two
nodes that are not among the neighbors of node 4, then m and k are not too close and
hence m is chosen as the backbone node; otherwise, m and k are too close and m is
deleted.

Although a sensor network is deployed with an even distribution fashion,
network density still could be different from one local area to another due to the
different geographic areas and different ways of node deployment. Therefore, we
further define a local node density. Node degree is used as the indicator of local node
density. Therefore, local node density can be easily obtained from collected neighbor
information. The levels of CUT TH values are determined according to granularity of
local node density. For example, n levels indicate n—1 local node density boundaries
and n different CUT TH values. A larger n implies that a more detailed local node
density granularity can be distinguished. In practical, we have demonstrated that
choosing three levels works best, so our simulation used three different local node

density intervals corresponding to different CUT TH.

A practical example is given to explain how DDC works. If network designers
deploy sensor networks with higher average network density (e.g. the average
network density = 20). Three levels were applied, and the density boundaries of these
three levels can be set as 15 and 25 respectively, as shown in Table II(a). CUT CH1
was therefore applied to the nodes with local node density less than 15; CUT CH2
was applied to the nodes with local node density between 15 and 25, and CUT CH3

was applied to the nodes with local node density more than 25. Table II shows the
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CUT _TH and local node density boundary used for different average network density

during simulation. Each node maintains table 2 and operates DDC accordingly.

Table II. CUT _TH and boundary of local node density used during simulation
Local Node Density <15 15~25 > 25

CUT TH 0 5 10

(a) Average network density = 20

Local Node Density <8 8~25 > 25

CUT TH 0 4 8

(b) Average network density = 15

Local Node Density <10 10 ~25 > 25

CUT TH 3 5 8

(c) Average network density = 10

Local Node Density <5 5~25 > 25

CUT TH 3 8 8

(d) Average network density = 8

. Selected Coordinator Static backbone node

12



Static backbone node

. Selected Coordinator Static backbone node

(©)
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. Selected Coordinator Static backbone node

(d)

Fig. 2. Example of SmartBone construction

A simple example is given below to illustrate the operation of SmartBone. The
backbone seeds in the network topology include the sensor gateways and the critical
nodes selected via FlowBP. Figure 2(a) shows the initial topology state. SmartBone
would then perform the FlowBP procedure, which finds the critical nodes from the
entire topology. Critical nodes are fragile components of the network structure, so
must be selected as backbone nodes. Figure 2(b) shows that node-d and node-e are
critical nodes. The DFS PRED of node-e is less than the threshold, so node-e and its
correspondent, node-d, are chosen as critical nodes. The coordinators (including the
critical nodes just selected) continue with backbone selecting procedure, and the
neighbors of the coordinators are considered as potential candidates for the new
coordinators. As shown in Fig. 2(b), node-a, node-b and node-c are on the edge of the
network topology, and do not help extend the backbone. Therefore, SmartBone
algorithm would not choose them as coordinators. In Fig. 2(c), assume the priorities
of node-g and node-i are higher than those of other neighbors of the coordinator, so
they are chosen as backbone nodes. The DDC procedure is then performed. Node-f
and node-4 are removed from the DDC procedure because they are too close to the
selected nodes, node-g and node-i. The selection procedure is continued with node-g

choosing node-j until the algorithm is completed. Figure 2(d) displays the final result.
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2.3 Performance Simulation and Analysis

We adopt the ns2 [11] network simulator to evaluate the SmartBone’s
performance. SmartBone was compared with SBC based on three factors: backbone

size, end-to-end packet delivery ratio and energy saving ratio
2.3.1 Performance metrics

Backbone size: Backbone nodes serve nodes in the network. The backbone size
affects power consumption and interference resulting from nodes sending data. These

factors are closely linked to the backbone size.

End-to-end packet delivery ratio: The Packet Delivery Ratio (PDR) indicates
the percentage of packets that can be transmitted correctly from source to destination
via the backbone. The evaluating criteria of packet delivery ratio requirement differs

from network applications, are discussed later.

Energy saving ratio: The Energy Saving Ratio (ESR) was derived from
dividing energy saved by backbone methods to energy consumed by the network
without backbone. The ESR indicates the energy efficiency of the algorithm. Larger
ESR indicates higher energy efficient.

2.3.2 Simulation Environment

The performance of SmartBone was measured with different network scenarios
under different sets of source-destination pairs and node densities. A total of 100
nodes were random and uniformly distributed in varying topology sizes. In each
topology, five transmission pairs were chosen with a simulation time of 300 seconds.
To estimate adequately the performance of backbone construction, source and
destination nodes were selected from around the topology. Information would reach
the destination from source through backbone. In this simulation, the packet
transmission interval was uniformly and randomly distributed between 0 and 0.3

second. Each packet size was 64 kb.

In this simulation, flooding was adopted to transmit packets between nodes.
There are several reasons to choose flooding for our simulation. First, several
applications need to propagate information to all nodes in sensor networks, like

trigger alert notifications and query dissemination. Second, several routing algorithms
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still need flooding as part of routing strategy (ex: directed diffusion). Finally, we can
evaluate how the backbone reduces the collision. This is an intuition and flooding is
the simplest mechanism to achieve it. The following flooding parameters were applied
in the simulation. To avoid collision with packets being relayed at the same time by
surrounding nodes, each receiver backed off for a random time period before relaying
packets again. When receiving packets, flooding module would wait for a time
interval between 0 and the maximum randomization interval, which set to 1 second in
this simulation. The probability of collision depends on the Maximum randomization
interval. A larger interval leads to less collision, but increases the packet delay. Thus
the randomization interval is a trade-off. Furthermore, the Tx/Rx/Idle power was set
to 660/395/35 mW according to ns2 default. The processing model did not consider
the energy cost in CPU.

2.3.3 Simulation Results
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Fig. 3. Average number of coordinators elected by the protocols during the simulation
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Fig. 6. Energy saving ratio tests under different network density

Figure 3 illustrates how the backbone size varies with time when using the
SmartBone and SBC. The topology contains 100 nodes uniform random distributed in
an 800x800 area, and the average network density is 22.5. Significantly, the size
grows and shrinks over time. However, SmartBone has a backbone size of average
50% less than that of SBC, since it adopts the DDC mechanism, enabling it to delete

redundant nodes more efficiently.

Figure 4 illustrates the variation in backbone size for different network density,
and shows that the backbone size of SmartBone is less than SBC for network density
less than 9.35. The backbone size of SmartBone maintain about half that of SBC in a
topology with high network density, since the DDC is very effective. In a sparse
topology (i.e. topology with low network density > 9.35), SmartBone has a much
larger backbone size than SBC, because SmartBone addresses the importance of
critical nodes. For a sparse topology, more critical nodes are chosen as backbone
nodes to maintain necessary connectivity, so that sparse network conditions do not
degrade communication. This difference is demonstrated in the packet delivery ratio

graph below.

Figure 5 illustrates the performance on packet delivery ratio (PDR) in different
node densities. SmartBone is compared with SBC and WSN without a backbone (i.e.
every node can relay). Non-backbone method has the highest PDR at over 90%.

However, this method has the highest energy consumption as expected, since every
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node participates in data transmission. The PDR of SmartBone method is also over
90% for vary network density. Although, the PDR of SBC is over 90% in dense
topology, SBC has a much lower PDR when the network density is sparse. We
observe when network density drops to 8, the PDR of SBC is under 50%. Since SBC
does not have a critical-awareness mechanism, SBC has a low PDR in sparse
networks. On the contrary, SmartBone adopts the FlowBP mechanism, which takes
critical nodes in the network as coordinators. Critical nodes are most important in

term of network performance in sparse networks.

The reduction in energy consumption from SmartBone, and the effectiveness of
SmartBone in extending the network lifetime, was investigated. Figure 6 illustrates
the relationship between network density and Energy Saving Ratio (ESR). Figure 6
shows that SmartBone saves more energy than SBC, because it has a small backbone
size, so more nodes are in sleeping mode. Figure 5 indicates that large number of
sleeping nodes does not affect the network performance of PDR using SmartBone.
More nodes are chosen as critical nodes to maintain performance in sparse networks
using SmartBone. Thus, SmartBone’s energy saving will be less than SBC. In sparse
case, SBC does not select critical nodes; therefore it has a smaller backbone size. A
small backbone could increase radio interference and decrease the available
transmission paths. Therefore, the PDR of SBC drops dramatically. Because of the
PDR of SBC drops, not much transmission is success. Hence, SBC consumes less

energy in the sparse networks.

2.3.4 Sensitivity of thresholds

This subsection discusses the effect of network performance on different
thresholds, including the Flow threshold (FLOW TH) and Cutback threshold
(CUT _TH). The network designer must adjust these thresholds with considering the
network loading, packet loss rate and delay. We provide designers with some design
criteria. A PDR above 90% is considered to be the tolerant range. However, a PDR of
80% is acceptable for some applications, such as transferring temperature data. Such
applications are tolerant of heavy packet loss. In such cases lower PDR is permitted,

thus saving energy and ensuring that PDR is within the tolerable range.

CUT _TH is increased and FLOW TH is decreased in dense networks, since
raising CUT_TH eliminates more redundant nodes, and lowering FLOW_TH means
that fewer critical nodes are selected. These two parameters help save energy by

reducing the backbone size. The opposite adjustment is performed in sparse networks.
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CUT _TH is reduced and FLOW_TH is increased in heavy traffic network where
many backbone nodes are required to relay packets, because lowering CUT TH
means that fewer redundant nodes are eliminated, and raising FLOW_TH means that
more critical nodes are selected. This resembles the trade-off between energy
consumption and packet delivery ratio which give the network designers to optimize

the network according to their design criteria.
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Chapter 3: Minimum-Delay Energy-Efficient Source
to Multisink Routing in Wireless Sensor Networks

3.1 Introduction

Wireless sensor network is a rapidly growing discipline, with new technologies
emerging and new applications under development. In addition to providing light and
temperature measurements, wireless sensor nodes have applications such as security
surveillance, environmental monitoring, and wildlife watching, [20], [28], [34], and
[27]. One potential application model for a sensor network is transmitting packets
efficiently from Single-Source to Multi-Sinks. It’s to gather data from a single sensor
node and deliver it to multiple clients who are interested in the data. This in wireless
sensor network model is called Single-Source to Multi-Sinks (SSMS) [26], and is
illustrated in Fig. 7. The difficulty of handling the model is in how to arrange the
minimum-cost transmission path. The conventional approach is the brute force (BF)
method. As shown in Fig. 8, the source finds individual paths to each sink. This
approach chooses many relaying nodes (nine nodes in this example), but has the
minimum transmission delay. Figure-9 shows a power-optimal solution, which has
only six relay nodes. Although the energy cost of the power-optimal approach is lower
than the BF method in Fig. 8, it has a larger transmission delay. Minimizing
transmission delay is important, when sensor nodes inform urgent message to sinks.
The best policy is to consider both energy and delay simultaneously, as illustrated in
Fig. 10. The solution in Fig. 10 has only six relay nodes and a transmission delay that
is as short as that of using the BF method. Hence, determining when to combine and
divide packet transmission paths is a challenge. Attempts to derive an algorithm to
optimize the energy consumption and the transmission delay simultaneously have so
far proven futile [30]. A trade-off arises between the minimum energy cost and
minimum delay. The approach presented in this section simultaneously addresses

energy-cost and end-to-end delay.

SEAD [26] is a common representative solution to deal with the above SSMS
problems. SEAD maintains a D-TREE (Dissemination Tree) for communication.
SEAD has some drawbacks. The first drawback of SEAD is its large overhead. SEAD
constructs a D-TREE for the instant source which transferring packets to the multiple
sinks, and then constructs another D-TREE if another source is available to transmit
packets to multiple sinks. Many sensors are available to send information to sinks in
sensor networks, making the tree construction overhead excessively large. The second

drawback is the large delay. A D-TREE might lower the energy consumption, but it
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also prolongs the end-to-end transmission delay. Besides, FCMN [29] is another
solution to handle such SSMS problems. FCMN saves energy consumption by
merging multiple shortest paths for multiple sinks. It is necessary to choose the next
hop nodes as the relaying nodes based on a Hop Counter Vector (HCV). Simulation
showed that FCMN outperformed SEAD in term of energy consumption. However
the next hop selection of FCMN is an ad hoc method. On the contrary, the next hop
selection of the proposed method in this section is extended from the well-know Set
Cover algorithm [31]. In order to further improve the routing performance, a Pruning
Vector (PV) is introduced in this paper. The PV removes the redundant transmission
paths, and further lowers the energy consumption. As a self-contained algorithm,
HCR also provides a maintenance mechanism to handle the consequence of faulty
nodes. Aid-TREE (A-TREE) is adopted to facilitate a restricted flooding. Moreover,

Lazy-Grouping is proposed to enhance the robustness of HCR under node failure.

The rest of this section is organized as follows. Section II presents the HCR
algorithm, and describes how to determine the efficient transmission path and conduct
path aggregation. Section III presents the maintenance and error correction scheme of
HCR, and describes the use of A-TREE to correct the inaccurate HCV resulting from
failed nodes. Section IV discusses the robustness of the HCR algorithm. The proposed
Lazy-Grouping algorithm is introduced and combined with HCR to produce a more
robust HCR algorithm called LG-HCR, which is also compared with the original
HCR. Section V presents the simulation results. HCR is also compared with other

approaches in this section. Finally, conclusions are presented in Section VI.

3.2 HCR Algorithm

This section describes three main technologies of HCR, namely HCV, ESC
(Extended Set Cover), and PV (Prune Vector). The proposed method assumes that
each device has the same transmission range, so the connection between any two

nodes is bidirectional.

3.2.1 Hop Count Vector

Each node must obtain the hop count vector only once. The following statement
defines HCV of node X

HCV,(X) = { (X1,X5,...,.X,) | the hop count vector of node-X, which consists of n

components,, and n denotes the total number of sinks. Each component called a hop
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count value, like X;, indicates that the hop distance from sink-k to itself is X; hops

away.}

Hence, if the network topology has only one sink, then the hop count vector has
only one component. Figure-11 illustrates an example of HCV, for sink-1, which
demonstrates that each node holds one value, namely the hop distance from sink 1 to
itself. Each node applies flooding to obtain the hop distance from each sink, and
maintains a record of this value in HCV. A routing path with the topology with HCV,
is very simple to obtain. In Fig. 11, the hop count value of source is 4 when it
transmits packets to sink-1. Therefore, the next hop has a hop count value of 3. Nodes
closest to the sink have the smallest values. The rest of the next hop selection may be
deduced by analogy. Finally, the packet reaches the destination correctly, and path

aggregation will not be performed in this simple case.

Source

Fig. 7. Example of SSMS model
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The number of relay nodes =9

Fig. 8. Transmission path of BF method
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Fig. 9. Transmission path of Power-Optimization method
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Fig. 10. Transmission path of the best solution

Fig. 11. Example of HCV1
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Fig. 12. Example of HCV2

HCR focuses on the case of HCV,, where n > 2. The HCR algorithm must be
adopted when handling complex cases such as that of Fig. 12, which illustrates a case
of HCV(1, 2).

3.2.2 Next Hop Selection

The HCV of a node denotes the hop distance from itself to each sink. Node-X is
assumed to have one neighbor node-Y, and the HCVs of the two nodes are
(X1,X2,X3,...,X4) and (Y1,Y2,Y5,...,Y,) separately. The following is a good property of
HCV and the formula is proven in appendix of this paper.

| Xi-Yi| < 1, for any k in the range [1, n],and if node-X and node-Y are neighbor

nodes.

HCR exploits this property sufficiently to guarantee that HCR always chooses a

group of nodes that are closer to the sinks.

A good-node (GN) is defined as follows:
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GN(X) = { node-Y | for a node-X which HCV(X) = (X},X5,...,,X,), if there exists a
neighborhood node-Y, which HCV(Y) = (Y, Y,,...,Y,), and Y, < X}, for any k where 1 <
k<n.

For a node-X, if node-Y is GN(X), then we can guarantee that we choose node-Y
as the next hop. For example, in Fig. 13, node-N1 is a GN(N), since each component
of (2,3,1,2) is less then (3,4,2,3). Hence, we choose node-N1 as the next hop, and it
could approach one step closer to each sink simultaneously. However, in some case no
GN(N) exists. Hence, additional neighbor nodes may be selected as the next hop.
However, it will increase power consumption. The purpose of following Extended Set
Cover algorithm is to choose the minimum number of nodes as the next hop. This

problem can be converted perfectly into Set Cover problem [31].

HCV
(3] [4][2][3]

HCV HCV HCV

Fig. 13. Example of next hop selection

3.2.3 Extended Set Cover with Load-Balance

The conventional Set Cover algorithm [31] is modified as the Extended Set
Cover (ESC) scheme. ESC can efficiently select the nodes of next hop and achieve
load balance. A new dimension of Set Cover Vector (SCV) is adopted to determine
which neighbor node has the highest priority as the next hop. We define SCV of node

X as followings:

SCV.(X) = { (X1,X5,....X,) | each node holds a set cover vector which consists of
n components, and n denotes the total number of sinks. Each component called a set
cover value, like X}, indicates that total number of node-X's neighbor nodes which

approach one more hop toward to sink-k .}

The set cover vector is constructed by summing up the total number of neighbor
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nodes which can advance one step closer to a sink for all sinks. That information can
be obtained by exchange the HCVs within neighbor nodes. If a set cover value equals
to 1, the corresponding neighbor node which contributes alone to this value has the
highest priority. Because only one node can approach that sink, it must be chosen as
the next hop. If no set cover value is 1, then the well-know Set Cover algorithm [31]
is applied. An example of the operation of ESC follows. Figure-14 illustrates seven
sinks (SK1 to SK7) and five candidates (N1 to N5) for the next hop nodes. The figure
indicates that N1 approaches SK1, SK2, SK3, and SK4. N2 approaches SK1, SK2,
SK4, and SK5. N3, N4 and N5 have the same meaning in the figure. SK1 has a value
of 3, since it is approached by three nodes, N1, N2 and N4. N3 has a highest priority
as the next hop because SK7 has the set vector value of 1, meaning that only N3 can
approach one hop closer to SK7. After choosing N3 as the next hop, the N3’s
corresponding elements in set cover vector are updated to zero, indicating that those
sinks have yet been approached by N3, as shown in Fig. 15. Therefore, the set cover
vector value of each sink is checked again, and the original Set Cover algorithm is
then applied to choose either N2 or N4. In Fig. 15, either N2 or N4 can cover the
residual sinks, and we choose the node with more plentiful residual energy. This
procedure can avoid choosing the same nodes as the next hop frequently. We assume
that N4 is more plentiful residual energy than N2. Finally, in Fig. 16, two nodes (N3
and N4) are selected for the next hop in this selecting procedure. This technique is
more efficient than the original Set Cover, which selects three nodes (N1, N2, and N3)

in the same example.
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Fig. 14. Example of Extended Set Cover
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Fig. 16. Final result of the next hop selecting procedure

3.2.4 Prune Vector

Figure-17 demonstrates that node-B and node-E approach the same sink, SK2,
making them redundant. The same case occurs for node-A and node-F. This case
contradicts the objective of the study, which is to choose the minimum number of

nodes as the next hop. Therefore, a pruning algorithm based on the prune vector (PV)
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is proposed.

Like HCV, the PV comprises n components, where # is the number of sinks. The
component of the vector has two values, 1 and 0, denoting which sinks are pruned. If
the value of component of the PV is 1, indicate that the corresponding sink has been
approached by other branch of the forwarding tree. Therefore, the algorithm does not
have to choose the next hop to approach the corresponding sink. Figure 18 shows an
example of PV, in which node-Z picks two nodes using ESC as the next hop. Node-A
approaches SK1, and node-B approaches SK2. Hence, node-Z sets the pruning bit of
SK2 to 1, and notifies node-A. At the same time, it sets the pruning bit of SK1 to 1
and notifies node-B. Since PV has the property of inheritance, which means that if
one node prunes some sinks, then all its children also prunes the same sinks as
illustrated in Fig. 18. Therefore, if one node has the values of PV all equal to one, the
node can be pruned such as Node-E and Node-F in Fig. 18. Since no matter the node
approaches to which sinks, it all has been covered by other forwarding branches.

HCV with PV can further reduce redundant nodes for relaying.

@

Approach SK 1 Approach SK 2

Fig. 17. The next hop selection without PV
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Fig. 18. Example of PV

3.3 HCR Maintenance Scheme

This section discusses the maintenance scheme of HCR, including the detection
of a failure node, and determining a flooding scope in order to update inaccurate
HCVs due to a node failure. We finds out these nodes within the flooding scope using
an tree structure called Aid-TREE, and performs limited flooding. The following

subsection elucidates these technologies.

3.3.1 Flooding Scope

The relevant terms are formally defined as follows:

Base-HCV(X, k) = { (true, false) | for node-X where HCV(X) = (X1, X, ....Xy), if
Xi = 0, then the value of Base-HCV(X, k) is true. Otherwise, if there exists node-Y and
HCV(Y) = (Y, Y5,...,Y,), Yi < Xi, then the value of Base-HCV(X, k) is true, else the

value is false. }
Accurate-HCV(X) = { (true, false) | for node-X where HCV(X) = (X1, X, ...,Xy), if

the value of Base-HCV(X, k) equals true for any k in the range [1,n], then the value of
Accurate-HCV(X) is true, otherwise the value of Accurate-HCV(X) is false. }
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Each node broadcasts the hello message periodically, informing neighbor nodes
that it is still alive. Each node simultaneously checks whether its Accurate-HCV value
was true. If Accurate-HCV(X) is true, then node-X has an accurate HCV. Otherwise,
node-X has an inaccurate HCV. A failure may lead to some nodes with inaccurate
HCVs, and results in the HCV correcting algorithm being applied. The HCV of each
node is obtained when hop count information is exchange by flooding after deploying
the sensor network. Hence, the flooding is performed again to obtain the correct HCV.
However flooding has a very high overhead, and only a few network nodes need to be
corrected. Therefore, an efficient correction mechanism is proposed to correct the

inaccurate HCVs. We define the flooding scope as follows:

Flooding scope = { {node-X} | node-X has the inaccurate HCV. }

The HCVs of the nodes within the flooding scope must be corrected, while nodes
outside the flooding scope have accurate HCVs. Therefore, the objective is to

determine the flooding scope and perform the limited flooding.

The terminal node (TN) is defined as follows:

TN = { {node-X} | there exists a link between node-X and node-Y, where node-X
is outside the flooding scope and node-Y is inside the flooding scope. }

The goal can be reduced to just finding TNs, from which the limited flooding can
be applied and inaccurate HCVs can be updated. This is because the maximum
flooding scope is bounded by TNs. Aid-TREE (A-TREE) is proposed to identify the

TN, and is explained in the next subsection.

3.3.2 Aid-TREE

We define the beginning node (BN) as follows:

BN(k) = { {node-X} | for a node-X, which satisfies that its kth component of HCV is

inaccurate and it is direct adjacent to the failed node. }
Since the node adjacent to the failed node could find itself as BN, BN is the root of

Aid-TREE. The correcting mechanism will repair each inaccurate component by

broadcasting the information containing the value of its inaccurate component plus
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one, as illustrated in Fig. 19. The nodes then receive the message, and check that its
relative component corresponds to the message, if they are equal, in which case the
value of the components increase one and forwards the value to its neighbors again.
Otherwise, the node sets itself as TN, as illustrated in Fig 20. In the second phase, TN
notifies backwardly the node if it has larger component value than TN, and the node
sets itself as a new TN like the shaded node in Fig. 21. Otherwise, the TN remains as
a TN. The procedure is repeated until all TNs are discovered. Figure-21 displays the
final result of A-TREE, and Fig. 22 shows the flooding scope bounded by the TNs.
The restricted flooding is then performed starting from all TNs, and finally the
topology has the correct HCV information.

&>
Root of | | Beginning | % 3 ¢
A-TREE Node st

Failed
Node

Fig. 19. Operation of finding an A-TREE

L ]
Root of | | Beginning | % 3 ?
A-TREE Node us?

Failed
Node

Fig. 20. The first phase of finding an A-TREE
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Fig. 21. The second phase of finding an A-TREE

Failed
Node

Fig. 22. A final A-TREE

3.4 Robustness Improvement

This section explores the impact of the failed node caused by either battery run
out or malfunctions. Failure nodes may occur at any time, causing sensor nodes to
have the wrong HCVs. Fortunately, it’s not necessary to correct HCVs in most cases

where a failed node occurs.
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HCR has made significant improvement in robustness with A-Tree and limited
flooding. Lazy Grouping (LG) is proposed to cooperate with original HCR (called
LG-HCR) to further improve the robustness. Figure-23 shows an example of the LG
method. To choose appropriate sensors from network to group the nodes, each node
must be prioritized. Many methods are available for setting node priorities [32]. HCR
adopts the simplest method, in which the priority of a node is determined from its
remaining energy. The node with the highest priority initially acts as group leader, and
it notifies its neighborhood within a two-hop range. These neighbors receive the
message, and accurately set the corresponding group leader. Repeating the process, a
group leader is generated from the nodes that haven’t been grouped, and notifies the
related group members, as shown in Fig. 23. The whole network applies the HCV
assignment to each group, therefore, for the nodes within the same group will hold the
same hop count value. Fig. 23 shows the result of conducting the LG method. When
we route data from a source to multiple sinks in the Lazy Groups, we apply the same
HCR algorithm to the virtual topology derived from original network topology as
shown in Fig. 23. Instead of directly forwarding data to the next hop, a node should
forward data to its group leader first. The group leader will be responsible to forward
data to the next group according to the rule of HCR until the destinations have been
reached. For example, in Fig. 23 node-D in group with the HCV labeled as 2 (namely
group-2) would like to transmit packets to Node-C with the HCV labeled as 3
(Group-3), node-D first queries its group leader that how to reach group-3. Then
node-D gets the routing information from its group leader and transmits the packets to
group lead of Group 3, and then to node-C. Therefore, it prolongs the transmission

delay.

Fig. 23. Example of Lazy Grouping
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Fig. 25. Network topology with LG

The reason why LG improves robustness is explained below. Figure-24
illustrates the same topology as in the previous example without LG and with HCV
assignment. Node-A, node-B and node-C have HCVs of 4, 5 and 6, respectively. If
node-A has failed, then node-B and node-C both have inaccurate HCVs. Therefore,
these two nodes should run correcting algorithms and update the inaccurate HCVs.
On the contrary, in Fig. 25, the original node-A, node-B and node-C have HCV values
of 2, 3 and 3, respectively. The left-hand side of Fig. 25 represents the LG topology,
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which can be regarded as the virtual topology as in the right-hand side. The LG
topology has high connectivity among neighbor groups, because each group has lots
of links to its neighbor groups. Therefore, the HCV has slightly effects due to the
failed nodes, as shown in Fig. 25. Nodes in the group with a HCV labeled as 2 may
reach node-E, which the HCV labeled as 3, through node-D, and irrespective of the
failed node-A. Hence, LG can reduced the frequency of HCV update and improve the

robustness of HCR routing in sensor networks.

3.5 Simulation Results and Performance Analysis

The performance of a routing algorithm is usually evaluated according to
connectivity, energy consumption, throughput and robustness [33]. To evaluate the
HCR protocol, three main categories, energy consumption, robustness, and delay were
adopted in this section to compare HCR with BF and FCMN [29] methods. These
routing algorithms were simulated using C++ programs. The task of sensor nodes is to
gather data and deliver it to multiple clients who are interested in the data. In our
assumption, the simulation traffic is not heavy loading. It is reasonable because of the
transmission properties of sensor nodes. Hence, the influence with contention and

collision is negligible.
3.5.1 Performance metrics

Energy consumption: The total number of transmissions was adopted to
evaluate the energy cost. The numbers of transmissions in HCR, BF and FCMN were
compared by varying the network topology. The number of relay nodes equals the

total number of transmission. Many transmissions imply a high energy cost.
Robustness: The network topology had 400 nodes with IDs assigned from 1 to
400. The original HCR was compared with LG-HCR in term of robustness. The

robustness of algorithm was evaluated using the following parameters.

Total number of NTR: Each node-k where k& was looped from 1 to 400 was made

to fail in turn, and the number of times each failed node resulted in inaccurate HCVs
among its neighbors was recorded. If the failed node affected its neighbors’ HCVs and
the topology became 'Need to Repair' (NTR), then the total number of NTR was
increased by one. In the worst case, the number of NTR equals to 399 (the number of
nodes of entire network minus 1), which means that some of the HCVs have to be

updated each time a node fails. A small NTR value indicates a high robustness.
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Total number of CN: Each node-k where k& was looped from 1 to 400 was made

to fail in turn, and the number of corrected nodes (CN) is summation of number of
nodes with inaccurate HCVs that are resulted in a failed node for 400 nodes. A smaller

CN value indicates a better robustness.

The improvement of CN: The value equals to

CN of original HCR —CN of LG - HCR
CN of original HCR

This equation means the improvement of robustness using the Lazy Grouping
method.

Delay: The delays of the original-HCR and LG-HCR were compared. It is
noticeable that the contention and the collision are unconsidered according to our
assumption. The delay is defined as the number of hops the packet transmits from the

source to the destinations. This performance evaluation indicates the extra cost using
LG method.

3.5.2 Simulation Scenarios

The network topology was simulated using different Source and Destination
(S/D) scenarios, namely Corner, Full-Corner, Line, Block and Cycle, as illustrated in
Fig. 26. We use these different S/D types to simulate the real network topology
including two extreme cases. One extreme case is that the sinks are uniformly
distributed around the circle; the other extreme case is that the sinks are distributed in

a confined area. The definition of the S/D types is as follows:
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Fig. 26. Full-Corner 4/8/16 topology

Corner: the source is in area A, and the sinks are in areas D, E and F.

Full-Corner: the source is in area A, and the sinks are in areas C, D, E, F and G.

Full-Corner-k: k sinks are uniformly distributed in the Full —Corner sinks area.

Line: the source is in areas A, B and C, and the sinks are in areas E, F and G.

Block: the source is in area B, and the sinks are in area F.

Cycle: the source is in area I, and the sinks are in areas A, B, C, D, E, F and G.

The simulation of path aggregation shows that sinks should not be uniformly
distributed around the circle, and should be distributed in a confined area. In the worst
case, aggregating the path produces no benefit, and the aggregation method

deteriorates to BF method.

The simulation environment according to the different categories is described

below.
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Energy consumption: Following scenarios were adopted to evaluate the energy
consumption: Block-4; Corner-4; Line-4, 8, and 16; Full-Corner-4, 8, and 16; Cycle-4,
8, 16, and 32. The average node density was varied by depositing different numbers of
nodes in the topology with a size of 3000 % 3000 units. Notably, the topology size was
fixed in this simulation.

Robustness: The robustness was simulated using Full-Corner-4, and the average
node density was varied by changing the topology size from 3400x3400 to 2200x2200.

The number of nodes was 400 fixed in this simulation.

Delay: The delay was evaluated using Full-Corner-4, and the average node
density was varied by depositing different number of nodes in the topology, whose
size was 3000 x 3000 units. The topology size was fixed in this simulation. Because
of the Full-Corner topology, the difference of delay between HCR and LG-HCR could

easily be observed.

3.5.3 Performance Result and Analysis

The performance of HCR was evaluated with different network parameters,
including S/D types and node densities. We run the simulation for one hundred times
with each network parameter set and plot the average value. The simulation result
indicates that HCR is better than other methods in all respects.
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Fig. 27. Full-Corner 4: Node density VS. number of transmission
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Fig. 28. Full-Corner 8: Node density VS. number of transmission
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Fig. 29. Full-Corner 16: Node density VS. number of transmission
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Fig. 30. Block 4: Node density VS. number of transmission
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Fig. 31. Corner 4: Node density VS. number of transmission
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Fig. 32. Line 4: Node density VS. number of transmission
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Fig. 33. Line 8: Node density VS. number of transmission
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Fig. 34. Line 16: Node density VS. number of transmission
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Fig. 35. Cycle 4: Node density VS. number of transmission
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Fig. 36. Cycle 8: Node density VS. number of transmission

NN W W
oS L O W O
S o O o O

150
100

No. of Transmission

50

i
~J

9 11 13 15

Node Density |—#—BF == FCMN —&—HCR

Fig. 37. Cycle 16: Node density VS. number of transmission
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Fig. 38. Cycle 32: Node density VS. number of transmission
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Fig. 39. Energy cost using LG-HCR

Figures-27, Fig. 28 and Fig. 29 presents the variation in the number of
transmissions with node density when HCR, BF and FCMN are adopted separately.
These results show that the energy cost of FCMN grows as the node density increases,
since the choices of possible paths also increases, and the redundant paths are not
adequately pruned. The energy cost of BF grows as the number of sinks increases,
because BF transmits the packet to each sink along many paths, and does not perform
the path aggregation. However, the energy cost of BF decreases as the node density

increases, since the choice of possible paths also increases. The method therefore
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always has a good chance of choosing a better next hop. The figures, which are from
Fig. 30 to Fig. 38, indicate the same argument with variety of network topology.
Further, these figures show that the topology with agglomerate sinks is more benefit
from path aggregation than the topology with circumfluent sinks. In the worst case,
like Fig. 35 shows, the HCR method has similar number of transmission with the
brute force method, and therefore aggregating the path almost produces no benefit.
Figure-39 shows that the energy consumption using LG-HCR is slightly higher than
that using the original HCR due to more relay nodes needed to transfer data within

groups. Overall, the energy cost of HCR is more stable and less than other methods.
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Fig. 40. Robustness of HCR and LG-HCR
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Fig. 41. Flooding scope of HCR and LG-HCR

Node Density

Fig. 42. Improvement in robustness using LG-HCR over HCR

Figure-40 presents that LG-HCR has better robustness in term of number of NTR.
We also observe that the higher node density has fewer number of NTR, in other
words topology with higher node density is more robust. Therefore, the robustness of
a network topology becomes weak robust as time goes by. In this simulation, we
evenly distribute the 400 nodes within topology which sizes vary from 3400x3400 to
2200x2200. In HCR algorithm, about 15% of nodes out of 400 (i.e. 60 nodes) are
NTR. However, in LG-HCR algorithm, only about 7% of nodes out of 400 (i.e. 28
nodes) are NTR. Figure-41 displays the average flooding scope of the two methods
under different node density. Both methods have a similar number of nodes with
HCVs which need to be corrected. Under those NTR cases, in average only about
5% of 400 nodes (i.e. 20 nodes) are needed to be updated with the correct HCVs for
each case Restricted flooding can save more energy compared with full-scale flooding
because the flooding scope is relative tiny. Figure-42 shows that LG-HCR produces a
60% improvement over HCR in the total number of CNs, indicating that LG-HCR is
much more robust than HCR. This result can be easily expounded. For a Node-X, and
its neighbor Node-Y, their HCVs of the two nodes are (X;,X3,Xs,...,X,) and
(Y1,Y2,Y3,...,Y,) respectively. It has a property as [Xi-Yi|<1, for any k in the range [1,
n]. It implies that there are only three kinds of node-X’s neighbors where the
difference of hop count value between node-X and its neighbor are 1, 0, and -1. If
node-Y was failed, it makes ki component of HCV of node-X inacurate only when
Y < Xk and node-Y is the only neighbor of node-X that the kth component of node-Y
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is smaller than node-X. Since nodes in sensor networks usually are deployed with
high density. Consequently, the sensor nodes’ average number of neighbors is much
larger. Even through NTR happens some time, usually the node has few chances to
conform to the above two conditions especially under higher node density. The

flooding scope is very small due to analogous reasons described above.
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Fig. 43. Node density VS. transmission delay

EC

Robustness

Delay

o
=
N
w

O HCR B LG-HCR

Fig. 44. Comprehensive comparison between HCR and LG-HCR

Figure-43 indicates the extra delay cost by LG. This is because LG has to relay
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packets through group leaders. However, the original HCR has the same delay with
BF, because HCR combines the shortest paths from one source to each sinks. Finally,
Figure-44 comprehensively compares HCR and LG-HCR in terms of delay,
robustness and energy consumption, and indicates that LG-HCR is significantly more
robust than HCR, but also has a longer delay and slightly higher energy cost.
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Chapter 4: Conclusions and Self-evaluation

This report proposes two topology control schemes, namely SmartBone and
HCR separately, in wireless sensor networks. The first proposed scheme in the report,
SmartBone, selects proper backbone nodes in wireless sensor networks.
Flow-Bottleneck preprocessing is adopted to obtain critical-aware nodes, and
Dynamic Density Cutback is adopted to reduce the number of redundant nodes
efficiently. A significant result of this section is that the proposed algorithm can
achieve a 50% smaller backbone than previous algorithms, and improves the energy
saving ratio from 25% using traditional methods to 40% using SmartBone. Moreover,
SmartBone improves packet delivery ratio from 40% using traditional methods to

90% when the density of sensor networks become sparse due to the node failure.

The second proposed scheme in the report has modeled and analyzed the
performance of HCR in wireless sensor networks. The objective of the HCR is to
choose the appropriate nodes for the next hop and to perform path aggregation. The
end-to-end transmission delay of HCR is as short as brute-force method, and the
power consumption of HCR is efficient comparing with other methods. The impact of
failed nodes was studied, and Lazy Grouping was proposed to improve the robustness
of HCR. In addition to providing the maintenance algorithm, the proposed algorithm
performs restricted flooding to handle the effects caused by the fault nodes. A major
result of HCR is that only about 15% of nodes out of 400 are NTR. Furthermore, in
LG-HCR algorithm, only about 7% of nodes out of 400 are NTR. The flooding scopes
of the two methods are similar. About 5% of 400 nodes are needed to be updated with
correct HCVs. The performance of restricted flooding is compared with using
full-scale flooding. HCR is a complete solution comprising routing, grouping and
maintenance. HCR performs significantly better than other algorithms, since it

simultaneously considers energy cost and transmission delay.

Our study results have been accepted in four international conferences and four
domestic conferences. The achievement has brought about accomplishment of eight
master theses. By executing this project, we expect to bring the most advanced
research in the world to Taiwan, and potentially will become the performance
benchmark for the energy efficient design for next generation mobile devices such as

wireless sensor nodes.
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Appendix:

[Lemma 1] Node-X is assumed to have one neighbor node-Y, and the HCVs of the two
nodes are (X1, X5, X;3,...X,) and (Y,Y>,Y3,...,Y,) separately. It exists the formula that
\Xi-Yi| < 1, for any k in the range [I to n], and if node-X and node-Y are neighbor

nodes.

[Proof]| Without loss of generality, supposes two nodes, node-A and node-B like Fig.
45 shows, are neighbor nodes. The HCV of node-A is equal to n, and the undecided
HCV of node-B is equal to n+k (k>1) which obtained through path 1. However,
according to the assumption, node-A and node-B are neighbor nodes, it exists a path
which costs 1-hop to achieve another node like path 2. Therefore, the undecided HCV
of node-B is equal to n+1. Since n+1 is less than n+k (k>1), the HCV of node-B is
equal to n+1 based on the definition of HCV. Hence, the difference in HCV between
node-A and node-B is not more than one. Scilicet, the property of |Xi-Yy|<1 is
guaranteed for any k in the range [1 to nj.

n+k (k>1)
Path 2

n

Path 1

Fig. 45. The mathematical proof of lemma 1

[Lemma 2] Assumes that node-X exists in the network topology, according to HCR
algorithm, messages could achieve each sinks from node-X. This property guarantees
HCR works.

[Proof] We would prove that two propositions subsist. The first proposition is that
there exists certainly routing paths to achieve each sinks. The second proposition is
that HCR could find routing paths to achieve each sinks. According to lemma 1, the
first proposition is straightforward. For each sink-k, we could individually find a
neighbor of node-X which is more close to the sink-k. The rest may be deduced by
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analogy. Finally, we could get the destination. The following is the proof of the second

proposition.

Assumes that node-X is in the network topology and the HCV of node-X is
(X1,X2,X5,...,X,). According to lemma 1, we could find n nodes, namely node-N,,
node-N,, ..., and node-N,, which are more close to sinks than node-X. The HCV of Nk
is (Nr.1, N2, Nis, .., Niko - Nin) and Nigx< Xpywhich k is in the range [1 to n]. Based
on Set Cover algorithm, without loss of generality, we have j nodes which are I ;,

Do, L343, ..., Ljxy and satisfies that:

node-N; = node-N; = ...= node-Ny; =1} 11,
node-Ny;+; = node-Nyj+2= ...= node-Ny; = L2,
node-Nyj.1+1 = node-Nyj.;+2= ...= node-Niy = Ij;i=1;,,;

These intermediate nodes, namely 11, 1>k, 133, ..., 11 are more close to sinks than
node-X. Tautologically, for each intermediate node-I, there exists certainly routing
paths to achieve the restricted part of sinks based on the first proposition. Therefore,

we could find routing paths to achieve each sinks from node-X using HCR algorithm.
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