(1/3)

NSC94-2220-E-009-044-
94 08 01 9%5 07 31

)

95 6




L RS SRR T Y L
G E S D EHARS PR ORBREL R EREL S R o B 11(13)
Compact Thermal Modeling and Efficient Thermal Simulation
for Hot Spots Verifications of Modern IC Designs
4% 4% NSC 94—2220—E009—044
HEHEF 94+ 82 1p 2 9%HE TP 31p
FELAFEL I ETAR

- PR

% CMOS @Az H e 3 100 2 4 U TP "EF A 2B R ~FF TP F U 2 42
S A RS PR RGP DIPRP o A H AL LR P (SOCOHEME X
S ESIP)? A& R RAFRF ) REPN A R r’v’ﬂ%‘b BRELARRL R
n(l@Fv AF B 38 & ;N 31 5% (stacked-die package) FAH @B A Bk i (stacked-die)

R ERT > A Rhh P EE AR ORI o Tt d Lﬁ'«]‘% PR AT ¢
KE & 5 (mono—-die) t eh#ici® o 4ot o A L_Ef LA ‘#_F B 3R B /m‘évi*%ﬁép VR o 5 gk
(hotspots)o T e LGRSO T R »cIp Rl & 2% (temperature profile)

e RAER AT BRI B R %i.«éﬂ:&fé’uu& TREL R o FE- B
AN —g_&g g 4 o

Ay - & AP F - i anfg 4 3 45 (generalized integral transforms) it 4 4
KPpditoen gy B - 25 oonF m’%‘bln\%‘ﬂ EopRAr 2 i8I FPHER N
> ARAR B E R ik}%(orthogonal bases) *ﬁ,’s PBriged k{8 &% ¥ £ K P (Galerkin

projection) ¥ 12 #-F & 5L ARk e S - %a(decoupled)m— W s AR o F L B
EPFTF ’ﬁﬁ“'\ﬁj@ S A %ﬁimﬁ P fFiA o 3 F R FAT R B R

PR R MR A 2R 4 S0 B2 (Green function) ez = 2 B TR o

BEee - it e A g BACA] S B A BB E CERG AR A
% (SIP) 5 3t dp fu e

As CMOS technology scaled into the sub-100nm region, the increasing component density,
operation speed, and power dissipation lead to dramatic thermal problems on chip designs.
Furthermore, two of the most advanced chip integration techniques, system-on-chip (SOC) and
system-in-package (SIP), will exacerbate the thermal problems because of the accumulation of
multiple heat dissipation sources in a small area, and the problems become worse in stacked-die
package. In the die stacking geometry, chips are stacked up sharing similar heat dissipation paths
as a single die. Thus, the accumulated heat energy in stacked-die is several times than the single
chip. The local high temperature region in single chip might become hot spot when the dies are
stacked. Therefore, the capability of predicting the temperature profile is critically important for
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circuit timing estimation, leakage reduction, power estimation, hotspot avoidance, and reliability
concerns during modern I1C designs.

In the first year, we develop a generalized integral transforms method to solve the transient
and steady temperature distribution for the thermal placement stage. The proposed method first
constructs a set of system-compatible orthogonal bases to reduce the variables of original
government equation. After those orthogonal bases being constructed, Galerkin projection is
utilized to project the original system equations onto a set of reduced-variables equations. Since
the Galerkin projection procedure only requires to perform the integral operator through the
orthogonal bases and power density of blocks, the computation cost is linearly proportional to the
number of blocks.

Keywords : Generalized Integral Transforms, Thermal Model, Thermal Analysis, Thermal

Coupling, Temperature Profile, Hotspot, System-in-Package (SIP), Stacked-die
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As CMOS technology scaled into the sub-100nm region, the increasing component density,
operation speed, and power dissipation lead to dramatic thermal problems on chip. For example,
chip performance is greatly affected by temperature variation for timing failure - a single inverter
is about 35% slower at 110°C than at 60°C; also, chip reliability should be concerned for IR-drop
and leakage power — a 30°C change in the temperature will affect the leakage by 30% [1] [2].
Furthermore, hotspots and temperature variations account for over 50% of electronic failures [3].
Therefore, the capability to predict the temperature profile is critically important for circuit
timing estimation, leakage reduction, power estimation, and hotspot avoidance. Also, the
temperature-aware design to reduce the performance degradation, such as the thermal placement,
is greatly dependent upon thermal simulation [4]-[8]. Therefore, the full chip thermal simulation
is necessary for modern VVLSI designs.

Several approaches based on numerical or analytical methods have been developed for the
thermal analysis. The numerical framework utilizes the finite difference or finite element methods
to discretize the heat equation and map the continuous partial differential equation into a large
algebra system. With this construction, the heat equation is modeled as a corresponding RC
network and the temperature distribution can be computed by MNA (Modified Nodal Analysis)
method. Based on the above approach, many numerical simulators are proposed to increase the
analyzing efficiency and save the memory usage. The ADI (Alternating Direction Implicit)
method is utilized to decompose the equivalent RC kind network into three alternating directions
and perform explicit methods at each direction in [9]. Then, the iterative methods are performed
for solving the final solution. The IEKS (Improved Extended Krylov Subspace) method is
utilized to project the original system into a small system [10]. Hence, the efficiency of
simulation can be improved. The hierarchical multi-grid iterative method is proposed to speed up
the convergent rate of the basic iterative method [11].
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The major advantage of numerical based methods is the flexibility for dealing with the
non-homogeneous materials, and this advantage makes the numerical based methods to be the
main stream framework at the back-end stage of design flow. However, at the front-end stage,
such as the placement stage, due to the lack of the detail information, the chip structure is
assumed to be homogeneous [4] [12]. However, even if the homogeneous material of chip is
assumed during the thermal placement, the numerical based methods still need to deal with a
system with large size. The expensive matrix computation and storage degrade the efficiency and
the memory usage of thermal placements. In contrast to the numerical framework, the analytical
based framework gains the innate advantage from the homogeneous material assumption. When
the material is homogeneous, the approximated response surface of temperature distribution by
using the analytical based framework can be calculated without dealing with the equivalent RC
network system, and the solution can be explicitly computed. This advantage enhances the
efficiency and memory usage during the thermal placement stage.

The Green’s function based analytical simulator for the steady state analysis of the thermal
placement has been proposed in [13] [14]. With the pre-calculated Green’s function, the response
surface of temperature distribution can be computed by performing the convolution of Green’s
function and power density distribution. Based on the Green’s function formulation, the large
lumped system is avoided, and the efficiency and memory usage are enhanced. However, due to
the innate property of Green’s function based formulation, i.e. Green’s function is the impulse
response respect to the spatial domain, the convolution operator is necessary to find the solution.
This factor drops the advantage of the analytical based solver. Furthermore, as dealing with the
transient responds of the temperature distribution, the closed form of Green’s function may not
easy to be found, and this factor drops the extended potential of Green’s function based
formulation. To avoid the convolution operator and extend the analytical based framework to the
transient simulation, we proposed a generalized integral transforms method which can efficiently
solve the transient and steady temperature distribution at the thermal placement stage.

IERE=ERE

The solution flow of the proposed generalized integral transforms based method can be
summarized as follows.

System-compatible auxiliary problem construction: At this step, a suitable
system-compatible auxiliary problem is utilized to construct the system-compatible orthogonal
bases for reducing the number of variables in the original heat equation. Once the
system-compatible auxiliary problem is found, the system-compatible orthogonal bases can be
pre-calculated.

- Galerkin projection: After the system-compatible orthogonal bases being constructed,
Galerkin projection is utilized to transform the original government equation into a
reduced-variable system. Since the Galerkin projection procedure only requires to perform the
integral operator through the orthogonal bases and the power density functions of blocks. The
computational cost of this step is linearly proportional to the number of blocks.
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« Reduced-variable system computation: Use the numerical based methods to solve the
reduced-variable system, and the solution can be constructed by the orthogonal bases and the
solution of reduced-variable system. The reduced-variable system is a decoupled system and
usually only involves timing variable, and the cost of time step approximation is proportional to
the number of system-compatible orthogonal bases.

The rest of this section is organized as follows. In Subsection A, the thermal model of chip
die with packaging at the thermal placement stage is introduced, and the algorithm flow of
generalized integral transforms method is summarized in Subsection B. Finally, the derivation of
computational formula of the whole chip analysis is presented, and the simulation result is
presented to demonstrate the accuracy and efficiency in Subsection C.

A. Problem Formulation of the Single Active Layer

< Lx
Chip die Modules Modules
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| Heat spreader | —

Heat sink Z=Lz Chip die

Packaging

(@) (b)

Fig. 1. The schematic structure of VLSI chip with packaging. (a) The cross-section view of
chip, heat spreader, and heat sink. (b) The simplified model of the chip.

The structure of VLSI chip and package which consists of modules distributing around the
top surface of chip die, and the heat sink and spreader as cooling devices is shown in Fig. 1.a.
Because the heat at the bottom surface of chip die can be uniformly distributed by the heat
spreader, the packaging can be modeled as an equivalent single package layer with a constant
thermal conductivity [15]. Hence, the schematic structure of VLSI chip with packaging can be
modeled as Fig. 1.b, and the temperature distribution of chip die with homogeneous material [4]
[12] [14] can be governed by the heat diffusion equation as follows.

V(x(T)VT (r.t))+g(r.t)= O'(T)gT(r,t), (1)
where r=(x, y, z), T(r, t) is temperature ("K) distribution inside the chip at time ¢, o(7) is the

product (3/(m*-'k)) of the mass density and the specific heat of chip die, g(r, ¢) is the power

density (w/m*) of each point » at time ¢, and «(7) is the thermal conductivity (w/(m-k)) of
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the chip die. Since the top of chip die is usually covered by a thick and low conductivity oxide
layer, the boundary condition at the top surface is assumed to be adiabatic [13]. Due to the chip
and package structure, the area of vertical surface is much smaller than the area of horizontal
surface, and the conductivity of air is much less than the equivalent package layer. It is reasonable
to assume that the boundary condition of vertical surface is adiabatic [13] [14]. If the boundary
conditions of the vertical surface of chip die are set to be convective types, our generalized
integral transforms method can still work. The initial temperature of chip die is assumed to be the
ambient temperature. These boundary conditions and initial condition can be written as

0
aT(V,f)x:OYLV; :O, (2)
y=0,LJ,,z=O
T(r,0)=T,, ©)

where T, is the ambient temperature and ai() denotes the partial derivative on the normal
n

direction » of the boundary surface, » is the normal vector of the boundary surface of chip die, L,
and L, are the maximum values of the x and y axes of chip die, respectively.

Furthermore, the boundary condition of the bottom surface of chip die can be modeled as a
convective type boundary condition with an equivalent convective coefficient # [13]-[15]. It can
be written as

K%T(l",l‘)

-7,) @

where -L. is the position of the interface between the chip die and packaging with respect to z
axis.



B. The Solution Flow of Generalized Integral Transforms
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Fig. 2. The flow chart of the generalized integral transforms computation procedure

The computational procedure of generalized integral transforms method is illustrated in Fig.
2. Given the government equation, the system-compatible auxiliary problem is required for
generating the appropriate bases. A suitable auxiliary problem needs to contain several features.
Firstly, the auxiliary problem should extract as much information as possible from the original
problem [16]-[18]. Secondly, the orthogonal bases generated by the auxiliary problem are
required to guarantee the convergence in mean property of the approximation of temperature
distribution.  Furthermore, the orthogonal bases can also effectively simplify the
reduced-variables system. Finally, the generated orthogonal bases should be time independent for
the efficiency consideration.

After constructing the set of orthogonal bases, the temperature distribution can be expanded
by the bases with time varying coefficients. Then, the Galerkin projection is utilized to transform
the original four-dimensional (x, y, z, #) problem to one-dimensional (¢) problem. Finally, the time
step approximation, such as backward Euler and trapezoidal methods, can be used to solve the
reduced time variables system. The applications of this technique for IC thermal simulation will
be detail discussed in the following subsections.



C. Thermal Simulation of Single Active Layer Chip

The derivation of the computational formula
With assuming the thermal conductivity to be constant and shifting the reference

temperature to be zero (f(r,t)zT(r,l)—Ta), the government Equations (1)-(4) can be

transformed to a set of similar thermal equations with homogeneous boundary conditions.

T (rt) g (rir) =02 T (), 62
%f(r,t) =0, (5.b)
K%f(r,t) » GO (5.0)
T(r,0)=0, (5.d)

where the notations of Equations (5.a)-(5.d) are the same as the notations in Equations (1)-(4).

Because the thermal property of chip material is not time varying during the transient
analysis with constant x assumption, a time independent auxiliary problem can be selected to
generate the bases only with respect to spatial dimensions. Hence, the constructed orthogonal
bases can be reused during the transient simulation. The construction procedure of auxiliary
problem is stated as follows.

N

Given a set of orthonormal bases{yzl(r),gzﬁ2 (7)o é (r),...}with respect to spatial dimensions,

the Galerkin projection is performed by multiplying the each basis ¢3(r) on both sides of
Equation (5.a) and integrating them over the chip die.
j¢ KVTrtdv+j¢ g(r,t)dv= j¢ )o— T(rt)dv (6)

where dv = dxdydz. To include the boundary condltlons, the following procedure is required to
incorporate the boundary conditions into the transformed problem. By applying Green’s theorem

and divergence theorem to .[VVo(chi(r)Vf(r,t))dv,and .[VVo(Kf(r)V;z;i(r))dv,we obtain

V(b (VT () v = [T (rur)ds | o
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where L(.)ds is the surface integration on the boundary surface of simplified chip model.

By combining Equations (7) and (8), the first term at the left hand side of Equation (6) is
equal to the following form which contains the information of boundary conditions.

j¢( T (r, t)dv—J‘ (r,t)xV? ¢ )dv+.[ ( ) T(r t)- f(r,t)%é(r))ds 9)

Since the completed orthogonal property of bases, the solution of Equation (5.a) can be
expanded by these bases with time varying coefficients as follows [16] [19].

7(r)= 34, (v, (1 (10)

Combining Equations (9) and (10) and then substituting them into Equation (6), the
transformed problem can be reorganized as follows.

130002 Sh e = [ 58,000, (0 | d0)s)a

The representation of 7 (r,t) in Equation (10) doesn’t involve the surface integration since

the term of the surface integration in Equation (11) can be eliminated by chosen appropriate bases
(qgi (r) ’s). By observing Equation (11), if the bases satisfy the following property, Equation (11)

can be further reduced.

V24 (r) + A20g () =0 (12.a)
A 1 ;
fv¢i(r)¢,-(r)dv={0 ’ (12.b)
J
o -
40 - =0 (12.c)
L4 =), (12.4)

According to Equations (12.a) and (12.b), each é(r) must be the eigenfunction of the

Laplacian operator and 4; be the corresponding eigenvalue, and the bases are orthonormal. With
applying Equations (12.a) and (12.b) to Equation (11), the first term at the right hand side of
Equation (11) is equal to

J,x (i J 6, (r)dv=—kAly,(t). (13)



The left hand side of Equation (11) can be decoupled by using Equation (12.b) as follows.

0
(60172 S 0w, = 20 n
Furthermore, the surface integration in Equation (11) can be eliminated from Equations (12.c)
and (12.d). The verification is stated as following.
Multiplying Equation (5.c) by q?l.(r) and Equation (12.d) by 7(r,z), respectively, we can

obtain the following equations.

x4 (r ) T(ro)  =hg(n)T(r0)_ (15.a)
z=—L, ‘
Kf(m)éié,. (| =hd(NF(r0)| (15.b)
n L, a=-L
Subtracting Equation (15.a) from Equation (15.b), we have
wl ()L () ~Fr) g |=0 (16)
a z=—L, 8” l z=—L,
Therefore, the surface integration in Equation (11) can be eliminated.
Finally, the initial condition of Equation (5.a) can be represented as
r0)=2>4,(r)y,(0)=0 (17)
J=

With multiplying Equation (17) by q?l.(r) and integrating it over the chip die, we can get the

initial condition of i/ time varying coefficient. Hence, the original system can be simplified to a
decoupled and reduced-variable system with respect to time varying coefficients.

—kAly, (1) I ¢ (r)g(r.t)dv= 0'8a w, (1), Vi (18.a)
The initial condition of Equation (18.a) can be computed as
w,(0)=0,Vi. (18.b)

Since w(?) is independent of other y;(¢)’s as shown in Equations (18.a) and (18.b), each () can
be solved independently, and this kind of system is called decoupled system. Since this decoupled
system only involves the time varying variables, the numerical method can be utilized to solve it
efficiently. The bases satisfying Equations (12.a)-(12.d) are the solutions of the first class of
Strum-Liouville problem, and the solving procedure can be found in [9]. After constructing the
general form of reduced-variable system, a real case application of thermal simulation is given in
the next subsection.



Real Case Thermal Simulation

Fig. 3. Topology of DEC Alpha 21264 chip [20].

In this section, we use the DEC Alpha 21264 chip [20] as the test case and compare the
simulated temperature distribution with the widely used industrial tool, ANSY'S, for verifying the
accuracy. The topology of DEC Alpha 21264 chip is shown in Fig. 3. Each block indicates a
module accompanied with a given power density. Our proposed thermal solver is used to obtain
the temperature distribution of this chip. Based on the literature [16], we can find bases satisfying
the Equations (12.a)-(12.d) as follows.

- - 1 Mx nry
()= v,z)= Ccos cos| —= |cos , 19
¢1(r) ¢n,m,1(x y Z) N.% ( L j ( L J (7712) (19)
where
1 K kY
ZLL|L+—+L|—n | |sin®(nL);if m=0,n=0
2 7 h h
1 K kY
N, = ZLxLy LZ+Z+LZ(ZUI Sinz(nle) i if m=0,n#00r m#0,n=0, (20)
1 K Y
SLL LZ+—+LZ(—77, sin®(n,L.) ; if m#0,n#0
g * 7 h h
K
= cot(n,L. ). (21)

The m, n, [ are integers, and 7, can be obtained by using the Newton-Raphson method [21]. Each
eigenvalue, 4;, is equal to

2 2
ﬂ“iz = /?'ri,n,l = (?J +(’z_ﬁJ +7712' (22)

x y

We then compute the bases with respect to the average power density integration of each
module in Equations (18.a)-(18.b). Due to the observation that the integration of average power
density of each module is only a function of time, we re-define the basis of average power density
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integration of each module as
j é(r)g(r.t)dv. (23)

By using the assumption that the average power density of each module is uniform but different
[13] [14], we can rewrite the Equation (23) and integrate over each module as follows.

g0l \/— Z I f I (j_(: iG2) cos [ mLmJ cos ( n:y ] cos(n,z) dzdydx,  (24)

where b is the index of each module, |B] is the number of module, x, and x, are the maximum

and minimum value of the »” module in x-axis, respectively, y,, and y, are the maximum

and minimum value of the »” module in y-axis ,respectively, y,, and y, are the maximum

and minimum value of the 5 module in z-axis, respectively, and B, (t) is the average power
ag

of 5" module. The definition of each parameter is shown in Fig. 4.

The active region of 5" modules

Substrate

Fig. 4. The geometrical illustration of 5" module.
After computation, Equation (24) can be rewritten as
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1 BB (1)S(z,2,)

\/ﬁz; ﬂz(zb,_zb,,) om0

1 & LXP,,W (t)Sm (xbR X, )S, (Zb, 'be)

ym#0,n=0
- V& gl -x)(z-z) o5
mni \) = ) :
1 3 Ly])bwg (t)Sn (be 1 Vs, )Sl (Zb[’zbb ) =000
\/ﬁi b=1 771”71'()’1;R W, )(Zb, _be) ’ ,
1 & LxLyB?m,g (Z)Sm (xbR 1 Xy, )Sn (be 'V, )Sz (Zb, 1Zp, ) =0 =0
\/ﬁi b=1 nmnz’ (xbR X, )(be — W, )(Zb, _be) | ’
where
S, (zb[ ' 2, ) = [sin (Uzzb, )—sin (77121),, )], (25.b)
S, (xbR /X, ) =] sin @J—sin[@ﬂ, (25.c)
S, (7,03, )= sin %}—sm(mziﬂ (25.d)

After obtaining the value of Lé(r)g(r,t)dv by using the above computation, the trapezoidal

approximation can be utilized to obtain w,(f) in Equations (18.a)-(18.b). The computation
procedure is presented as follows. Equation (18.a) can be rewritten as

20— A2hk
(LOTANK ey L (ar ph) 26
Vi et 2t 20+/1i2h1((g' &) (26)

where % is the sampling time step, w, and /™" are the time variables of i" basis

~t—h

corresponding to time step zand #-h, g/ and g/ are the i" basis corresponding to the average

power density integration at time step ¢ and #-4. By using Equations (10), (19)-(22) and (26), the
temperature distribution of the chip die can be expressed as

f(r,t);fM (r,t):Z(;/(r)l//j(t), (27)

where M is the desired approximation number of basis.
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Fig. 6. Steady state temperature distribution. (a) The cross curve of temperature distribution at the
top surface of test chip. (b) The contour of temperature distribution at the top surface of test chip.

The thermal simulation for the test chip DEC Alpha 21264 is performed by the proposed
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algorithm. For the transient simulation, we perform 1000 time step analysis by using Equation
(26). The maximum error is about 1% compared with the result of Ansys at each time step, and
the truncated number of bases is 1600. The run time for computing the steady state temperature
distribution is 0.3 second, and the memory usage is less then one mega bytes. The computed
steady state temperature distribution of the test chip is shown in Fig. 6. The computation
efficiency is hundreds of times better than the finite-element based commercial tool Ansys.

In this report, we have developed a general integral transforms based method to analyze the
thermal distribution of the full chip. The result shows that the proposed method is very efficient
and accurate. We will extend this method to deal with the chip structure with multi-substrate
layers (3-dimensonal ICs).

At the end of this report, let’s discuss the issues as we implement Equations (19)-(27) and
how to overcome them. We illustrate the problems first, and then deal with them to speed up the
convergent rate.

If the desired approximation number of bases, M, is 64, the maximum error at each time step
is about 2% compared with the result of Ansys. However, the maximum error is slightly reduced
to 1% even if M reaches 1000.

This observation shows that increasing the number of bases only slightly reduces the error.
To find why it occurs, we analyze the relation of convergent rate between error and the number of
bases. By subtracting Equation (10) from Equation (27), squaring the subtracting result and
integrating over the whole chip, we have

'[V(f(l’, 1) -T, (r, t))zdv = Hf(r t)—fN (rt)”j : (28)

Then, by comparing it with Equation (10), the error can be obtained as follows.

(29)

Il

Substituting Equations (10) and (27) into Equation (29), we get
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Error =

N
—

IA

s e 1 e

I
N

by Cauchy-Swaiz inequality

IN

([ 8 (e)as) @)

From Equation (30), we find that the error is related to the power of the interception of bases. The
reason why the error doesn’t be significantly reduced as we use large number of bases is resulted
from the discontinuous of power density distribution.
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Power density of modules 1
Power density of module 2

The discontinue junction of power density

Fig. 5. Power density distribution of two modules

The power densities of two modules are shown in Fig. 5. Obviously, the power density is
discontinuous at the interface of two modules. Because Equations (25.a)-(25.d) are the
projections of power density of each module on each basis, and each basis is a sinusoidal form,
the so-call Gibb’s phenomenon at discontinuous site can result in significant error. To solve this
problem, we plan to use Bell’s function in the wavelet theory [22]-[24] to smooth the
discontinuity at the interface, and then use the smooth local wavelet bases to span Bell’s function.
After performing this procedure, the projection of Equations (25.a) to (25.d) will be continuous.
Due to the continuous relation, the Gibb’s phenomenon will be eliminated. Therefore, the error
will be reduced and the convergent rate will be improved. This technique is still under
construction. Although with the influence of Gibb’s phenomenon, our original solver, without
using the wavelet theory, still provides good accuracy with comparison to the industrial software,
Ansys, and the computational efficiency is hundreds of times better than Ansys.
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