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The hydraulic head distribution in a wedge-shaped aquifer depends on the wedge angle,
pumping rate, and the topographic and hydrogeological conditions. The solution for the
hydraulic head distribution in a wedge-shaped aquifer may be obtained using the image well
theory. However, the image theory is applicable only when the angle between the bounding
radii expressed as z/n is restricted to that n is an integer. An equation in terms of the radial
distance with trigonometric functions along the boundary may be suitable to describe the water
level configuration for a valley flank with a gentle sloping and rolling topography. The project
developed a general mathematical model including the governing equation and a variety of
boundary conditions for the groundwater flow system within a wedge-shaped aquifer. Based on
the model, a new closed-form solution for transient flow in the wedge-shaped aquifer was derived.
This solution may be used to describe the head distribution for wedges that the method of images
is inapplicable, and to explore the effects of the pumping or the recharge from various
topographic boundaries on the flow system within a wedge-shaped aquifer.
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Introduction

Theis [5] developed a solution for evaluating drawdown during pumping test analysis in a
homogeneous, isotropic and non-leaky aquifer of infinite extent. However, the well-hydraulic
theory can not cope with the aquifers with impervious faults as no-flow boundaries or rivers as
constant-head boundaries. In general, the solution for the hydraulic head distribution in a
wedge-shaped aquifer with various boundaries may be obtained by adding imaginary wells
known as the image wells. However, the image theory is applicable only when the angle
between the bounding radii expressed as z/n where n is an integer [4]. Chan et al. [1]
developed an analytic solution for drawdowns in rectangular aquifers. For the wedge-shaped
aquifer, Chan et al. [2] applied the finite sine transform and Hankel transform to obtain the
transient-state and steady-state drawdown solutions with an infinite wedge, and applied the finite
sine transform and Mellin transform to obtain a steady-state drawdown solution which does not



contain an infinite series term and is much easier to compute. Chan et al. [2] only considered
the case of a zero-drawdown boundary, i.e., assuming the surface topography along the boundary
is flat. Kuo et al. [3] utilized the image-well method to predict the drawdown distribution in
aquifers with irregularly shaped boundaries; however, their solutions may diverge if insufficient
number and improper locations of the image wells are employed.

Consider a non-leaky aquifer whose plan view is a sector of a circle. The groundwater flow
in a wedge-shaped aquifer is analyzed in the polar coordinate system. Physically, a groundwater
flow system with a wedge-shaped aquifer is commonly formed by ancient alluvial fan. The
hydraulic head distribution within the sector naturally depends on the wedge angle and boundary
conditions. The constant-head and no-flow boundary conditions are often used to represent the
real-world hydrogeological boundary conditions. An annual average water level for a stream
may be used as the boundary of time-independent head for a regional groundwater flow system if
the bottom of the stream is connected with the aquifer. For a valley flank with a gentle sloping
and rolling topography, an equation in terms of the trigonometric functions of radial distance
along the boundary may be suitable to describe the water level configuration [6]. The purpose
of this paper is to develop a general mathematical model with a variety of topographic and
hydrogeological boundary conditions to describe the groundwater flow system in a wedge-shaped
aquifer. In addition, the transient-state and steady-state solutions are derived based on the
mathematical model and simplified to concise forms for easy computing. Several case studies
are demonstrated in this paper and those cases may be considered as the applications of the
solutions.

These new solutions are useful and valuable to analyze the groundwater flow in the
wedge-shaped aquifer. These solutions can be used: (1) to describe the groundwater flow in a
wedge-shaped aquifer under a variety of topographic and hydrogeological boundary conditions,
(2) to predict drawdown for any wedge angle of the aquifer that the traditional method of image
is not applicable, (3) to evaluate the sensitivity of the parameters in the mathematical model, and
(4) to identify the hydraulic parameters when coupling with an optimization approach in aquifer
data analysis.

Mathematical Model
Governing Equation and Related Boundary and Initial Conditions

Figure 1 shows a wedge-shaped aquifer with an angle of ¢ and the boundaries of
time-independent heads p(r) and q(r). These equations p(r) and q(r) represent the
upper and lower boundaries with various topographic conditions, respectively. For a pumping
well located at the point (r,,6,) with a pumping rate Q, the differential equation governing the
hydraulic head h atany point (r,d) may be expressed as [2]
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where T is the transmissivity (L%T); S is the storage coefficient; h is the hydraulic head (L); t
is time from the start of the pumping test (T); r is the radial distance from the origin (L); and &

is the angle (radians) from the lower boundary. Figure 2 shows the hydraulic head h(r,#)
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along the boundary of time-independent head (e.g. a stream or a river) consisting of three

components: h,, h, and h, for representing a gentle sloping and rolling configuration where

h, is a constant denoting the depth from the bottom of the aquifer. In addition, h =rtana

where « isthe average slope of the boundary and h, may be approximated by [6]

sin(br /cos &)
cosa

h,=a (2)

where a is the amplitude of the sine curve, b=2z/A is the frequency, and A is the period of

the sine wave. Upon introducing the abbreviationstana =c¢’, a/cosa =a"and b/cosa =b’,
the equations representing the hydraulic head of the lower and upper boundaries illustrated in Fig.
1 may be respectively written as:

h(r,0)=p(r)=h, +cir+asin(br), #=0, 0<r<w (3)
and
h(r,d) =q(r) =h, +c;r+ajsin(byr), 6=¢, 0<r<w 4)

where h,and h, are the depth to the impervious strata for the lower and upper boundaries at

the origin of the wedge-shaped aquifer, respectively. Also, the subscripts 1 and 2 denote the

lower and upper boundaries respectively. In reality, h, is equal to h, for general cases;

p

however, h, and h, may not be the same if there exists a fault at the origin of the

wedge-shaped aquifer. The initial condition, shown in Appendix A, is assumed as the solution
of solving (1) when omitting oh/ot and setting the pumping rate Q to be zero and with the
boundary conditions of (3) and (4).

Analytical Solutions for Transient-state and Steady-state Problems

Since the governing equation, the initial condition and boundary conditions are specified, the
solution of hydraulic head in a wedge-shaped aquifer with an infinite radius can be obtained via
the finite sine transform and Hankel transform for (1) - (4). Detailed derivations for
transient-state and steady-state solutions are given in Appendix A and the results are
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0, [ -eaLT0s, @, % )
0,3, )3, ®)
0 " " u
4, UF) %
Q, = j j J,, (ux)dxdu (9)
) ,un © , " )
j j n(b.x) dxdu (10)
© ,un © , " )
j j in(b,x dxdu (11)
0, - ]" Jo. (ur)T J. (UK)deu (12)
0 u 0 K
and
7 :%’” (13)

where u and x are the dummy variables, and J, (-) is the Bessel function of the first kind

with order g,. The first and second terms (contain Q, and €, respectively) on the
right-hand side (RHS) of (5) represent the drawdown due to pumping, and the other terms
represent the hydraulic head arisen from the slopes, curves, and elevations of the boundaries of
the wedge-shaped aquifer respectively.

Notice that the presence of the Bessel functions of high order and large argument in (5) and (6)
may be difficult to evaluate. Thus (5) and (6) are further simplified. The results for
transient-state and steady-state solutions can be written as
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If r>ry, the solution can be obtained by interchanging r and ro in both (21) and (22). Like the
term in (5), the first and second terms on the right-hand side (RHS) of (14) represent the
drawdown due to pumping, and the other terms represents the hydraulic head arisen from the
slopes, curves and elevations of the boundaries of the wedge-shaped aquifer respectively.
Equations (14) and (15) can be evaluated more easily and quickly than (5) and (6).

Problem with an impervious boundary condition

The problem with an impervious boundary at the lower wedge is shown in Fig. 3. The
solution can be obtained by replacing ¢ with 2¢, setting the topographic parameters at the
lower wedge to be zero, and inserting a second pumping well at the point (r,,2¢ —6,) in (14) and
(15). For the time dependent component in (14), x4 , =(2n+1)xz/2¢ is used to replace
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u,=nxl¢. Thus, the transient-state and steady-state solutions for a wedge-shaped aquifer
with an upper boundary of time-independent head and a lower impervious boundary can be
expressed as
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If r>ry, the solution can be obtained by interchanging r and ry in (27) - (30).

Results and Discussion
Several cases are considered in this paper. Table 1 lists the wedge angle and the
topographical parameters for cases (a) - (c) as the ancient alluvial fans with various boundaries.

Assume that there is a single pumping well located at r, =1000m and &, =30 in these

alluvial fans with a pumping rate 30,000 m*/day for two days. These cases can be regarded as
the applications of the analytical solutions. The configurations of the hydraulic head
distribution for cases (a) - (c) are also shown in Figs. 4(a) — 7(c) respectively. Different angles
of the wedge-shaped aquifer and topographic parameters of the rechargeable boundaries cause
significantly different configurations of the hydraulic head distribution within the wedge-shaped
aquifer.



Figure 5 demonstrates the transient-state drawdown of the wedge-shaped aquifer for a pumping
well located at (1000,30°)with the pumping rate 30,000 m*/day and two observation wells
located at (900,30°) and (1200,45°) respectively with the boundary of time-independent head.
These curves indicate that the drawdown increases with time, and the system tends to reach
steady-state after 100 hours at (900,30°) and after 150 hours at(1200,45°) .

Conclusions

A mathematical model for a wedge-shaped aquifer with various topographic and
hydrogeological boundary conditions is presented. These solutions are derived via the Fourier
finite sine transform and the Hankel transform. These solutions are further simplified to concise
forms for easy computing. This paper extends the boundary conditions of the problem
investigated by Chan et al. [2] to a more general case. In addition, this paper also improves the
results of Chan et al. and simplifies some of their expressions to allow for easier numerical
evaluation. New formulas (37)-(39) relate the steady-state solution derived via the Hankel
transform to the solution derived via the Mellin transform in Chan et al. [2]. The transient-state
solution consists of an infinite series containing an infinite integral of Bessel functions and the
steady-state solution also consists of an infinite integral of trigonometric functions.

These newly derived solutions may have advantages of serving the following purposes: (1)
to describe the groundwater flow in a wedge-shaped aquifer under various topographic and
hydrogeological boundary conditions, (2) to predict drawdown for any wedge angle of the aquifer
that the traditional method of image is not applicable, (3) to evaluate the sensitivity of the
parameters in the mathematical model, and (4) to identify the hydraulic parameters when
coupling with an optimization approach in aquifer data analysis.
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Table 1. The wedge angle and the topographical parameters of the boundary of time-independent
head for various cases

Wedge angle Topographical parameters for lower and upper boundaries

Case ¢ “a l*a, "b,/°h, ‘o, P, h /h,
a 60° 10/10 0.004/0.004 1.14° /1.14° 100/100
b 120° 10 /15 0.004/0.008 1.14° /0.57° 100 /85
c 47 10 /15 0.004/0.008 1.14° /0.57° 100 /85

%a represents the amplitude of the sine curve for the boundary.

°b represents the frequency for the boundary.

“a represents the average slope for the boundary.

%h represents the depth for the boundary at the origin of the wedge-shaped aquifer.
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Fig. 4. Hydraulic head distributions for cases (a) - (c)
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Fig. 5 The transient state drawdown for the wedge-shaped aquifer with rechargeable
boundaries



