
1

行政院國家科學委員會補助專題研究計畫成果報告

計畫類別：a個別型計畫　　□整合型計畫

計畫編號：NSC　89－2213－E－009－067－

執行期間：88年 08月 01日 至 89年 07月 31日

計畫主持人：陳昌居 副教授

共同主持人：

本成果報告包括以下應繳交之附件：
□赴國外出差或研習心得報告一份
□赴大陸地區出差或研習心得報告一份
□出席國際學術會議心得報告及發表之論文各一份
□國際合作研究計畫國外研究報告書一份

執行單位：國立交通大學資訊工程學系

中　華　民　國　89年　10月　30日

2

行政院國家科學委員會專題研究計畫成果報告
超純量架構分支預測單元設計

The Design of Superscalar Branch Prediction Unit
計畫編號：NSC 89-2213-E-009-067

執行期限：88 年 8月 01 日至 89 年 07 月 31 日
主持人：陳昌居 國立交通大學資訊工程學系

中文摘要

由於現今的微處理器擁有較長的管
線，並且具有每個時脈能夠發出多道指令
的能力，所以分支預測的準確率就變的格
外重要。到目前為止有各種不同的分支預
測的機制已經被提出，其中有兩種至今仍
被常常使用。第一種稱為「bimod branch
predictor」，使用 2位元的計數器來計錄
分支預測的結果。由於他只使用簡單的 2
位元計數器，所以對一般偏向於跳或不跳
的分支指令都能準確的預測。第二種是
「2-level branch predictor」，它使用
兩層式的架構記錄追蹤鄰近指令之間的相
關性，如果某分支指令與臨近之間的分支
指令存在著相關性，那麼 2-level branch
predictor 能夠準確的作預測。可當我們使
用不同的預測機制作實驗時，我們發現，
沒有一種預測機制能同時滿足所有的
benchmark。
因為上述的原因，我們提出一種稱為

「vote predictor」的分支預測機制，它
能 夠 達 到 更 準 確 的 預 測 。 在 vote
predictor 中我們使用三種不同的預測機
制來同時作預測，並且使用 vote circuit
來選擇最後的輸出。當一道分支指令抓取
之後，此三個不同的預測機制會同時進行
預測，如果有兩個以上的預測機制產生相
同的輸出，那麼 vote circuit 就會把它當
做最後的輸出。所以 vote circuit 只是做
簡單多數決的動作而已。
關鍵詞：超純量、投票預測器、分支預測

1、Abstract

As modern microprocessors employ

deeper pipelines and issue multiple
instructions per cycle, they are becoming
increasingly dependent on accurate branch
prediction. Up to now, various branch
prediction strategies have been proposed.
There are two branch predictors are widely
used today. The first is bimod predictor,
using 2-bit saturation counters to record the
history outcomes of every branch instruction.
So bimod predictor is good to predict those
branches which are bias taken or non-taken.
The second is two-level adaptive branch
predictor, which using two-level architecture
to trace the correlation of nearby branch
outcomes. So if one branch have correlation
with nearby branches, the two-level branch
predictor can make the correct predictor.
These two branch predictors can gain
benefits on their way individually. However,
we find that there is no one branch predictor
is good for all benchmarks.

With the factor above, we propose a
branch prediction machine, called “vote
predictor”, to make the more accurate
prediction. In the vote predictor, we combine
three different branch predictors to make
prediction and use a vote circuit to select the
final output. Every time when one branch is
encountered, three branch predictors make
prediction concurrently. If two or more
branch predictors make the same output
(taken or non-taken), the vote circuit will
select it as the final output. So the vote
circuit just work like the majority rule.
Keywords: Superscalar, Vote Predictor,

Branch Prediction

2、Introduction

In the search for higher levels of

3

performance, recent machine designs have
made use of increasing degrees of instruction
level parallelism (ILP). For example, both
superscalar and superpipelining techniques
are becoming increasingly popular. In
modern pipelined superscalar processor,
multiple instructions can be fetched and
processed concurrently. Out-of-order
instruction issue is effective only when
instructions can be supplied at a sufficient
rate to keep the execution unit busy. But
when a branch instruction occurs, there are
two possibilities. If the branch is not taken,
the next contiguous instruction will be
fetched. Otherwise, if the branch is taken, the
processor must know where the branch
instruction redirects the instruction stream.

The branch delay of a processor is the
delay from the time that the processor
decodes a branch instruction to the time that
it decodes the first target instruction [3]. The
branch delay is one cycle in a typical RISC
processor. The long branch delay of
superscalar processor is relative to the cycle
in which the branch is decoded, a direct
result of the wider instruction fetch and
decode path.

In order to resolve such problems, many
branch prediction schemes had been
proposed in these years [2,4,5,6,7]. This
paper focuses on predicting branch
directions.

Hardware branch prediction strategies
have been studied extensively. The most well
known technique referred to as bimod branch
prediction uses 2-bit counters to record the
last few history outcomes of every branch
instruction. One method considers the history
of each branch independently and takes
advantage of repetitive patterns. Since the
histories are independent, it is referred to as
local branch prediction. Another technique
uses the combined history of all recent
branches in making a prediction. This
technique is referred to as global branch
prediction. Both local and global branch
prediction strategies have different distinct
advantages. The local branch prediction
works well for branches with simple
repetitive patterns. The global branch
prediction works particularly well when the

direction taken by sequentially executed
branches is highly correlated. In order to get
the more accurate branch prediction, the
combining branch predictor was proposed [7].
This scheme allows the distinct advantages of
branch predictors to be combined and is
shown to provide more accurate predictions
than any one predictor alone.

In this paper, we will present a new
branch predictor called as “vote predictor”.
This machine combines three different well-
known branch predictors and a vote circuit to
make predictions. We use “SimpleScalar
Tool Set” to simulate “vote predictor” [1].
The experimental results shows that the vote
predictor can obtain more accurate direction
prediction than all his component predictors.

3、Vote Predictor Structure
　　

The hardware configuration of the vote
predictor is shown in Figure 1. We combine
three different predictors into our vote
predictor (such as predictor 1, predictor 2 and
predictor 3). These three predictors can be
any well-known predictors, such as gshare,
bimod… etc. The another important machine
in our vote predictor is “vote circuit”. When
each predictor produces their own prediction
result, the vote circuit will be responsible for

arbitrating the final prediction.
The arbitrational rules are as follows:

lPredict “Taken”: if two or more
predictors predict that the branch

Predictor

1

Predictor

2

Predictor

3

Vote Circuit

Prediction

Figure 1. Logical organization of the vote
predictor

4

instruction will jump to target address,
then the vote circuit will output
“Taken” signal.

l Predict “Non-Taken”: if two or more
predictors predict that the branch
instruction will jump to fall-through
address, then the vote circuit will
output “ Non-Taken” signal.

From the above, we can know that the vote
circuit just works like the majority rule.

4、Simulation Result

The out-of-order issue, superscalar
processor simulator in the SimpleScalar tool
set employs a 16-entry register update unit
(RUU) along with 4 integer ALUs and 4
floating point ALUs. It can decode 4
instructions at one time, and can issue and
execute up to 4 instructions simultaneously if
there are no data dependency among these
instructions to be executed.

In our experiment, we will use four
well-known predictors and combine three of
them arbitrarily. These four predictors are
bimod predictor, gshare predictor, PAg
predictor, and the path-based branch
predictor. Here the PAg predictor has some
different from the original PAg predictor
proposed by Y. N. Patt [8]. For the original
PAg predictor, it indexes the pattern history
table only by concatenating the branch
history register (BHR) in the branch history
table (BHT) and few address bits. But in
order to utilize the pattern history table (PHT)
more efficiently, we will XOR the BHR and
branch address together to index the PHT.

Since we use four different predictors, it
will produce four different combinations. We
identify the four different predictors as the
following:
l Vote1 Predictor : it combines a bimod, a

gshare and a path-based predictor into
one predictor.

l Vote2 predictor : it combines a bimod, a
PAg, and a path-based predictor into one
predictor.

l Vote3 predictor : it combines a bimod, a
PAg, and a gshare into one predictor.

l Vote4 predictor : it combines a PAg, a

gshare, and a path-based predictor into
one predictor.
We will compare various vote predictors

under 4k-entry PHT. The results of
comparison between our four vote predictors
are shown in Figure 2. Also, Table 1 lists the
hardware costs of various vote predictor
models.

McFarling proposed the combining
branch predictor. It combines multiple branch
predictors into one, including bimod and
gshare predictors, and then uses a meta-table
to choose which result to be used. In order to
compare our vote1 predictor with combining
predictor fairly, we configure the combining
branch predictor with one bimod, one gshare
which has 8-bit global history register, and
one meta-table, and the same size of PHT as
the vote1 predictor except the size of meta-
table. For the meta-table, we configure it
with extra 2048-entry PHT. The results are
shown in Figure 3. From the results, we can
find that when the PHT entry is less than or
equal to 4k, our vote predictor is not better
than the combining predictor. However,
when the PHT entry is larger than or equal to
8k, our vote predictor outperforms the
combining predictor in all benchmark
programs expect hydro2d. This is because
that the PHT is shared with three predictors
in vote1 predictor, but the PHT is shared with
two predictors in combining predictor. As we
can image that there will be many conflicts in
fewer-entry PHT, this results in reducing
prediction accuracy in our vote predictor
more than in combining predictor.

5、Conclusions

In this paper, we experiment on eight
benchmark programs with several well-
known branch predictors to compare their
prediction accuracy. According to the
experimental results, we can find that
different predictors work well for different
benchmark programs and there is not one
predictor that can work well for all
benchmark programs. This is because of
different predictors have different prediction
characteristics. In order to solve such
problems, we propose the vote predictor to

5

combine different advantages from predictor
and enhance the prediction accuracy. From
our experimental results, the vote predictor
really outperforms all his component
predictors.

In order to evaluate the impacts of
prediction accuracy on different vote
predictor models. We use four well-known
branch predictors and combine three of them
individually. The results show that those
predictors that combine the PAg predictor
have the better performances (vote2, vote3,
and vote4). However, if we consider the
cost/performance trade-off, the vote1
predictor model has the best cost-
effectiveness.

We also compare our vote predictor
with combining branch predictor. When the
PHT entries are less than or equal to 4K, our
vote predictor is not better than combining.
However, when the PHT entries are bigger or
equal to 8K, our vote predictor can
outperform the combining branch predictor.

As the fabrication technique has been
improved, the chip area is increased and
more control component can be inserted in a
chip. When the hardware cost is affordable,
the complex and accurate predictor can be
included in the CPU design. In this paper, we
only use four simple predictors to construct
the vote predictor and the average prediction
accuracy is 95.5%. In the future maybe we
can put other complex and accurate
predictors into the vote predictor to obtain
more prediction accuracy.

6、References

[1] D. Burger and T. M. Austin, “The
SimpleScalar Tool Set Version 2.0,”
Technical Report 1342, Computer
Sciences Department, University of
Wisconsin, Madison, WI, 1997.

[2] J. K. F. Lee and A. Smith, ”Branch
Prediction Strategies and Branch Target
Design,” Computer, vol. 17,no. 1, pp. 6-
22, Jan. 1984.

[3] M. Johnson, Superscalar Microprocessor
Design, Prentive Hall, Englewood Cliffs,
NJ, 1991.

[4] P. -Y Chand, E. Hao, and Y. N. Patt,

“Target Prediction for Indirect Jumps,”
Proceedings of the 24th International
Symposium on Computer Architecture,
Denver, June 1997.

[5] Pierre Michaud, Andre Seznec, Richard
Uhlig, “Trading Conflict and Capacity
Aliasing in Conditional Branch
Predictors,” 24th Intl. Symp. On
Computer Architecture, pp. 292-303,
June 1997.

[6] R. Nair, “Dynamic Path-Based Branch
Correlation,” Proceedings of the 28th
Annual ACM/IEEE International
Symposium on Micorarchitecture, pages
15-23, 1995.

[7] S. McFarling, “Combining Branch
Predictors,” Technical Report TN-36,
Digital Western Research Laboratory,
June 1993.

[8] T. - Y. Yeh and Y. N. Patt, ”A
Comparison of Dynamic Branch
Predictors that use Two Levels of Branch
History,” Proceedings of the 20th Annual
International Symposium on Computer
Architecture, Pages 257-266, 1993.

6

90%

92%

94%

96%

98%

100%

c om pre ss pe rl gc c ijpe g li fpppp su2c o r hydro2d

v o te 1
v o te 2
v o te 3
v o te 4

Figure 2. Comparison of various vote predictors models with 4K-entry PHT

compress
90%
92%
94%
96%
98%
100%

2k 4k 8k 16k

number of entries

vote

comb

per l

90%
92%
94%
96%
98%
100%

2k 4k 8k 16k

number of entries

vote
comb

gcc

88%
90%
92%
94%
96%
98%
100%

2k 4k 8k 16k

number of entries

vote
comb

ijp eg

90%
92%
94%
96%
98%
100%

2k 4k 8k 16k

number of entries

vote
comb

li

90%
92%
94%
96%
98%
100%

2k 4k 8k 16k

number of entries

vote
comb

f pppp

90%
92%
94%
96%
98%
100%

2k 4k 8k 16k

number of entries

vote
comb

su2co r

90%
92%
94%
96%
98%
100%

2k 4k 8k 16k

number of entries

vote
comb

h y d r o 2 d

90%

92%

94%

96%

98%

100%

2k 4k 8k 16k

number of entries

vote
comb

Figure 3. Branch direction hit rate of vote predictor vs. combining branch predictor

7

Table 1. Hardware costs of various vote predictor models

gshare bimod path-base PAg PHT Total

Vote1 8 bits 0 bits 9 bits N/A 4096*2 bits 8209 bits

vote2 N/A 0 bits 9 bits 2048 * 8 bits 4096*2 bits 24585 bits

vote3 8 bits 0 bits N/A 2048 * 8 bits 4096*2 bits 24584 bits

vote4 8 bits N/A 9 bits 2048 * 8 bits 4096*2 bits 24593 bits

	page1
	page2
	page3
	page4
	page5
	page6
	page7

