SOOIOIIGIGIIGIOIOIOIOIOIIIOIOICIOIIIINK
% %
» AR A O <

al 0
NSC 89 2213 E 009 067
88 08 01 8 07 31

O U oo

89 10 30

The Design of Superscalar Branch Prediction Unit
NSC 89-2213-E-009-067

88 8

bimod branch
predictor

2-level branch predictor

2-level branch
predictor

benchmark

vote predictor
vote

predictor
vote circuit
vote circuit
vote circuit
1 Abstract

As modern microprocessors employ
2

01

89 07 31

deeper pipelines and issue multiple
instructions per cycle, they are becoming
increasingly dependent on accurate branch
prediction. Up to now, various branch
prediction strategies have been proposed.
There are two branch predictors are widely
used today. The first is bimod predictor,
using 2-bit saturation counters to record the
history outcomes of every branch instruction.
So bimod predictor is good to predict those
branches which are bias taken or non-taken.
The second is two-level adaptive branch
predictor, which using two-level architecture
to trace the correlation of nearby branch
outcomes. So if one branch have correlation
with nearby branches, the two-level branch
predictor can make the correct predictor.
These two branch predictors can gain
benefits on their way individually. However,
we find that there is no one branch predictor
isgood for al benchmarks.

With the factor above, we propose a
branch prediction machine, caled “vote
predictor”, to make the more accurate
prediction. In the vote predictor, we combine
three different branch predictors to make
prediction and use a vote circuit to select the
final output. Every time when one branch is
encountered, three branch predictors make
prediction concurrently. If two or more
branch predictors make the same output
(taken or non-taken), the vote circuit will
select it as the final output. So the vote
circuit just work like the majority rule.
Keywords: Superscalar, Vote Predictor,

Branch Prediction

2 Introduction

In the search for higher levels of

performance, recent machine designs have
made use of increasing degrees of instruction
level paralelism (ILP). For example, both
superscalar and superpipelining techniques
are becoming increasingly popular. In
modern pipelined superscalar processor,
multiple instructions can be fetched and
processed concurrently. Out-of -order
instruction issue is effective only when
instructions can be supplied at a sufficient
rate to keep the execution unit busy. But
when a branch instruction occurs, there are
two possibilities. If the branch is not taken,
the next contiguous instruction will be
fetched. Otherwise, if the branch is taken, the
processor must know where the branch
instruction redirects the instruction stream.

The branch delay of a processor is the
delay from the time that the processor
decodes a branch instruction to the time that
it decodes the first target instruction [3]. The
branch delay is one cycle in a typical RISC
processor. The long branch delay of
superscalar processor is relative to the cycle
in which the branch is decoded, a direct
result of the wider instruction fetch and
decode path.

In order to resolve such problems, many
branch prediction schemes had been
proposed in these years [2,4,5,6,7]. This
paper focuses on predicting branch
directions.

Hardware branch prediction strategies
have been studied extensively. The most well
known technique referred to as bimod branch
prediction uses 2-bit counters to record the
last few history outcomes of every branch
instruction. One method considers the history
of each branch independently and takes
advantage of repetitive patterns. Since the
histories are independent, it is referred to as
local branch prediction. Another technique
uses the combined history of all recent
branches in making a prediction. This
technique is referred to as global branch
prediction. Both local and globa branch
prediction strategies have different distinct
advantages. The loca branch prediction
works well for branches with simple
repetitive patterns. The globa branch
prediction works particularly well when the

direction taken by sequentially executed
branches is highly correlated. In order to get
the more accurate branch prediction, the
combining branch predictor was proposed [7].
This scheme alows the distinct advantages of
branch predictors to be combined and is
shown to provide more accurate predictions
than any one predictor alone.

In this paper, we will present a new
branch predictor caled as “vote predictor”.
This machine combines three different well-
known branch predictors and a vote circuit to
make predictions. We use “SimpleScalar
Tool Set” to simulate “vote predictor” [1].
The experimental results shows that the vote
predictor can obtain more accurate direction
prediction than all his component predictors.

3 VotePredictor Structure

The hardware configuration of the vote
predictor is shown in Figure 1. We combine
three different predictors into our vote
predictor (such as predictor 1, predictor 2 and
predictor 3). These three predictors can be
any well-known predictors, such as gshare,
bimod... etc. The another important machine
in our vote predictor is “vote circuit”. When
each predictor produces their own prediction
result, the vote circuit will be responsible for

Predictor Predictor Predictor
1 2 3
—l \ 4 li

Vote Circuit
v
Prediction

Figure 1. Logical organization of the vote

predictor

arbitrating the final prediction.
The arbitrational rules are as follows:
I Predict “ Taken”: if two or more
predictors predict that the branch

instruction will jump to target address,
then the vote circuit will output
“Taken” signal.

B Predict “Non-Taken”: if two or more
predictors predict that the branch
instruction will jump to fall-through
address, then the vote circuit will
output “ Non-Taken” signal.

From the above, we can know that the vote
circuit just works like the magjority rule.

4 Simulation Result

The out-of-order issue, superscaar
processor simulator in the SimpleScalar tool
set employs a 16-entry register update unit
(RUU) along with 4 integer ALUs and 4
floating point ALUs. It can decode 4
instructions at one time, and can issue and
execute up to 4 instructions simultaneoudly if
there are no data dependency among these
instructions to be executed.

In our experiment, we will use four
well-known predictors and combine three of
them arbitrarily. These four predictors are
bimod predictor, gshare predictor, PAg
predictor, and the path-based branch
predictor. Here the PAg predictor has some
different from the origina PAg predictor
proposed by Y. N. Patt [8]. For the origina
PAg predictor, it indexes the pattern history
table only by concatenating the branch
history register (BHR) in the branch history
table (BHT) and few address bhits. But in
order to utilize the pattern history table (PHT)
more efficiently, we will XOR the BHR and
branch address together to index the PHT.

Since we use four different predictors, it
will produce four different combinations. We
identify the four different predictors as the
following:

1 Votel Predictor: it combines abimod, a
gshare and a path-based predictor into
one predictor.

I Vote2 predictor: it combines abimod, a
PAg, and a path-based predictor into one
predictor.

I Vote3 predictor: it combines abimod, a
PAg, and agshare into one predictor.

1 Voted predictor: it combines a PAg, a

gshare, and a path-based predictor into

one predictor.

We will compare various vote predictors
under 4k-entry PHT. The results of
comparison between our four vote predictors
are shown in Figure 2. Also, Table 1 lists the
hardware costs of various vote predictor
models.

McFarling proposed the combining
branch predictor. It combines multiple branch
predictors into one, including bimod and
gshare predictors, and then uses a meta-table
to choose which result to be used. In order to
compare our votel predictor with combining
predictor fairly, we configure the combining
branch predictor with one bimod, one gshare
which has 8-bit globa history register, and
one meta-table, and the same size of PHT as
the votel predictor except the size of meta-
table. For the metatable, we configure it
with extra 2048-entry PHT. The results are
shown in Figure 3. From the results, we can
find that when the PHT entry is less than or
equal to 4k, our vote predictor is not better
than the combining predictor. However,
when the PHT entry is larger than or equal to
8k, our vote predictor outperforms the
combining predictor in al benchmark
programs expect hydro2d. This is because
that the PHT is shared with three predictors
in votel predictor, but the PHT is shared with
two predictors in combining predictor. Aswe
can image that there will be many conflictsin
fewer-entry PHT, this results in reducing
prediction accuracy in our vote predictor
more than in combining predictor.

5 Conclusions

In this paper, we experiment on eight
benchmark programs with several well-
known branch predictors to compare their
prediction accuracy. According to the
experimental results, we can find that
different predictors work well for different
benchmark programs and there is not one
predictor that can work well for all
benchmark programs. This is because of
different predictors have different prediction
characteristics. In order to solve such
problems, we propose the vote predictor to

combine different advantages from predictor
and enhance the prediction accuracy. From
our experimental results, the vote predictor
really outperforms al his component
predictors.

In order to evauate the impacts of
prediction accuracy on different vote
predictor models. We use four well-known
branch predictors and combine three of them
individually. The results show that those
predictors that combine the PAg predictor
have the better performances (vote2, vote3,
and voted). However, if we consider the

cost/performance trade-off, the votel
predictor model has the best cost-
effectiveness.

We aso compare our vote predictor
with combining branch predictor. When the
PHT entries are less than or equal to 4K, our
vote predictor is not better than combining.
However, when the PHT entries are bigger or
equa to 8K, our vote predictor can
outperform the combining branch predictor.

As the fabrication technique has been
improved, the chip area is increased and
more control component can be inserted in a
chip. When the hardware cost is affordable,
the complex and accurate predictor can be
included in the CPU design. In this paper, we
only use four simple predictors to construct
the vote predictor and the average prediction
accuracy is 95.5%. In the future maybe we
can put other complex and accurate
predictors into the vote predictor to obtain
more prediction accuracy.

6 References
[1] D.Burger and T. M. Austin, “The
SimpleScalar Tool Set Version 2.0,”
Technical Report 1342, Computer
Sciences Department, University of
Wisconsin, Madison, WI, 1997.

J. K. F. Leeand A. Smith, "Branch
Prediction Strategies and Branch Target
Design,” Computer, vol. 17,no. 1, pp. 6-
22, Jan. 1984.

M. Johnson, Superscalar Microprocessor
Design, Prentive Hall, Englewood Cliffs,
NJ, 1991.

[4] P.-Y Chand, E. Hao, and Y. N. Patt,

[2]

[3]

[3]

[6]

[7]

[8]

“Target Prediction for Indirect Jumps,”
Proceedings of the 24th International
Symposium on Computer Architecture,
Denver, June 1997.

Pierre Michaud, Andre Seznec, Richard
Uhlig, “Trading Conflict and Capacity
Aliasing in Conditional Branch
Predictors,” 24th Intl. Symp. On
Computer Architecture, pp. 292-303,
June 1997.

R. Nair, “Dynamic Path-Based Branch
Correlation,” Proceedings of the 28th
Annual ACM/IEEE International
Symposium on Micorarchitecture, pages
15-23, 1995.

S. McFarling, “Combining Branch
Predictors,” Technical Report TN-36,
Digital Western Research Laboratory,
June 1993.

T.-Y.Yehand Y. N. Patt, "A
Comparison of Dynamic Branch
Predictors that use Two Levels of Branch
History,” Proceedings of the 20th Annual
International Symposium on Computer
Architecture, Pages 257-266, 1993.

100%

Dvotel

98%

] Mvote2
— Clvote3

96%

Cvote4

94%

92%

LT

gce

90%

compress perl

ijpeg

hydro2d

fpppp su2cor

Figure 2. Comparison of various vote predictors models with 4K-entry PHT

gcc ijpeg
100% Bvote 100% Bvote
98% M comb 98% W comb
0% 94%
o TR T
88% 90%
2k 4k 8k 16k 2k 4k 8k 16k
number of entries number of entries
li fpppp
100% Bvote 100% W vote
98% @ comb 98% M comb
96% 96%
94% 94%
92% 92%
90% 90%
2k 4k 8k 16k 2k 4k 8k 16k
number of entries number of entries
su2cor hydro2d
100% Vot
0 O vote vote
lggof M comb 98% @ comb
0
96% 96%
94% 94%
92% 92%
90%
' 2% 4K 8k 16k 90%
2k 4k 8k 16k
number of entries number of entries
perl
100% Dvote 100% Bvote
98% mcomb 98% B aorh)
96% 96%
94% 94%
92% 92%
90% 90%
2k 4k 8k 16k 2k 4k 8k 16k
number of entries number of entries

Figure 3. Branch direction hit rate of vote predictor vs. combining branch predictor

Table 1. Hardware costs of various vote predictor models

gshare |bimod |path-base PAg PHT Tota
Votel 8 bits| 0 hits 9 bits N/A 4096* 2 bits| 8209 bits
vote2 N/A | 0 bits 9 bits| 2048 * 8 hits 4096* 2 bits| 24585 hits|
vote3 8 bits| 0 bits N/A 2048 * 8 hits 4096* 2 bits| 24584 bits|
voted 8 bits| N/A 9 bits. 2048 * 8 hits 4096* 2 bits| 24593 bits|

	page1
	page2
	page3
	page4
	page5
	page6
	page7

