Q)

NSC Project Reports
NSC 89-2213-E-009-062

88 8

d-gap

16%-23%

d-gap

Abstract
The rapid growth of Internet brings wide variety
of applications as well as new system design
challenges on information retrieval systems. In
this project, we investigate paralel Boolean
query processing on compressed inverted file. To
reduce disk access time, document clustering
technigues are applied to exploit the
effectiveness of d-gap compression scheme.
Moreover, posting file partitioning schemes are
proposed for parallel query processing on the
compressed inverted file. Experiment shows that
16%-23% of the disk access time can be reduced
by the proposed compression technique.
Moreover, with the posting file partitioning
scheme, parallel query processing achieves
amost linear speed-up based on the enhanced
sequential query processing technique. This
project shows the way to design a scalable search
engine on Internet.
Keywords: inverted file, parallel processing, d-
gap compression.

2. Introduction

The rapid growth of Internet brings wide
variety of applications as well as new system
design challenges on information retrieval
systems. Information retrieval systems, widely

1

89 7 31

known as search engines, can be found in various
Web applications for searching homepages,
research papers, news articles, and product
information. However, the problem of
information explosion overwhelms the load of
CPU and disk for an information retrieval server.
The response time to serve a user query scales as
the size of the document collection grows.
Reducing the query response time is a key issue
in designing a scalable information retrieval
system. In this project, we investigate inverted
file compression and paralel information
retrieval techniques to reduce query response
time.

3. Inverted File Compression

In an information retrieval system, a user
sends a command which contains some query
terms to the system and waits for the results
indicating documents containing these query
terms. The system searches these query terms in
the inverted file to know which documents
contain them and return these documents
identifications or abstract to the user. Thus, for
each distinct term ¢, an inverted file contains its
corresponding list, called inverted list (or posting
list), of the form

<term fy; Dy, D, D3,..., Dy, >,

where identification D; indicates the document

that contains term ¢ and frequency f; indicates

the total number of documents in which term ¢
appears [1].

One obvious fact is that the size of an
inverted file will enlarge greatly if the collected
documents in the system database increase larger
and larger. As a result, the searching time of the
inverted file will become unacceptable.
Compression is the most compact way to reduce
the size of an inverted filee A common
compression technique is to sort the document
identifications (document IDs) of each inverted
list in increasing order, and then replace each
document ID by the difference between it and its

predecessor to form alist of d-gaps [1, 2, 3]. For
example, the inverted list <term; 7; 15, 43, 90, 8,
51, 130, 61> can be sorted to <term; 7; 8, 15, 43,
51, 61, 90, 130> and transformed into d-gap
representation as <term; 7; 8, 7, 28, 8, 10, 29,
40>. That is, the sequence of the document IDs is
transformed to a sequence of smaller numbers
which can be effectively coded by some prefix-
free codes, for examples, gamma code, delta
code, and Golomb code. The nature of these
codes is their variable-length representations in
which small numbers are considered more likely,
and coded more economically, than large ones

[1].
3.1. Method for inverted file compression

The distribution of the gap values in the
inverted file is fluctuant. A large gap value may
be potentially the same as the origina large
document ID and the saving of the encoding
technigue cannot be achieved easily [1]. Most
studies have focused on the improvement of
encoding technique for dtgap, but they have not
emphasized on the characteristics of document
IDs to reduce the gap values. In fact, when the
gaps appear in the inverted list of a term ¢, it
means that the documents with the origina
document IDs all contain the term ¢, that is, there
are some clustering properties among these
documents. The clustering property does exist
among documents because if they have the same
topics, or belong to a specific domain, their
contents usually share a large amount of identical
terms. As aresult, there is a high probability that
the documents which involve the same clustering
property may appear in the same inverted list. If
we reassign closer IDs to these documents, the
gap values will thus be effectively reduced.

In this project, we propose a document ID
reassigning mechanism by exploiting the
clustering property in documents to reduce the
gap vaues. In this mechanism, we count the
number of common terms between two
documents and define it as the relation of these
two documents. According to the relationship we
defined, al the documents will form a weighted
graph, called relation graph. We adopt some
heuristic algorithms to route the clusters in the
relation graph and get a new routing path. Thus,
we can reassign IDs to the documents according
to this path order. The simulation results show
that we can enhance about 10 to 15 percent for
the compression rates of inverted files on the
traditional d-gap technique.

In addition, we also propose an encoding
technigue to make up the shortcomings of d-gap

technique, caled first-ID-division technique.
This technique divides the first document ID in
an inverted file by a constant and stores the ID as
the quotient and remainder instead of the original
ID. Simulation results show that we can further
improve about 8 percent of compression rate.

3.2. Evaluation of compression efficiency

To alow practical comparison of various
algorithms and techniques, experiments have
been performed on some real-life document
collections. In this project, we choose “PC"

(Paper Collection) and “FBIS’ (Foreign
Broadcast Information Service) as our
experimental collections. The “PC”, which

represents the small-scale collection, is a set of
papers, including seven subgroups, PCl, PC2,
PC3, PC4, PC5, PC6, and PC7, from various
proceedings and journals of computer science
domain. On the contrary, the “FBIS’, which
represents the large-scale collection, is contained
in the fifth disk of TREC, an acronym for Text
REtrieval Conference. This collection has been
distributed to research groups worldwide for
researching and evaluating information retrieval
experiments.

Figure 1 compares the gap distribution of
value 1 to 20 in “PC7" by applying the greedy
algorithm for document ID reassignment. The
number of gap value 1 is increased largely and
the numbers of other gap values are all decreased
after reassigning document 1Ds. Thus, most gaps
after reassigning document IDs become smaller
than the gaps of the original document IDs. It is
because that the greedy algorithm exploits the
clustering property among documents and those
documents which have closer relation can be
assigned closer IDs. If these smaler gaps are
encoded by the same encoding technique, which
encode smaller values in fewer bits, we will get
better compression rate.

Figure 2 shows that the compression rate
can be totally improved about 9 percent by
gamma code and 6 percent by delta code. The
compression rate improvement of FBIS inverted
file is less than that of PC7 inverted file
mentioned above. The main reason is that the
original cluster relation may be broken by the
partition of collection. This problem can be
considered as future research.

B Original doc. IDs

2400000
2200000
2000000
1800000 |
1600000
1400000 H
1200000 f§
1000000 1H
800000 (H
600000 (| p
400000 HI H
200000]

O Reassigned doc. IDs

Number of Gap Value

12345678 91011121314151617181920
Gap Value

Figure 1. Gap distribution of value 1 to 20 in
“ PC?”

O Before reassigning doc. 1Ds

21000,
20750,
20500,
20250—
20000—
Size 19750—
(KB) 19500
19250—
19000—
18750—
18500—
18250—
18000

B After reassigning doc. I1Ds

O The First ID-Division with
divisor 45854

Gamma Delta

Encoding Techniques

Figure 2. Compression rate improvement of
inverted file

4. Posting File Partitioning for Parallel Query
Processing

Besides investigating compression
techniques to reduce disk access time, we also
investigate parallel Boolean query processing on
a network of workstations to reduce the query
response time. Queries are processed on a cluster
of workstations—each has its own CPU, memory,
and disks—interconnected by a local area
network. The key issue to paralelize query
processing is posting file partitioning. In contrast
to previous workg[4][5], we parallelize both CPU
computation and disk accesses. The partitioning
avoids transferring posting lists between
workstations during paralel query processing.
Moreover, the partitioning schemes are designed
to balance the load of workstations without
affecting the effectiveness of (document
clustered) d-gap compression scheme.
Experiment shows that almost linear speedup can
be achieved without affecting the compression
efficiency.

41. Parallelism within Boolean

query

processing

The key ideato parallelize posting list processing
is depicted in Figure 3. We use the notation W5
to denote a workstation with workstation ID k.
Each posting list is partitioned by document IDs
and each workstation stores a portion of the
partitioned posting list. During paralel query
processing, each workstation consults only its
own localy resident data to establish its own
partial answer list.

pogtinglistof tem1: 012 58 Ell 15 16 19 12124 27 28

posinglisoftem2: 2 3 89| 1215161719 |21 2527 28 29

answers of
term 1 <AND> term 2: 2 8 15 16 1921 27 28

ng nsg us
Figure 3. Posting file partitioning method

In general, a posting file partitioning scheme
is specified by a mapping A that maps each
document ID dto aworkstation WS We use
the notation A(d)=k to denote that document
ID dis mapped to WS If document ID dis
mapped to WS, then al postings of
document d appears and only appears in the
local posting file of WS

4.2. Posting File Partitioning Schemes

We now apply the partitioning by document 1D
principle to produce the partitioned posting file.
We assume that the input posting file is d-gap
compressed and documents are clustered to
reduce gap between document IDs in a posting
list, as stated in previous sections. We propose
two partitioning schemes and compare the
performance of the two schemes.

4.2.1. Consecutive partitioning scheme

A straightforward approach is to let each
local posting list be a segment of the input
posting list, as shown in Figure 3. Each
workstation covers a set of consecutive
document IDs. Let D be the number of
documents in the entire document collection and
M be the number of workstations. The mapping
Aconsee 1S 10 map each document ID d to a
workstation by:

4/ I~ /A

In each workstation, a document can be
represented by a local document ID and d-gap
compression scheme is applied on the local
document IDs presenting the local posting lists.
We let the local document IDs in a workstation
starts from zero. The rule L/D s d) t0 assign
local document 1D for each document d is:

LIDgonsec(d) = d- Ad)* gD/ My,

A drawback of the consecutive scheme is
that it fails to achieve load balancing among
workstations with the document clustering
assumption. We thus propose the second
scheme — the interleaving scheme.

4.2.2. I nterleaving partitioning scheme

Figure 4 depicts how a posting list is
partitioned by the interleaving scheme. As shown
in Figure 4(a), each workstation is mapped with a
set of interleaved document IDs. Let M be the
number of workstations. The rule Ay (d) is to
map each document ID d'to aworkstation by:

A) = dmod M

The workstation ID that d is mapped to is
the remainder of dM. With the interleaving
scheme, postings in a posting list will be
distributed to multiple workstations even when
the document IDs arein a small range.

However, mapping rule As(d) increases
the gap between document IDs in alocal posting
list. The gap between document IDs in a local
posting list is at least M. The effectiveness of d-
gap compression scheme on the local posting file
will be reduced if documents are represented by
the origina document IDs. This increases disk
space and access time to store and retrieve a
local posting list. We notice that , to represent a
document in a workstation, only the quotient of
dM is required. We thus take the quotient as the
local document ID L/D;,;(d) in aworkstation.

LIDjpend)=ed/ M

document IDs: 0 1 2 3 4 5

\ 7/8
WS ws WS

(a) Mapping document IDs to workstations

posting list: 1, 2, 4, 6, 7, 10, 11, 12, 14, 15

represented using

original document I1D: 6, 12, 15§ 1,4,7,10 2,11, 14

represented using

local document 1D: 0,123

ws

| 0,34
ws

2,4,5 |
ws

(b) Partitioning a posting list
Figure 4. Interleaving partitioning scheme

4.3. Performance evaluation

We implement an experimental information
retrieval system to evaluate the effectiveness of
the proposed partitioning schemes. We follow [3]
to generate queries to evaluate the performance.

Figure 5 depicts the performance of parallel
query processing using the proposed partitioning

schemes. The metric is the speed up to sequential
guery processing:
Speed-up = T’.f.”%equential
Timgyarallel

We evaluate the speedup when the number of
workstations M=2,4,6,8, and 10 are employed.
Figure 5 shows that almost linear speedup can be
achieved. As expected, interleaving scheme
outperforms the consecutive scheme.

10.00
consecutive —&—
interleaving —H—

0§

Speed-up

2 4 & a8 10
Number of workstations

Figure 5. Speed-up of parallel query processing

Reference:

11 G. Salton and M. J. McGill, Introdiction to
Modern Information Retrieval, McGraw
Hill, 1983.

[21 J Zobe and A. Moffat, “Adding
Compression to A Full-text Retrieva

System,” Software Practice and Experience,
Vol. 25, pp. 891-903, August 1995.

A. Moffat and J. Zobel, “Self-indexing
inverted files for fast text retrieval,” ACM
Trac. Information Systems, Vol. 14, No. 4,
pp. 249-279, Oct. 1996.

B. S. Jeong and E. Omiecinski, “Inverted
file partitioning schemes in multiple disk
systems,” |EEE Transactions on Parallel and
Distributed Systems, Vol. 6, No. 2, pp. 142-
153, 1995.

B. A. Riberio-Neto, J. P. Kitgima, G.
Navarro, “Parallel generation of inverted
files for distributed text collections,”
Proceedings of the 18th Internationa
Conference on the Chilean Society of
Computer Science, pp. 149-157, 1998

3]

[4]

[5]

o 0 o o

a]
NSC 89-2213-E-009-062
88 08 01 89

07

89

31

10

31

Q)

	page1
	page2
	page3
	page4
	page5

