
1

行政院國家科學委員會專題研究計畫成果報告
嵌入式資訊網系統之高階計算伺服器設計(I)

NSC Project Repor ts
計畫編號：NSC 89-2213-E-009-062

執行期限：88年 8月 1日至 89年 7月 31日
主持人：鍾崇斌 交通大學資訊工程學系

一、中文摘要
網際網路的快速成長，為資訊擷取系統帶

來了新的應用與新的挑戰。在本計畫中，我們
探討如何利用壓縮轉置檔進行平行資訊檢
索。為了縮短磁碟讀取時間，我們利用文件分
群技術以發揮 d-gap 壓縮方法之效益。此外，
我們更進一步提出轉置檔切割方法，以利用壓
縮轉置檔進行平行資訊擷取。實驗結果顯示，
所提之文件分群方法能降低 16%-23%的磁碟
擷取時間。而轉置檔切割方法，更使得平行資
訊擷取能在此基礎上，再獲得幾乎線性的效益
成長。本研究的結果，揭示了設計大規模網際
網路搜尋引擎的方法。
關鍵詞： 反置檔案，平行處理，d-gap壓縮法。

Abstract
The rapid growth of Internet brings wide variety
of applications as well as new system design
challenges on information retrieval systems. In
this project, we investigate parallel Boolean
query processing on compressed inverted file. To
reduce disk access time, document clustering
techniques are applied to exploit the
effectiveness of d-gap compression scheme.
Moreover, posting file partitioning schemes are
proposed for parallel query processing on the
compressed inverted file. Experiment shows that
16%-23% of the disk access time can be reduced
by the proposed compression technique.
Moreover, with the posting file partitioning
scheme, parallel query processing achieves
almost linear speed-up based on the enhanced
sequential query processing technique. This
project shows the way to design a scalable search
engine on Internet.
Keywords: inverted file, parallel processing, d-

gap compression.

2. Introduction

The rapid growth of Internet brings wide
variety of applications as well as new system
design challenges on information retrieval
systems. Information retrieval systems, widely

known as search engines, can be found in various
Web applications for searching homepages,
research papers, news articles, and product
information. However, the problem of
information explosion overwhelms the load of
CPU and disk for an information retrieval server.
The response time to serve a user query scales as
the size of the document collection grows.
Reducing the query response time is a key issue
in designing a scalable information retrieval
system. In this project, we investigate inverted
file compression and parallel information
retrieval techniques to reduce query response
time.

3. Inver ted File Compression

In an information retrieval system, a user
sends a command which contains some query
terms to the system and waits for the results
indicating documents containing these query
terms. The system searches these query terms in
the inverted file to know which documents
contain them and return these documents’
identifications or abstract to the user. Thus, for
each distinct term t, an inverted file contains its
corresponding list, called inverted list (or posting
list), of the form

>< tft DDDDfterm ,...,,,;; 321 ,

where identification iD indicates the document

that contains term t and frequency tf indicates
the total number of documents in which term t
appears [1].

One obvious fact is that the size of an
inverted file will enlarge greatly if the collected
documents in the system database increase larger
and larger. As a result, the searching time of the
inverted file will become unacceptable.
Compression is the most compact way to reduce
the size of an inverted file. A common
compression technique is to sort the document
identifications (document IDs) of each inverted
list in increasing order, and then replace each
document ID by the difference between it and its

2

predecessor to form a list of d-gaps [1, 2, 3]. For
example, the inverted list <term; 7; 15, 43, 90, 8,
51, 130, 61> can be sorted to <term; 7; 8, 15, 43,
51, 61, 90, 130> and transformed into d-gap
representation as <term; 7; 8, 7, 28, 8, 10, 29,
40>. That is, the sequence of the document IDs is
transformed to a sequence of smaller numbers
which can be effectively coded by some prefix-
free codes, for examples, gamma code, delta
code, and Golomb code. The nature of these
codes is their variable-length representations in
which small numbers are considered more likely,
and coded more economically, than large ones
[1].

3.1. Method for inver ted file compression

The distribution of the gap values in the
inverted file is fluctuant. A large gap value may
be potentially the same as the original large
document ID and the saving of the encoding
technique cannot be achieved easily [1]. Most
studies have focused on the improvement of
encoding technique for d-gap, but they have not
emphasized on the characteristics of document
IDs to reduce the gap values. In fact, when the
gaps appear in the inverted list of a term t, it
means that the documents with the original
document IDs all contain the term t; that is, there
are some clustering properties among these
documents. The clustering property does exist
among documents because if they have the same
topics, or belong to a specific domain, their
contents usually share a large amount of identical
terms. As a result, there is a high probability that
the documents which involve the same clustering
property may appear in the same inverted list. If
we reassign closer IDs to these documents, the
gap values will thus be effectively reduced.

In this project, we propose a document ID
reassigning mechanism by exploiting the
clustering property in documents to reduce the
gap values. In this mechanism, we count the
number of common terms between two
documents and define it as the relation of these
two documents. According to the relationship we
defined, all the documents will form a weighted
graph, called relation graph. We adopt some
heuristic algorithms to route the clusters in the
relation graph and get a new routing path. Thus,
we can reassign IDs to the documents according
to this path order. The simulation results show
that we can enhance about 10 to 15 percent for
the compression rates of inverted files on the
traditional d-gap technique.

In addition, we also propose an encoding
technique to make up the shortcomings of d-gap

technique, called first-ID-division technique.
This technique divides the first document ID in
an inverted file by a constant and stores the ID as
the quotient and remainder instead of the original
ID. Simulation results show that we can further
improve about 8 percent of compression rate.

3.2. Evaluation of compression efficiency

To allow practical comparison of various
algorithms and techniques, experiments have
been performed on some real-life document
collections. In this project, we choose “PC”
(Paper Collection) and “FBIS” (Foreign
Broadcast Information Service) as our
experimental collections. The “PC”, which
represents the small-scale collection, is a set of
papers, including seven subgroups, PC1, PC2,
PC3, PC4, PC5, PC6, and PC7, from various
proceedings and journals of computer science
domain. On the contrary, the “FBIS”, which
represents the large-scale collection, is contained
in the fifth disk of TREC, an acronym for Text
REtrieval Conference. This collection has been
distributed to research groups worldwide for
researching and evaluating information retrieval
experiments.

Figure 1 compares the gap distribution of
value 1 to 20 in “PC7” by applying the greedy
algorithm for document ID reassignment. The
number of gap value 1 is increased largely and
the numbers of other gap values are all decreased
after reassigning document IDs. Thus, most gaps
after reassigning document IDs become smaller
than the gaps of the original document IDs. It is
because that the greedy algorithm exploits the
clustering property among documents and those
documents which have closer relation can be
assigned closer IDs. If these smaller gaps are
encoded by the same encoding technique, which
encode smaller values in fewer bits, we will get
better compression rate.

Figure 2 shows that the compression rate
can be totally improved about 9 percent by
gamma code and 6 percent by delta code. The
compression rate improvement of FBIS inverted
file is less than that of PC7 inverted file
mentioned above. The main reason is that the
original cluster relation may be broken by the
partition of collection. This problem can be
considered as future research.

3

0
200000
400000
600000
800000
1000000
1200000
1400000
1600000
1800000
2000000
2200000
2400000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Gap Value

N
um
be
r o
f G
ap
 V
al
ue

Original doc. IDs

Reassigned doc. IDs

Figure 1. Gap distribution of value 1 to 20 in
“PC7”

18000

18250

18500

18750

19000

19250

19500

19750

20000

20250

20500

20750

21000

Size
(KB)

Gamma Delta

Encoding Techniques

Before reassigning doc. IDs

After reassigning doc. IDs

The First ID-Division with
divisor 45854

Figure 2. Compression rate improvement of
inverted file

4. Posting File Par titioning for Parallel Query
Processing

Besides investigating compression
techniques to reduce disk access time, we also
investigate parallel Boolean query processing on
a network of workstations to reduce the query
response time. Queries are processed on a cluster
of workstations— each has its own CPU, memory,
and disks— interconnected by a local area
network. The key issue to parallelize query
processing is posting file partitioning. In contrast
to previous works[4][5], we parallelize both CPU
computation and disk accesses. The partitioning
avoids transferring posting lists between
workstations during parallel query processing.
Moreover, the partitioning schemes are designed
to balance the load of workstations without
affecting the effectiveness of (document
clustered) d-gap compression scheme.
Experiment shows that almost linear speedup can
be achieved without affecting the compression
efficiency.

4.1. Parallelism within Boolean query

processing

The key idea to parallelize posting list processing
is depicted in Figure 3. We use the notation WSk

to denote a workstation with workstation ID k.
Each posting list is partitioned by document IDs
and each workstation stores a portion of the
partitioned posting list. During parallel query
processing, each workstation consults only its
own locally resident data to establish its own
partial answer list.

posting list of term 1: 0 1 2 5 8 11 15 16 19 21 24 27 28

posting list of term 2: 2 3 8 9 12 15 16 17 19 21 25 27 28 29

answers of
term 1 <AND> term 2: 2 8 15 16 19 21 27 28

WS0 WS1 WS2

posting list of term 1: 0 1 2 5 8 11 15 16 19 21 24 27 28

posting list of term 2: 2 3 8 9 12 15 16 17 19 21 25 27 28 29

answers of
term 1 <AND> term 2: 2 8 15 16 19 21 27 28

WS0 WS1 WS2

Figure 3. Posting file partitioning method

In general, a posting file partitioning scheme
is specified by a mapping A that maps each
document ID d to a workstation WSk. We use
the notation A(d)=k to denote that document
ID d is mapped to WSk. If document ID d is
mapped to WSk, then all postings of
document d appears and only appears in the
local posting file of WSk.

4.2. Posting File Par titioning Schemes

We now apply the partitioning by document ID
principle to produce the partitioned posting file.
We assume that the input posting file is d-gap
compressed and documents are clustered to
reduce gap between document IDs in a posting
list, as stated in previous sections. We propose
two partitioning schemes and compare the
performance of the two schemes.

4.2.1. Consecutive par titioning scheme

A straightforward approach is to let each
local posting list be a segment of the input
posting list, as shown in Figure 3. Each
workstation covers a set of consecutive
document IDs. Let D be the number of
documents in the entire document collection and
M be the number of workstations. The mapping
Aconsec is to map each document ID d to a
workstation by:

  M/D/dA seccon =In each workstation, a document can be
represented by a local document ID and d-gap
compression scheme is applied on the local
document IDs presenting the local posting lists.
We let the local document IDs in a workstation
starts from zero. The rule LIDconsec(d) to assign
local document ID for each document d is:

4

() ()  M/D*dAddLID seccon −=
A drawback of the consecutive scheme is

that it fails to achieve load balancing among
workstations with the document clustering
assumption. We thus propose the second
scheme – the interleaving scheme.

4.2.2. Inter leaving par titioning scheme

Figure 4 depicts how a posting list is
partitioned by the interleaving scheme. As shown
in Figure 4(a), each workstation is mapped with a
set of interleaved document IDs. Let M be the
number of workstations. The rule Aintlv(d) is to
map each document ID d to a workstation by:

Aintlv(d) = d mod M
The workstation ID that d is mapped to is

the remainder of d/M. With the interleaving
scheme, postings in a posting list will be
distributed to multiple workstations even when
the document IDs are in a small range.

However, mapping rule Aintlv(d) increases
the gap between document IDs in a local posting
list. The gap between document IDs in a local
posting list is at least M. The effectiveness of d-
gap compression scheme on the local posting file
will be reduced if documents are represented by
the original document IDs. This increases disk
space and access time to store and retrieve a
local posting list. We notice that , to represent a
document in a workstation, only the quotient of
d/M is required. We thus take the quotient as the
local document ID LIDintlv(d) in a workstation.

()  M/ddLID lvint =

document IDs: 0 1 2 3 4 5 6 7 8 …

WS0 WS1 WS2

(a) Mapping document IDs to workstations

document IDs: 0 1 2 3 4 5 6 7 8 …

WS0 WS1 WS2

(a) Mapping document IDs to workstations

posting list: 1, 2, 4, 6, 7, 10, 11, 12, 14, 15

represented using
original document ID: 6, 12, 15 1, 4, 7, 10 2, 11, 14

2, 4, 5 0, 1, 2, 3 0, 3, 4
represented using
local document ID:

WS0 WS1 WS2

(b) Partitioning a posting list

posting list: 1, 2, 4, 6, 7, 10, 11, 12, 14, 15

represented using
original document ID: 6, 12, 15 1, 4, 7, 10 2, 11, 14

2, 4, 5 0, 1, 2, 3 0, 3, 4
represented using
local document ID:

WS0 WS1 WS2

(b) Partitioning a posting list

Figure 4. Interleaving partitioning scheme

4.3. Per formance evaluation

We implement an experimental information
retrieval system to evaluate the effectiveness of
the proposed partitioning schemes. We follow [3]
to generate queries to evaluate the performance.
Figure 5 depicts the performance of parallel
query processing using the proposed partitioning

schemes. The metric is the speed up to sequential
query processing:

parallel

sequentialup-Speed
Time

Time
=

We evaluate the speedup when the number of
workstations M=2,4,6,8, and 10 are employed.
Figure 5 shows that almost linear speedup can be
achieved. As expected, interleaving scheme
outperforms the consecutive scheme.

Figure 5. Speed-up of parallel query processing

Reference:
[1] G. Salton and M. J. McGill, Introdiction to

Modern Information Retrieval, McGraw
Hill, 1983.

[2] J. Zobel and A. Moffat, “Adding
Compression to A Full-text Retrieval
System,” Software Practice and Experience,
Vol. 25, pp. 891-903, August 1995.

[3] A. Moffat and J. Zobel, “Self-indexing
inverted files for fast text retrieval,” ACM
Trac. Information Systems, Vol. 14, No. 4,
pp. 249-279, Oct. 1996.

[4] B. S. Jeong and E. Omiecinski, “Inverted
file partitioning schemes in multiple disk
systems,” IEEE Transactions on Parallel and
Distributed Systems, Vol. 6, No. 2, pp. 142-
153, 1995.

[5] B. A. Riberio-Neto, J. P. Kitajima, G.
Navarro, “Parallel generation of inverted
files for distributed text collections,”
Proceedings of the 18th International
Conference on the Chilean Society of
Computer Science, pp. 149-157, 1998

5

行政院國家科學委員會補助專題研究計畫成果報告

※ ※※※※※※※※※※※※※※※※※※※※※※※※※※

※ 　　　　　　　　　　　　　　　　　　　　　　　　※

※　　 嵌入式資訊網系統之高階計算伺服器設計(I)　　※

※　　　　　　　　　　　　　　　　　　　　　　　　※

※※※※※※※※※※※※※※※※※※※※※※※※※※

計畫類別：□個別型計畫　　□整合型計畫

計畫編號：NSC 89-2213-E-009-062－

執行期間：88年 08月 01日至 89年 07月 31日

計畫主持人：鍾崇斌

本成果報告包括以下應繳交之附件：

□赴國外出差或研習心得報告一份

□赴大陸地區出差或研習心得報告一份

□出席國際學術會議心得報告及發表之論文各一份

□國際合作研究計畫國外研究報告書一份

執行單位：交通大學 資訊工程學系

中　華　民　國 89年 10月 31日

	page1
	page2
	page3
	page4
	page5

