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一、中文摘要

在本計劃執行的第一年中，我們針對
多數已常被應用於基因網路重建研究之方
法做了詳細的探討，這其中包含布林網
路，貝氏網路，線性網路等。本年度的目
標在於評估各個方法的優劣，希望藉由各
系統的研究與探討，奠定我們新系統的基
礎，在透過仔細的分析評估之後，我們決
定採用多策略結合方式，整合轉錄子結合
區與基因表現資訊做為基因調節模組的預
測依據。

關鍵詞：專題計畫、報告格式、國科會

Abstract

During the first year for this project, we
investigated those approaches that have been
widely applied to genetic network research,
including Boolean Networks, Bayesian
Networks, Linear Models and Non-linear
Models, etc. The goal of our first-year project
is to evaluate the pros and the cons of these
various methods on which our network
reconstruction system can be based.
According to the evaluation, we have
concluded that our new approach will be
built under a multi-strategy framework that
combines motif binding sites and gene
expression profiles.

Keywords: genetic networks, Boolean
networks, Bayesian networks,
motif binding sites

二、緣由與目的

藉由分析大量的基因體實驗資料來瞭
解 所 有 基 因 (gene) 及 其 產 物 (gene
product，如蛋白質, rRNA, tRNA 等)在種
種刺激下所產生的交互作用，是功能基因
體學(functional genomics)重要目的之
一。為了達成此一目的，我們必須以系統
化的方式、全面性的角度對基因及其產物
進行分析，以建構出這些分子在細胞進行
各種活動、接受外在刺激時的交互關係，
亦即基因調控網路(genetic networks, or
gene regulatory networks)。基因調控網
路的建立，可以幫助研究人員瞭解參與細
胞內各種生化反應的因素，讓製藥、醫學、
生化研究人員將實驗資源集中於重要的基
因上；也可以作為研究人員的虛擬實驗平
臺，由電腦來模擬他們所提出的假設。

準確地預測轉錄調控模組，才能重建
正確的轉錄調控網路。因此，我們的研究
目的就是提升轉錄控模組的預測能力，並
以此建構具參考價值的轉錄調控網路。

目前已有許多不同的方法被應用於基
因調控網路的重建，我們針對其優缺點做
了評估，希望藉由已知的方法中尋找靈感
以作為我們新系統的基礎。

三、結果與討論

我們特別針對一些常使用於基因調控
網路重建的方法做了比較：

布林網路是以邏輯關係來描述基因調
控網路。其核心假設為：
(1) 每一基因的表現程度可以分為高(表

現)、低(不表現)兩種層次。
(2) 每一段基因的表現程度可以由其他基

因的表現程度以及外在條件所形成的
布林函式來決定。
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這種表式法的優點是易於藉由邏輯關係解
釋基因間的交互作用，而缺點則是資料需
求量高。在一個 M 個節點的布林網路中，
我們需要 M2 個觀察點來求得正確的布林
關係。Liang et al. 提出演算法試圖解決
此一問題(Liang et al. 1998)，他們假設
每一個基因的基因表現至多由 k 個輸入所
決定，則解出 M 個節點的布林關係所需要
的資料量的估計值為 )log(2 Mk 。除了資料需
求量過高外，布林網路的假設與在實際狀
況也有所出入。因此，Silvescu 等人
(Silvescu et al. 2001)及 Soinov 等人
(Soinov et al. 2001)都以 Decision Tree
來建立布林網路，並且試圖修正一般的布
林網路所忽略的時間因素。此外，Ilya
Shmulevich 等人則為為布林網路加入機率
模式，來模擬細胞中生化反應的不確定性
(Shmulevich et al. 2002)。

線性模式是研究許多物理現象常用的
數學模式，而以線性模式來表示基因調控
網路的假設如下：
(1) 每一段基因的表現程度是連續的，而

非離散狀態。
(2) 每一段基因的表現程度可以由其他基

因的表現程度以及外在條件以線性方
程式表達。
這種表示法優於布林網路的地方在於

保留了基因表現的原始資訊，但缺點則是
此方法並不如布林網路般易於解釋基因之
間的交互作用。在一個 M 變數的線性模式
中，所需的資料量為 M 個觀察點，但在目
前的應用中，我們仍沒有那麼多的生物實
驗資料對整個基因組求解。因此，
D’haeseleer P.等人以內插法方式來增加
資 料 數 目 (D’haeseleer P. et al.
1999b)；而 van Someren E. P.等人則利用
分群法將基因表現相似者視為同一個節
點，以減少整個基因調控網路的複雜度
(van Someren E. P. et al. 2000)。

貝 氏 網 路 (Bayesia Networks) 是
graphical models 之一，它以條件機率來
表示基因調控網路中各基因間的相關性。
其核心假設為：
(1)每 一 個 節 點 可 代 表 可 觀 察 變 數

(information variables)，如基因表
現；或者是不可觀察變數(latent

variables)，如外在刺激、蛋白質表
現、蛋白質結構、實驗誤差等。變數可
以是連續或離散狀態。

(2)變數間的關係分為相關(dependency)
以 及 條 件 獨 立 (conditional
independence)。

(3) 給定資料 D與假設的網路結構 S，若 S
的 事 後 機 率 (posterior
probability)p(S|D)越大，代表在以資料 D
為證據下，網路結構 S成立的機率越大。

貝氏網路的優點在於其模式能夠包含
不可觀察變數，並以事後機率來衡量可能
的網路結構，這些都有助於模擬真實世界
中的不確定性與變異性。其缺點是貝氏網
路必須先提出可能的網路結構，才能以實
驗資料來評估該結構的事後機率。而 M 個
結點的網路，有 M2 種可能的結構，因此計
算出 global optimal solution 所需計算
量 過 大 ， 其 時 間 複 雜 度 為
NP-complete(Fisher et al. 1996) 。
Hartemink 等人則利用 AI 中常見的幾種
heuristic search 方 法 來 找出 local
optimal solution(Hartemink et al.
2002)。

根據以上的結論，我們決定採行整合
型的系統以重建基因網路，整合多種資
訊，包含轉錄調控區間、基因表現實驗，
以及已知的轉錄因子結合區，其目的是預
測被這些轉錄因子所調控的基因，也就是
轉錄調控模組，並將預測的轉錄調控模組
整合成轉錄調控網路。而預測轉錄調控模
組的核心假設為：
(1)在其轉錄調控區間含有特定轉錄因子

結合區的基因，可能會受到該轉錄因子
的調控。

(2)基因產物的行為，大部份決定於基因表
現程度。因此，產生轉錄因子所需的基
因，其基因表現程度與轉錄因子的行為
相關。

(3)轉錄因子所調控的基因，其基因表現程
度會受轉錄因子影響；間接的，也會與
構成轉錄因子的基因之表現程度相關。
Fujibuchi 等 人 曾 經 以 酵 母 菌

(Saccharomyces cerevisiae) 為 研 究 對
象，整合酵母菌基因組的轉錄調控區序
列、基因表現實驗、轉錄因子結合區等資
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訊，定義出新的評分方式來對調控關係進
行篩選(Fujibuchi W. et al. 2001)，其
研究結果顯示在整合了多種資訊後，可以
更準確地預測轉錄調控模組。Fujibuchi
等人的核心假設是受到共同轉錄因子所調
控的基因，其表現行為相似。由於我們的
假設與其有所不同，我們也將整合兩方的
評方分式，希望以更完整假設來預測轉錄
調控模組。

我們的整合型系統之重點在於結合
motif binding sites 與 expression
profiles 的資訊，如此可加強基因調控模
組的預測準確性，此外，即便在 motif
binding sites 資訊欠缺的情況下，亦可
藉由 expression profiles 的資訊找到逼
近的較佳解，這樣便可提升我們系統的實
用性。

為求將來實驗比較的統一性，我們已
蒐集了與 Fujibuchi 等人的研究相同的實
驗資料，其為 121 組在酵母菌上的基因表
現實驗所得，此外，我們也依循 Spellman
等人做了資料的前置處理，我們計畫於第
二年實做系統，並設計評估實驗。實驗目
的將包含基因調控模組的預測準確性評
估，以及利用已知的基因網路作為
benchmark 檢測系統的網路重建能力。
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Abstract

The search for structural similarity among proteins
can provide valuable insights into their functional
mechanisms and their functional relationships. Though
the protein 1D sequence contains the information of
protein folding, the performance of predicting the
3D-structure directly from the sequence is still limited.
As the increase of available protein structures, we can
now conduct more precise and thorough studies of
protein structures. Among many is the design of
protein structural alphabet that can characterize
protein local structures. We use the self-organizing
map combined with the minimum spanning tree
algorithm for visualization to determine the alphabet
size and then apply the k-means algorithm to group
protein fragments into clusters corresponding to the
structural alphabet. The intra-cluster and inter-cluster
analyses show the significant structural cohesiveness.
A comparative study of our alphabet with one of the
recently developed structural alphabets also
demonstrated a competitive result.

1. Introduction

Various genome sequencing projects have
been producing numerous linear amino acid
sequences; however, complete understanding
of the biological roles played by these
proteins requires knowledge of their
structures and functions [1]. Despite that
experimental structure determination methods
provide reasonable structure information
regarding subsets of proteins, computational
methods are still required to provide valuable
information for a large fraction of proteins
whose statures may not be experimentally
determined. Even though the primary
sequence implies the whole information
guiding the protein folding, yet the

performance of predicting the 3D-structure
directly from the sequence is still limited. The
complexity and the number of
physicochemical, kinetic and dynamic
parameters involved in protein folding
prohibit an efficient 3D-structure prediction
without first knowing the 3D-structures of
closely related proteins [2]. Some ab initio
methods do not directly use 3D-structures, but
their applications are often limited to small
proteins [3].

Early analysis of protein structures has
shown the importance of repetitive secondary
structures, i.e. -helix and -sheet. With
variable coils, they constituted a basic
standard 3-letter alphabet, and this has led to
early secondary structure prediction
algorithms, e.g. GOR [4], and more recent
ones that apply neural networks and
homology sequences [5-8] with prediction
accuracy approaching 80%. In spite of the
increase of predictive accuracy, the
approximation of 3D-structures with only a
3-letter alphabet is apparently too crude for
meaningful 3D reconstruction. All the
predictions are highly dependent on the
definitions of periodic structures, but
unfortunately the structure description is
incomplete. As the increase of available
protein structures, it allows more precise and
thorough studies of protein structures.
Various more complex structural alphabets
have been developed by taking into account
the heterogeneity of backbone protein
structures through sets of small protein
fragments frequently observed in different
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protein structure databases [2][9]. The
alphabet size can vary from several to around
100. For example, Unger et al. [10] and
Schuchhardt et al. [11] used k-means method
and self-organizing maps respectively to
identify the most common folds, but the large
number of clusters (about 100) is not
appropriate for prediction. Rooman et al.
found 16 recurrent folding motifs, ranging
from 4 to 7 residues and categorized into four
classes corresponding to -helix, -strand,
turn and coil [12]. By applying
autoassociative neural networks, Fetrow et al.
defined six clusters representing
supersecondary structures that subsume the
classic secondary structures [13]. Bystroff and
Baker produced similar short folds of
different lengths and grouped them into 13
clusters for prediction [14]. Taking into
account the Markovian dependence,
Camproux et al. developed an HMM
approach to lean the geometry of the
structural alphabet letters and the local rules
for assembly process [15].

In this paper, we propose a multi-strategy
approach to identifying structural alphabet
that can characterize protein local structures.
Instead of applying cross-validation [14] or
shrinking procedures [16] to refine the
clusters directly, we use self-organizing maps
as a visualization tool to determine the size of
structural alphabet. Given the alphabet size,
we later apply the k-means algorithm [17] to
group protein fragments into clusters that
correspond to a structural alphabet. The
analysis of structural similarities between
proteins not only provides significant insight
into functional mechanisms and biological
relationships, but also offers the basis for
protein fold classification. An expressive
structural alphabet can allow us to quantify
the similarities among proteins encoded in
appropriate letters. It also enables us to work
with a primary representation of 3D structures,

simply using standard 1D amino acid
sequence alignment methods. To demonstrate
the performance of our new method, we
tested it on the all-proteins in SCOP. The
experimental results show that using our
structural alphabet rather than the standard
amino acid letters can outperform BLAST in
finding the best hit for a protein query. This
suggests that our structural alphabet can
successfully reflect protein structural
characteristics which are implied in protein
fragments. Besides, in order to make a
consistent and fair comparison, we also
compared our alphabet with others that are
also developed by the SOM, but in a different
design methodology [9][19]. Our structural
alphabet shows competitive performance in
protein matching.

2. Material and methods

The use of frequent local structural motifs
embedded in polypeptide backbone has
recently shown improvement in protein
structure prediction [1][14][18]. Its success
has shed some light on further studies of
structural alphabet. We used the proteins
classified to all- fold within the SCOP
database (version 1.65) in our study with the
aim to build the structural alphabet suitable
for all-proteins. The same approach can be
easily applied to other databanks as well.

There are three issues addressed in our
study. They are: (1) protein fragment
representation, (2) alphabet size
determination and (3) structural alphabet
definition. Like others, we transform each
protein backbone into a series of the dihedral
angles ( and , neglecting ) [14][16].
Adapted from [16], the analysis is limited to
fragments of five residues since they are
adequate for describing a short helix and a
minimal structure. With the fixed window
size of five residues, we slid the window
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along each all-protein in SCOP, advancing
one position in the sequence for each
fragment, and collected a set of overlapped
5-residue fragments. As the relation between
two successive carbons,

i
C and

1i
C ,

located at the ith and (i+1)th positions, can be
defined by the dihedral angles i of

i
C and

i+1 of
1i

C , a fragment of L residues can
then be defined as a vector of 2(L-1) elements.
Thus, in our study, each protein fragment,
associated with -carbons

2i
C ,

1i
C ,

i
C ,

1i
C and

2i
C , is represented by a vector of

eight dihedral angles, i.e.
].,,,,,,,[ 211112  iiiiiiii  Based on

this representation, we totally gathered
1,143,072 fragment vectors.

Self-organizing maps (SOM) are widely
used as a data mining and visualization tool
for complex data sets. A self-organizing map
usually consists of a regular 2D grid of
so-called map units, each of which is
described by a reference vector mi = [mi1, mi2,
mi3,…, mid], where d is the input vector
dimension, e.g., d = 8, in our case of fragment
vectors. The map units are usually arranged in
a rectangular or hexagonal configuration. The
number of units affects the generalization
capabilities of the SOM, and thus is often
specified by the researcher/user. It can vary
from a few dozen to several thousands. An
SOM is a mapping from the ensemble of
input data vectors (Xi=[xi1, xi2, xi3,…, xid] Rd)
to a 2D array of map units. During training,
data points near each other in input space are
mapped onto nearby map units to preserve the
topology of the input space [19][20]. The
SOM is trained iteratively. In each training
step t, distances between a randomly picked
input vector xj and all the reference vectors
are computed. The unit with the least distance
is then selected as the winner unit and
denoted by w. The winner unit and its

topological neighbors are updated to move
closer to input vector xj in the input space by
the following rule:

)()()()()1( tmxthttmtm ijwiii  

where t is time, (t) is the adaptation
coefficient, |xj-mi(t)| is the component-wise
difference between the input vector and the
ith reference vector, and hwi(t) is the
neighborhood function acting on the array of
units, whose form includes bubble kernel,
Gaussian kernel and other more complicated
ones. In our study, we used the bubble kernel
[20][21]. Unlike previous works that directly
apply SOM to obtain clusters of backbone
fragments as the basis to define the structural
alphabet, our approach instead uses SOM
only for the visualization purpose to
predetermine the number of letters in the
alphabet.

By visual inspection of the trained SOM,
we can get a preliminary idea of the number
of clusters on the map. The unified distance
matrix (U-matrix) is one of the most widely
used methods for visualizing the clustering
result on the SOM. It shows distances
between neighboring reference vectors, and
can be efficiently visualized using grey shade
[22], as shown in Figure 1(a). In spite of the
initial idea of the cluster structure provided by
the U-matrix, a systematic method to
determine the number of clusters on the map
is still desired. We implement a post-process
on the U-matrix that is based on the
minimum-spanning-tree algorithm. Given the
grey levels in the U-matrix, we can build the
minimum spanning tree for all the map units,
e.g., in Figure 1(b), all map unit are linked in
the spanning tree. Based on a threshold of the
grey level, we can partition the entire tree into
several disconnected subtrees, by removing
the links between map units with grey levels
below the threshold, as shown in Figure 1(c).
Conceptually, it means that we break the links
of a distance longer than some threshold.
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Furthermore, those relatively smaller subtrees
left can be also deleted later such that the
remaining clusters can maintain a reasonable
size, as presented in Figure 1(d). The number
of the subtrees finally kept becomes the
structural alphabet size. As the SOM can be
viewed as a topology preserving mapping
from input space onto the 2D grid of map
units [19], the number of map units can affect
the clustering result. We systematically
increase the number of units, and repeat the
above process till the alphabet size stabilizes.

Rather than adapt the two-level approach
that first trains the SOM, then performs
clustering of the trained SOM [19], after
determining the alphabet size, we apply the
k-means algorithm to the input data vectors
directly to obtain the clusters. The SOM
established a local order among the set of
reference vectors in such a way that the
closeness between two reference vectors in
the Rd space is dependent on how close the
corresponding map units are in the 2D array.
Nevertheless, an inductive bias of this kind
may not be appropriate for structural
alphabets since the local order does not
always faithfully characterize the relation
between structural building blocks, and can
sometimes be misleading, e.g. forcing the
topology to preserve mapping from the input
space of -helix and -strand to a 2D grid of
units could be harmful to clustering. As a
result, we use the SOM only for visualization
the alphabet size, and rely on the k-mean
algorithm to extract the local features from
the input data that can actually reflect the
characteristics of the clusters respectively.
The centroid of each cluster forms the
prototypical representation of each alphabet
letter. Given the clustering result by the
k-means algorithm as the basis of the
structural alphabet, we can transform a
protein into a series of the alphabet letters by
matching each of its fragments against our

alphabet prototypes. The control flow of our
system named SMK is illustrated in Figure 2.

(a) (b)

(c) (d)

Figure 1. Visualization of the trained
SOM. (a) the grey shade of the trained SOM,
where darker areas mean larger distances, (b)
the minimum spanning tree for the map units,
(c) the disconnected subtrees after removing
the links below some threshold and (d) the
final disconnected subtrees after discarding
those relatively small ones.

3. Experimental results

We tested our approach on the all-
proteins in SCOP. By this experiment, we
show that our method can produce an
appropriate structural alphabet for describing
these all- proteins. After transforming
protein backbones into dihedral angles and
extracting protein fragments, we trained the
SOM on these dihedral angle vectors.

Three issues were addressed in the
experiments. First, the meaningfulness of the
structural alphabet size in terms of the
number of clusters was presented by showing
the size stability given various parameters.
Second, we demonstrated cluster
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cohesiveness by visual superimpositions of
protein fragments as well as computed the
intra-cluster and inter-cluster distance. Third,
we proved the fragment clusters found were
not arbitrary by comparing our result with that
from a random background.

Figure 2. The system control flow of
SMK

Since the number of map units has
influence over the SOM’s clustering behavior,
to obtain the optimal number of clusters, we
varied the number of units on the map until
the number of clusters found became steady.
The results are shown in Figure 3, which
indicates a distinctive plateau within the range
between nine and twelve. Because eleven is
the most frequent number of clusters on the
plateau, as shown in Figure 4, it is designated
as the structural alphabet size.

To further confirm the general geometric
regularities characterized by the structural
alphabet, we also built a negative all-
protein fragment set for comparison. The
negative set was derived from the real all-
protein fragment vectors prepared earlier by
rotating the dihedral angles at random
(increase or decrease) within a certain degree,
e.g. 30in our analysis. We compared the
clusters produced by clustering on the real
vector set and on the negative control set.
Insignificant difference suggests that the
alphabet we found could be arbitrary. Our
experiments (see Figure 5) show that
clustering on the negative control set cannot
even produce consistent clusters, which
supports our hypothesis that the clusters
found from the real fragment vectors reflect
the classes of local protein structures;
otherwise, these clustering results would have
been similar.

Given the size, we ran the k-means
algorithm on the input fragment vectors to
find the twelve clusters by which to define the
structural alphabet. Figure 6(a) and (b) shows
the fragment superimpositions for the
alphabet. Even though the fragment structures
do not superimpose perfectly, yet the general
structural cohesiveness of each category is
quite evident. In addition, we computed the
Euclidean distances from each fragment in a
given cluster to its centroid. The average of
these within-cluster distances was then

Backbone Transformation into
Dihedral Angles

Protein Fragment Vectors Extraction
as Input to SOM, i.e.

].,,,,,,,[ 211112  iiiiiiii 

Train SOM on Protein Fragment
Vectors

Visualizing trained SOM with
U-Matrix in Grey Levels

Build Minimum Spanning Tree from
U-matrix

Partition Minimum Spanning Tree into
Disconnected Subtrees

Use number of subtrees as K and Run
K-mean Algorithm on Input Vectors

Define Structural Alphabet based on
K-means Clusters

Transform Proteins into Structural
Alphabet



13

compared with the center-to-center distances
between clusters as presented in Table 1. It
shows that in most cases, the center-to-center
distance between any two clusters is greater
than the mean distance of all vectors in that
cluster from its center plus one standard
deviation. The result indicates that the
individual clusters are fairly well separated
from each other.

The detection and analysis of structural
similarities between proteins allows deeper
insight into their functional mechanisms and
relationships. To search for structural
similarities, the structural alphabet provides a
good basis on which to work with a 1D
representation. As a result, numerous 1D
alignment algorithms can be used, with minor
modifications, to detect structural similarities.
In our experiments, we first transformed the
3D structures of proteins into a 1D sequence
of the letters in our structural alphabet. To
demonstrate the applicability of the alphabet,
we used FASTA to search for structural
similarities between a query protein and a
bank of proteins, using an
identify matrix of our
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Figure 3. The variance in the number of
clusters produced by the SOMs of varying
sizes. There exists a distinctive plateau that
suggests the cluster number has stabilized.
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Figure 4. The frequencies of cluster
numbers. It shows 11 is the most frequent
number of clusters.
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Figure 5. The variance in the number of
clusters produced by the SOMs of varying
sizes trained on a negative fragment set. It
shows no sign of convergent cluster number.

alphabet letters to find maximal exact
matches. For comparison, we also conducted
the same tests also using FASTA but based on
different structural alphabets, one developed
by de Brevern et al. [9], the other by the
two-level SOM approach [19]. As the
baseline reference, we used BLAST with the
standard 20 amino acid letters to find the best
sequence hit.

The proteins used in the experiments were
selected from the all- proteins in SCOP.
After filtering out those with more than 30%
sequence similarity, we have totally 1055
proteins. For each run of the experiment, we
randomly picked one protein as the query, and
then matched it against the rest, using FASTA
or BLAST with different alphabets. Given the
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best hit, we computed the RMSD
between the query and the hit,

Table 1. Summary of within-cluster distances and
center-to-center distances.

K J I H G F E D C B A

43.15±50.13

88.77±53.33

196.75±97.2

155.02±77.8

220.52±87.79

143.62±90.84

150.41±71.53

193.67±69.19

173.58±77.59

192.84±74.97

186.10±68.07

m
ean±sd

w
ithin-cluster

0 A

0 282.3
B

0 284.59
205.27
C

0 250.31
203.41
216.75
D

0 234.31
251.6
202.8
226.93
E

0 302.93
252.05
197.76
275.08
236.72
F

0 346.14
511.04
388.9
383.86
414.99
399.53
G

0 343.07
220.63
284.51
261.9
243.02
169.3
246.5
H

0 335.84
276.03
346.98
343.02
323.81
333.41
321.03
325.94
I

0 358.58
136.63
341.22
161.11
282.19
183.77
188
208.28
197.44
J

0 86.711
360.95
164.87
278.5
177.48
358.48
233.33
226.52
264.69
245.81
K

center-to-center

and recorded the lowest level in the SCOP
hierarchy at which the query and the hit are
both located, i.e. class, fold, superfamily or
family. Smaller RMSD and lower common
level in SCOP hierarchy indicates higher

structural similarity. We repeated the same
experiment for 100 times and the results are
summarized in Table 2 and 3. According to
Table 2, we notice that our method SMK and
de Brevern et al.’s both produced higher
frequencies at lower common levels than the
other two methods. This suggests that our
structural alphabet and de Brevern et al.’s can
better characterize the SCOP hierarchy. Table
3 shows that SMK has the lowest mean
RMSD and standard deviation among all.

Table 2. Summary of frequencies at the
lowest common level. The first column shows
the methods used in the experiments. The
remaining columns present the frequency for
different levels at which the query and the
best hit are both located.

frequency at different level

Method class fold super family family
BLAST 71 4 5 20
SMK 55 11 5 29
de Brevern 58 4 11 27
2-level SOM 73 6 14 7

Table 3. Summary of average RMSD and
standard deviation between the queries and
the best hits.

method
mean
(RMSD)

sd
(RMSD)

BLAST 8.953744 4.764597
SMK 7.290972 3.934283
de Brevern 8.076746 4.819178
2-level SOM 10.38624 5.217078

4. Discussion

In this paper, we propose a multi-strategy
approach to designing the structural alphabet
which allows local approximation of protein
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3D structures as well as enables the
applications of 1D alignment algorithms to
search for 3D structural similarities. The
success of the alphabet design depends on
three crucial factors. First, it is the protein
fragment representation, which determines
what and how 3D structural characteristics to
be approximated, e.g. thermodynamic
stability, amino acid physicochemical
properties, amino acid usage in known
proteins, distances, dihedral angles, bond
lengths, bond angles, etc.

A B

C D

E F

G H

I J

K

Figure 6(a). The superimposition in
wireframe format for the structures of each
structural cluster found by SMK.

A B

C D

E F

G H

I J

K
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Figure 6(b). The superimposition of the
structures of each structural cluster found by
SMK in the ball-and-stick form.

The effects of the representation selected are
entangled with the performance of the
learning approach we apply to develop the
structural alphabet. Overcomplicated
representations can sometimes lead to
overfitting. To avoid this problem, we
currently focus on the dihedral angles. Other
features can be easily included in the
representation if proved necessary.

The second factor is the size of the
alphabet. We took advantage of the SOM as a
visualization tool that helps determine the
alphabet size. By systematically varying the
number of map units on the map, we
visualized the clustering behavior of the SOM.
Our experiments showed a distinct plateau
corresponding to the convergent number of
clusters, compared with the increasing
number of clusters in the results of clustering
on the random negative control dataset. This
suggests that the structural alphabet size we
found is not arbitrary.

Various types of algorithms have been
applied to clustering local protein 3D
fragments into a limited set of fold patters, e.g.
self-organizing maps (SOM), hidden Markov
models (HMM), neural networks, hierarchical
clustering, k-means clustering, etc. Each has
its own learning bias and inherent limitations.
For example, the topology (e.g. number of
layers or map units) of neural networks, the
SOM and the HMM strongly affect the
performance. The value of k in k-means
algorithm determines the clusters. As a
consequence, the third factor is the learning
algorithm. In our study, we took a
multi-strategy approach. We first used the
SOM and the minimum-spanning tree
algorithm to determine the alphabet size, and
then applied the k-means algorithm to group

fragments into meaningful clusters. The
number of map units in the SOM and the
value of k in k-means are not pre-specified in
advance, but instead determined
systematically. To verify the correspondence
of our structural alphabet letter to the fold
patterns, we computed the average
within-cluster distance for each alphabet
cluster as well as the distance across clusters.
The small average within-cluster distance and
the relatively large between-cluster distance
demonstrate the significance of the structural
alphabet we found. Furthermore, the
visualized superimposition of protein
fragments in each cluster also justifies the
structural cohesiveness.

The objective of the paper is to propose a
new approach to developing the structural
alphabet. To verify its usefulness, we tested it
on the all- proteins in SCOP, and the
experimental results show its promising
applicability. After the success on the all-
proteins in SCOP, we plan to test our method
on different data banks to further verify its
feasibility and generality. Also as mentioned
above, the representation is a crucial factor in
the alphabet design. We will consider other
structural features besides dihedral angles,
add more useful features to enhance our
structural alphabet, and test the new approach
on other families in SCOP.
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