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Abstract

During the first year for this project, we
investigated those approaches that have been
widely applied to genetic network research,
including Boolean Networks, Bayesian
Networks, Linear Models and Non-linear
Models, etc. The goa of our first-year project
is to evaluate the pros and the cons of these
various methods on which our network
reconstruction system can be based.
According to the evauation, we have
concluded that our new approach will be
built under a multi-strategy framework that
combines motif binding sites and gene
expression profiles.

Keywords: genetic networks, Boolean
networks, Bayesian networks,
motif binding sites
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Abstract

The search for structural similarity among proteins
can provide valuable insights into their functional
mechanisms and their functional relationships. Though
the protein 1D sequence contains the information of
protein folding, the performance of predicting the
3D-gtructure directly from the sequence is till limited.
As the increase of available protein structures, we can
now conduct more precise and thorough studies of
protein structures. Among many is the design of
protein structural alphabet that can characterize
protein local structures. We use the self-organizing
map combined with the minimum spanning tree
algorithm for visualization to determine the alphabet
size and then apply the k-means algorithm to group
protein fragments into clusters corresponding to the
structural alphabet. The intra-cluster and inter-cluster
analyses show the significant structural cohesiveness.
A comparative study of our alphabet with one of the
recently developed structural alphabets also
demonstrated a competitive result.

1. Introduction

Various genome sequencing projects have
been producing numerous linear amino acid
sequences; however, complete understanding
of the biological roles played by these
proteins requires knowledge of their
structures and functions [1]. Despite that
experimental structure determination methods
provide reasonable structure information
regarding subsets of proteins, computational
methods are still required to provide valuable
information for a large fraction of proteins
whose statures may not be experimentally
determined. Even though the primary
sequence implies the whole information
guiding the protein folding, yet the

performance of predicting the 3D-structure
directly from the sequenceis till limited. The
complexity and the  number of
physicochemical, kinetic and dynamic
parameters involved in protein folding
prohibit an efficient 3D-structure prediction
without first knowing the 3D-structures of
closely related proteins [2]. Some ab initio
methods do not directly use 3D-structures, but
their applications are often limited to small
proteins[3].

Early analysis of protein structures has
shown the importance of repetitive secondary
structures, i.e. o-helix and B-sheet. With
variable coils, they constituted a basic
standard 3-letter alphabet, and this has led to
early  secondary  structure  prediction
algorithms, e.g. GOR [4], and more recent
ones that apply neura networks and
homology sequences [5-8] with prediction
accuracy approaching 80%. In spite of the
increase of predictive accuracy, the
approximation of 3D-structures with only a
3-letter alphabet is apparently too crude for
meaningful 3D reconstruction. All the
predictions are highly dependent on the
definitions of periodic structures, but
unfortunately the structure description is
incomplete. As the increase of available
protein structures, it allows more precise and
thorough studies of protein structures.
Various more complex structural aphabets
have been developed by taking into account
the heterogeneity of backbone protein
structures through sets of small protein
fragments frequently observed in different



protein structure databases [2][9]. The
alphabet size can vary from several to around
100. For example, Unger et al. [10] and
Schuchhardt et al. [11] used k-means method
and self-organizing maps respectively to
identify the most common folds, but the large
number of clusters (about 100) is not
appropriate for prediction. Rooman et al.
found 16 recurrent folding motifs, ranging
from 4 to 7 residues and categorized into four
classes corresponding to a-helix, B-strand,
turn  and coil [12]. By applying
autoassociative neural networks, Fetrow et al.
defined SixX clusters representing
supersecondary structures that subsume the
classic secondary structures [13]. Bystroff and
Baker produced similar short folds of
different lengths and grouped them into 13
clusters for prediction [14]. Taking into
account the Markovian  dependence,
Camproux et al. developed an HMM
approach to lean the geometry of the
structural alphabet letters and the loca rules
for assembly process [15].

In this paper, we propose a multi-strategy
approach to identifying structural alphabet
that can characterize protein local structures.
Instead of applying cross-validation [14] or
shrinking procedures [16] to refine the
clusters directly, we use self-organizing maps
as avisualization tool to determine the size of
structural alphabet. Given the aphabet size,
we later apply the k-means algorithm [17] to
group protein fragments into clusters that
correspond to a structural aphabet. The
anaysis of structural similarities between
proteins not only provides significant insight
into functional mechanisms and biologica
relationships, but also offers the basis for
protein fold classification. An expressive
structural aphabet can allow us to quantify
the similarities among proteins encoded in
appropriate letters. It also enables us to work
with a primary representation of 3D structures,

simply using standard 1D amino acid
sequence alignment methods. To demonstrate
the performance of our new method, we
tested it on the al-a proteins in SCOP. The
experimental results show that using our
structural alphabet rather than the standard
amino acid letters can outperform BLAST in
finding the best hit for a protein query. This
suggests that our structural aphabet can
successfully  reflect  protein  structural
characteristics which are implied in protein
fragments. Besides, in order to make a
consistent and fair comparison, we aso
compared our aphabet with others that are
also developed by the SOM, but in a different
design methodology [9][19]. Our structural
alphabet shows competitive performance in
protein matching.

2. Material and methods

The use of frequent local structural motifs
embedded in polypeptide backbone has
recently shown improvement in protein
structure prediction [1][14][18]. Its success
has shed some light on further studies of
structural aphabet. We used the proteins
classified to al-a fold within the SCOP
database (version 1.65) in our study with the
aim to build the structural alphabet suitable
for al-o proteins. The same approach can be
easily applied to other databanks as well.

There are three issues addressed in our
study. They are: (1) protein fragment
representation, (2 alphabet size
determination and (3) structura alphabet
definition. Like others, we transform each
protein backbone into a series of the dihedral
angles (¢ and v, neglecting o) [14][16].
Adapted from [16], the analysis is limited to
fragments of five residues since they are
adequate for describing a short o helix and a
minimal B structure. With the fixed window
size of five residues, we dlid the window



along each dl-a protein in SCOP, advancing
one position in the sequence for each
fragment, and collected a set of overlapped
5-residue fragments. As the relation between
two successve carbons, C, and C,

located at the ith and (i+1)th positions, can be
defined by the dihedral angles y; of C, and

diva of C, , a fragment of L residues can

then be defined as a vector of 2(L-1) elements.
Thus, in our study, each protein fragment,
associated with a-carbons C, , C, , C

C,, ad C, , isrepresented by a vector of

eight dihedral angles, i.e
Vio@ W04 Vi1 Wia.4..]. Based on
this representation, we totaly gathered
1,143,072 fragment vectors.

Self-organizing maps (SOM) are widely
used as a data mining and visuaization tool
for complex data sets. A self-organizing map
usually consists of a regular 2D grid of
so-caled map units, each of which is
described by a reference vector m = [my;, my,
Ma,..., Mg], where d is the input vector
dimension, e.g., d = 8, in our case of fragment
vectors. The map units are usually arranged in
arectangular or hexagona configuration. The
number of units affects the generalization
capabilities of the SOM, and thus is often
specified by the researcher/user. It can vary
from a few dozen to severa thousands. An
SOM is a mapping from the ensemble of
input data vectors (Xi=[Xi1, Xi2, Xiz,..., Xid] € R%)
to a 2D array of map units. During training,
data points near each other in input space are
mapped onto nearby map units to preserve the
topology of the input space [19][20]. The
SOM s trained iteratively. In each training
step t, distances between a randomly picked
input vector X and all the reference vectors
are computed. The unit with the least distance
is then selected as the winner unit and
denoted by w. The winner unit and its

Aig ai !
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topological neighbors are updated to move
closer to input vector x; in the input space by
the following rule:

m (t+1) = m (t) + a()h, O)x; —m ()
where t is time, ot) is the adaptation
coefficient, [x-m(t)| is the component-wise
difference between the input vector and the
ith reference vector, and hyi(t) is the
neighborhood function acting on the array of
units, whose form includes bubble kernel,
Gaussian kernel and other more complicated
ones. In our study, we used the bubble kernel
[20][21]. Unlike previous works that directly
apply SOM to obtain clusters of backbone
fragments as the basis to define the structural
alphabet, our approach instead uses SOM
only for the visudization purpose to
predetermine the number of letters in the
alphabet.

By visual inspection of the trained SOM,
we can get a preliminary idea of the number
of clusters on the map. The unified distance
matrix (U-matrix) is one of the most widely
used methods for visualizing the clustering
result on the SOM. It shows distances
between neighboring reference vectors, and
can be efficiently visualized using grey shade
[22], as shown in Figure 1(a). In spite of the
initial idea of the cluster structure provided by
the U-matrix, a systematic method to
determine the number of clusters on the map
is still desired. We implement a post-process
on the U-matrix that is based on the
minimum-spanning-tree algorithm. Given the
grey levels in the U-matrix, we can build the
minimum spanning tree for all the map units,
e.g., in Figure 1(b), al map unit are linked in
the spanning tree. Based on a threshold of the
grey level, we can partition the entire tree into
several disconnected subtrees, by removing
the links between map units with grey levels
below the threshold, as shown in Figure 1(c).
Conceptually, it means that we break the links
of a distance longer than some threshold.



Furthermore, those relatively smaller subtrees
left can be also deleted later such that the
remaining clusters can maintain a reasonable
Size, as presented in Figure 1(d). The number
of the subtrees finally kept becomes the
structural alphabet size. As the SOM can be
viewed as a topology preserving mapping
from input space onto the 2D grid of map
units [19], the number of map units can affect
the clustering result. We systematically
increase the number of units, and repeat the
above process till the alphabet size stabilizes.
Rather than adapt the two-level approach
that first trains the SOM, then performs
clustering of the trained SOM [19], after
determining the aphabet size, we apply the
k-means algorithm to the input data vectors
directly to obtain the clusters. The SOM
established a local order among the set of
reference vectors in such a way that the
closeness between two reference vectors in
the R? space is dependent on how close the
corresponding map units are in the 2D array.
Nevertheless, an inductive bias of this kind
may not be appropriate for structural
aphabets since the local order does not
aways fathfully characterize the relation
between structural building blocks, and can
sometimes be misleading, e.g. forcing the
topology to preserve mapping from the input
space of a-helix and B-strand to a 2D grid of
units could be harmful to clustering. As a
result, we use the SOM only for visualization
the aphabet size, and rely on the k-mean
algorithm to extract the loca features from
the input data that can actualy reflect the
characteristics of the clusters respectively.
The centroid of each cluster forms the
prototypical representation of each alphabet
letter. Given the clustering result by the
k-means agorithm as the basis of the
structural aphabet, we can transform a
protein into a series of the alphabet letters by
matching each of its fragments against our
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alphabet prototypes. The control flow of our
system named SMK isillustrated in Figure 2.

Figure 1. Visudization of the trained
SOM. (@) the grey shade of the trained SOM,
where darker areas mean larger distances, (b)
the minimum spanning tree for the map units,
(c) the disconnected subtrees after removing
the links below some threshold and (d) the
final disconnected subtrees after discarding
those relatively small ones.

3. Experimental results

We tested our approach on the al-a
proteins in SCOP. By this experiment, we
show that our method can produce an
appropriate structural alphabet for describing
these al-a proteins. After transforming
protein backbones into dihedral angles and
extracting protein fragments, we trained the
SOM on these dihedral angle vectors.

Three issues were addressed in the
experiments. First, the meaningfulness of the
structural alphabet size in terms of the
number of clusters was presented by showing
the size stability given various parameters.
Second, we demonstrated cluster



cohesiveness by visua superimpositions of
protein fragments as well as computed the
intra-cluster and inter-cluster distance. Third,
we proved the fragment clusters found were
not arbitrary by comparing our result with that
from arandom background.

Backbone Transformation into
Dihedral Angles

A 4

Protein Fragment Vectors Extraction
asInput to SOM, i.e.

Vi Wi W Ba Wi i)

A 4

Train SOM on Protein Fragment
Vectors

A 4

Visualizing trained SOM with
U-Matrix in Grey Levels

A 4

Build Minimum Spanning Tree from
U-matrix

A 4

Partition Minimum Spanning Tree into
Disconnected Subtrees

A 4

Use number of subtrees as K and Run
K-mean Algorithm on Input Vectors

A 4

Define Structural Alphabet based on
K-means Clusters

A 4

Transform Proteins into Structural
Alphabet

Figure 2. The system control flow of
SMK
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Since the number of map units has
influence over the SOM’s clustering behavior,
to obtain the optimal number of clusters, we
varied the number of units on the map until
the number of clusters found became steady.
The results are shown in Figure 3, which
indicates a distinctive plateau within the range
between nine and twelve. Because eleven is
the most frequent number of clusters on the
plateau, as shown in Figure 4, it is designated
asthe structural alphabet size.

To further confirm the general geometric
regularities characterized by the structural
alphabet, we also built a negative al-a
protein fragment set for comparison. The
negative set was derived from the real al-a
protein fragment vectors prepared earlier by
rotating the dihedral angles a random
(increase or decrease) within a certain degree,
e.g. 30° in our anaysis. We compared the
clusters produced by clustering on the real
vector set and on the negative control set.
Insignificant difference suggests that the
alphabet we found could be arbitrary. Our
experiments (see Figure 5) show that
clustering on the negative control set cannot
even produce consistent clusters, which
supports our hypothesis that the clusters
found from the real fragment vectors reflect
the classes of local protein structures,
otherwise, these clustering results would have
been similar.

Given the size, we ran the k-means
algorithm on the input fragment vectors to
find the twelve clusters by which to define the
structural alphabet. Figure 6(a) and (b) shows
the fragment superimpositions for the
alphabet. Even though the fragment structures
do not superimpose perfectly, yet the general
structural cohesiveness of each category is
quite evident. In addition, we computed the
Euclidean distances from each fragment in a
given cluster to its centroid. The average of
these within-cluster distances was then



compared with the center-to-center distances
between clusters as presented in Table 1. It
shows that in most cases, the center-to-center
distance between any two clusters is greater
than the mean distance of al vectors in that
cluster from its center plus one standard
deviation. The result indicates that the
individual clusters are fairly well separated
from each other.

The detection and analysis of structura
similarities between proteins alows deeper
insight into their functional mechanisms and
relationships. To search for structural
similarities, the structural alphabet provides a
good basis on which to work with a 1D
representation. As a result, numerous 1D
alignment algorithms can be used, with minor
modifications, to detect structural similarities.
In our experiments, we first transformed the
3D structures of proteins into a 1D sequence
of the letters in our structura alphabet. To
demonstrate the applicability of the aphabet,
we used FASTA to search for structurd
similarities between a query protein and a
bank  of proteins, using an
identify  matrix  of our

number of cluster

Q
&
\\

map size

Figure 3. The variance in the number of
clusters produced by the SOMs of varying
sizes. There exists a distinctive plateau that
suggests the cluster number has stabilized.
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Figure 4. The frequencies of cluster
numbers. It shows 11 is the most frequent
number of clusters.
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Figure 5. The variance in the number of
clusters produced by the SOMs of varying
Sizes trained on a negative fragment set. It
shows no sign of convergent cluster number.

alphabet letters to find maximal exact
matches. For comparison, we also conducted
the same tests also using FASTA but based on
different structural alphabets, one developed
by de Brevern et al. [9], the other by the
two-level SOM approach [19]. As the
baseline reference, we used BLAST with the
standard 20 amino acid letters to find the best
seguence hit.

The proteins used in the experiments were
selected from the al-o proteins in SCOP.
After filtering out those with more than 30%
sequence similarity, we have totally 1055
proteins. For each run of the experiment, we
randomly picked one protein as the query, and
then matched it against the rest, using FASTA
or BLAST with different alphabets. Given the



best hit,
between

the RMSD

the hit,

we  computed
the query and

Table 1. Summary of within-cluster distances and
center-to-center distances.
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and recorded the lowest level in the SCOP
hierarchy at which the query and the hit are
both located, i.e. class, fold, superfamily or
family. Smaller RMSD and lower common
level in SCOP hierarchy indicates higher
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structural similarity. We repeated the same
experiment for 100 times and the results are
summarized in Table 2 and 3. According to
Table 2, we notice that our method SMK and
de Brevern et al.’s both produced higher
frequencies at lower common levels than the
other two methods. This suggests that our
structural alphabet and de Brevern et al.’s can
better characterize the SCOP hierarchy. Table
3 shows that SMK has the lowest mean
RMSD and standard deviation among all.

Table 2. Summary of frequencies at the
lowest common level. The first column shows
the methods used in the experiments. The
remaining columns present the frequency for
different levels at which the query and the
best hit are both located.

frequency at different level

Method dass fold  super family family
BLAST 71 4 5 20
SMK 55 1 5 29
deBrevern 58 4 11 27

2-level SOM 73 6 14 7

Table 3. Summary of average RMSD and
standard deviation between the queries and
the best hits.

mean sd
method (RMSD)  (RMSD)
BLAST 8.953744 4.764597
SMK 7.290972  3.934283
deBrevern 8.076746  4.819178
2-level SOM 10.38624  5.217078

4. Discussion

In this paper, we propose a multi-strategy
approach to designing the structural alphabet
which alows local approximation of protein



3D structures as well as enables the
applications of 1D alignment algorithms to
search for 3D structura similarities. The
success of the aphabet design depends on
three crucia factors. Firgt, it is the protein
fragment representation, which determines
what and how 3D structural characteristics to
be approximated, eg. thermodynamic
stability, amino acid physicochemical
properties, amino acid usage in known
proteins, distances, dihedral angles, bond
lengths, bond angles, etc.

K

Figure 6(a). The superimposition in
wireframe format for the structures of each
structural cluster found by SMK.




Figure 6(b). The superimposition of the
structures of each structura cluster found by
SMK in the ball-and-stick form.

The effects of the representation selected are
entangled with the performance of the
learning approach we apply to develop the
structural alphabet. Overcomplicated
representations can sometimes lead to
overfitting. To avoid this problem, we
currently focus on the dihedral angles. Other
features can be easily included in the
representation if proved necessary.

The second factor is the size of the
alphabet. We took advantage of the SOM as a
visualization tool that helps determine the
alphabet size. By systematically varying the
number of map units on the map, we

visualized the clustering behavior of the SOM.

Our experiments showed a distinct plateau
corresponding to the convergent number of
clusters, compared with the increasing
number of clusters in the results of clustering
on the random negative control dataset. This
suggests that the structural alphabet size we
found is not arbitrary.

Various types of agorithms have been
applied to clustering local protein 3D

fragments into alimited set of fold patters, e.g.

self-organizing maps (SOM), hidden Markov
models (HMM), neura networks, hierarchical
clustering, k-means clustering, etc. Each has
its own learning bias and inherent limitations.
For example, the topology (e.g. number of
layers or map units) of neura networks, the
SOM and the HMM strongly affect the
performance. The value of k in k-means
agorithm determines the clusters. As a
consequence, the third factor is the learning
algorithm. In our study, we took a
multi-strategy approach. We first used the
SOM and the minimum-spanning tree
algorithm to determine the aphabet size, and
then applied the k-means algorithm to group
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fragments into meaningful clusters. The
number of map units in the SOM and the
value of k in k-means are not pre-specified in
advance, but instead determined
systematicaly. To verify the correspondence
of our structural alphabet letter to the fold
patterns, we computed the average
within-cluster distance for each aphabet
cluster as well as the distance across clusters.
The small average within-cluster distance and
the relatively large between-cluster distance
demonstrate the significance of the structural
aphabet we found. Furthermore, the
visualized superimposition of  protein
fragments in each cluster also justifies the
structural cohesiveness.

The objective of the paper is to propose a
new approach to developing the structural
alphabet. To verify its usefulness, we tested it
on the al-o proteins in SCOP, and the
experimental results show its promising
applicability. After the success on the al-a
proteins in SCOP, we plan to test our method
on different data banks to further verify its
feasibility and generality. Also as mentioned
above, the representation is a crucia factor in
the alphabet design. We will consider other
structural features besides dihedral angles,
add more useful features to enhance our
structural alphabet, and test the new approach
on other familiesin SCOP.
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