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Further Studies on Acoustic Modeling and Prosodic Modeling for
Mandarin Speech
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1. Abstract

This report presents the results of our studies on prosodic modeling for Mandarin speech
and the use of prosodic information in automatic speech recognition (ASR). In prosodic
modeling, we first propose a statistical pitch contour model to consider some major affecting
factors, and then extend the model to further incorporate with the inter-syllable coarticulation
and syntactic information. In the use of prosodic information in ASR, a new approach of using
temporal information to assist in Mandarin speech recognition is proposed. It incorporates two
types of temporal information into the recognition search. One is a statistical syllable duration
model which considers the influences of 411 base-syllables, 5 tones, 4 position-in-word factors,
and 3 position-in-sentence factors on syllable duration. Another is the timing information of
modeling three types of inter-syllable boundary including intra-word, inter-word without
punctuation mark (PM), and inter-word with PM. The uses of these two types of temporal
information are expected to be useful for improving the segmentation accuracies in both
acoustic decoding and linguistic decoding. Experimental results showed that the
base-syllable/character/word recognition rates were slightly improved for both MATBN and
Treebank database.

Keywords: Prosodic modeling, Inter-syllable coarticulation, Syntactic information, Automatic
speech recognition
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2. Introduction

The technologies of automatic speech recognition and text-to-speech have great progress
in recent years. But they are still not widely used in the market. Further studies are needed to
make them useful in practical applications. One topic discussed in this report is the study of the
dynamic variations of prosodic features for developing high-performance Mandarin
text-to-speech systems. Prosodic features to be considered include the fundamental frequency
contour, energy contour and duration information of syllable as well as the inter-syllable pause
duration. A speech database with syntactic tree labeling is used in this study. Prosodic
modeling to describe the relationship of prosodic feature variations and various linguistic
features will be exploited. Another topic discussed is the use of prosodic information in
automatic speech recognition. We initiate the study from the use of temporal information to
assist in Mandarin speech recognition.

The report is organized as follows. Section 3 presents the study of prosody modeling.
Section 4 discusses the study of using temporal information in Mandarin ASR. Section 5 gives
some conclusions. Section 6 lists the publications of the research.



3. Incorporating of Syntactic Information in Pitch Modeling for Mandarin
Speech

In this section, a statistics-based syntax-prosody model of FO for Mandarin speech is
reported. The model considers three major affecting factors on the syllable pitch contour,
including lexical tone, prosodic state and inter-syllable coarticulation effect. The study
emphasizes on the incorporation of information extracted from syntactic tree into the model. An
explicit relationship of the syntactic information and prosodic state is hence constructed.
Experimental results show that the model performed well. By examining the prosodic states
labeled automatically by the model, we found that most of them are syntactically meaningful.
So it is a promising FO model.

3.1 Introduction

Prosody modeling is to explore the information carrying on the prosodic features of
human’s speech. Many issues are concerned in prosody modeling. They include the labeling of
important prosodic cues [2], the construction of prosody hierarchy [3], the modeling of
syntax-prosody relationship [6], the prediction of prosodic phrase boundary (break) from text,
etc. It can be applied to many fields including speech recognition (SR) and text-to-speech (TTS)
[4]. In SR, important prosodic cues can be explored from the input utterance to assist in both
acoustic and linguistic decoding. In TTS, a good prosody model can be used to generate
appropriate prosodic features from the input text. Among all prosodic features in prosodic
modeling, FO is the most important one. This is especially true for Mandarin speech which is
known as a tonal language. In this paper, we are interested in syntax-prosody modeling to
exploit the relationship of FO contour and linguistic features for Mandarin speech.

In a previous study, a statistics-based pitch model of Mandarin speech which considers
three major affecting factors that influence the syllable pitch contour was discussed [1]. Those
three affecting factors were the lexical tone and the prosodic state of the current syllable, and
the inter-syllable coarticulation between two neighboring syllables. In that study, prosodic state
roughly represented the state of the current syllable in a prosodic phrase and was treated as
hidden. It was introduced to implicitly account all the effects of higher-level linguistic features
on affecting the pitch contour variation. In this paper, we extend the previous prosodic
modeling study to incorporate explicit syntactic information into the model to obtain a better
syntax-prosody model for FO.

3.2 The Proposed Pitch Model

The proposed syllable pitch contour model considers the following three major affecting
factors: lexical tone, prosodic state and inter-syllable coarticulation. The model is formulated
based on the assumption that all affecting factors are combined additively and can be expressed

by
_ f b
Xk,n - y"an +th,n +ka,n +Xck,n—]~tpk,n—l +Xck,n~tpk,n (1)

Where X¢n and Y¢n are vectors of four orthogonal expansion coefficients [4] representing,
respectively, the observed and normalized (i.e., residual) pitch contours of the n-th syllable in
utterance K; Aty , is the affecting pattern of tone Ut n €il,2,3,4,5}; xp, =~ is the affecting
pattern of prosodic state py,e{l2-,P}; Cn€il,2,--,C} is the coarticulation state of the

inter-syllable location between syllables n and n+1; tp, € {(LD,(12),--,(55)} is the tone

pair (t n»tk nt1) 5 xgk Pk is the forward affecting pattern of the tone pair tp,,; with



. . b . . .
coarticulation state Ck n—j ;xck ook, 18 the backward affecting pattern of the tone pair tpy

with coarticulation state Ck n . Fig. 1 displays the relationship of syllable pitch contours and
these affecting factors.

X:F'E:__l x,ﬂ';'::__:?—l XP'E:__:? xﬁ";‘j‘__:?—l ZPE‘-"\_"Z
Fig. 1: The relationship of syllable pitch contours and affecting factors used.

The normalized pitch shape Ykn is modeled as a Gaussian distribution N(yg n;p,R), or

equivalently x,, is modeled by

f b
N n+ + + + R
(xk,l’hu th’n ka,n xck,n—latpk,n—l xck,n’tpk,n s ) (2)

Here, both the prosodic state, representing the state in a prosodic phrase, and the coarticulation
state, representing the degree of coupling between two consecutive syllables, are treated as
hidden. To help determining them, two additional probabilistic models are introduced. One is the

coarticulation state model P(i | Ck,n) which describes the relationship of coarticulation state
ck.n and a set of acoustic/linguistic features iy , extracted from the vicinity of the inter-syllable
location following syllable n. Another is the prosodic state model P(sy , | py ;)  which describes

the relationship of the prosodic state P, , and a set of syntactic features Sy extracted from

the syntactic tree of the sentence containing syllable n.

In the current study, the model of Ck n involves three features and is expressed by

P(ik,n | Ck,n) = P(PQ<,n | %n)P(PMk,n

Gn)P(Wkn |G ) €)

where iy n = (PDy ., PMy 1. W, 1); PDxn and PMy n are, respectively, the pause duration
and punctuation mark following syllable n; and W, indicates whether the inter-syllable
location between syllables n and n+1 is an inter-word or intra-word.

The prosodic state model describes the relationship of p,, and some features representing

the role of the current syllable n in the syntactic tree [6]. In this study, 31 syntactic features
determined based on the contextual information of the syllable are chosen. They are categorized
according to the position of the current syllable in a word: beginning-of-word (BW), within-word



(WW), ending-of-word (EW), and single-syllable-word (SW). They are listed in Table 1. The
model is then expressed by

P(sin | Prn) =P(Skn =K [ Pepn) 4)
where SI; is a syntactic role of the current syllable.

Table 1: The syntactic roles used in the modeling of p, .

« within-word (WW)

- beginning-of-word (BW)
- end-of-word (EW)

- single-syllable-word (SW)

position in a word

type of the preceding - single-syllable- word (PSW)
phrase at the same level - 2 or 3-syllable word (PW23)
in the tree - 4 or more-syllable word (PW4)

- phrase boundary without PM (PPB)
- phrase boundary with PM (PPBPM)

type of the following - single-syllable- word (FSW)
phrase at the same level - 2 or 3-syllable word (FW23)
in the tree - 4 or more-syllable word (FW4)

- phrase boundary without PM (FPB)
- phrase boundary with PM (FPBPM)
sr; (PSW| PW23| PW4| PPB| PPBPM) BW
5 combinations
EW_(FSW| FW23| FW4| FPB| FPBPM)
5 combinations
(PSW| PW23| PW4| PPB| PPBPM) SW_(FSW]|
FW23|

FW4| FPB| FPBPM)
25 combinations
WW
1 combination

3.2.1 The training of the pitch model

To estimate the parameters of the model, a sequential optimization procedure based on the
ML criterion is adopted. It first defines a likelihood function expressed by

= log[P(x,s,i|p,c, 1)

K
=log [] P(xy.s¢.ix [Pk.ck.4)
k=1

5
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where 4 = {1,,4,,4.}; A = {Xt’Xp>ch,tpaX(I,t,XE’tp,XEH’t,}I,R} is the parameter set of the
syllable pitch model; A, and A, are, respectively, the parameter sets of the prosodic state
and coarticulation state models; K is the total number of utterances; and N, is the total

number of syllables in utterance k. Then, it sequentially updates the three types of affecting
factors (i.e., tone, prosodic state, and inter-syllable coarticulation), re-labeling the prosodic state
and updating prosodic state model, and re-labeling the coarticulation state and updating
coarticulation state model to optimize the likelihood function L. The procedure is iteratively
executed until a convergence has reached.

The sequential optimization training procedure executes the following steps iteratively. Each
step optimally updates a part of parameters.
Step 0: Initialization
o Derive the initial affecting patterns y, of five tones by averaging all FO contour samples

of each tone.
= Derive initial prosodic state patterns y, and label the prosodic state of each syllable by

VQ using the residues xiy , =x, -y, . Find the parameter set 2 of the prosodic
model.
= Derive initial coarticulation state patterns y, and label coarticulation state of each
inter-syllable location by VQ wusing the residues x2 , = X0t ~Kp, - Find the
parameter set A of the coarticulation model.
Step 1: Update the affecting patterns y, of five tones with all other parameters fixed.

Step 2: Re-label the prosodic state of all syllables by a Viterbi algorithm using the ML criterion
to maximize L, i.e.,
Pk.n =arg max{z Z 1ng(xk,n | Pk.n>Ck,n-1-Ck n> A)
Pkn k=1n=1 (6)

K Ny
+ Z Z 10gl:)(sk,n | pk,na/ip)}
k=1n=1

for 1<n< N,

and 1 < k < K . Update the affecting patterns % of P prosodic

states and the parameter set A, of the prosodic model.

p

Step 3: Re-label the coarticulation state of all syllables by a Viterbi algorithm using the ML
criterion to maximize L, i.e.,

Ck,15Ch,2>" " Ck, Ny =argmax2{
Ck,n n=l
. f b
logN (Xk’n ’u+th,n +ka,n +Xck n-1>tPk,n-1 +xck,n’tpk,n R) (7)

+logP(PDy , [Cy ) +1og P(PMy , [Cy ) +1og P(IW, [ 1)}

for 1 < k < K . Update the coarticulation state patterns %, of C coarticulation states

and the parameter set A. of the coarticulation model.

C



3.3 Experimental Results

Performance of the proposed pitch modeling method was evaluated using a Mandarin
speech database. The database contained the read speech of a single female professional
announcer. Its texts were all short paragraphs composed of several sentences selected from the
Sinica Tree-Bank Corpus [5]. The database consisted of 380 utterances with 52192 syllables.

In the simulation, we set the numbers of prosodic states and coarticulation states to be 16
and 8, respectively. After well training, the covariance matrices of the original and normalized
syllable FO were

2869 -78 —142 53 27 26 18 -81
|78 3 27 48 |26 4 023 075
*|-142 27 68 66 18 023 22 135

53 48 —66 63 81 075 135 25
IR |=3.47x10’ R |=539x10°

The variances had been reduced significantly by applying the model. This was especially true
for the pitch mean. Fig.2 displays the patterns of five tones. They matched very well with our
knowledge of standard tone patterns.
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Fig.2: The affecting patterns and their FO mean values of five tones.

Fig. 3 shows the affecting patterns of 16 prosodic states. As shown in the figure, States 2,
3 and 4 have low and flat patterns and hence tend to be located at the trail of a prosodic phrase
(because of the declination effect of F0). High probabilities of P(EW _FPB|p) and
P(EW_FPBPM | p) for p=2, 3 and 4, observed from the prosodic state model, also confirm that
they appear at the ending boundary of syntactic phrase and sentence very often. Moreover, high
transition probabilities of 2-2, 2-3, 3-2, 3-3, 4-3 and 4-4 observed from the state transition table
show that the low and flat trail pattern of prosodic phrase (see Fig.4(c)) is common to appear.
On the other hand, States 15, 14 and 12 have high and rising-falling patterns and hence tend to
be located at the beginning of a prosodic phrase (to show the reset phenomenon). This finding
can be further confirmed by the high probabilities of P(PPB_BW |p) and P(PPBPM _BW | p)
for p=15, 14 and 12 which show that they appear at the beginning boundary of syntactic phrase
and sentence very often. Moreover, high transition probabilities of 15-10, 15-9, 15-13, 14-10,
14-9, 14-7, 12-9 and 12-7 show that the rising-falling reset pattern (see Fig.4(a) and (b)) of
prosodic phrase is common to appear. Typical examples are displayed in Fig.4.
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Prosodicstite [ 16 [[ 15[ 14 [J13[[12 [T 1 [10[T9 T8 [ 7] 6]]
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Fig.3: The affecting patterns and their FO mean values of 16 prosodic states.
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Fig. 4: Typical examples: (a) State pair 15-9 at the beginning of sentence, (b) 14-9 at the
beginning of phrase, and (c) 4-3-3 at the end of sentence.

Fig. 5 shows the probabilities of prosodic state given syllables before and after comma and
period, i.e., P(p|PPBPM_BW) and P(p|EW_FPBPM). It can be found from the figure that States 8,
11, 12, 14 and 15 were located at the beginning of sentence while States 2, 3, 4 and 5 were at
the end of sentence. Fig.6 displays the autocorrelations of the means of the original syllable FO
and the prosodic-state affecting patterns. With the excluding of the local affections of tone and
inter-syllable coarticulation, the prosodic-state affecting patterns shows higher autocorrelation.

Table 2 shows some statistics of eight coarticulation states. It can be found from the table
that the first two states have higher hit rates to PM (comma and period) and have longer pause.
So they correspond to major and minor breaks with no- or loosely-coupling coarticulation. On
the other hand, the last four states have higher probabilities of intra-word and shorter pause
durations. So they correspond to states of tightly-coupling coarticulation.

0.3
0.25
0.2
0.15
0.1
0.05
0

rp1 3 5 7 9 11 13 15

O P@p/PPBPM_BW)
B P(p/EW_FPBPM)

Fig. 5: The distributions of prosodic states at the beginning and end of sentences.
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Fig. 6: The autocorrelations of the means of the original syllable pitch and the prosodic-state
affecting patterns.

Table 2: Some statistics of eight coarticulation states.

Cy 1 2 3 4 5 6 7 8
P(inter| C,) 0.8510.7210.70 | 0.67 | 0.48 | 0.38 | 0.32 | 0.35
P(intra| C,) 0.1510.28 1 0.31 10.33 1 0.52 | 0.62 | 0.68 | 0.65
P(comma| C,) 0.3210.07 | 0.04 | 0.04 | 0.02 | 0.03 | 0.02 | 0.02
P(period| C,) 0.09 10.02 | 0.01 | 0.02 | 0.01 | 0.01 | 0.00 | 0.01
P(non-PM | C,) 0.58 10.90 | 0.9510.94 | 0.97 | 0.97 | 0.98 | 0.98
Average Pause duration (ms) 225 76 | 48 | 48 | 28 | 23 | 23 | 23

Fig.7 displays a typical example of the reconstruction of 3-3 tone pattern. It can be seen
from the figure that the second Tone 3, which had been changed to a sandhi Tone 2, was
well-reconstructed via the use of coaticulation affecting pattern. Fig.8 displays a typical
example of the reconstructed pitch contour and prosodic-state patterns of a sentence. It can be
found from the figure that the reconstructed pitch contour matched its original counterpart well.
We also found that the trajectory of the prosodic-state patterns was smoother and looked more
resemble to a sequence of prosodic-word/phrase patterns. Moreover, a typical prosodic state
pair of 15-13 (3-3) was appear at the beginning (end) of the sentence.

£ "~ [fal " [biao3 [yan3 [jiang3 |
400 - | B F] | E | B ’
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100 |
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S2L [fa1 | biao3 ['yan3 I jilang3 T
400 [ lez | = | = e :
H=z 300 Ck.n a 2 T

200
100

2260 2280 2300 2320 2340 2360
Frame

Fig. 7: A typical examples of the reconstructed 3-3 tone patterns: (a) without and (b) with using
coarticulation affecting patterns.
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Fig. 8: A typical example: (a) the syntactic tree of a sentence and (b) the original (—) and
reconstructed (---) pitch contours, and mean+prosodic-state patterns (xxx).

3.4 Conclusions

A new statistics-based syntax-prosody model of syllable FO contour for Mandarin speech
was discussed in this paper. Experimental results showed that the model performed well. Many
prosodic cues which are syntactically meaningful can be found by the model. With the
construction of explicit relationship of syntactic information and prosodic features, the model
can be applied to assist in both ASR and TTS to improve their performances.



4. The Use of Temporal Information in Mandarin Speech Recognition

In this section, a new approach of using temporal information to assist in Mandarin speech
recognition is discussed. It incorporates two types of temporal information into the recognition
search. One is a statistical syllable duration model which considers the influences of 411
base-syllables, 5 tones, 4 position-in-word factors, and 3 position-in-sentence factors on
syllable duration. Another is the timing information of modeling three types of inter-syllable
boundary including intra-word, inter-word without punctuation mark (PM), and inter-word with
PM. The uses of these two types of temporal information are expected to be useful for
improving the segmentation accuracies in both acoustic decoding and linguistic decoding.
Experimental results showed that the base-syllable/character/word recognition rates were
slightly improved for both MATBN and Treebank database.

4.1 Introduction

A real-world speech signal always contains rich temporal information ranging from
lower-level information, such as phone/syllable/word duration, to higher-level rhythmic
information, such as the final-syllable lengthening of prosodic phrase [8]. The temporal
information is known to be very helpful for human beings to understand the speech more easily.
However, in automatic speech recognition (ASR), the use of temporal information is still
primitive. The most basic approach is to incorporate explicit state/phone/syllable duration
models or durational constraints into the recognition search for improving the recognition
accuracy [9-11]. Another approach is to invoke an embedded phone/syllable/word segmentation
in the recognition search process to provide additional acoustic cues to assist in the recognition
[12]. But, in all those studies only lower-level durational information, such as HMM state
duration or syllable/word duration, was used. No higher-level temporal information was used.

In this paper, a preliminary study of more sophisticatedly using temporal information to
improve the ASR for Mandarin speech is discussed. It first extends the conventional
base-syllable duration model to consider the influences of three additional affecting factors
including tone, position-in-word, and position-in-sentence. With this extension, some
higher-level temporal information is invoked in the recognition search. Secondly, it
incorporates explicit timing information into the recognition search via constructing models for
three types of inter-syllable boundary. These three types of inter-syllable boundary include
intra-word, inter-word without punctuation mark (PM), and inter-word with PM. The timing
information is expected to be helpful on the segmentation of correct word sequence in the
recognition search.

4.2 The Proposed Approach
We consider the criterion of speech recognition

W, Y =argmax pW, Y|Xo. XL Aq AL A Ay
WY
:argrvrvle’l;( p(Xs,Xp,W,Y|Aa,At,Ad ) (8)

:argl\}vla;‘( p(xs 9Xp hNaYaAa nAt aAd =A| ) p(W =Y|Aa aA{ 9Ad 3A| )

where W is a word sequence candidate which is composed of words and PMs; v is a

segmentation candidate which is composed of an HMM state sequence @, and classes of

inter-syllable boundaries Y, ; A,. A, A, and A, denote respectively base-syllable (initial/final)
acoustic model (AM), tone model (TM), syllable duration model (DM) and language model



(LM); and X, andX, represent the spectral feature vector sequence and the prosodic feature

vector sequence of the input utterance, respectively. In this study, we consider three classes of
inter-syllable boundary including intra-word, inter-word without major PM and inter-word with
major PM. Here, only major PMs belongingto {~,>,°,;,:,?, ! } are considered. We denote
them as Intra, Inter and Inter-PM, respectively. The first term in Eq.(8) is generally known as
the score of acoustic decoding and the second one is the score of segmentation and language
decoding.

The score of acoustic modeling can be further simplified and expressed by
(X, X, W, Y, AL AL AG LAY
~ P(Xg, Xy WL Y, AL A
= PXg WL, A, AL X )POX ) WL T AL AY) ©)

~ P(Xg WY, Ag. X )P(X ) W, LA
Here, we assume that LM A, and DM A, are independent of the acoustic decoding. In Eq.(9),

the first term is the score of HMM acoustic modeling using spectral features and the second
term is the score of prosodic feature decoding. In the current study, we consider 411

base-syllables as the basic acoustic recognition units to further simplify p(Xx, |W,Y, Agr X)) as
P(X,|S, ®ge-A,), Where S is the base-syllable sequence associated with the candidate word

sequence W and o is a candidate of HMM state sequence associated with S.

state

The score of prosodic feature decoding can be further simplified and separated into two
terms

(X, W, T, A))

(10)
= P(X, Xp WL YL A = p(X, [T, A POX, | Yy)

where X, =(X;,X,); X, is the prosodic features for tone recognition; X, is the prosodic
features for inter-syllable boundary classification; p(X,|T,A,) is the score of tone decoding; T
is the tone sequence associated with W; p(x,|x,) is the score of inter-syllable boundary
classification. In this study, X, consists of 18 parameters including 9 parameters representing,

respectively, FO means, FO slopes, and energy means of three uniformly-segmented pitch
contour segments of the current syllable; 3 parameters of the last pitch contour segment of the
preceding syllable; 3 parameters of the first pitch contour segment of the succeeding syllable; 2
representing pause durations preceding and following the current syllable; and one representing
the duration of the current syllable. And X, consists of the pause duration, the pitch mean and

energy level jumps of the preceding and succeeding syllables, and the lengthening factor of the
preceding syllable. Here, both p(X,|T,A,) and p(X,|r,) are implemented by the neural

network-based approach. In each case, a three-layer MLP (multi-layer perceptrons) is employed
to generate output discrimination functions for all its classes. We can use these output
discrimination functions to perform classification by choosing the class with maximum output
as the recognized one. This can check the effectiveness of the MLP classifier. For this
application, we transform them into the likelihood scores by



P(Class i|X)
D P(Class k| X) (1n
k

P(X |Class i) =

The score of segmentation and language decoding, which is the second term of Eq.(8),
can also be further simplified and expressed by

POW, YAy, A Ay L A))
~ POCW, Ay A POW Ay A (12)

= p(Xg W, A PW|A)

where p(x,|W,A,) is the score of syllable duration modeling, X, is the syllable duration
sequence derived from the segmentation informationy, and pw|A,) is the score of language
decoding. Here, we assume that both acoustic model A, and tone model A, are independent
of the segmentation and language decoding. In this study, a word-bigram model 4, is used.
The syllable duration model adopted is a simple multiplicative model [9] which involves

4 major affecting factors including base-syllable, tone, position-in-word, and
position-in-sentence. In the model, the observed duration of syllable n is expressed by

Xd[n]:Zd [n] 7/5yn]/tnj/wpn7/spn (13)

where z,[n] is the normalized (or residue) syllable duration and is modeled by a normal
distribution N (4,»2) with mean 5 and variance »°; »s are affecting factors; sy, t,. wp,
and sp, represent, respectively, the base-syllable, tone, word position, and sentence position of

syllable n. In the study, we consider 411 base-syllables, 5 tones, 4 types of position-in-word,
and 3 types of position-in-sentence. The 4 types of position-in-word are mono-syllabic word,
and the beginning, intermediate and ending syllables of a word. The 3 types of
position-in-sentence are the beginning, intermediate and ending syllables of a sentence which is
ended with a major PM.

An iterative sequential optimization procedure is employed to train the syllable duration
model. It first initializes the training by estimating all affecting factors independently, i.e.,

> X418 (7, 7)

. N (14)
u ; 6(Vn>7)
for y = ygy s 7> Ywp,» OF 7sp, >
ZN: Xqln]
o Y sy, Ve, Vwp, Y sp, (15)

N

and



N XN
3 ( AL R
0'2 _ n=1 ysynytnywpn}/SPn R (16)

N

where §(.,-) 1s the Kronecker delta function and N is the total number of training syllables. It

then sequentially estimate the four types of affecting factors and Yep, »

> ]/Syn’ 7tn> }/an
one-by-one based on the ML (maximum likelihood) criterion with objective function

L :ilog f(X,[n]) (17)

where

f(X,In]) = N(——lt

Vsyn? 4,7 wp, 7 sp,

s 1,07) (18)

u# and o are also updated using Eqgs.(15) and (16), respectively. The sequential
optimization step is iteratively executed until a convergence is reached.

To reduce the computational complexity, a two-stage recognition search is adopted in this
study. In the first stage, a word-lattice which consists of top-10 candidate words is constructed
by using only the acoustic model A, and the word-bigram LM 4, . Then, in the second stage

the best word sequence is determined from the word-lattice by using the criterion shown in
Eq.(8). The two-stage recognition search is realized using the HTK toolkit [14].

4.3 Experimental Results

Performance of the proposed approach was examined by simulations using two databases.
One was the Anchor set of MATBN (Mandarin Chinese Broadcast News Corpus) [13]. It was
uttered by 4 anchors in fast speaking styles and is composed of 175,194 training syllables and
14,906 testing syllables. The acoustic models consisted of 100 3-state right-final-dependent
(RFD) Initial HMM models, 40 5-state context-independent (CI) Final models, 19 3-state
Particle models, one 3-state Breath model, one 3-state Silence model, one 1-state Short Pause
model (tied with the middle state of Silence model), and 3 3-state Garbage models. Another
database was the read-speech database of Sinica Treebank [6]. It was uttered by a single female
announcer in a normal speed. It was composed of 380 utterances with 52,192 syllables. The
acoustic models consisted of 100 RFD Initial models and 40 CI Final models.

For LM, a general bigram LM was first trained using the following three corpora: (1)
Sinorama: a news magazine with 9.87 million words; (2) NTCIR: an IR test bench consisting of
several domain with 124.4 million words; and (3) Sinica Corpus: general text corpus collected
for the language analysis with 4.8 million words. Here a 60,000-word lexicon was used. For the
recognition of MATBN, the general LM was adapted using the texts of MATBN which was
composed of 1.31 million words with 23,314 particles and 90,052 breathes.

We first examined the syllable duration model. Table 2 shows some affecting factors (AF)
for the two databases. They include: (1) mono-syllabic word (MW), and the beginning (BW),
intermediate (IW) and ending syllables (EW) of a word for position-in-word; (2) 5 tones; and (3)
the beginning (BS), intermediate (IS) and ending syllables (ES) of a sentence for
position-in-sentence. It can be found from the table that IW in position-in-word, Tone 5, and
BS in position-in-sentence are much shorter; while ES in position-in-sentence is very long.



Table 2: Some affecting factors (AF) of the syllable duration model for the two databases.

AF Position-in-word Position-in-sentence
Database MW | BW | IW | EW BS IS ES
MATBN |\ 1 05 | 097 | 084 | 102 | 085 0.98 1.34
anchor
Sinica 1.05 | 096 | 088 | 1.03 0.90 0.99 1.20
Treebank

Tone
Tl T2 T3 T4 TS5
MATBN 1.01 1.05 0.98 1.02 0.73
anchor
Sinica
Tooba 1.03 1.07 1.00 1.02 0.72

We then examined the performances of the MLP tone classifier (see Table 3) and MLP
inter-syllable boundary classifier (see Table 4). It can be found from Table 3 that tone
recognition rates of 75.1 and 85% were achieved for MATBN and Treebank, respectively. Both
Tone 1 and Tone 4 were easier to be recognized while Tone 3 and Tone 5 were not. It can also
be found from Table 4 that accuracy rates of 58.8% and 69.1% were achieved in the
inter-syllable boundary classifications for MATBN and Treebank databases, respectively. The
class of inter-word with PM was easier to be correctly detected.

Table 3: Performance of the tone recognizers. (unit: %)

T1 | T2 | T3 | T4 | TS5 | average
MATBN Anchor 77.7 1743|663 |83.4|42.0| 75.1
Sinica Treebank 88.0184.4|70.8|192.6|749 &85.0

Table 4: Experimental results of the inter-syllable boundary recognizer. (unit: %)

Intr | Inte | Inter-P | average

a r M
MATBN Anchor | 51.0 | 64.0 70.6 58.8
Sinica Treebank | 78.8 | 57.3 81.9 69.1

Lastly, we examined the performance of the proposed method of using temporal
information in Mandarin speech recognition. Table 5 displays the experimental results. It can
be found from Table 5 that the baseline system which used the acoustic and language models,

A, and A, performs well. Base-syllable/character/word recognition rates were

93.49/91.04/86.29 and 94.01/84.99/75.43 for the MATBN anchor and Sinica Treebank
databases, respectively. It is noted that both character and word recognition rates for Treebank
were relatively low as compared with those of MATBN because Treebank contained much
more proper nouns and DM compound words which were treated as individual characters rather
than words. The performances were slightly improved as we incorporated the tone recognizer.
The performances were further improved for the proposed method as we used the temporal
information in the recognition search.



Table 5: The experimental results of the proposed method for Mandarin ASR. (unit: %)

Syllable Character Word
Recognition. Recognition. Recog.
rate rate rate
Baseline 93.49 91.04 86.29
Baseline
MATBN | he 93.59 91.15 86.51
Anchor
recogn.
Proposed 93.66 91.23 86.62
Baseline 94.01 84.99 75.43
Sinica Baseline
L +tone 93.89 85.21 75.73
reebank
recogn.
Proposed 94.0 85.55 75.93

4.4 Conclusions

A new approach of using a statistical syllable duration model and an inter-syllable
boundary model to assist in Mandarin ASR has been discussed in this paper. Experimental
results showed that it slightly outperformed the baseline system. Further studies include an
analysis of its effectiveness on different type of pronunciation conditions, the use of more

sophisticated temporal models, and so on.

5. Conclusions

We have proposed a new approach to prosody modeling for Mandarin speech in this
project. It employs a statistical model to describe the variation of prosodic features including
syllable duration and syllable pitch contour. The model first considers some major affecting
factors and then incorporates with inter-syllable coarticulation and syntactic information.
Experimental results have confirmed that the proposed approach performed well for the
modeling of syllable duration and pitch contour. The prosody model can be applied to prosody
labeling, text-to-speech, tone recognition, and speech recognition. A preliminary study of
applying the syllable duration model to speech recognition has been conducted. It uses the
syllable duration model to provide constraints for assisting in the recognition search.

Experimental results have confirmed its effectiveness.
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