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1. Abstract  
 
This report presents the results of our studies on prosodic modeling for Mandarin speech 

and the use of prosodic information in automatic speech recognition (ASR). In prosodic 
modeling, we first propose a statistical pitch contour model to consider some major affecting 
factors, and then extend the model to further incorporate with the inter-syllable coarticulation 
and syntactic information. In the use of prosodic information in ASR, a new approach of using 
temporal information to assist in Mandarin speech recognition is proposed. It incorporates two 
types of temporal information into the recognition search. One is a statistical syllable duration 
model which considers the influences of 411 base-syllables, 5 tones, 4 position-in-word factors, 
and 3 position-in-sentence factors on syllable duration. Another is the timing information of 
modeling three types of inter-syllable boundary including intra-word, inter-word without 
punctuation mark (PM), and inter-word with PM. The uses of these two types of temporal 
information are expected to be useful for improving the segmentation accuracies in both 
acoustic decoding and linguistic decoding. Experimental results showed that the 
base-syllable/character/word recognition rates were slightly improved for both MATBN and 
Treebank database. 
Keywords: Prosodic modeling, Inter-syllable coarticulation, Syntactic information, Automatic 
speech recognition 

 

本報告探討中文語音訊號之韻律參數模式及使用韻律信息於語音辨認，在韻律參數

模式方面，我們提出一個音節基頻軌跡統計模式，考慮了一些主要影響基頻軌跡變化之

因素，以及將音節間的互相影響及語法信息加入模式中。在使用韻律信息於語音辨認方

面，我們提出一個使用兩種時間信息來幫助語音辨認的新作法，第一種時間信息是音節

長度，將一些主要影響音節長度變化之因素考慮進來，用以協助規範語音辨認之搜尋；

另一種時間信息是音節邊界長度信息，考慮句首中尾、詞首中尾、標點符號處之音節邊

界停頓長度變化，用以協助規範語音辨認。 

關鍵詞：韻律軌跡模型、音節互連、語法信息、語音辨認 

 
 



 

2. Introduction 
The technologies of automatic speech recognition and text-to-speech have great progress 

in recent years. But they are still not widely used in the market. Further studies are needed to 
make them useful in practical applications. One topic discussed in this report is the study of the 
dynamic variations of prosodic features for developing high-performance Mandarin 
text-to-speech systems. Prosodic features to be considered include the fundamental frequency 
contour, energy contour and duration information of syllable as well as the inter-syllable pause 
duration. A speech database with syntactic tree labeling is used in this study. Prosodic 
modeling to describe the relationship of prosodic feature variations and various linguistic 
features will be exploited. Another topic discussed is the use of prosodic information in 
automatic speech recognition. We initiate the study from the use of temporal information to 
assist in Mandarin speech recognition.  

The report is organized as follows. Section 3 presents the study of prosody modeling. 
Section 4 discusses the study of using temporal information in Mandarin ASR. Section 5 gives 
some conclusions. Section 6 lists the publications of the research. 

 



 

3. Incorporating of Syntactic Information in Pitch Modeling for Mandarin 
Speech 
In this section, a statistics-based syntax-prosody model of F0 for Mandarin speech is 

reported. The model considers three major affecting factors on the syllable pitch contour, 
including lexical tone, prosodic state and inter-syllable coarticulation effect. The study 
emphasizes on the incorporation of information extracted from syntactic tree into the model. An 
explicit relationship of the syntactic information and prosodic state is hence constructed. 
Experimental results show that the model performed well. By examining the prosodic states 
labeled automatically by the model, we found that most of them are syntactically meaningful. 
So it is a promising F0 model. 

3.1 Introduction 
Prosody modeling is to explore the information carrying on the prosodic features of 

human’s speech. Many issues are concerned in prosody modeling. They include the labeling of 
important prosodic cues [2], the construction of prosody hierarchy [3], the modeling of 
syntax-prosody relationship [6], the prediction of prosodic phrase boundary (break) from text, 
etc. It can be applied to many fields including speech recognition (SR) and text-to-speech (TTS) 
[4]. In SR, important prosodic cues can be explored from the input utterance to assist in both 
acoustic and linguistic decoding. In TTS, a good prosody model can be used to generate 
appropriate prosodic features from the input text. Among all prosodic features in prosodic 
modeling, F0 is the most important one. This is especially true for Mandarin speech which is 
known as a tonal language. In this paper, we are interested in syntax-prosody modeling to 
exploit the relationship of F0 contour and linguistic features for Mandarin speech. 

In a previous study, a statistics-based pitch model of Mandarin speech which considers 
three major affecting factors that influence the syllable pitch contour was discussed [1]. Those 
three affecting factors were the lexical tone and the prosodic state of the current syllable, and 
the inter-syllable coarticulation between two neighboring syllables. In that study, prosodic state 
roughly represented the state of the current syllable in a prosodic phrase and was treated as 
hidden. It was introduced to implicitly account all the effects of higher-level linguistic features 
on affecting the pitch contour variation. In this paper, we extend the previous prosodic 
modeling study to incorporate explicit syntactic information into the model to obtain a better 
syntax-prosody model for F0. 
3.2 The Proposed Pitch Model 

The proposed syllable pitch contour model considers the following three major affecting 
factors: lexical tone, prosodic state and inter-syllable coarticulation. The model is formulated 
based on the assumption that all affecting factors are combined additively and can be expressed 
by  

, , , 1 , 1 , ,, , , ,k n k n k n k n k n k n

f b
k n k n t p c tp c tp− −
= + + + +x y χ χ χ χ             (1) 

Where ,k nx  and ,k ny  are vectors of four orthogonal expansion coefficients [4] representing, 
respectively, the observed and normalized  (i.e., residual) pitch contours of the n-th syllable in 
utterance k; ,k ntχ  is the affecting pattern of tone , {1,2,3,4,5}k nt ∈ ; ,k npχ  is the affecting 
pattern of prosodic state , {1,2, , }k np P∈ ; , {1,2, , }k nc C∈  is the coarticulation state of the 
inter-syllable location between syllables n and n+1; , {(1,1),(1,2), , (5,5)}k ntp ∈  is the tone 

pair , , 1( , )k n k nt t + ; 
, 1 , 1,k n k n

f
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χ  is the forward affecting pattern of the tone pair , 1k ntp −  with 



 

coarticulation state , 1k nc − ;
, ,,k n k n

b
c tpχ  is the backward affecting pattern of the tone pair ,k ntp  

with coarticulation state ,k nc . Fig. 1 displays the relationship of syllable pitch contours and 
these affecting factors. 

 

 
Fig. 1: The relationship of syllable pitch contours and affecting factors used. 

 

The normalized pitch shape ,k ny  is modeled as a Gaussian distribution ,( ; , )k nN y µ R , or 
equivalently  ,k nx  is modeled by  

, , , 1 , 1 , ,, , ,( ; , )k n k n k n k n k n k n
f b

k n t p c tp c tpN
− −

+ + + +x µ χ χ χ χ R         (2) 

Here, both the prosodic state, representing the state in a prosodic phrase, and the coarticulation 
state, representing the degree of coupling between two consecutive syllables, are treated as 
hidden. To help determining them, two additional probabilistic models are introduced. One is the 
coarticulation state model ,( , | )k nP ck ni  which describes the relationship of coarticulation state 

,k nc  and a set of acoustic/linguistic features ,k ni  extracted from the vicinity of the inter-syllable 

location following syllable n. Another is the prosodic state model , ,( | )k n k nP s p   which describes 

the relationship of the prosodic state ,k np  and a set of syntactic features ,k ns  extracted from 
the syntactic tree of the sentence containing syllable n.  

In the current study, the model of ,k nc  involves three features and is expressed by  

, , , , , , , ,( | ) ( | ) ( | ) ( | )k n k n k n k n k n k n k n k nP c P PD c P PM c P IW c=i     (3) 

where , , , ,( , , )k n k n k n k nPD PM IW=i ; ,k nPD  and ,k nPM  are, respectively, the pause duration 
and punctuation mark following syllable n; and ,k nIW  indicates whether the inter-syllable 

location between syllables n and n+1 is an inter-word or intra-word. 
The prosodic state model describes the relationship of ,k np  and some features representing 

the role of the current syllable n in the syntactic tree [6]. In this study, 31 syntactic features 
determined based on the contextual information of the syllable are chosen. They are categorized 
according to the position of the current syllable in a word: beginning-of-word (BW), within-word 



 

(WW), ending-of-word (EW), and single-syllable-word (SW). They are listed in Table 1. The 
model is then expressed by 

, , , ,( | ) ( | )k n k n k n i k nP p P sr p= =s s            (4) 

where isr  is a syntactic role of the current syllable. 

Table 1: The syntactic roles used in the modeling of ,k np . 

position in a word ‧ within-word (WW) 
‧ beginning-of-word (BW) 
‧ end-of-word (EW)  
‧ single-syllable-word (SW) 

type of the preceding 
phrase at the same level 
in the tree 

‧ single-syllable- word (PSW) 
‧ 2 or 3-syllable word (PW23) 
‧ 4 or more-syllable word (PW4) 
‧ phrase boundary without PM (PPB) 
‧ phrase boundary with PM (PPBPM) 

type of the following 
phrase at the same level 
in the tree 

‧ single-syllable- word (FSW) 
‧ 2 or 3-syllable word (FW23) 
‧ 4 or more-syllable word (FW4) 
‧ phrase boundary without PM (FPB) 
‧ phrase boundary with PM (FPBPM) 
(PSW| PW23| PW4| PPB| PPBPM)_BW 
5 combinations 
EW_(FSW| FW23| FW4| FPB| FPBPM) 
5 combinations 
(PSW| PW23| PW4| PPB| PPBPM)_SW_(FSW| 
FW23| 

FW4| FPB| FPBPM) 
25 combinations 

isr  

WW  
1 combination 

 

3.2.1 The training of the pitch model 

To estimate the parameters of the model, a sequential optimization procedure based on the 
ML criterion is adopted. It first defines a likelihood function expressed by 
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where { , , }λ λ λ λ= x p c ; , , 1,0,{ , , , , , , , }f f b b

t p c tp c tp C ttλ +=x χ χ χ χ χ χ µ R  is the parameter set of the 
syllable pitch model;  λ p  and λ c  are, respectively, the parameter sets of the prosodic state 
and coarticulation state models; K is the total number of utterances; and kN  is the total 
number of syllables in utterance k. Then, it sequentially updates the three types of affecting 
factors (i.e., tone, prosodic state, and inter-syllable coarticulation), re-labeling the prosodic state 
and updating prosodic state model, and re-labeling the coarticulation state and updating 
coarticulation state model to optimize the likelihood function L. The procedure is iteratively 
executed until a convergence has reached. 

The sequential optimization training procedure executes the following steps iteratively. Each 
step optimally updates a part of parameters. 
Step 0: Initialization 

 Derive the initial affecting patterns tχ  of five tones by averaging all F0 contour samples 
of each tone. 

 Derive initial prosodic state patterns pχ  and label the prosodic state of each syllable by 
VQ using the residues 

,, ,1
k nk n k n t= −x x χ . Find the parameter set pλ  of the prosodic 

model. 
 Derive initial coarticulation state patterns cχ  and label coarticulation state of each 

inter-syllable location by VQ using the residues 
, ,, ,2

k n k nk n k n t p= − −x x χ χ . Find the 

parameter set λc  of the coarticulation model. 
Step 1: Update the affecting patterns tχ  of five tones with all other parameters fixed. 
Step 2: Re-label the prosodic state of all syllables by a Viterbi algorithm using the ML criterion 

to maximize L, i.e., 
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for 1 kn N≤ ≤  and 1 k K≤ ≤ . Update the affecting patterns pχ  of P prosodic 
states and the parameter set pλ  of the prosodic model. 

Step 3: Re-label the coarticulation state of all syllables by a Viterbi algorithm using the ML 
criterion to maximize L, i.e., 

, , , ,, 1 , 1
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for 1 k K≤ ≤ . Update the coarticulation state patterns cχ  of C coarticulation states 
and the parameter set cλ  of the coarticulation model. 
 



 

3.3  Experimental Results 

Performance of the proposed pitch modeling method was evaluated using a Mandarin 
speech database. The database contained the read speech of a single female professional 
announcer. Its texts were all short paragraphs composed of several sentences selected from the 
Sinica Tree-Bank Corpus [5]. The database consisted of 380 utterances with 52192 syllables. 

In the simulation, we set the numbers of prosodic states and coarticulation states to be 16 
and 8, respectively. After well training, the covariance matrices of the original and normalized 
syllable F0 were 
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The variances had been reduced significantly by applying the model. This was especially true 
for the pitch mean. Fig.2 displays the patterns of five tones. They matched very well with our 
knowledge of standard tone patterns. 

 
Fig.2: The affecting patterns and their F0 mean values of five tones. 

Fig. 3 shows the affecting patterns of 16 prosodic states. As shown in the figure, States 2, 
3 and 4 have low and flat patterns and hence tend to be located at the trail of a prosodic phrase 
(because of the declination effect of F0). High probabilities of ( _ | )P EW FPB p  and 

( _ | )P EW FPBPM p  for p=2, 3 and 4, observed from the prosodic state model, also confirm that 
they appear at the ending boundary of syntactic phrase and sentence very often. Moreover, high 
transition probabilities of 2-2, 2-3, 3-2, 3-3, 4-3 and 4-4 observed from the state transition table 
show that the low and flat trail pattern of prosodic phrase (see Fig.4(c)) is common to appear. 
On the other hand, States 15, 14 and 12 have high and rising-falling patterns and hence tend to 
be located at the beginning of a prosodic phrase (to show the reset phenomenon). This finding 
can be further confirmed by the high probabilities of ( _ | )P PPB BW p  and ( _ | )P PPBPM BW p  
for p=15, 14 and 12 which show that they appear at the beginning boundary of syntactic phrase 
and sentence very often. Moreover, high transition probabilities of 15-10, 15-9, 15-13, 14-10, 
14-9, 14-7, 12-9 and 12-7 show that the rising-falling reset pattern (see Fig.4(a) and (b)) of 
prosodic phrase is common to appear. Typical examples are displayed in Fig.4. 

 

 



 

Fig.3: The affecting patterns and their F0 mean values of 16 prosodic states. 

 
(a) 

 
(b) 

 
(c) 

Fig. 4: Typical examples: (a) State pair 15-9 at the beginning of sentence, (b) 14-9 at the 
beginning of phrase, and (c) 4-3-3 at the end of sentence. 

Fig. 5 shows the probabilities of prosodic state given syllables before and after comma and 
period, i.e., ( | _ )P p PPBPM BW  and ( | _ )P p EW FPBPM . It can be found from the figure that States 8, 
11, 12, 14 and 15 were located at the beginning of sentence while States 2, 3, 4 and 5 were at 
the end of sentence. Fig.6 displays the autocorrelations of the means of the original syllable F0 
and the prosodic-state affecting patterns. With the excluding of the local affections of tone and 
inter-syllable coarticulation, the prosodic-state affecting patterns shows higher autocorrelation. 

Table 2 shows some statistics of eight coarticulation states. It can be found from the table 
that the first two states have higher hit rates to PM (comma and period) and have longer pause. 
So they correspond to major and minor breaks with no- or loosely-coupling coarticulation. On 
the other hand, the last four states have higher probabilities of intra-word and shorter pause 
durations. So they correspond to states of tightly-coupling coarticulation.  

 

0
0.05
0.1

0.15
0.2

0.25
0.3

1 3 5 7 9 11 13 15p

P(p|PPBPM_BW)

P(p|EW_FPBPM)

 
Fig. 5: The distributions of prosodic states at the beginning and end of sentences. 

 



 

 
Fig. 6: The autocorrelations of the means of the original syllable pitch and the prosodic-state 

affecting patterns. 
 

Table 2: Some statistics of eight coarticulation states. 

Cn 1 2 3 4 5 6 7 8 
P(inter| Cn) 0.85 0.72 0.70 0.67 0.48 0.38 0.32 0.35
P(intra| Cn) 0.15 0.28 0.31 0.33 0.52 0.62 0.68 0.65

P(comma| Cn) 0.32 0.07 0.04 0.04 0.02 0.03 0.02 0.02
P(period| Cn) 0.09 0.02 0.01 0.02 0.01 0.01 0.00 0.01

P(non-PM | Cn) 0.58 0.90 0.95 0.94 0.97 0.97 0.98 0.98
Average Pause  duration (ms) 225 76 48 48 28 23 23 23 

 

Fig.7 displays a typical example of the reconstruction of 3-3 tone pattern. It can be seen 
from the figure that the second Tone 3, which had been changed to a sandhi Tone 2, was 
well-reconstructed via the use of coaticulation affecting pattern. Fig.8 displays a typical 
example of the reconstructed pitch contour and prosodic-state patterns of a sentence. It can be 
found from the figure that the reconstructed pitch contour matched its original counterpart well. 
We also found that the trajectory of the prosodic-state patterns was smoother and looked more 
resemble to a sequence of prosodic-word/phrase patterns. Moreover, a typical prosodic state 
pair of 15-13 (3-3) was appear at the beginning (end) of the sentence. 

 

 
Fig. 7: A typical examples of the reconstructed 3-3 tone patterns: (a) without and (b) with using 

coarticulation affecting patterns. 
 



 

 
(a) 

 
(b) 

Fig. 8: A typical example: (a) the syntactic tree of a sentence and (b) the original (⎯) and 
reconstructed (⋅⋅⋅) pitch contours, and mean+prosodic-state patterns (xxx). 

3.4  Conclusions 
A new statistics-based syntax-prosody model of syllable F0 contour for Mandarin speech 

was discussed in this paper. Experimental results showed that the model performed well. Many 
prosodic cues which are syntactically meaningful can be found by the model. With the 
construction of explicit relationship of syntactic information and prosodic features, the model 
can be applied to assist in both ASR and TTS to improve their performances. 

 



 

4. The Use of Temporal Information in Mandarin Speech Recognition 
In this section, a new approach of using temporal information to assist in Mandarin speech 

recognition is discussed. It incorporates two types of temporal information into the recognition 
search. One is a statistical syllable duration model which considers the influences of 411 
base-syllables, 5 tones, 4 position-in-word factors, and 3 position-in-sentence factors on 
syllable duration. Another is the timing information of modeling three types of inter-syllable 
boundary including intra-word, inter-word without punctuation mark (PM), and inter-word with 
PM. The uses of these two types of temporal information are expected to be useful for 
improving the segmentation accuracies in both acoustic decoding and linguistic decoding. 
Experimental results showed that the base-syllable/character/word recognition rates were 
slightly improved for both MATBN and Treebank database. 
4.1  Introduction 

A real-world speech signal always contains rich temporal information ranging from 
lower-level information, such as phone/syllable/word duration, to higher-level rhythmic 
information, such as the final-syllable lengthening of prosodic phrase [8]. The temporal 
information is known to be very helpful for human beings to understand the speech more easily. 
However, in automatic speech recognition (ASR), the use of temporal information is still 
primitive. The most basic approach is to incorporate explicit state/phone/syllable duration 
models or durational constraints into the recognition search for improving the recognition 
accuracy [9-11]. Another approach is to invoke an embedded phone/syllable/word segmentation 
in the recognition search process to provide additional acoustic cues to assist in the recognition 
[12]. But, in all those studies only lower-level durational information, such as HMM state 
duration or syllable/word duration, was used. No higher-level temporal information was used.  

In this paper, a preliminary study of more sophisticatedly using temporal information to 
improve the ASR for Mandarin speech is discussed. It first extends the conventional 
base-syllable duration model to consider the influences of three additional affecting factors 
including tone, position-in-word, and position-in-sentence. With this extension, some 
higher-level temporal information is invoked in the recognition search. Secondly, it 
incorporates explicit timing information into the recognition search via constructing models for 
three types of inter-syllable boundary. These three types of inter-syllable boundary include 
intra-word, inter-word without punctuation mark (PM), and inter-word with PM. The timing 
information is expected to be helpful on the segmentation of correct word sequence in the 
recognition search. 
 
4.2  The Proposed Approach 

We consider the criterion of speech recognition 
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where W is a word sequence candidate which is composed of words and PMs; ϒ  is a 
segmentation candidate which is composed of an HMM state sequence stateΦ  and classes of 
inter-syllable boundaries bϒ ; ,  ,   and a t d lΛ Λ Λ Λ  denote respectively base-syllable (initial/final) 
acoustic model (AM), tone model (TM), syllable duration model (DM) and language model 



 

(LM); and  and s pX X  represent the spectral feature vector sequence and the prosodic feature 
vector sequence of the input utterance, respectively. In this study, we consider three classes of 
inter-syllable boundary including intra-word, inter-word without major PM and inter-word with 
major PM. Here, only major PMs belonging to {、,，,。,；,：,？,！} are considered. We denote 
them as Intra, Inter and Inter-PM, respectively. The first term in Eq.(8) is generally known as 
the score of acoustic decoding and the second one is the score of segmentation and language 
decoding. 

The score of acoustic modeling can be further simplified and expressed by  

( , , , , , , )

        ( , , , , )

        ( , , , , ) ( , , , )

        ( , , , ) ( , , )

s p a t d l
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s a t p p a t
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p X X W

p X X W

p X W X p X W

p X W X p X W

ϒ Λ Λ Λ Λ

≈ ϒ Λ Λ

= ϒ Λ Λ ϒ Λ Λ

≈ ϒ Λ ϒ Λ

             (9) 

Here, we assume that LM lΛ  and DM dΛ  are independent of the acoustic decoding. In Eq.(9), 
the first term is the score of HMM acoustic modeling using spectral features and the second 
term is the score of prosodic feature decoding. In the current study, we consider 411 
base-syllables as the basic acoustic recognition units to further simplify ( , , , )s a pp X W Xϒ Λ  as 

( , , )s state ap X S Φ Λ , where S is the base-syllable sequence associated with the candidate word 
sequence W and stateΦ  is a candidate of HMM state sequence associated with S.  

The score of prosodic feature decoding can be further simplified and separated into two 
terms 

( , , )

    ( , , , ) ( , ) ( )

p t

t b t t t b b

p X W

p X X W p X T p X

ϒ Λ

= ϒ Λ ≈ Λ ϒ
              (10) 

where ( , )p t bX X X= ; tX  is the prosodic features for tone recognition; bX  is the prosodic 
features for inter-syllable boundary classification; ( , )t tp X T Λ  is the score of tone decoding; T 
is the tone sequence associated with W; ( )b bp X ϒ  is the score of inter-syllable boundary 
classification. In this study, tX  consists of 18 parameters including 9 parameters representing, 
respectively, F0 means, F0 slopes, and energy means of three uniformly-segmented pitch 
contour segments of the current syllable; 3 parameters of the last pitch contour segment of the 
preceding syllable; 3 parameters of the first pitch contour segment of the succeeding syllable; 2 
representing pause durations preceding and following the current syllable; and one representing 
the duration of the current syllable. And bX  consists of the pause duration, the pitch mean and 
energy level jumps of the preceding and succeeding syllables, and the lengthening factor of the 
preceding syllable. Here, both ( , )t tp X T Λ  and ( )b bp X ϒ  are implemented by the neural 
network-based approach. In each case, a three-layer MLP (multi-layer perceptrons) is employed 
to generate output discrimination functions for all its classes. We can use these output 
discrimination functions to perform classification by choosing the class with maximum output 
as the recognized one. This can check the effectiveness of the MLP classifier. For this 
application, we transform them into the likelihood scores by 
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( Class )

(Class )
k

P i X
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∑                      (11) 

The score of segmentation and language decoding, which is the second term of Eq.(8), 
can also be further simplified and expressed by 

( , , , , )

      ( , , )

      ( , , ) ( , )

      ( , ) ( )
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d l

d l d l

d d l

p W

p W

p W p W

p X W p W
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                    (12) 

where ( , )d dp X W Λ  is the score of syllable duration modeling, dX  is the syllable duration 
sequence derived from the segmentation information ϒ , and ( )lp W Λ  is the score of language 
decoding. Here, we assume that both acoustic model aΛ  and tone model tΛ  are independent 
of the segmentation and language decoding. In this study, a word-bigram model lΛ  is used.  

The syllable duration model adopted is a simple multiplicative model [9] which involves 
4 major affecting factors including base-syllable, tone, position-in-word, and 
position-in-sentence. In the model, the observed duration of syllable n is expressed by 

[ ] [ ] 
n n n nd d sy t wp spX n Z n γ γ γ γ=                                  (13) 

where [ ]dZ n  is the normalized (or residue) syllable duration and is modeled by a normal 
distribution 2( , )N µ σ  with mean µ  and variance 2σ ; 'sγ  are affecting factors; ,  ,  n n nsy t wp  
and nsp  represent, respectively, the base-syllable, tone, word position, and sentence position of 
syllable n. In the study, we consider 411 base-syllables, 5 tones, 4 types of position-in-word, 
and 3 types of position-in-sentence. The 4 types of position-in-word are mono-syllabic word, 
and the beginning, intermediate and ending syllables of a word. The 3 types of 
position-in-sentence are the beginning, intermediate and ending syllables of a sentence which is 
ended with a major PM.  

An iterative sequential optimization procedure is employed to train the syllable duration 
model. It first initializes the training by estimating all affecting factors independently, i.e.,  
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for   or ,  ,  , 
n n n nsy t wp spγ γ γ γ γ= , 
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and 
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where ( , )δ ⋅ ⋅  is the Kronecker delta function and N is the total number of training syllables. It 
then sequentially estimate the four types of affecting factors, ,  ,  

n n nsy t wpγ γ γ  and 
nspγ , 

one-by-one based on the ML (maximum likelihood) criterion with objective function 

1
log ( [ ])

N

d
n

L f X n
=

= ∑              (17) 

where 

2[ ]( [ ]) ( ; , )
n n n n

d
d

sy t wp sp

X nf X n N µ σ
γ γ γ γ

=            (18) 

µ  and 2σ  are also updated using Eqs.(15) and (16), respectively. The sequential 

optimization step is iteratively executed until a convergence is reached. 

To reduce the computational complexity, a two-stage recognition search is adopted in this 
study. In the first stage, a word-lattice which consists of top-10 candidate words is constructed 
by using only the acoustic model aΛ  and the word-bigram LM lΛ . Then, in the second stage 
the best word sequence is determined from the word-lattice by using the criterion shown in 
Eq.(8). The two-stage recognition search is realized using the HTK toolkit [14]. 

4.3  Experimental Results 

Performance of the proposed approach was examined by simulations using two databases. 
One was the Anchor set of MATBN (Mandarin Chinese Broadcast News Corpus) [13]. It was 
uttered by 4 anchors in fast speaking styles and is composed of 175,194 training syllables and 
14,906 testing syllables. The acoustic models consisted of 100 3-state right-final-dependent 
(RFD) Initial HMM models, 40 5-state context-independent (CI) Final models, 19 3-state 
Particle models, one 3-state Breath model, one 3-state Silence model, one 1-state Short Pause 
model (tied with the middle state of Silence model), and 3 3-state Garbage models. Another 
database was the read-speech database of Sinica Treebank [6]. It was uttered by a single female 
announcer in a normal speed. It was composed of 380 utterances with 52,192 syllables. The 
acoustic models consisted of 100 RFD Initial models and 40 CI Final models.   

For LM, a general bigram LM was first trained using the following three corpora: (1) 
Sinorama: a news magazine with 9.87 million words; (2) NTCIR: an IR test bench consisting of 
several domain with 124.4 million words; and (3) Sinica Corpus: general text corpus collected 
for the language analysis with 4.8 million words. Here a 60,000-word lexicon was used. For the 
recognition of MATBN, the general LM was adapted using the texts of MATBN which was 
composed of 1.31 million words with 23,314 particles and 90,052 breathes. 

We first examined the syllable duration model. Table 2 shows some affecting factors (AF) 
for the two databases. They include: (1) mono-syllabic word (MW), and the beginning (BW), 
intermediate (IW) and ending syllables (EW) of a word for position-in-word; (2) 5 tones; and (3) 
the beginning (BS), intermediate (IS) and ending syllables (ES) of a sentence for 
position-in-sentence. It can be found from the table that IW in position-in-word, Tone 5, and 
BS in position-in-sentence are much shorter; while ES in position-in-sentence is very long.  



 

Table 2: Some affecting factors (AF) of the syllable duration model for the two databases. 
Position-in-word Position-in-sentence AF 

Database MW BW IW EW BS IS ES 
MATBN 
anchor 1.05 0.97 0.84 1.02 0.85 0.98 1.34 

Sinica 
Treebank 1.05 0.96 0.88 1.03 0.90 0.99 1.20 

Tone  
T1 T2 T3 T4 T5 

MATBN 
anchor 1.01 1.05 0.98 1.02 0.73 

Sinica 
Treebank 1.03 1.07 1.00 1.02 0.72 

 
We then examined the performances of the MLP tone classifier (see Table 3) and MLP 

inter-syllable boundary classifier (see Table 4). It can be found from Table 3 that tone 
recognition rates of 75.1 and 85% were achieved for MATBN and Treebank, respectively. Both 
Tone 1 and Tone 4 were easier to be recognized while Tone 3 and Tone 5 were not. It can also 
be found from Table 4 that accuracy rates of 58.8% and 69.1% were achieved in the 
inter-syllable boundary classifications for MATBN and Treebank databases, respectively. The 
class of inter-word with PM was easier to be correctly detected. 

Table 3: Performance of the tone recognizers. (unit: %)                           

 T1 T2 T3 T4 T5 average 
MATBN Anchor 77.7 74.3 66.3 83.4 42.0 75.1 
Sinica Treebank 88.0 84.4 70.8 92.6 74.9 85.0 

 
Table 4: Experimental results of the inter-syllable boundary recognizer. (unit: %) 

 Intr
a 

Inte
r 

Inter-P
M 

average 

MATBN Anchor 51.0 64.0 70.6 58.8 
Sinica Treebank 78.8 57.3 81.9 69.1 

 
Lastly, we examined the performance of the proposed method of using temporal 

information in Mandarin speech recognition. Table 5 displays the experimental results. It can 
be found from Table 5 that the baseline system which used the acoustic and language models, 

aΛ  and lΛ performs well. Base-syllable/character/word recognition rates were 
93.49/91.04/86.29 and 94.01/84.99/75.43 for the MATBN anchor and Sinica Treebank 
databases, respectively. It is noted that both character and word recognition rates for Treebank 
were relatively low as compared with those of MATBN because Treebank contained much 
more proper nouns and DM compound words which were treated as individual characters rather 
than words. The performances were slightly improved as we incorporated the tone recognizer.  
The performances were further improved for the proposed method as we used the temporal 
information in the recognition search. 



 

 

Table 5: The experimental results of the proposed method for Mandarin ASR. (unit: %) 
 Syllable 

Recognition. 
rate 

Character 
Recognition. 

rate 

Word 
Recog. 

rate 
Baseline 93.49 91.04 86.29 
Baseline 

+tone 
recogn. 

93.59 91.15 86.51 MATBN 
Anchor 

Proposed 93.66 91.23 86.62 
Baseline 94.01 84.99 75.43 
Baseline 

+tone 
recogn. 

93.89 85.21 75.73 Sinica 
Treebank 

Proposed 94.0 85.55 75.93 
 

4.4  Conclusions 

A new approach of using a statistical syllable duration model and an inter-syllable 
boundary model to assist in Mandarin ASR has been discussed in this paper. Experimental 
results showed that it slightly outperformed the baseline system. Further studies include an 
analysis of its effectiveness on different type of pronunciation conditions, the use of more 
sophisticated temporal models, and so on. 

 

5. Conclusions 
We have proposed a new approach to prosody modeling for Mandarin speech in this 

project. It employs a statistical model to describe the variation of prosodic features including 
syllable duration and syllable pitch contour. The model first considers some major affecting 
factors and then incorporates with inter-syllable coarticulation and syntactic information. 
Experimental results have confirmed that the proposed approach performed well for the 
modeling of syllable duration and pitch contour. The prosody model can be applied to prosody 
labeling, text-to-speech, tone recognition, and speech recognition. A preliminary study of 
applying the syllable duration model to speech recognition has been conducted. It uses the 
syllable duration model to provide constraints for assisting in the recognition search. 
Experimental results have confirmed its effectiveness. 
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