
行政院國家科學委員會專題研究計畫  期中進度報告 

 

 

亞洲大學與商學院評比系統設計----達爾菲排序分組法

(2/3) 

 

 
計畫類別：個別型計畫 

計畫編號： NSC94-2213-E-009-023- 

執行期間： 94 年 08 月 01 日至 95 年 07 月 31 日 

執行單位：國立交通大學資訊管理研究所 

 

 

 

 

計畫主持人：黎漢林 

 

 

 

 

 

報告類型：精簡報告 

 

處理方式：本計畫可公開查詢 

 

 
 

 

中 華 民 國 95 年 5月 22 日

 



 1

行政院國家科學委員會專題研究計畫期中進度報告 

 

亞洲大學與商學院評比系統設計－達爾菲排序分組法(2/3) 

 
Ranking and Grouping on World Business Schools (2/3) 
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執行期限：94 年 8 月 1 日至 95 年 7 月 31 日 

主持人： 黎漢林   國立交通大學資訊管理研究所 

 
本研究為三年期計畫，目的在於發展亞洲大學與商學院評比系統。時下許多雜誌如 Time、

U.S. News 和 Financial Times 等，利用不同數學公式出版全美或全球大學評鑑刊物，然而卻被

許多人在評比方法之確切性及資料正確性上遭受批評。本論文所提出的方法能利用決策者所提

供之偏好自行計算出各評比指標之權重，並以表格及 3D Ball 之視覺工具呈現排序與分群結果。

以此結果為參考，決策者能再次加入偏好或是在決策單位﹝DMU﹞間作修正，以獲得想要之結

果。此方法能根據決策者多次加入之偏好來計算與其邏輯相似之評比結果，以達成協助決策者

做明確的決策選擇。 

 
關鍵詞：排序、分群、商學院、階層分析法、偏好 

 

Abstract 
 

Companies like Time, U.S. News, and Financial Times use different ranking models to publish 
university ranking guides. However, many critics say the ranking formulas are constantly changing 
and the data is highly manipulable. In the proposed model, the decision makers can rank universities 
based on their preferences. Based on the preferences, this model will automatically generate a set of 
weightings for criteria in the ranking process. The ranking and the grouping result will be displayed 
using both tables and 3D ball visualization tool. The decision makers can further specify the 
relationships between DMUs or add more preferences to obtain desired outcome. Providing decision 
makers various chances and means to add their opinions through out the ranking process, this model 
can ensure that the result are consistent with what decision makers had in mind and can ,hence, help 
them in the decision making process. 
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1. Introduction 

Every year, many high school graduates and university graduates purchase University Ranking 
Guides to help them select the right undergraduate program or graduate program that is best suited for 
them. Although among the quarter million freshmen who participated in the survey done by the 
Higher Education Research Institute, only 8.6% responded that the rankings were very important to 
them when selecting colleges or universities (Crissey, 1997). The reasons may lie on the question of 
ranking methodology. How do we know these rankings are right for the students and rank universities 
in the way the students needed? How do we know the criteria participated in the ranking system are 
what the ones students consider important? These are some of the key concerns which should be 
solved. 

Currently, there are many publishers which release various kinds of ranking each year. US News 
and World Report, for example, started releasing university ranking in with the October issue in late 
1980’s. They have realized that in the subsequent years, the October issue had sold many more copies 
than any other issues. Hence, they decided to start publishing an independent issue for university 
ranking. In the 1990’s, many other publishers like Time, Newsweek, Money Magazine, and many 
more have also realized that the market for university ranking is enormous and have started to create 
their own rankings and publish them. Similarly, Canada, Asia, and Europe all have magazines that do 
rankings for universities in different regions. 

The ranking guides currently in the market are heavily criticized by many people ranging from 
educational field to people in the publishing industry. Some of these criticisms are as follow:  

(1) To increase the sales, publishers may introduce new measures or change the weightings of 
measures from year to the next (Gater, 2003). 

(2) Some of the factors are highly manipulable, and, as a result, the ranking outcome is 
meaningless (Leiter, 2003). 

(3) Ranking formula and factors participated in the ranking process are constantly changing, 
so the results are high in variation (Levin, 1997). 

In this study, we propose a new ranking method that can help the Decision Makers (DM) rank 
Decision Making Units (DMUs). The characteristics are listed below: 

(1) The model can automatically generate weightings with minimal human influence. 
(2) Ranking can still be done with minimum information from Decision Makers, i.e. 

preferences. 
(3) 3D ball representation gives clear view on the correlations. 
(4) This model allows DM to add preferences through out the ranking process. 
(5) DM can specify groupings for DMUs. 
 
 

2. Literature Review 
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There are several rankings published in the market. Each of them has different methodology to 
rank universities. They vary in criteria selection, assignment of weightings, and raw data, just to name 
a few. Let us look at few of the more popular ranking systems and their methodology. 

 
2.1 Data Envelopment Analysis 

Data Envelopment Analysis (DEA) is a method for evaluating the activity performance, 
especially for organizations such as business firms, government agencies, hospitals, educational 
institutions, and etc (Cooper etc. 1999). A commonly used measure for efficiency is the output-input 
ratio. Number of items sold in a store will be an example of the output; number of sales clerk in the 
store will be the input. Hence, the efficiency of this store, basing on only these two criteria, will 
simply be NumberOfGoodsSold / NumberOfClerk. These comparable entities are often called 
Decision Making Units (DMUs). 

The purpose of DEA is to empirically estimate the efficient frontier based on the set of available 
DMUs and assumes that each performance measure can be categorized as either an input or an output 
(Schrage, 1997). It provides the user information about both efficient and inefficient units along with 
the efficiency scores and reference sets for inefficient units (Halme etc, 1999). An Efficient Frontier is 
a line that has at least one DMU point touching it. The DMUs, who touch the EF line, are the most 
efficient DMUs. The idea of Production Frontier is first discussed by Farrell in 1975 which has three 
assumptions. The attractive feature of DEA is that it produces efficiency score between 0 and 1. 

In 1978, Charnes, Cooper, and Rhodes proposed a DEA model called the CCR model basing on 
Farrell’s single input-output model in 1975. CCR model is designed to measure the cases of multi 
input and multi output. The following is the pseudo-code for the CCR model. Ur represents the 
weighting for rth output criterion and Vi represents the weighting for ith input criterion. They are 
automatically generated when the score of kth DMU is maximized. Yr and Xi are the output and input 
criteria. 
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Xi is the ith input of DMU 
Ur is the weighting for rth output 
Vi is the weighting for ith input  
 

In this CCR model, it will calculate the score of each DMU based on the weightings that can 
maximize the score of current DMU, which means that the nth DMU can obtain the best score with nth 
set of weightings. Hence, if there are n numbers of DMUs, then there will have n set of weightings. 
kth set of weighting is determined under the condition that they can maximize the Scorek. All the 
scores have to be between 0 and 1. Once score of each DMU is determined, it then compares all of 
them again with their score. The DMU with highest score is the most efficient one.  
 
2.2 Analytic Hierarchy Process 

The Analytical Hierarchy Process (AHP) was proposed by Saaty in 1980 and his collaborators as 
a method for establishing priorities in multi-criteria decision making contexts based on variables that 
do not have exact numerical consequences (Genest, 1996). It also helps people set priorities and make 
the best decision when both qualitative and quantitative aspects of a decision need to be considered. 
AHP not only helps decision makers arrive at the best decision, but also provides a clear rationale that 
it is the best.  
 
AHP can be conducted in three steps: 

Setp 1: Perform pairwise comparisons between each DMU on every criterion 
In this step, the goal is to obtain the priorities between DMUs for each criterion. To do 
so, a pairwise comparison has to take place between each DMU with respect to each 
criterion. For each criterion, a m by m matrix, where m is the number of DMUs, will be 
generated and the priority vector will be calculated from this matrix. Priority vector 
displays the preference orders for each DMU with respect to criteria. Since there are n 
numbers of criteria, n number of priority vector will be generated at the end. 

 

Step 2: Perform pairwise comparison between each criterion 
In the decision making process, not every criterion is quantitatively measurable, so a 
pairwise comparison between each criterion has to take place in order to specify the 
importance between each criterion. From the comparison, a set of weightings can be 
found for score calculation at the last step. 

 

Step 3: Compute final scores for DMUs 
With the priority vectors and the weightings for criteria, DM can now calculate the 
score for each DMU. DMU with the higher score should be the better alternative for the 
Decision Maker. 
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Following is an illustration of an example of a student, John, wanting to purchase a car. Due to 
his financial limitation, John can only buy a second hand car, and only has few things that he really 
car. He wants to buy a car that is cheap, nice out look, and comfortable. However, among the three 
cars he has in mind, none of them has best score on each of these criteria. He has decided to use AHP 
to help him select a car from these three. Table 2.1 lists all the data he gathered about these three cars. 

 

Table 2.1 Hard data provided by John on cars. 

 Price Look Comfort 
Car 1 13100 Good Very good 
Car 2 12000 Fair Good 
Car 3 9800 Good Fair 

 
 To perform pairwise comparison between each car with respect to each criterion, a priority score 
has to be assigned to each comparison. The scores can range from 1 to 9, where 9 is the most 
satisfactory score. Notice that if a DM compare A1 to A2 and assigns a score of 4, then the score 
between comparison of A2 and A1 will be the inverse of A1 and A2’s, which will be 1/4. This property 
can ensure the logical consistency for each comparison. 
 

1   Choice i and j are equally important 
3   Choice i is weakly more important than j 
5   Choice i is strongly more important than j 
7   Choice i is very strongly more important than j 
9   Choice i is absolutely more important than j 
2, 4, 6, 8 are intermediate values 

 
 After finishing pairwise comparisons, matrixes with these priority scores will be generated 
(Table 2.2).  

 

Table 2.2 Comparison score for each car with respect to each criterion 

Criteria Price Look Comfort 

 Car1 Car2 Car3 Car1 Car2 Car3 Car1 Car2 Car3 

Car1 1 1/3 1/8 1 3 1 1 3 6 

Car2 3 1 1/6 1/3 1 1/4 1/3 1 4 

Car3 8 6 1 1 4 1 1/6 1/4 1 

 
From these matrixes, normalization has to be done before the priority vectors can be calculated (Table 
2.3). Normalization is simply divides each value by the sum of corresponding column. For example, 
the normalized value between car2 and car3 with respect to price is calculated by  
(1/6) / (1/8 + 1/6+ 1) = 0.1290. 
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Table 2.3 Normalized comparison table 

Criteria Price Look Comfort 

 Car1 Car2 Car3 Car1 Car2 Car3 Car1 Car2 Car3 

Car1 0.0833 0.0454 0.0967 0.4286 0.375 0.4444 0.6666 0.7059 0.5454

Car2 0.250 0.1363 0.1290 0.1428 0.125 0.1111 0.2222 0.2352 0.3636

Car3 0.6666 0.8182 0.7742 0.4286 0.5 0.4444 0.1111 0.0588 0.0909

 
Each criterion has its own priority vector and the values in the vector can be seen as the score of 

each DMU on corresponding criterion. The values in the priority vectors are the sum of rows from the 
normalized pairwise comparison matrix and divided by the number of DMUs, as in Table 2.4. The 
values in priority vector for price is calculated as follow: 

(0.0833 + 0.0454 + 0.0976) / 3 = 0.2254 
(0.2500 + 0.1363 + 0.1290) / 3 = 0.5153 
(0.6666 + 0.8182 + 0.7742) / 3 = 2.2590 
 
 

Table 2.4 Priority vectors with respect to each criterion 

 Priority Vector for 
Price 

Priority Vector for 
Look 

Priority Vector for 
Comfort 

Car1 0.0751 0.4160 0.6393 

Car2 0.1717 0.1263 0.2736 

Car3 0.7530 0.4576 0.0869 

 
 
After the values of priority vector is calculated, pairwise comparison has to perform on criteria 

to obtain the weightings for each criterion. Similar to previous steps, a 3 by 3 matrix, with criteria on 
both row and column, will be created. Using the same calculation method for priority vector, the 
weighting for each criterion can also be found (Table 2.5). 

 
 

Table 2.5 Comparison tables and weightings for criteria 

 Comparison Matrix Normalized Comparison Matrix  

 Price Look Comfort Price Look Comfort Weighting 

Price 1 1/5 3 0.1579 0.1489 0.2727 0.1931 

Look 5 1 7 0.7894 0.7447 0.6363 0.7234 

Comfort 1/3 1/7 1 0.0526 0.1064 0.0909 0.0833 
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 The weightings on Table 2.5 suggest that Look is the most important criterion for John. Price is 
the next concern and comfort is the last. With the weightings on the criteria and the priority vectors 
on each criterion, the score for each car can now be calculated as follow: 
 
  Car 1: (0.0751 * 0.1931)+(0.4160 * 0.7234)+(0.6393 * 0.0833) = 0.3687 
  Car 2: (0.1717 * 0.1931)+(0.1263 * 0.7234)+(0.2736 * 0.0833) = 0.1473 
  Car 3: (0.7530 * 0.1931)+(0.4576 * 0.7234)+(0.0896 * 0.0833) = 0.4839 
 
From the calculation, Car 3 has the highest score and should be the best choice for John to consider. 

 

3. Ranking and Grouping Models 
 

In this section, the ranking and grouping process can be break down into two major parts. First 
part will deal with the actual ranking and score calculation. The second part is mapping each school 
onto a 3D ball and clustering these data points. Figure 3.1 shows the entire process of proposed 
ranking and grouping model. 

Start

Collect 
Hard data

Map DMUs to 
3D ball 

Use LINGO to 
find optimal 
weightings

Rank and 
Group subjects

End

Group DMUs

 
Figure 0.1 Flowchart 
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3.1 Common Weight Model 
 

As discussed in chapter 2, DEA is mainly used for efficiency measurement. The concept of DEA 
is to calculate the ratio between inputs and outputs, and rank each DMU (Data Making Unit) by their 
maximized scores. In this ranking objective, however, DEA is not the perfect tool for the ranking 
process because the most efficient DMU might not be the best choice for DM (Decision Maker). 
Moreover, , sometimes criteria are hard to distinguish from input or output, the proposed method has 
modified the traditional DEA method to meet the DMs’ requirement without the need to identify 
inputs and outputs for criteria. This model will automatically ranks and groups the DMUs based on 
the absolute dominance relationships found in the hard data, so the DMs do not need to worry about 
assigning weightings for each criterion. This is a big improvement from the traditional ranking 
systems, which often have controversy on weighting settings.  

In the experiments, Lingo8.0 is used as the optimization tool. Given the correct model and 
inputs, the system will calculate the ideal weights for each criterion, which will allow us to rank the 
DMUs and map each DMU to a coordinate on 3D ball to help DM visualize the relationships between 
DMUs, as well as the correlation between DMUs. In this section, the mathematical model and the 
concept behind it will be discussed in detail and the model will be applied on an example of 20 
universities. Before the mathematical model is being discussed, Table 3.1 lists and describes the 
variables, following is the model. 

 

Table 3.1 Variables for Common Weight Model 
 
 
 
 
 
 
 
 
 
 

Variables Descriptions 

m Total number of DMUs 

n Total number of criteria 

ti,j ti,j = 1 if DMU j is better than DMU i, else ti,j = 0 

kC , kC  Maximum and minimum values of kth criterion 

kiC ,  The kth criterion of ith DMU 

wk Weight for kth criterion 

M A large constant number 
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In this model, Lingo will generate a set of weightings for the ranking process. This model ranks 

the DMUs without DMs worrying about the numbers (weightings). Moreover, these weightings could 
be more convincing for some DM because these numbers are generated by the system automatically 
based only on the absolute dominance relationships.  

After this model is run by Lingo, Lingo will return a matrix with the size of m by m. This matrix 
will consist values of only 0 and 1. For tij, if tj > ti, then tij will be set to 1. The sum of each row will 
represent their rank correspondingly. The objective function (3.1) is trying to maximize the rank of 
each DMU by minimizing the sum of t for each row. Note that the DMU with lower the sum of t, the 

higher rank it will get. Constraint 3.2 is for determining the values of ti,j. If ∑
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satisfy constraint 3.2, the value of jitM ,∗  must not be 0, so ti,j will be set to 1.  

Constraint 3.3 is to make sure that the sum of weights of all the criteria will be equal to 1. Also, 
constraint 3.4 ensures that the weights are all non-zero, so every criterion will be taken into account in 
this ranking process. Constraint 3.5 specifies that ti,j is a binary variable, which can only be 0 or 1. 
The last constraint is to insure that if i is better than j, then j can not be better than i at the same time. 
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Once the weights for each criterion are automatically generated by the model, score of each 
DMU will be calculated by equation 3.7 for future ranking purposes. This score function ensures that 
the scores are all between 0 and 1 by normalizing the hard data. This will help DM to see the 
differences in the scores. 

 
Table 3.2 shows the original hard data of the first twenty universities listed on the Financial 

Times’ 2004 Global MBA Ranking. The data has been normalized so that 1 is the maximum score and 
0 is the minimum score. Notice that we have only chosen six criteria that have the heaviest 
weightings. 

Table 3.2 shows the original hard data of the first twenty universities listed on the Financial Times’ 2004 
Global MBA Ranking. The data has been normalized so that 1 is the maximum score and 0 is the minimum score. 
Notice that we have only chosen six criteria that have the heaviest weightings. 

Table 3.2  Normalized hard data from Financial Times’ 2004 Ranking 

Rank 

in 

2004 

School name 
Weighted 

salary (US$)

Salary 

increase (%)

International 

mobility 

rank 

Faculty 

with 

doctorates 

(%) 

FT 

doctoral 

rank 

FT 

research 

rank 

1 University of Pennsylvania: 0.836865335 0.855670103 0.74157303 1 1 0.987805
2 Harvard Business School 1 0.525773196 0 0.888889 0.92 1 
3 Columbia Business School 0.696863457 1 0.39325843 0.888889 0.88 0.939024
4 Insead 0.553465223 0.257731959 1 0.888889 0.373333 0.890244
4 London Business School 0.42117949 0.680412371 0.87640449 0.888889 0.56 0.780488
4 University of Chicago GSB 0.658188819 0.855670103 0.6741573 0.888889 0.773333 0.963415
7 Stanford University GSB 0.814405559 0.402061856 0.35955056 0.944444 0.866667 0.97561
8 New York University: Stern 0.408235773 0.886597938 0.4494382 0.944444 1 0.865854
9 MIT: Sloan 0.645918112 0.463917526 0.17977528 0.777778 0.973333 0.902439
10 Dartmouth College: Tuck 0.725693358 0.773195876 0.30337079 0.777778 0 0.829268
11 Northwestern University: Kellogg 0.640330558 0.494845361 0.78651685 0.833333 0.746667 0.95122
12 IMD 0.694437488 0 0.47191011 0.722222 0 0.097561
13 Iese Business School 0.018985162 0.907216495 0.97752809 0.944444 0.346667 0.146341
13 Yale School of Management 0.485553747 0.979381443 0.04494382 0.888889 0.12 0.560976
15 Instituto de Empresa 0 0.515463918 0.95505618 0 0 0.04878
16 Cornell University: Johnson 0.490624804 0.618556701 0.28089888 0.666667 0.16 0.743902
17 Georgetown Uni: McDonough 0.359716396 0.824742268 0.53932584 0.5 0 0.402439
17 Uni of N Carolina: Kenan-Flagler 0.303355663 0.659793814 0.69662921 0.555556 0.64 0.853659
19 University of Virginia: Darden 0.606570463 0.742268041 0.23595506 0.888889 0.12 0 

20 Duke University: Fuqua 0.375430414 0.505154639 0.68539326 0.555556 0.453333 0.878049 
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 After applying the hard data to the Common-Weight Model, Tables 3.3a and 3.3b displays the 
results. Table 3.3a shows the new score and the new rankings for these twenty universities along with 
the original rankings and Table 3.3b shows the new weightings. Please note that due the number of 
the original criteria, only five were selected from the original twenty criteria. Hence the result varied 
greatly. 
 

Table 3.3 Results from Common-Weight Model 
 (a) New scores and rankings 

Schools score 
Original 
Ranking 

New 
Ranking 

Change in 
Rankings 

University of Pennsylvania: 0.845614 1 1 0
Harvard Business School 0.594397 2 11 -9
Columbia Business School 0.726394 3 3 0
Insead 0.668107 4 6 -2
London Business School 0.692608 5 4 0
University of Chicago GSB 0.758528 6 2 2
Stanford University GSB 0.615344 7 10 -3
New York University: Stern 0.6338 8 7 1
MIT: Sloan 0.50519 9 17 -8
Dartmouth College: Tuck 0.6338 10 8 2
Northwestern University: Kellogg 0.688126 11 5 6
IMD 0.435994 12 19 -7
Iese Business School 0.632058 13 9 4
Yale School of Management 0.543776 14 16 -3
Instituto de Empresa 0.390719 15 20 -5
Cornell University: Johnson 0.501724 16 18 -2
Georgetown Uni: McDonough 0.543776 17 13 4
Uni of N Carolina: Kenan-Flagler 0.562208 18 12 5
University of Virginia: Darden 0.543776 19 13 6
Duke University: Fuqua 0.543776 20 13 7 

 (b) New weightings obtained from Common-Weight Model 

  
Weighted salary 
(US$) 

Salary 
increase (%)

International 
mobility rank 

Faculty with 
doctorates (%) 

FT research 
rank 

Original Weightings 0.2 0.2 0.06 0.05 0.1 
Normalized original 0.303030303 0.303030303 0.09090909 0.07575758 0.151515
New weightings 0.291382783 0.243472234 0.27496259 0.13661036 0.053572
Change (%) -1.16% -5.96% 18.41% 6.09% -9.80% 

 
By studying both tables, it is clear that the criterion “International Mobility Rank” has increased 

its weighting by more than double of its original weightings and criteria other than “Weighted Salary” 
has changed about 6% to 10% each. These changes have effected the new extremely. In the new 
ranking, half of the universities have shifted their rankings for more than 4 spots. Harvard and MIT 
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have shifted 9 spots and 8 spots accordingly. Harvard has dropped 9 spots in ranking due to the fact 
that it has the lowest value in “International Mobility Rank”, which is accounted for 27.50% of the 
total score. MIT has dropped 8 spots because it has the second lowest score on “International 
Mobility Rank” and fourth lowest score on “Salary Increase %”, which accounted for 24.35%. 

 
After applying the statistical t-test, the P value was found to be 0.8919, which means the 

differences between the original rankings and the new rankings are considered to be not statistically 
significant. Hence the result from the Common-Weight Model is acceptable statistically. 
 
3.2 3D Spherical Model 

In last section, the weights for each criterion were generated by the model, as well as the 
rankings. The model will calculate the coordinates of each DMU based on the weightings and project 
them onto a 3D ball. To insure the correctness of the mapping and the correlations between each 
DMU, the concept of dissimilarity is used in the calculation of the coordinates. Dissimilarity is the 
degree of difference between subjects. The general calculation method for dissimilarity will be 
discussed later in this section. 

 
Table 3.4 lists the variables used in 3D Spherical Model and their meanings. Note that all the 

radius of the 3D balls is set to 1, and an ideal solution will be projected onto the North Pole. Ideal 
solution is an imaginary DMU that has the maximum value for each of its criterion. The purpose of 
this ideal DMU, as the standard, is to help the comparison process. 

 
Table 3.4 Variables and descriptions  

Variables Descriptions 

m Total number of DMUs 

n Total number of criteria 

Si Score of ith DMU 

jiD ,  The dissimilarity between DMU i and DMU j 

kC , kC  Maximum and minimum values of kth criterion 

kiC ,  The kth criterion of ith DMU 

wk Weight for kth criterion 

Xi, Yi, Zi The X,Y, and Z coordinates of DMU i 

The Xi, Yi, and Zi are the actual coordinates of the DMUs on the 3D ball. Also, because 



 13

the distances between DMUs on the 3D ball are not exactly the same as the values of 
dissimilarities, we minimize the error between these two values to obtain the closest solution 
(Equation 3.8). With this solution, the projection of the points on the ball will be able to 
represent the relationships of the DMUs. 

 
 
The objective of this model is to let the dissimilarity between two DMUs represents the distance 

between two DMUs. This is accomplished by minimizing the difference between the straight line 
distance of two DMUs and their dissimilarity value.  

Equation 3.9 is the function to calculate score, which is the same as equation 3.7. Equation 3.10 

calculates the dissimilarity between DMU i and DMU j. The largest possible value for jiD ,  is 2 , 

because when one DMU is the ideal solution, which have all the maximum value for each criterion, 
and the other DMU is the worst possible DMU, which must have minimum value for each criterion. 
Since the ideal solution will be at the North Pole and the worst possible solution will be on the 
equator. The straight line distance from the North Pole to the Equator on a ball with radius of 1 will 

be 2 . Similarly, if two DMUs are exactly the same, thought it is not likely to happen, the numerator 

will become 0, and so the jiD ,  will be 0. 

Equation 3.11 is to ensure that every point is on the surface of the ball. And equation 3.12 
defines the relationship between the Y coordinates and the score. To explain this equation, there is a 
proposition to discuss, as stated below. 

3D Spherical Model (Model 2): 
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In this proposition, ,*iD  in equation 3.14 represent the dissimilarity between DMU i and the 

ideal solution. The original equation that calculates the distance between two points was changed to 
the current form, 222 )0()1()0( −+−+− iii ZYX , since the ideal solution has the coordinate of (0, 1, 0). 

Equation 3.14 can be verified with (ideal solution, worst possible solution) pair and (ideal solution, 
best possible solution) pair. When these two pairs of DMUs are plugged in 3.165, they both hold. 
Hence, equation 3.14 is further simplified to 3.15 and finally 3.16. The simplification processes are 
shown as below. 

 
By applying the model to the example from section 3.1, we obtain the result shown in Table 3.5. 

Proposition 1: 

iSSY iii ∀−∗= ,2 2        (3.13) 

Proof: 
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Table 3.5  Coordinates for each universities 
Schools score New Ranking x y z 

Ideal Solution 1 0 1 0
University of Pennsylvania: Wharton 0.845613979 1 -0.21658096 0.97616496 0.013952
Harvard Business School 0.594397421 11 -0.41597168 0.83548655 0.359068
Columbia Business School 0.726394479 3 -0.36376656 0.92514002 0.108581
Insead 0.66810701 6 -0.32914496 0.88984704 -0.31597
London Business School 0.692608172 4 -0.32199465 0.90551026 -0.27635
University of Chicago GSB 0.758528351 2 -0.33056332 0.94169144 -0.06281
Stanford University GSB 0.615343904 10 -0.49832929 0.85203969 0.160301
New York University: Stern 0.633799985 7 -0.45945342 0.86589755 -0.1978
MIT: Sloan 0.505189925 17 -0.65293543 0.75516299 0.058345
Dartmouth College: Tuck 0.633799985 8 -0.49305753 0.86589755 0.084355
Northwestern University: Kellogg 0.688125846 5 -0.41447314 0.90273451 -0.11525
IMD 0.435994334 19 -0.73131613 0.68189761 0.0139
Iese Business School 0.63205834 9 -0.12768982 0.86461893 -0.48593
Yale School of Management 0.543776095 16 -0.58187571 0.79185975 0.185415
Instituto de Empresa 0.390719143 20 -0.36325638 0.62877684 -0.68752
Cornell University: Johnson 0.501723624 18 -0.65438051 0.75172065 -0.08187
Georgetown Uni: McDonough 0.543776095 13 -0.53405605 0.79185975 -0.29621
Uni of N Carolina: Kenan-Flagler 0.562207931 12 -0.49102552 0.8083381 -0.32478
University of Virginia: Darden 0.543776095 13 -0.60957381 0.79185975 0.037127
Duke University: Fuqua 0.543776095 13 -0.52498427 0.79185975 -0.31201 

As previously mentioned, the ideal point is a point formed by setting the value of each 
of its criterion to the maximum value found from hard data. This point will lie on the North 
Pole with coordinates of (0, 1, 0) and score of 1. The worst point will be A4, with coordinates 
of (0.99127, 0, 0) and score of 0. With this example, it is coincident that the ideal solution is 
same as A1 and the worst point A4 is lying on the equator. Despite these facts, the distances 
between each point are shown in Table 3.6. These numbers also represent the dissimilarity 
between each DMU. 
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Table 3.6  Dissimilarity matrix 
 A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 A16 A17 A18 A19 A20

A0 0 0.22 0.57 0.39 0.47 0.43 0.34 0.54 0.52 0.7 0.52 0.44 0.8 0.52 0.65 0.86 0.7 0.65 0.62 0.65 0.65

A1 0.22 0 0.49 0.27 0.45 0.32 0.12 0.33 0.32 0.48 0.3 0.26 0.58 0.52 0.51 0.81 0.49 0.43 0.4 0.43 0.43

A2 0.57 0.49 0 0.45 0.67 0.65 0.52 0.27 0.56 0.27 0.35 0.48 0.59 0.99 0.42 1.03 0.41 0.7 0.68 0.4 0.6

A3 0.39 0.27 0.45 0 0.55 0.42 0.18 0.28 0.2 0.31 0.15 0.36 0.47 0.61 0.26 0.91 0.32 0.37 0.47 0.26 0.49

A4 0.47 0.45 0.67 0.55 0 0.26 0.38 0.42 0.5 0.45 0.55 0.22 0.44 0.52 0.67 0.57 0.48 0.57 0.43 0.55 0.35

A5 0.43 0.32 0.65 0.42 0.26 0 0.25 0.48 0.26 0.47 0.41 0.21 0.59 0.34 0.47 0.49 0.33 0.31 0.2 0.41 0.23

A6 0.34 0.12 0.52 0.18 0.38 0.25 0 0.35 0.22 0.36 0.23 0.19 0.49 0.47 0.39 0.74 0.36 0.3 0.3 0.3 0.31

A7 0.54 0.33 0.27 0.28 0.42 0.48 0.35 0 0.38 0.2 0.23 0.29 0.34 0.8 0.5 0.86 0.31 0.53 0.51 0.34 0.43

A8 0.52 0.32 0.56 0.2 0.5 0.26 0.22 0.38 0 0.38 0.26 0.39 0.53 0.43 0.25 0.74 0.25 0.2 0.29 0.29 0.31

A9 0.7 0.48 0.27 0.31 0.45 0.47 0.36 0.2 0.38 0 0.19 0.26 0.37 0.81 0.34 0.8 0.19 0.47 0.46 0.22 0.37

A10 0.52 0.3 0.35 0.15 0.55 0.41 0.23 0.23 0.26 0.19 0 0.34 0.41 0.68 0.31 0.85 0.19 0.35 0.41 0.17 0.43

A11 0.44 0.26 0.48 0.36 0.22 0.21 0.19 0.29 0.39 0.26 0.34 0 0.4 0.55 0.56 0.57 0.35 0.43 0.29 0.4 0.21

A12 0.8 0.58 0.59 0.47 0.44 0.59 0.49 0.34 0.53 0.37 0.41 0.4 0 0.83 0.66 0.79 0.43 0.51 0.57 0.42 0.48

A13 0.52 0.52 0.99 0.61 0.52 0.34 0.47 0.8 0.43 0.81 0.68 0.55 0.83 0 0.62 0.34 0.66 0.44 0.44 0.61 0.53

A14 0.65 0.51 0.42 0.26 0.67 0.47 0.39 0.5 0.25 0.34 0.31 0.56 0.66 0.62 0 0.92 0.27 0.38 0.53 0.25 0.55

A15 0.86 0.81 1.03 0.91 0.57 0.49 0.74 0.86 0.74 0.8 0.85 0.57 0.79 0.34 0.92 0 0.68 0.54 0.44 0.78 0.43

A16 0.7 0.49 0.41 0.32 0.48 0.33 0.36 0.31 0.25 0.19 0.19 0.35 0.43 0.66 0.27 0.68 0 0.28 0.28 0.21 0.28

A17 0.65 0.43 0.7 0.37 0.57 0.31 0.3 0.53 0.2 0.47 0.35 0.43 0.51 0.44 0.38 0.54 0.28 0 0.19 0.35 0.22

A18 0.62 0.4 0.68 0.47 0.43 0.2 0.3 0.51 0.29 0.46 0.41 0.29 0.57 0.44 0.53 0.44 0.28 0.19 0 0.46 0.09

A19 0.65 0.43 0.4 0.26 0.55 0.41 0.3 0.34 0.29 0.22 0.17 0.4 0.42 0.61 0.25 0.78 0.21 0.35 0.46 0 0.48

A20 0.65 0.43 0.6 0.49 0.35 0.23 0.31 0.43 0.31 0.37 0.43 0.21 0.48 0.53 0.55 0.43 0.28 0.22 0.09 0.48 0 
 

The dissimilarity values represent the degree dissimilarity between any two DMUs. If 
the value is 1, then the DMUS are totally different. If the value is 0, then the two DMUs are 
exactly the same, so the coordinates of these two DMUs will be the same as well. The school 
name has been replaced by variables due to the size of the dissimilarity matrix. A0 represents 
the Ideal Solution, A1 represents UPenn, A2 represents Harvard, and so on. Figure 3.2 is the 
projection of these points on a 3D ball by using the coordinates in Table 3.5. 
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Figure 0.2 3D ball with DMUs projected on the surface 

  
Notice that the North Pole is the ideal point. The points with higher altitudes are points 

with higher rankings. Universities that are closer to the equator are the ones with lower 
ranking and scores. Figure 3.2 clearly shows that Instituto de Empresa has the lowest ranking 
and IMD has the second lowest ranking, where University of Pennsylvania still has the best 
score. 

 
4. Conclusion 
 

People have being ranking DMU to show their importance and priorities since long ago. There 
are many ways to rank and each method has their strengths and weaknesses. From this study, we have 
proposed a method to help Decision Makers rank DMUs with out the needs to specify weightings for 
each criteria, which often is the most controversy and difficult in the whole ranking process. Using 
the techniques from Linear Programming, this model can produce a set of weightings for DMUs 
based on the absolute dominances relationships and preferences relationships, given by the Decision 
Makers. The 3D Ball representation not only has given Decision Makers the views they can not have 
by only looking at the table, but also allows them to categorize the DMUs and change the groupings 
for DMUs. 

This model has focused on the mathematical models. There are still many issues can be studied 
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in this area. Following are some suggestions for future works: 
• Efficiency and validity in data collection and criteria selection. 
• Although this model provides the function of changing groupings for DMUs, the clustering 

function can be improved. Certain clustering technique could be applied and help the 
groupings to be more accurate. 

• The mathematical model can be modified to produce a more profound model, which can 
reduce the computation time and returns globally optimized solution. 
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