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The main difficulty for high-bit-rate transmission under high mobility is on the tracking of
the fast time-varying channel characteristic due to movement. Different from other researches
who mostly focus on enhancing the accuracy of the channel parameter estimation and
equalization, this project aims at a pure channel-coding approach, i.e., to combine the channel
estimation and equalization into channel code design. In the first year, we established the code
design philosophy for resisting time-varying multipath interference. In addition, the derivation of
a general soft bit-decomposed metric formula for symbol-based modulation scheme has been
derived. The latter result has been accepted for publication as a full paper in the IEEE



Transaction on Wireless Communications. In the second year of the project, the idea that the
channel-with-memory nature can be nearly weakened to blockwise independence by the insertive
transmission of “random bits” between two consecutive blocks was experimented. Based on this
idea, we further conjectured that these *‘random bits" can be another parity check bits generated
due to interleaved information bits such that additional coding information can be provided to
improve the system performance. A simplest exemplified structure that follows this idea is the
parallel concatenated convolutional code (PCCC). We thus derived its respective iterative MAP
algorithm for time-varying channel with first-order Gauss-Markov fading, and tested whether or
not the receiver can treat the received vector as blockwise independence with 2-bit blocks
periodically separated by single parity-check bit from the second component recursive
systematic convolutional (RSC) code encoder. Also done in the second year was the derivation
of the channel capacity of time-varying Gauss-Markov fading channels for comparison with the
proposed system. Specifically, we first remarked on four different definitions of channel
capacities according to whether the transmitter and the receiver have or do not have the channel
state information (CSI). We then provided detailed derivations for the channel transition
probability of the Gauss-Markov channels. As the true capacity formula for blind-CSI in both
transmitter and receiver is hard to obtain, we derived its independent upper bound instead, and
establish a close-form expression of the independent bound for any memory order M.
Discussions are finally given by numerical evaluation of the independent bounds. In the last year,
the project, we simulated and found by following our results in the previous two years that the
performance of the insertive-random-bit system we proposed is at most 0.9 dB away from the
Shannon limit at BER=2x10"*. Also completed in the last year of the project is the extension of
the novel concept, combining channel estimation, equalization and error protecting coding
technique, introduced by Skoglund, Giese and Parkvall in 2002, to the time-varying fast fading
channel such as Gauss-Markov channels. By deriving the pairwise error probability as a code
search criterion, our codes are shown to provide coding gains of about 3.5 dB and 6 dB,
respectively, on the Gauss-Markov channels with channel memory orders 1 and 2 over those in
[15] at WER= 10"~

Keywords: Time-varying multipath fading channel, Channel estimation, Channel equalization,

Error correcting coding

2.

2.1 Introduction and motivations:

The organization of present typical receivers for wireless communications mostly includes
channel estimation and channel equalization devices in order to compensate the channel effect. A
milestone research in 2002 by Skoglund, Giese and Parkvall [12] however demonstrated that a
communication scheme which jointly considers error correcting code and multipath fading effect
can achieve markedly better performance than a typical communication system even if perfect
channel estimation and equalization are assumed. This exciting result provides a prospect that
makes possible the achievement of a high data transmission rate for highly mobile users.

The main technology obstacle for high-bit-rate transmission under high mobility is the
seemingly highly time-varying channel characteristic due to movement; such a characteristic
enforces the dependence between consecutive symbols, and further enlarges the difficulty in

compensating the intersymbol interference. In principle, the temporal channel memory can be
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eliminated by an intersymbol space longer than the channel memory spread. An example is the
IEEE 802.11a standard, in which 0.8-us “intersymbol space” is added between two consecutive
3.2-us OFDM symbols to combat any delay spread less than 800 nano seconds. In order to take
advantage of the circular convolution technique, the 0.8-us “intersymbol space” is designed to be
the leading 0.8-p portion of the 3.2-us OFDM symbol, which is often named the cyclic prefix
[8][9]. Motivated by this, we experiment on a different view in the neutralization of channel
memory, where the “intersymbol space” may be of use to enhance the system performance.
Details will be introduced in subsequent sections.

In order to examine the performance of our proposed system, we tempted to establish the
capacity [5] of the time-varying fading channel experimented. There have been several
publications investigating the capacity of fading channels in the literatures. The capacity of the
flat Rayleigh fading channel has been studied in [7] under the assumption that the state of channel
fading is perfectly known to both the transmitter and the receiver. While neither the transmitter
nor the receiver knows the channel state information (CSI), investigation of the capacity of
memoryless Rayleigh fading channels can be found in [1].

For wireless communications, the main design challenge arises from the harsh propagation
environment determined by channel fading parameters. It may be resulted from reflex and diffuse
multipath loss, and cochannel interference, and then makes reliable transmission much more
difficult to achieve. Multipath propagation and limited bandwidth are the two main causes of
signal distortion that leads to intersymbol interference (ISI). ISI may lead to higher error rates in
symbol detection at the receiver. Moreover, the more obstructions in the communication path, the
faster the channel varies. The general methods to combat this problem are channel coding,
channel estimation and equalization. Channel estimation scheme at the receiver estimates channel
parameters at present by a known training sequence, and passes these parameters to equalizers to
compensate the effect on the received signal induced by channel fading. Since the training
sequence dose not carry any information data and is a waste of channel usage, an alternative
approach, i.e., a blind method, which transmits no training data but only the channel output, is
used for channel estimation. Another hybrid approach, called semiblind, utilizes both training
data and input information to perform channel estimation. As aforementioned, in 2002, Skoglund,
Giese and Parkvall introduced a novel concept of combining channel estimation, equalization and
decoding, where they focused on the design of a coder that can improve the performance of
parameter estimation [15]. To be specific, they tried to optimize the block error rate by designing
a block code which can simultaneously provide channel estimation and error protection to the
receiver. By comparing their designed code to a Hamming code with perfect estimation,
equalization, they found that the designed code outperformed the above Hamming code
significantly. The code designed in [15] has been proved to have excellent performance over the
block Rayleigh-fading channel. However, it is not indicated how it will perform on a more
critical channel which is not block fading. Usually the channel coefficients are changing during
the period of transmission of codeword in practice. Thus, we are interested in finding a code

suitable for a fast time-varying channel.



2.2 The research procedures in this project:

Based on the above motivation, there are two issues on which we concentrate in the first
year of the project. The first issue is to establish the optimal criterion for decoding the equalizer
codes. The second issue is to derivate the metric formulas of the bit-wise soft-decision decoding
for the symbol-based modulation. We describe the details in the following subsections.

In the second year, there are two questions on which we concentrate. The first is to
experiment on a different view in the neutralization of channel memory, where the “intersymbol
space” may be of use to enhance the system performance. The second question that the research
aims at is that what the capacity of a time-varying channel, like Gauss-Markov [3][4] is. Seldom
publications have been emerged in the capacity study of Gauss-Markov channels. The
understanding of this quantity helps the researchers understand the gap between a transmission
scheme and the underlying limit.

In the last year of the project, we focused on the code design over the Gauss-Markov
channel. The reason that we are enthusiastic about Gauss-Markov channels is that it can imitate
any fast time-varying channels as long as the order of Markov factor is large enough. We design
two kind of codes for this channels, i.e, PCCC code with iterative MAP decoder of
Gauss-Markov channels and a nonlinear codes searched by simulated annealing. Details will be

provided subsequently.

2.2.1 Equalizer code design:

In the first issue in the first year, our goal is to establish a framework of a systematic
equalizer code in the time-varying environment. An important step in this phase is to find the
optimal decoding metric. In addition, we also need to examine the properties of the derived
metric in order to help the code construction and subsequent decoder design. The procedure of
our research is separated into several parts. (1) The mathematical expression of the considered
fading channels should be well-defined. (2) Based on the chosen channel model, what the
maximum-likelihood (ML) criterion is under i.i.d. input information bit sequence. (3) Based on
the derived ML criterion, how to construct a code, and design its feasible decoding algorithm for
the code. (4) Finally, to derive the channel capacity of the channel, and to examine whether our
code can achieve the capacity of the channel.

Two types of fast time-varying channel models are often adopted in the literature. The first
type [11] such as Jakes’ model, second-order Butterworth and rectangular spectrum...etc. is not
analyzable. These models are widely accepted as realistic fading channel models and are usually
utilized in simulations; however, they are mostly not analytically tractable. The second type of
fast time-varying channel models includes autoregressive (AR) model, time-independent model,
polynomial model [2] and quasi-static channel, which are basically analyzable. In this part of the
research, we chose the first-order AR model as our research goal. This model is often named

Gauss-Markov model, which is defined as:

r,=a,h,+n, and h, =cah, +v,



where k=1,2,...,N, Vi is complex white Gaussian with mean d and covariance C, a, is the input,
and « is a constant. The Gauss-Markov channel has been shown to be a good model to emulate
a true fading channel [14]. The usual time-independent channel model and quasi-static channel

model are its special cases.
By denoting A = [ay,.. .,aN]T and H = [hy,...,hx] , we can derive the ML decoding criterion
for the model through [10]:

Pr(r | A) = jH Pr(r | A,H)Pr(H)dH
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The ML criterion for Gauss-Markov channel is
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Notably, our criterion is an extension of that in [3], in which zero-mean for H = [hy,...,hx] is
assumed.

On the decoding algorithm, because G, and q, are functions of the entire information
sequence, the standard Viterbi algorithm (VA) can not be applied. In [3], the authors employed
the list Viterbi algorithm (LVA) to prune out some less likely data sequences, and showed that it
is not beneficial to keep more than three survivor paths at each trellis node. In this project, we
considered two alternative approaches: metric prediction and iterative decoding approach. On the
metric prediction, we conjecture that the LVA (even with L = 3) performance can be achieved by
the standard VA (L = 1) if a proper prediction metric can be added to the above derived metric.
For example, in a flat fading environment, G, and q, in (1) are simply scalars. Also, Gy

remains almost the same for k= 1...N. Let the mean d = 0. Then a prediction metric can be set as:

h(r;) = x,C, +q, -2BD;

where
4 =, C =—C, . D,=2D ~|r,[1+C), A="Z and B=-L.
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This result can gradually migrate to frequency-selective fading channels. In addition, the
recursive property of the ML criterion can be easy to use in an iterative decoding algorithm, such
as Soft-Output Viterbi algorithm (SOVA).

Our next focus is on the code construction (possibly non-linear) for the chosen
Gauss-Markov channel. The approach taken is basically to derive the pairwise error probability
for two candidate codewords, and then uses simulated annealing algorithm to search for a good
code. Subsequently, the mutual information of the Gauss-Markov channel is examined so that it
can be applied to the evaluation of the channel capacity of the Gauss-Markov channel with

unknown channel state information (CSI).

2.2.2 Bit-wise decomposition of M-ary maximum-likelihood symbol metric:

Another result that we obtained in the first year is a systematic recursive formula for
bit-wise decomposition of M-ary symbol metric. The decomposed bit metrics can be applied to
improve the performance of a system where the information sequence is binary-coded and
interleaved before M-ary modulated. A straightforward receiver designed for certain system is to
de-map the received M-ary symbol into its binary isomorphism so as to facilitate the subsequent
bit-based manipulation, such as hard-decision decoding. With a bit-wise decomposition of M-ary
symbol metric, a soft-decision decoder can be used to achieve a better system performance. The
idea behind the systematic formula is to decompose the symbol-based maximum-likelihood (ML)
metric by equating a number of specific equations that are drawn from squared-error criterion. It
interestingly yields a systematic recursive formula that can be applied to some previous work
derived from different standpoint. Simulation results based on IEEE 802.11a/g standards [8][9]
show that at bit-error rate of 10, the proposed bit-wise decomposed metric can provide 3.0 dB,
3.9 dB and 5.1 dB improvement over the concatenation of binary-demapper, deinterleaver and
hard-decision-decoder for 16QAM, 64QAM and 256QAM symbols, respectively. Also, only 0.13
dB performance degradation is resulted by introducing 32-level quantization for 16QAM signals.
The quantization impact for 64QAM signals under 64-level uniform quantization can even be
reduced to 0.07 dB. No further performance degradation, in addition to that due to quantization,
can be observed, when mismatch of AGC gain is limited to be within+40%. The robustness of
the proposed bit-decomposed metric against phase noise is also examined. When the phase drift
increases up to+ 6°, the BER due to our bit-decomposed metric will increase from 10 to around
4x10” at Ey/Ng = 6.7 dB for 16QAM modulation. This phase drift tolerance reduces to+ 4° at
Ew/No = 9.7 dB for 64QAM modulation, where Ey/Ny is chosen such that the no-phase-drift BER

is approximately 10°. The system architecture considered is as follows.
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Our goal is to find the functions f; (Ci, r) to approximate symbol-based Maximum-likelihood

metric:
N K ,
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i1 S o
The criterion we adopt is the minimization of average square error, namely,

min E[(,(c,r)+ f,(C,n) - [r -s(¢c,0)]*)?]

We can get these sub-optimum functions in M?*-QAM systems
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2.2.3 Gauss-Markov channel models

The system model we consider in the later subsections is given by:
r.=a,h +n,

where a] =[a,.,a_,,---,a_,,,] and M is the channel length indicating how serious the past
transmitted bits affect the received bit in this time instance. Furthermore, a] is a complex row
vector containing M transmitted data from time K to time k-M+ 1, Ay is a complex column vector
with M channel impulse response coefficients at time Kk, and ny is the zero-mean Gaussian
complex noise with variance o. Let H = [, hy, ,hn] be the matrix of channel coefficient
vectors representing by columns, and let A = [a;, .,an] be the matrix of transmitted data
representing by rows. Also let r = [ry, ,rN]T represent the received vector, while n = [n,, ,nN]T
be the noise vector from time 1 to time N. If channel impulse response coefficients follow the

Gauss-Markov distribution, then it is called a Gauss-Markov channel. Moreover, the channel



impulse response hx =0 hy + vy at time K, where v is a complex white Gaussian with mean d and
covariance C, and o is a complex first-order Markov factor whose absolute value | of = ¢ "
with Doppler spread w/ Tt and sampling period T [13]. As it can be seen, the Gauss-Markov
channel is a channel whose time-varying behavior is constituted by Markovians and Gauss

random variables.

2.2.4 A lower bound of the Shannon limit:

There are four kinds of capacities according to different assumptions on the knowledge that

the transmitter and the receiver have. In notations, C(S) corresponds to that both the transmitter
and the receiver are unaware of the channel state, while C(S) is the capacity under the
assumption of perfect CSI knowledge to both the transmitter and the receiver. If only the receiver
knows the channel state, the capacity is denoted by C®(S). If only the transmitter is aware of the
CSI, the capacity is denoted by C'"(S). Their formulas are listed below.

C(9)= max_ [ Pu(WI R Bru(yl X h)log[ pY';Y((yy')X)]dydh

ePb(S) X

Py ePb( S)

CT(S)= [, Pulh) max. 3R0O] B (Y1 K (pY;Y((yy')x)]dydh

C(8)= max, [ pu(M) Y R0 P (y] X log [—p““(y'x’h)jd oh

Py (Y1)

C'(9)= [, Pu(h) max. SO0 Pyl h)log( pY;Y((yy')x)jdydh

<Pb(S) £

After defining four definitions of channel capacity, we wish to evaluate the last one based on
the Gauss-Markov fading channel model. Unfortunately, the problem of finding the channel input
statistics that maximizes the channel input-output mutual information is beyond our management

at this stage. Thus, we turn to the determination of good upper bounds for capacities.

Theorem. Assume that there exists a complex number g4 such that i = pi 14« for some real
number p; for every 1 <i <M, where g = [tu1, tk2, ---» ticm]. Also, C is diagonal. Then, the
capacity-cost function for blind-CSI system is upper-bounded by:

C(S)<C,_ (5= 23 J‘Rﬁ ot /2{1og(cosh(\|/§ +25—§Jﬂdt

where

1 |a|2z'1 ".

(1_|a| ZZI | 4 |j

With the availability of capacity upper bounds, performance lower bounds for bit error rates

52:

(BERs) can be obtained by means of the rate-distortion theorem and the joint source-channel

coding theorem [15]. One can then evaluates the performance lower bound numerically in
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comparison with the simulations of his developed coding scheme.

2.2.5 Iterative MAP algorithm for Gauss-Markov channels

Referring to Fig. 1, the information bit sequence # = [uj,W,, , Uk] is comprised of K

independent and identically distributed (i.1.d.) bits with equal probable marginal, where each y; is
either 0 or 1. This information bit sequence is fed into a parallel concatenated convolutional code
(PCCC) encoder that consists of two (37; 21) recursive systematic convolutional (RSC) code
encoders parallelly concatenated through an interleaver to generate the coded bit sequence.
Antipodal modulation, i.e., X = 2¢j-1, is then applied to the coded bit sequence before it is sent to
the Gauss-Markov modeled time-varying channel. Finally, the received sequence r = [ry, 2, ,In]
is delivered to an iterative MAP decoder, and an estimate of the transmitted information bit

sequence is outputted after sufficient number of iterations.

u PCCC . BPSK * |Gauss-Markov] © | lterative !
Encoder rridslii e Chamnel MAP Decoder

Figure 1: System model for coded transmission over Gauss-Markov channels.

We had derived the MAP metric of PCCC over Gauss-Markov channels last year. In this
year, we verify the performance of the iterative MAP algorithm by simulations. The algorithm of

the iterative MAP algorithm proposed is summarized below.

Step 1: Set AY) =0, and set n=1.
Step 2: Calculate A™ and A’

1) Initialization:

® TFori=l, K, Pr{u =0}=1/1+eA* V) and Pr{u =1} =1-Pr{u =0}

® Fori=l, K, s=0, ,15and S=1,---,15, compute y(TSi_l,Tgi) as

Pr{ui = O}Hi:l eGs(i—1)+k|q3(i—1)+k|2 if (TsllyTgl) c Bgo)

y(T T =1 Priu, =L e> " i (11 71y e B
0 A (T T) e BY OB

2) Forward recursive:

® Set a(T,))=1 andfors=1, ,15, a(T))=0.

® Fori=l1, ,Kands=0, ,15,perform a(Tsi):Zléioa(Tg’l)y(T;l,Tsi)

3) Backward recursive:



® Set BT =a(TS) fors=0, ,15.

® Fori=K, ,land 5=0,---,15, perform ﬂﬁg)=2§0aﬁ;+l)7ﬁ§i,Tsi+l)

4) Soft output:
® Fori=1, ,K, update

> a(MHAT)y T
i-1 iy gD
A(ln) (I) — log (T, T5)eB

2 aMHATyTTE)

(T THeB™®

and

2G,; _ _
M) iy — AN /3 3(i-1)+1 * * (n-1) s (n-1) 73
Alr:? (I) - Aln (I) - 0_2—2 (r3(i—1)+1 h3(i—1)+1 + r.3(i—1)+1h$(i—1)+1) - Azne (I) -A y (I)

2e
3(i-1)+1
Step 3: Calculate A and A7
1) Initialization:

® TFori=l, K, Pr{u=0}=1/1+eA* @) and Pr{u =1} =1-Pr{u, =0}

® Fori=l, ,K,s=0, ,15and S=1,---,15, compute y(TSi_l,Tgi) as

_ _ G 1012
Pr{ul(i) _ O}Hi er(i)—1)+k\Q3<|<i)—1>+k|29G3' il if (Ti.l T )e B©
=1 b s 'S i
i1 iy _ 2 GyiyonklGay- +k|29€3i‘§3“2 . i i
7/(Ts ’T§)_ Pr{ul(i)_l}szle 3(1()-1)+k %31 (0)-1) ,lf(Tsll,Tgl-)GBgl)

0 Jif (T, T ¢ BY UBY

2) Forward recursive:

® Set a(T,))=1 andfors=1, ,15, a(T))=0.

® Fori=1, ,Kands=0, ,15,perform a(Tsi):Zioa(T;_l)y(T;_l,Tsi)

3) Backward recursive:

® Set BT =a(TS) fors=0, ,15.

® Fori=K, ,land 5=0,---,15, perform ﬂﬁ;)zzlsioa('l'sm)}/('l';,Ts”l)

4) Soft output:
® Fori=1, ,K, update

T AT T T
AM ) =1 (T e _ _ _ _
S Y RV A

(T TH)eB™®
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and

5
A(zngﬂ) A(n)(l) ) 3“(') o (r3(|(|) 1)+1h3(|(|) D+ +r3(|(|) 1)+1h3(|(|) 1)+1) An)(l ('))

3(|(|)71)+1

Step 4: Repeat Steps and 3 (by setting n=n+1) until the number of desired iterations is reached,

and then make final hard-decision based on the last A 2.

2.2.6 Code construction for Gauss-Markov channels

On the second part of code design, we obtain the likelihood function as
n
f(r| )= ] |G, |
k=1

where

aak

G =254 C | (c'-c'G,,c)

qv = k=19 k-1

o
Because the exact analysis of error probability Pe is hard, we choose to derive an upper bound on
Pe as the criterion instead. Let the code be with length N and rate R = K/N (information bits per

code bit). Then, the average block error rate can be upper-bounded by union bound as
P, =Pr(x # x)
=27>"Pr(x # x| x(i) is transmitted)
<27 2Py
i j
where x is the transmitted codeword, X is the decision at the receiver, and pj;i is the pairwise
error probability of mistaken codeword x(j) when x(i) was transmitted. According to the
maximum-likelihood decoding rule, we have
Pr[r | x(1)] 2 Pr[r| x(1)]
Now we are able to derive the pairwise error probability on the condition that x(i) was transmitted

and x(j) is received,

N ) Gi(Dax (D) - kG (14D
e G ()] 1 H ' 1G())]
_ k=1 kel
p”i =Pr log i G (D (1) ; >01+3 2 Pr log N oG (Day () =0
[1. e 16,0 Hk &0 |G )|
M N . . . . . G
=Pr Z(qk(l)”Gk(J)qk(J)—qk(l)“Gk(l)qk(u) >3 10g L GDI
L =163

l\)l»~

Pr > 0. ()" G0, )" Gl ()= Z( |lgk(<'j>)\|ﬂ

Here, we adopt the simulated annealing algorithm to search for good codes based on the above

criterion. Researchers have shown great successes of using simulated annealing algorithms to
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construct good source codes, error-correcting codes, spherical codes [6], and also codes
combining channel estimation and error protection [15] by optimizing the cost functions like
distortion of source codes, minimum distance, minimum separating angle, and union bound of

block error probability, respectively.

2.3 Achievements:

2.3.1 Equalizer codes technology:

We derived the ML metric for nonzero-mean-channel-response Gauss-Markov channel, and
developed a suboptimum metric for off-line Viterbi algorithm, where the optimal heuristic
function for the fast fading channels with Gauss-Markov model is showed. Our ongoing aim is on
the design and performance evaluation of iterate decoding algorithm for time-varying

Gauss-Markov channel.

2.3.2 Bit-wise decomposition of M-ary maximum-likelihood symbol metrics:

The two figures below reveal our Soft-proposed metric can further improve the performance
of hard-decision, and approach to ideal symbol-ML performance. Further empirical study on
system imperfection implies that the proposed bit-wise decomposed metric also improves the

system robustness against gain-mismatch and phase-noise.
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2.3.3 A lower bound of the Shannon limit:

Figure 2 shows the independent bounds for Gauss-Markov channels of different memory
orders. By intuition, for fixed Cj; and 4, the higher the channel memory order, the more involved

in received vector y at the receiver end. Thus, it is reasonable to expect a lower capacity for larger
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M. However, the independent bound shows that C(S) grows as M increases. This indicates that

in the case we considered, the independent bound could be looser for higher M.
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Figure 2: Illustration of Cm(S) . Parameters for Gauss-Markov channels are: (a) (left.) C,; = C,, = C55=Cy4 =
Css=10, sy == 5= = s =1, @=0.7 and & = 1. (b) (right.) C;, = 10°7, C,, = 10", C35 = 10%, C44 = 10*7,

Css=10°, y=t=p5=p3=ps=1,=0.7 and &* = 1.

2.3.4 Iterative MAP algorithm for Gauss-Markov channels:

B
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Figure 3: Performance curve of the proposed iterative MAP decoder. Parameters of Gauss-Markov channel are a =

0:995, & =0.001and hy=1.

Figure 3 shows the performance of the proposed iterative MAP decoder for channel parameters hy
= 1 and & = 0.001. It indicates that the bit-error-rate (BER) decreases as the number of
iterations increases from 1 to 20. Since the BER performance for 20 iterations is very close to that
for 18 iterations, it is reasonable to anticipate that no further improvement can be obtained with
more number of iterations. Besides, error floor can be observed in this figure. The performance
curve for 20 iterations has apparently lower slope when Eb/NO is beyond 0.8 dB. Figures 4(a) and
4(b) display how iterations improve the decoding performance when channel parameters are
respectively hyp = 0.5, &2 =0.001 and hy =1, &2 =001. Notably, a smaller hy or a larger &2 in
concept gives a noisier channel. Unlike the previous channel setting, the performances in the two
figures saturate with much less number of iterations. When hy = 0.5 and &2 = 0.001, the iterative
MAP algorithm with 13 iterations performs close to that with 20 iterations. When hy =1 and &

= 0.01, the sufficient number of iterations, which saturates the performance, reduces to seven.
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Figure 4: (a) (left) Performance comparison between the iterative MAP decoding and a lower bound of the Shannon
limit. Parameters of Gauss-Markov channels are o = 0.995, a\f = 0:01 and hy = 1. (b) (right) Performance
comparison between the iterative MAP decoding and a lower bound of the Shannon limit. Parameters of
Gauss-Markov channel area = 0:995, 05 =0:001 and hy = 0:5.

2.3.5 Code construction:

We have simulated two designed codes for different channel lengths of the Gauss-Markov
channel. One is for M=1, a singular path model, and the other for M=2, a channel with two fading
paths. The codes were first encoded as BPSK signals, suffered fading through the Gauss-Markov
channel, and then decoded according to the optimal rule. We compared the performance of our
designed codes to the code presented in [15]. Figure 5(a) and 5(b) shows the word error rate
(WER) for the designed (10, 5) code with N=10, K=5 when the channel length M=1 and M=2,
respectively. Both codes use the optimal decoding rule. It can be observed that our designed code
indeed outperforms the code given in [15] on Gauss-Markov channels. The coding gain is about
3.5 dB at WER = 10~ when M=1 and is enlarged to 6 dB when M=2. Hence, when the channel
becomes multipath, the performance gain of the designed code is almost double to that of the
code given in [715] even though both codes perform worse than on the single path channel
(M=1).

"
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Figure 5: (a) (left) Word error rate for (10,5) code on the Gauss-Markov channel (M=1). (b) (right) Word error rate
for (10,5) code on the Gauss-Markov channel (M=2).
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The cost of the lower error rate is the price on higher algorithmic complexity in code search.
In order to make the code be adapted to the fast-varying characteristic of channel, the code search
algorithm is designed to deal with this characteristic so that the algorithm becomes more
complicated. Table 1 lists the comparison of algorithmic complexities between the major
computations of our criterion and that given in [15]. The complexity is counted by how many
multiplications and additions are taken during the code search process. Table 1 records the
computational complexity needed in once energy function calculation in simulation annealing
algorithm for a code with length N. By taking an example of N = 10, the codes demonstrated in
Figure 4, the total numbers of multiplications and additions are 68795 and 63124 respectively for
our criterion, and 1961 and 1779 respectively for that given in [15].

Table 1: comparison of complexity
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Accordingly to the project proposal, our aims in the first year are to develop and examine
the design rule of equalizer codes in a time-varying multipath fading environment, and to derive
the soft bit metric of symbol-oriented high-speed modulation. Both aims have been achieved in
this year. In addition, we demonstrated a low-complex suboptimum metric prediction approach
and verified the performance of our soft bit metric by simulation based on IEEE 802.11 a/g
standard. The result of the second part has already been published in APCCS, 2003, and has been
accepted for publications by the IEEE trans. on wireless communications.

Based on the result of the first year, the aims of this year are to design channel codes which
have been considered the statistics properties of fading channels. In this work, we take the PCCC
code and its respective iterative MAP decoder as a test vehicle to experiment on the idea that the
temporal channel memory can be weakened to nearly blockwise time-independence by the
insertive transmission of “random bits” of sufficient length between two consecutive blocks, for
which these “random bits” are actually another parity check bits generated due to interleaved
information bits. The simulation results show that the metrics derived based on blockwise
independence with 2-bit blocks periodically separated by a single parity-check bit from the
second component RSC encoder perform close to the CSI-aided decoding scheme, and is at most
0.9 dB away from the Shannon limit at BER = 2 x 10~* when ho=1 and Jf = 0.001. The result
of the first part has been prepared for submission to IEEE communication letters. A natural future
work is to extend the channel memory to higher order, and further examine whether the same
idea can be applied to obtain well-acceptable system performance. In the second part of the
second year’s work, we have remarked on four different definitions of channel capacities
according to the transmitter/receiver with/without channel state information. We then turn to the
derivation of the independent bounds for the channel capacity without CSI in both transmitter and
receiver. We then found that if there is no LOS signal existing, the capacity of the blind-CSI
system will be reduced to zero.

On the last year, we demonstrate the well performance of PCCC code by considering the
statistical properties of Gauss-Markov fading channels by simulations based on the MAP
metric derived in last year. It proves the feasibility of our idea that the memory of channels can

be weakened to blockwise independence by inserting “random bits” between two consecutive
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blocks. On the second part of this work, we derive the pairwise error probability as a function
of the criterion for use of the simulated annealing algorithm. By the simulated annealing
algorithm, we construct codes that have better WER performance than those obtained from
[15]. Our designed codes provide a coding gain of about 3.5 dB and 6 dB on the
Gauss-Markov channels with channel memory orders 1 and 2 respectively over those given in
[15] at WER= 10. During the process to obtain this criterion, we found that the complicate
characteristic of the channel increases the operations needed for code search drastically. Even
though we have performed some reductions on the criterion to speed up the algorithm, it still
takes a long time to search for good codes. A natural future work will be to further speed up

the algorithm by simplifying the code search criterion.
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