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1. 中、英文摘要及關鍵詞(keywords) 

 
由於載具在高速移動時，傳輸通道會呈現極快速時變(time-varying)的特性，導致很難

進行高速率傳輸。有別於其他相關研究是專注於設計更好的方法來更精準估計的時變通道

參數，本計畫改採以通道編碼為導向的做法解決時變通道的傳輸效能。在計畫的第一年，

我們建立了快速時變多路徑衰減通道解碼的設計理論；另外，也推導出以符元為傳送單位

的高速率傳輸調變的最佳軟性解碼位元量度(soft bit metric)，此結果並已被 IEEE Trans. On 
Wireless Communications 接受為長篇期刊論文。在計畫第二年，我們嘗試並實驗一個新的
想法：亦即在兩個連續的傳送區塊間，穿插傳送一串長度不短於通道記憶長度(channel 
memory)或記憶延展(channel spread)的隨機位元(random bits)，則通道原本的長程記憶特性可
被削弱為近似區塊獨立特性(blockwise independent)。我們同時推想，或許可以使用經由交
錯器(interleaver)打亂序列順序的訊息序列(information bit sequence)的同位檢查位元(parity 
check bits)，來作為上述的“隨機位元”，以使接收端可經由解交錯器(de-interleaver)得到額
外的同位檢查訊息，來進一步提升系統效能。而一個最直接符合以上想法的範例架構，就

是平行串接旋積碼(parallel concatenated convolutional code)。為了驗證這個想法，我們採用
隨時間改變衰減的一階高斯-馬可夫通道為實驗平台。我們推導出疊代最大事後機率演算法
(iterative MAP algorithm)在直接假設接收向量「因為以兩位元為單位，穿插一位元的交錯訊
息序列的同位檢查碼」而具有 2 位元區塊為單位的區塊統計獨立的對應量度公式。此外，
我們亦針對隨時間改變衰減的高斯-馬可夫傳輸通道，作通道傳輸極限(channel capacity)的探
討。根據實際通訊系統的傳送端與接收端是否分別具有「通道狀態資訊」(channel state 
information)，定義出四種不同的通道傳輸極限公式。接著，我們推導高斯-馬可夫傳輸通道
下的通道輸出與輸入信號間的通道轉換機率公式。由於，在傳送端與接收端均無「通道狀

態資訊」的情況下，通道傳輸極限的計算相當困難，因此我們轉而探討其「獨立上界」

(independent bound)。我們導出在不同的通道記憶級數下的一般獨立上界公式。在計畫第三
年，我們延續前兩年的研究，並經由模擬確認我們提出的隨機位元系統與傳輸極限在 BER
為 2×10-4時僅差距 0.9dB。同時在第三年，我們亦將 2002年史克蘭(Skoglund)，蓋斯(Giese)
和巴克孚(Parkvall)所提出的結合通道估計(channel estimation)、等化(equalization)和錯誤保
護碼(error protection code)的觀念，延伸到高斯-馬可夫通道(Gauss-Markov channels)下，亦
即以成對錯誤發生率 (pairwise error probability)作為電腦模擬鍛鍊演算法 (simulated 
annealing algorithm)的判斷準則。相對於[15]的結果，當區塊錯誤機率(WER)為 0.01且高斯-
馬可夫通道記憶長度為 1與 2的情況下，我們的設計碼分別得到約 3.5dB與 6dB的改善。 

 
關鍵詞：時變多路徑衰減通道、通道估量、通道等化、錯誤更正碼 
 

The main difficulty for high-bit-rate transmission under high mobility is on the tracking of 
the fast time-varying channel characteristic due to movement. Different from other researches 
who mostly focus on enhancing the accuracy of the channel parameter estimation and 
equalization, this project aims at a pure channel-coding approach, i.e., to combine the channel 
estimation and equalization into channel code design. In the first year, we established the code 
design philosophy for resisting time-varying multipath interference. In addition, the derivation of 
a general soft bit-decomposed metric formula for symbol-based modulation scheme has been 
derived. The latter result has been accepted for publication as a full paper in the IEEE 
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Transaction on Wireless Communications. In the second year of the project, the idea that the 
channel-with-memory nature can be nearly weakened to blockwise independence by the insertive 
transmission of “random bits” between two consecutive blocks was experimented. Based on this 
idea, we further conjectured that these ``random bits'' can be another parity check bits generated 
due to interleaved information bits such that additional coding information can be provided to 
improve the system performance. A simplest exemplified structure that follows this idea is the 
parallel concatenated convolutional code (PCCC). We thus derived its respective iterative MAP 
algorithm for time-varying channel with first-order Gauss-Markov fading, and tested whether or 
not the receiver can treat the received vector as blockwise independence with 2-bit blocks 
periodically separated by single parity-check bit from the second component recursive 
systematic convolutional (RSC) code encoder. Also done in the second year was the derivation 
of the channel capacity of time-varying Gauss-Markov fading channels for comparison with the 
proposed system. Specifically, we first remarked on four different definitions of channel 
capacities according to whether the transmitter and the receiver have or do not have the channel 
state information (CSI). We then provided detailed derivations for the channel transition 
probability of the Gauss-Markov channels. As the true capacity formula for blind-CSI in both 
transmitter and receiver is hard to obtain, we derived its independent upper bound instead, and 
establish a close-form expression of the independent bound for any memory order M. 
Discussions are finally given by numerical evaluation of the independent bounds. In the last year, 
the project, we simulated and found by following our results in the previous two years that the 
performance of the insertive-random-bit system we proposed is at most 0.9 dB away from the 
Shannon limit at BER=2×10-4. Also completed in the last year of the project is the extension of 
the novel concept, combining channel estimation, equalization and error protecting coding 
technique, introduced by Skoglund, Giese and Parkvall in 2002, to the time-varying fast fading 
channel such as Gauss-Markov channels. By deriving the pairwise error probability as a code 
search criterion, our codes are shown to provide coding gains of about 3.5 dB and 6 dB, 
respectively, on the Gauss-Markov channels with channel memory orders 1 and 2 over those in 
[15] at WER= 10-2. 

 
Keywords: Time-varying multipath fading channel, Channel estimation, Channel equalization, 

Error correcting coding 
 
2.報告內容 
2.1 Introduction and motivations: 
 The organization of present typical receivers for wireless communications mostly includes 
channel estimation and channel equalization devices in order to compensate the channel effect. A 
milestone research in 2002 by Skoglund, Giese and Parkvall [12] however demonstrated that a 
communication scheme which jointly considers error correcting code and multipath fading effect 
can achieve markedly better performance than a typical communication system even if perfect 
channel estimation and equalization are assumed. This exciting result provides a prospect that 
makes possible the achievement of a high data transmission rate for highly mobile users. 

The main technology obstacle for high-bit-rate transmission under high mobility is the 
seemingly highly time-varying channel characteristic due to movement; such a characteristic 
enforces the dependence between consecutive symbols, and further enlarges the difficulty in 
compensating the intersymbol interference. In principle, the temporal channel memory can be 
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eliminated by an intersymbol space longer than the channel memory spread. An example is the 
IEEE 802.11a standard, in which 0.8-µs “intersymbol space” is added between two consecutive 
3.2-µs OFDM symbols to combat any delay spread less than 800 nano seconds. In order to take 
advantage of the circular convolution technique, the 0.8-µs “intersymbol space” is designed to be 
the leading 0.8-µ portion of the 3.2-µs OFDM symbol, which is often named the cyclic prefix 
[8][9]. Motivated by this, we experiment on a different view in the neutralization of channel 
memory, where the “intersymbol space” may be of use to enhance the system performance. 
Details will be introduced in subsequent sections. 

In order to examine the performance of our proposed system, we tempted to establish the 
capacity [5] of the time-varying fading channel experimented. There have been several 
publications investigating the capacity of fading channels in the literatures. The capacity of the 
flat Rayleigh fading channel has been studied in [7] under the assumption that the state of channel 
fading is perfectly known to both the transmitter and the receiver. While neither the transmitter 
nor the receiver knows the channel state information (CSI), investigation of the capacity of 
memoryless Rayleigh fading channels can be found in [1]. 

For wireless communications, the main design challenge arises from the harsh propagation 
environment determined by channel fading parameters. It may be resulted from reflex and diffuse 
multipath loss, and cochannel interference, and then makes reliable transmission much more 
difficult to achieve. Multipath propagation and limited bandwidth are the two main causes of 
signal distortion that leads to intersymbol interference (ISI). ISI may lead to higher error rates in 
symbol detection at the receiver. Moreover, the more obstructions in the communication path, the 
faster the channel varies. The general methods to combat this problem are channel coding, 
channel estimation and equalization. Channel estimation scheme at the receiver estimates channel 
parameters at present by a known training sequence, and passes these parameters to equalizers to 
compensate the effect on the received signal induced by channel fading. Since the training 
sequence dose not carry any information data and is a waste of channel usage, an alternative 
approach, i.e., a blind method, which transmits no training data but only the channel output, is 
used for channel estimation. Another hybrid approach, called semiblind, utilizes both training 
data and input information to perform channel estimation. As aforementioned, in 2002, Skoglund, 
Giese and Parkvall introduced a novel concept of combining channel estimation, equalization and 
decoding, where they focused on the design of a coder that can improve the performance of 
parameter estimation [15]. To be specific, they tried to optimize the block error rate by designing 
a block code which can simultaneously provide channel estimation and error protection to the 
receiver. By comparing their designed code to a Hamming code with perfect estimation, 
equalization, they found that the designed code outperformed the above Hamming code 
significantly. The code designed in [15] has been proved to have excellent performance over the 
block Rayleigh-fading channel. However, it is not indicated how it will perform on a more 
critical channel which is not block fading. Usually the channel coefficients are changing during 
the period of transmission of codeword in practice. Thus, we are interested in finding a code 
suitable for a fast time-varying channel. 
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2.2 The research procedures in this project: 
Based on the above motivation, there are two issues on which we concentrate in the first 

year of the project. The first issue is to establish the optimal criterion for decoding the equalizer 
codes. The second issue is to derivate the metric formulas of the bit-wise soft-decision decoding 
for the symbol-based modulation. We describe the details in the following subsections. 

In the second year, there are two questions on which we concentrate. The first is to 
experiment on a different view in the neutralization of channel memory, where the “intersymbol 
space” may be of use to enhance the system performance. The second question that the research 
aims at is that what the capacity of a time-varying channel, like Gauss-Markov [3][4] is. Seldom 
publications have been emerged in the capacity study of Gauss-Markov channels. The 
understanding of this quantity helps the researchers understand the gap between a transmission 
scheme and the underlying limit. 

In the last year of the project, we focused on the code design over the Gauss-Markov 
channel. The reason that we are enthusiastic about Gauss-Markov channels is that it can imitate 
any fast time-varying channels as long as the order of Markov factor is large enough. We design 
two kind of codes for this channels, i.e, PCCC code with iterative MAP decoder of 
Gauss-Markov channels and a nonlinear codes searched by simulated annealing. Details will be 
provided subsequently. 
 
2.2.1 Equalizer code design: 

In the first issue in the first year, our goal is to establish a framework of a systematic 
equalizer code in the time-varying environment. An important step in this phase is to find the 
optimal decoding metric. In addition, we also need to examine the properties of the derived 
metric in order to help the code construction and subsequent decoder design. The procedure of 
our research is separated into several parts. (1) The mathematical expression of the considered 
fading channels should be well-defined. (2) Based on the chosen channel model, what the 
maximum-likelihood (ML) criterion is under i.i.d. input information bit sequence. (3) Based on 
the derived ML criterion, how to construct a code, and design its feasible decoding algorithm for 
the code. (4) Finally, to derive the channel capacity of the channel, and to examine whether our 
code can achieve the capacity of the channel. 

Two types of fast time-varying channel models are often adopted in the literature. The first 
type [11] such as Jakes’ model, second-order Butterworth and rectangular spectrum…etc. is not 
analyzable. These models are widely accepted as realistic fading channel models and are usually 
utilized in simulations; however, they are mostly not analytically tractable. The second type of 
fast time-varying channel models includes autoregressive (AR) model, time-independent model, 
polynomial model [2] and quasi-static channel, which are basically analyzable. In this part of the 
research, we chose the first-order AR model as our research goal. This model is often named 
Gauss-Markov model, which is defined as: 

kk
T
kk nr += ha  and kkk vhh += −1α  
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where k=1,2,…,N, vk is complex white Gaussian with mean d and covariance C, ka  is the input, 
and α  is a constant. The Gauss-Markov channel has been shown to be a good model to emulate 
a true fading channel [14]. The usual time-independent channel model and quasi-static channel 
model are its special cases. 

By denoting A = [a1,…,aN]T and H = [h1,…,hN] , we can derive the ML decoding criterion 
for the model through [10]:  
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Notably, our criterion is an extension of that in [3], in which zero-mean for H = [h1,…,hN] is 
assumed. 

On the decoding algorithm, because kG  and kq  are functions of the entire information 
sequence, the standard Viterbi algorithm (VA) can not be applied. In [3], the authors employed 
the list Viterbi algorithm (LVA) to prune out some less likely data sequences, and showed that it 
is not beneficial to keep more than three survivor paths at each trellis node. In this project, we 
considered two alternative approaches: metric prediction and iterative decoding approach. On the 
metric prediction, we conjecture that the LVA (even with L = 3) performance can be achieved by 
the standard VA (L = 1) if a proper prediction metric can be added to the above derived metric. 
For example, in a flat fading environment, kG  and kq  in (1) are simply scalars. Also, Gk 
remains almost the same for k = 1…N. Let the mean d = 0. Then a prediction metric can be set as: 

 jjjjj BDqCrh 2)( ⋅+= µ  
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This result can gradually migrate to frequency-selective fading channels. In addition, the 
recursive property of the ML criterion can be easy to use in an iterative decoding algorithm, such 
as Soft-Output Viterbi algorithm (SOVA). 

Our next focus is on the code construction (possibly non-linear) for the chosen 
Gauss-Markov channel. The approach taken is basically to derive the pairwise error probability 
for two candidate codewords, and then uses simulated annealing algorithm to search for a good 
code. Subsequently, the mutual information of the Gauss-Markov channel is examined so that it 
can be applied to the evaluation of the channel capacity of the Gauss-Markov channel with 
unknown channel state information (CSI). 

 
2.2.2 Bit-wise decomposition of M-ary maximum-likelihood symbol metric: 

Another result that we obtained in the first year is a systematic recursive formula for 
bit-wise decomposition of M-ary symbol metric. The decomposed bit metrics can be applied to 
improve the performance of a system where the information sequence is binary-coded and 
interleaved before M-ary modulated. A straightforward receiver designed for certain system is to 
de-map the received M-ary symbol into its binary isomorphism so as to facilitate the subsequent 
bit-based manipulation, such as hard-decision decoding. With a bit-wise decomposition of M-ary 
symbol metric, a soft-decision decoder can be used to achieve a better system performance. The 
idea behind the systematic formula is to decompose the symbol-based maximum-likelihood (ML) 
metric by equating a number of specific equations that are drawn from squared-error criterion. It 
interestingly yields a systematic recursive formula that can be applied to some previous work 
derived from different standpoint. Simulation results based on IEEE 802.11a/g standards [8][9] 
show that at bit-error rate of 10−5, the proposed bit-wise decomposed metric can provide 3.0 dB, 
3.9 dB and 5.1 dB improvement over the concatenation of binary-demapper, deinterleaver and 
hard-decision-decoder for 16QAM, 64QAM and 256QAM symbols, respectively. Also, only 0.13 
dB performance degradation is resulted by introducing 32-level quantization for 16QAM signals. 
The quantization impact for 64QAM signals under 64-level uniform quantization can even be 
reduced to 0.07 dB. No further performance degradation, in addition to that due to quantization, 
can be observed, when mismatch of AGC gain is limited to be within± 40%. The robustness of 
the proposed bit-decomposed metric against phase noise is also examined. When the phase drift 
increases up to± 6o, the BER due to our bit-decomposed metric will increase from 10-5 to around 
4×10-5 at Eb/N0 = 6.7 dB for 16QAM modulation. This phase drift tolerance reduces to± 4o at 
Eb/N0 = 9.7 dB for 64QAM modulation, where Eb/N0 is chosen such that the no-phase-drift BER 
is approximately 10-5. The system architecture considered is as follows. 
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Our goal is to find the functions fi (ci , r) to approximate symbol-based Maximum-likelihood 
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2.2.3 Gauss-Markov channel models 
 The system model we consider in the later subsections is given by: 

kk
T
kk nhar +=  

where [ ]11 ,,, +−−= Mkkk
T
k aaaa L  and M is the channel length indicating how serious the past 

transmitted bits affect the received bit in this time instance. Furthermore, T
ka  is a complex row 

vector containing M transmitted data from time k to time k−M+1, hk is a complex column vector 
with M channel impulse response coefficients at time k, and nk is the zero-mean Gaussian 
complex noise with variance σ2. Let H = [h1, h2,⋯,hN] be the matrix of channel coefficient 
vectors representing by columns, and let A = [a1,⋯,aN] be the matrix of transmitted data 
representing by rows. Also let r = [r1,⋯,rN]T represent the received vector, while n = [n1, ⋯,nN]T 
be the noise vector from time 1 to time N. If channel impulse response coefficients follow the 
Gauss-Markov distribution, then it is called a Gauss-Markov channel. Moreover, the channel 
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impulse response hk =αhk + vk at time k, where vk is a complex white Gaussian with mean d and 
covariance C, and α is a complex first-order Markov factor whose absolute value |α| = e-ωT 
with Doppler spread ω/π and sampling period T [13]. As it can be seen, the Gauss-Markov 
channel is a channel whose time-varying behavior is constituted by Markovians and Gauss 
random variables. 
 
2.2.4 A lower bound of the Shannon limit: 

There are four kinds of capacities according to different assumptions on the knowledge that 
the transmitter and the receiver have. In notations, C(S) corresponds to that both the transmitter 
and the receiver are unaware of the channel state, while C’(S) is the capacity under the 
assumption of perfect CSI knowledge to both the transmitter and the receiver. If only the receiver 
knows the channel state, the capacity is denoted by C(R)(S). If only the transmitter is aware of the 
CSI, the capacity is denoted by C(T)(S). Their formulas are listed below. 
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After defining four definitions of channel capacity, we wish to evaluate the last one based on 
the Gauss-Markov fading channel model. Unfortunately, the problem of finding the channel input 
statistics that maximizes the channel input-output mutual information is beyond our management 
at this stage. Thus, we turn to the determination of good upper bounds for capacities. 
 
Theorem. Assume that there exists a complex number µk such that µk,i = ρi µk for some real 
number ρi for every 1 ≤ i ≤ M, where µk = [µk,1, µk,2, …, µk,M]. Also, C is diagonal. Then, the 
capacity-cost function for blind-CSI system is upper-bounded by: 
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With the availability of capacity upper bounds, performance lower bounds for bit error rates 
(BERs) can be obtained by means of the rate-distortion theorem and the joint source-channel 
coding theorem [15]. One can then evaluates the performance lower bound numerically in 
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comparison with the simulations of his developed coding scheme.  
 
2.2.5 Iterative MAP algorithm for Gauss-Markov channels 

Referring to Fig. 1, the information bit sequence u = [u1,u2,⋯,uK] is comprised of K 
independent and identically distributed (i.i.d.) bits with equal probable marginal, where each uj is 
either 0 or 1. This information bit sequence is fed into a parallel concatenated convolutional code 
(PCCC) encoder that consists of two (37; 21) recursive systematic convolutional (RSC) code 
encoders parallelly concatenated through an interleaver to generate the coded bit sequence.  
Antipodal modulation, i.e., xj = 2cj-1, is then applied to the coded bit sequence before it is sent to 
the Gauss-Markov modeled time-varying channel. Finally, the received sequence r = [r1, r2,⋯,rN] 
is delivered to an iterative MAP decoder, and an estimate of the transmitted information bit 
sequence is outputted after sufficient number of iterations. 
 

 
Figure 1: System model for coded transmission over Gauss-Markov channels. 

 
We had derived the MAP metric of PCCC over Gauss-Markov channels last year. In this 

year, we verify the performance of the iterative MAP algorithm by simulations. The algorithm of 
the iterative MAP algorithm proposed is summarized below. 
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Step 4: Repeat Steps and 3 (by setting n=n+1) until the number of desired iterations is reached, 
and then make final hard-decision based on the last Λ2. 

 
2.2.6 Code construction for Gauss-Markov channels 
 On the second part of code design, we obtain the likelihood function as 
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Because the exact analysis of error probability Pe is hard, we choose to derive an upper bound on 
Pe as the criterion instead. Let the code be with length N and rate R = K/N (information bits per 
code bit). Then, the average block error rate can be upper-bounded by union bound as 
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where x is the transmitted codeword, x̂  is the decision at the receiver, and pjji is the pairwise 
error probability of mistaken codeword x(j) when x(i) was transmitted. According to the 
maximum-likelihood decoding rule, we have 
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Now we are able to derive the pairwise error probability on the condition that x(i) was transmitted 
and x(j) is received, 
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Here, we adopt the simulated annealing algorithm to search for good codes based on the above 
criterion. Researchers have shown great successes of using simulated annealing algorithms to 
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construct good source codes, error-correcting codes, spherical codes [6], and also codes 
combining channel estimation and error protection [15] by optimizing the cost functions like 
distortion of source codes, minimum distance, minimum separating angle, and union bound of 
block error probability, respectively. 
 
2.3 Achievements: 
 
2.3.1 Equalizer codes technology: 
  
We derived the ML metric for nonzero-mean-channel-response Gauss-Markov channel, and 
developed a suboptimum metric for off-line Viterbi algorithm, where the optimal heuristic 
function for the fast fading channels with Gauss-Markov model is showed. Our ongoing aim is on 
the design and performance evaluation of iterate decoding algorithm for time-varying 
Gauss-Markov channel. 

 
2.3.2 Bit-wise decomposition of M-ary maximum-likelihood symbol metrics: 

 
The two figures below reveal our Soft-proposed metric can further improve the performance 

of hard-decision, and approach to ideal symbol-ML performance. Further empirical study on 
system imperfection implies that the proposed bit-wise decomposed metric also improves the 
system robustness against gain-mismatch and phase-noise. 
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2.3.3 A lower bound of the Shannon limit: 
 

Figure 2 shows the independent bounds for Gauss-Markov channels of different memory 
orders. By intuition, for fixed Ci,i and µi, the higher the channel memory order, the more involved 
in received vector y at the receiver end. Thus, it is reasonable to expect a lower capacity for larger 
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M. However, the independent bound shows that C∞(S) grows as M increases. This indicates that 
in the case we considered, the independent bound could be looser for higher M. 

 
Figure 2: Illustration of )(SC∞ . Parameters for Gauss-Markov channels are: (a) (left.) C1,1 = C2,2 = C3,3 = C4,4 = 
C5,5 = 10, µ1 = µ2 = µ3 = µ4 = µ5 = 1, α = 0.7 and σ2 = 1. (b) (right.) C1,1 = 100.7, C2,2 = 101.5, C3,3 = 102, C4,4 = 102.5, 
C5,5 = 103, µ1 = µ2 = µ3 = µ4 = µ5 = 1, α = 0.7 and σ2 = 1. 
 
2.3.4 Iterative MAP algorithm for Gauss-Markov channels: 

 
Figure 3: Performance curve of the proposed iterative MAP decoder. Parameters of Gauss-Markov channel are α= 

0:995, 2
vσ  = 0.001 and h0 = 1. 

 
Figure 3 shows the performance of the proposed iterative MAP decoder for channel parameters h0 
= 1 and 2

vσ  = 0.001. It indicates that the bit-error-rate (BER) decreases as the number of 
iterations increases from 1 to 20. Since the BER performance for 20 iterations is very close to that 
for 18 iterations, it is reasonable to anticipate that no further improvement can be obtained with 
more number of iterations. Besides, error floor can be observed in this figure. The performance 
curve for 20 iterations has apparently lower slope when Eb/N0 is beyond 0.8 dB. Figures 4(a) and 
4(b) display how iterations improve the decoding performance when channel parameters are 
respectively h0 = 0.5, 2

vσ  = 0.001 and h0 = 1, 2
vσ  = 001. Notably, a smaller h0 or a larger 2

vσ  in 
concept gives a noisier channel. Unlike the previous channel setting, the performances in the two 
figures saturate with much less number of iterations. When h0 = 0.5 and 2

vσ  = 0.001, the iterative 
MAP algorithm with 13 iterations performs close to that with 20 iterations. When h0 = 1 and 2

vσ  
= 0.01, the sufficient number of iterations, which saturates the performance, reduces to seven. 
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Figure 4: (a) (left) Performance comparison between the iterative MAP decoding and a lower bound of the Shannon 
limit. Parameters of Gauss-Markov channels are α = 0.995, 2

vσ  = 0:01 and h0 = 1. (b) (right) Performance 
comparison between the iterative MAP decoding and a lower bound of the Shannon limit. Parameters of 
Gauss-Markov channel areα= 0:995, 2

vσ  = 0:001 and h0 = 0:5. 
 
2.3.5 Code construction: 

We have simulated two designed codes for different channel lengths of the Gauss-Markov 
channel. One is for M=1, a singular path model, and the other for M=2, a channel with two fading 
paths. The codes were first encoded as BPSK signals, suffered fading through the Gauss-Markov 
channel, and then decoded according to the optimal rule. We compared the performance of our 
designed codes to the code presented in [15]. Figure 5(a) and 5(b) shows the word error rate 
(WER) for the designed (10, 5) code with N=10, K=5 when the channel length M=1 and M=2, 
respectively. Both codes use the optimal decoding rule. It can be observed that our designed code 
indeed outperforms the code given in [15] on Gauss-Markov channels. The coding gain is about 
3.5 dB at WER = 10-2 when M=1 and is enlarged to 6 dB when M=2. Hence, when the channel 
becomes multipath, the performance gain of the designed code is almost double to that of the 
code given in [715] even though both codes perform worse than on the single path channel 
(M=1). 
  

 
Figure 5: (a) (left) Word error rate for (10,5) code on the Gauss-Markov channel (M=1). (b) (right) Word error rate 
for (10,5) code on the Gauss-Markov channel (M=2). 
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The cost of the lower error rate is the price on higher algorithmic complexity in code search. 
In order to make the code be adapted to the fast-varying characteristic of channel, the code search 
algorithm is designed to deal with this characteristic so that the algorithm becomes more 
complicated. Table 1 lists the comparison of algorithmic complexities between the major 
computations of our criterion and that given in [15]. The complexity is counted by how many 
multiplications and additions are taken during the code search process. Table 1 records the 
computational complexity needed in once energy function calculation in simulation annealing 
algorithm for a code with length N. By taking an example of N = 10, the codes demonstrated in 
Figure 4, the total numbers of multiplications and additions are 68795 and 63124 respectively for 
our criterion, and 1961 and 1779 respectively for that given in [15]. 

 
Table 1: comparison of complexity 
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4. 計畫成果自評 

Accordingly to the project proposal, our aims in the first year are to develop and examine 
the design rule of equalizer codes in a time-varying multipath fading environment, and to derive 
the soft bit metric of symbol-oriented high-speed modulation. Both aims have been achieved in 
this year. In addition, we demonstrated a low-complex suboptimum metric prediction approach 
and verified the performance of our soft bit metric by simulation based on IEEE 802.11 a/g 
standard. The result of the second part has already been published in APCCS, 2003, and has been 
accepted for publications by the IEEE trans. on wireless communications. 

Based on the result of the first year, the aims of this year are to design channel codes which 
have been considered the statistics properties of fading channels. In this work, we take the PCCC 
code and its respective iterative MAP decoder as a test vehicle to experiment on the idea that the 
temporal channel memory can be weakened to nearly blockwise time-independence by the 
insertive transmission of “random bits” of sufficient length between two consecutive blocks, for 
which these “random bits” are actually another parity check bits generated due to interleaved 
information bits. The simulation results show that the metrics derived based on blockwise 
independence with 2-bit blocks periodically separated by a single parity-check bit from the 
second component RSC encoder perform close to the CSI-aided decoding scheme, and is at most 
0.9 dB away from the Shannon limit at BER = 2 × 10−4 when h0 = 1 and 2

vσ  = 0.001. The result 
of the first part has been prepared for submission to IEEE communication letters. A natural future 
work is to extend the channel memory to higher order, and further examine whether the same 
idea can be applied to obtain well-acceptable system performance. In the second part of the 
second year’s work, we have remarked on four different definitions of channel capacities 
according to the transmitter/receiver with/without channel state information. We then turn to the 
derivation of the independent bounds for the channel capacity without CSI in both transmitter and 
receiver. We then found that if there is no LOS signal existing, the capacity of the blind-CSI 
system will be reduced to zero. 

On the last year, we demonstrate the well performance of PCCC code by considering the 
statistical properties of Gauss-Markov fading channels by simulations based on the MAP 
metric derived in last year. It proves the feasibility of our idea that the memory of channels can 
be weakened to blockwise independence by inserting “random bits” between two consecutive 
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blocks. On the second part of this work, we derive the pairwise error probability as a function 
of the criterion for use of the simulated annealing algorithm. By the simulated annealing 
algorithm, we construct codes that have better WER performance than those obtained from 
[15]. Our designed codes provide a coding gain of about 3.5 dB and 6 dB on the 
Gauss-Markov channels with channel memory orders 1 and 2 respectively over those given in 
[15] at WER= 10-2. During the process to obtain this criterion, we found that the complicate 
characteristic of the channel increases the operations needed for code search drastically. Even 
though we have performed some reductions on the criterion to speed up the algorithm, it still 
takes a long time to search for good codes. A natural future work will be to further speed up 
the algorithm by simplifying the code search criterion. 


