行政院國家科學委員會專題研究計畫 成果報告

新式非揮發性記憶體元件之研究(I)

<u>計畫類別</u>: 個別型計畫 <u>計畫編號</u>: NSC94-2215-E-009-086-<u>執行期間</u>: 94 年 08 月 01 日至 95 年 07 月 31 日 執行單位: 國立交通大學電子工程學系及電子研究所

計畫主持人: 荊鳳德

報告類型: 精簡報告

<u>處理方式:</u>本計畫可公開查詢

中 華 民 國 95年8月4日

行政院國家科學委員會專題研究計畫 成果報告

新式非揮發性記憶體元件之研究(I)

- 計畫類別: 個別型計畫
- <u>計畫編號:</u> NSC 94-2215-E-009-086-
- 執行期間: 94 年08 月01 日至95 年07 月31 日
- 執行單位: 國立交通大學電子工程學系暨電子研究所

計畫主持人: 荊鳳德

報告類型: 完整報告

處理方式: 本計畫可公開查詢

中華民國 95 年8 月2 日

行政院國家科學委員會補助專題研究計畫

■成果報告□期中進度報告

新式非揮發性記憶體元件之研究(I)

計畫類別:■ 個別型計畫 □整合型計畫

計畫編號:NSC 94-2215-E-009-086-

執行期間: 94 年 8 月 1 日至 95 年 7 月31 日

計畫主持人: 荊鳳德

共同主持人:

計畫參與人員:

成果報告類型(依經費核定清單規定繳交):□精簡報告 ■完整報告

本成果報告包括以下應繳交之附件:

□赴國外出差或研習心得報告一份

□赴大陸地區出差或研習心得報告一份

□出席國際學術會議心得報告及發表之論文各一份

□國際合作研究計畫國外研究報告書一份

處理方式:除產學合作研究計畫、提升產業技術及人才培育研究計畫、 列管計畫及下列情形者外,得立即公開查詢

□涉及專利或其他智慧財產權,□一年□二年後可公開查詢

執行單位:交通大學電子所

中華民國九十五年七月二十七日

行政院國家科學委員會研究計畫成果報告

新式非揮發性記憶體元件之研究(I)

計畫編號: NSC 94-2215-E-009-086-執行期限: 94年8月1日至 95年7月31日 主持人: 荊鳳德 教授 執行單位: 交通大學電子工程系

中文摘要

使用具有高捕陷能力的新穎材料 AIN (k=10),利用在高介電值層有較低壓降以及 使用高功函數的 IrO₂ 來降低漏電流, SiO₂/AIN/HfAIO(k=17)/IrO₂元件,在 85°C 時展現了良好的記憶體特性,以及 100us 的 erase 速度,在 13V 的 program/erase 低操作 電壓下, ΔV_{th} 可達 3V,利用外插的方式,經 過十年的保持,記憶體的 window 仍可維持 1.9V,若將 erase 的速度降低為 1ms,則 ΔV_{th} 可達到 5.5V,在 85°C 十年的保持情況下,記 憶體的 window 將增加為 3.4V。

一、簡介

Fundamental challenges for advanced non-volatile memory are the continuous down-scaling program/erase (P/E) time and operation voltage, while still maintaining good 10 years data retention. Although the MONOS memory provides a potential solution for down-scaling the gate oxide beyond conventional floating gate memory, further performance improvements with larger ΔV th of charge-tapping in nitride and faster erase time at low voltage are required [1]-[4]. Of the known high-k dielectrics, AlN has a better charge-trapping capability than Si₃N₄ and Al₂O₃ as well as unique P/E memory characteristics [5]. In this paper, we report the memory performance of novel IrO2-HfAlO-AlN-SiO₂-Si MONOS device. At ±13V and fast 100us P/E, we found a large Δ Vth of 3.7V that extrapolated to 1.9V for 10-year retention at 85 °C. The 85 °C initial ΔV th and 10-year retention window further increase to 5.5V and 3.4V for 1ms erase. Such fast P/E also gives large 10^5 -cycled Δ Vth window due to small stress on tunnel SiO₂. The good retention is due to the strong Al-N ionic bond related higher trapping capability. The very fast 100us erase is owing to the high electric field (*E*) over tunnel SiO₂ from D ($\varepsilon_0 \kappa E$) continuity of high-κ HfAlO (κ=17) barrier and AlN (κ =10) trapping layer. The low P/E voltage is from the efficient charge-trapping AlN, very high 3.5fF/um² capacitance density for charge storage, large E field in SiO₂ and high workfunction IrO₂ metal gate [6] for low gate carrier injection during erase. These results are among the best reported data [1]-[4] summarized in Table 1.

二、實驗步驟

The IrO₂-HfAlO-AlN-SiO₂-Si devices were formed by first growing a 2.8 nm thermal SiO₂, depositing 12 or 16 nm AlN by PVD [5], 13 nm HfAlO by ALCVD, 50nm IrO₂ metal-gate [6], followed by gate definition, self-aligned ion-implantation and 85 °C RTA. The fabricated devices were characterized by P/E, cycling and retention tests at 85 °C.

三、結果與討論

A. P/E Characteristics:

Fig. 1 shows the schematic band diagram of SiO₂/AlN/HfAlO/IrO₂ devices. The strong trapping AlN can reduce the P/E voltage even for thin AlN. The 5.1eV high workfunction [6] is important to scale down the HfAlO thickness and erase voltage. This is evidenced from the 1 order of magnitude lower Jg in Fig. 2 than a previous report of a similar structure [3] also under -10 to -15V erase. This is consistent with the >10X lower Jg in $IrO_2/high-\kappa$ pMOS than mid-gap metal-gate device [6]. The C-V hysteresis curves, in Fig.3, show very large ΔV th shifts of 7-10V. The capacitance further increases to 3.5 fF/um² for 12nm AlN MONOS to give large charge storage at low voltage. The detailed P/E characteristics from Id-Vg are shown in Figs. 4-5 for thicker 16nm AlN MONOS. A fast P/E time of 100us-1ms are measured at $\pm 13V$, with a large ΔV th shift. The ΔV th and P/E speed are improved using the thinner 12nm AlN MONOS. As shown in Figs. 6-7, the 13V 100us program gives 3.3V Δ Vth change and the -13V 100us erase has -3.7V Δ Vth. Even a Δ Vth shift of 2.1V and -1.8V is obtained at 10us and ±13V P/E. Such very fast erase is ~10X better than published data [1]-[4] with larger Δ Vth. It arises from the higher electric field in thin 2.8nm SiO₂ due to a smaller voltage drop in small EOT high-k HfAlO (κ =17) barrier and trapping AlN (κ =10) from $\varepsilon_0 \kappa E$ continuity. The high work-function IrO_2 gate [6] also helps the erase by largely reducing charge injection from gate with thin HfAlO.

B. Retention & Cycling:

Figs. 8-10 show the retention data. The 10-year retention Δ Vth is larger for 12nm than and 16nm AlN devices with only slightly faster decay rate. The extrapolated 10-year memory window at 25°C for 12nm AlN device, increases from 2.4 to 4.1V with

increasing erase time from 0.1 to 1ms. Still a large 10-year window at 85°C of 1.9 or 3.4V was obtained for 100us or 1ms erase and 100us program at $\pm 13V$. This is above the best reported data [1]-[4] in Table 1. Besides, the 85°C highand low-level retention decay rate of 120 and only 64mV/dec are comparable with published data [1]-[4], with added merit of the largest initial ΔV th of 5.5V (3.7V) at 1ms (0.1ms) -13V erase. This large memory window arises form the strong Al-N ionic bond to give better trapping capability than Al₂O₃ and Si₃N₄. Good endurance is also obtained in Figs. 11-12. At 85°C and ±13V, big 10⁵-cycled memory window of 2.9 or 4.6V and 10k-cycled 10-year retention window of 1.6 or 2.7V are obtained at 0.1ms or 1ms erase. Such excellent endurance is due to the fast P/E time with less stress to tunnel SiO₂. Table 1 summarizes the important memory data. At 85°C and ±13V P/E, good memory integrity of fast 100 to 1000us erase time, large ΔV th of 3.7 or 5.5V, big 10^5 -cycled Δ Vth of 2.9 or 4.6V, and good retention of large 10-year memory window of 1.9 or 3.4V are obtained at the same time in this MONOS device.

四、結論

Fast erase, large ΔV th, good retention and cycling are simultaneously obtained in SiO₂/AlN/HfAlO/IrO₂ devices.

五、參考文獻

[1] M. Specht *et al*, Symp. *On VLSI Tech Dig.* (2004), p.244.

[2] C. W. Oh et al, IEDM Tech. Dig. (2004), p. 893.

[3] C. H. Lee et al, IEDM Tech. Dig. (2003), p. 613.

[4] T. Sugizaki et al, Symp.On VLSI Tech. Dig. (2003), p.27.

[5] C. H. Lai *et al*, 62th Device Research Conf. Dig. (2004), p.77.

[6] D. S. Yu et al, IEDM Tech. Dig. (2004) p. 181

Fig.1. Band diagram of IrO₂-HfAlO-AlN-SiO₂-Si MONOS memory in erase state. The higher work-function IrO₂ allows thinner HfAlO w/o large electron injection into AlN.

Fig.3. C-V hysteresis curves of MONOS capacitor with 16nm AlN for various V_g . The capacitance density increases to $3.5 fF/\mu m^2$ for 12nm AlN device.

Fig.5. Erase characteristics of MONOS memory with 16nm AlN. The device was initially programmed at 13V for 100μ s.

Fig.7. Erase characteristics of MONOS memory with 12nm AlN. The device was initially programmed at 13V for 100µs.

Fig.2. J_g - V_g curves of MONOS memory with 12nm and 16nm AlN at 25 and 85°C The J_g is 1 order of magnitude lower than the data from [3] due to higher Φ_B of IrO₂.

Fig.4. The measured program characteristics from $I_d\text{-}V_g$ for 16nm AlN MONOS devices. The L_g is 10 $\mu\text{m}.$

Fig.6. The measured program characteristics of MONOS with 12nm AlN.

Fig.8. Retention of MONOS devices with 16nm AlN at $25\,{}^\circ\!C$. The P/E decay rates are only 72/22 mV/dec.

Fig.9. Retention of MONOS devices with 12nm AlN at 25 $^\circ\!C$ The P/E decay rates are 92/49 mV/dec.

Fig.11. Endurance of MONOS memory with 12nm AlN at

 $85^\circ\!\text{C}$. High $\Delta V th$ can be maintain up to 10^5 P/E.

Fig.10. Retention of MONOS devices with 12nm and 16nm AlN

at $85\,^\circ\!\mathrm{C}$. The P/E decay rates are 120/64 mV/dec.

Fig.12. Retention of 10k P/E-cycled MONOS devices with 12nm

AlN at 85°C	. Large ∆	Vth of	1.6 and 2	2.7V are	still obtained.
-------------	-----------	--------	-----------	----------	-----------------

	P/E condition for	Initial ΔV th	ΔV th (V) for 10-year	85°C -P/E decay	ΔV th @Cycles	ΔV th (V) for 10-year after
	retention & cycling	(V) @85℃	retention @85°C	rate (mV/dec)	& 85℃	10k cycles @ 85° C
This Work	13V 100µs/ -13V 100µs	3.7	1.9	120 / 52	2.9 @ 10 ⁵	1.6
	13V 100µs/ -13V 1ms	5.5	3.4	120 / 64	4.6 @ 10 ⁵	2.7
Tri-gate [1] SiO ₂ /Si ₃ N ₄ /SiO ₂ /poly	11.5V 3ms/ -11.5V 100ms	1.2	1.1 (@25°C only)	12.5 /12.5 (@25°C only)	1.5 @ 10 ⁴ (@25°C)	No data
FinFET [2] SiO ₂ /Si ₃ N ₄ /SiO ₂	13V 10μs/ -12V 1ms	5	2.9	60 / 150	4.2 @ 10 ⁴	No data
SiO ₂ /Si ₃ N ₄ / Al ₂ O ₃ /TaN [3]	13.5V 100μs/ -13V 10ms	4.4	2.07	140 / 75	4 @ 10 ⁵	1.36
SiO ₂ /Al ₂ O/ SiO ₂ /poly [4]	9V >1ms/ no data	0.9	0.9	No charge loss	No data	No data

Table.1. Comparisons of P/E speed, ∆Vth window (extrapolated for 85°C 10-years retention), retention decay rate and endurance.