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Fundamental challenges for advanced
non-volatile memory are the continuous
down-scaling program/erase (P/E) time and
operation voltage, while still maintaining
good 10 years data retention. Although the
MONOS memory provides a potentia
solution for down-scaling the gate oxide
beyond conventional floating gate memory,
further performance improvements with larger
AVth of charge-tapping in nitride and faster
erase time at low voltage are required [1]-[4].
Of the known high-x dielectrics, AIN has a
better charge-trapping capability than SizNy4
and Al,O; as well as unigue PPE memory
characteristics [5]. In this paper, we report the
memory performance of novel IrO,-HfAIO-
AIN-SIO,-Si MONOS device. At +13V and
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fast 100us P/E, we found alarge AVth of 3.7V
that extrapolated to 1.9V for 10-year retention
at 85°C. The 85 C initial AVth and 10-year
retention window further increase to 5.5V and
3.4V for 1ms erase. Such fast P/E also gives
large 10°-cycled AVth window due to small
stress on tunnel SiIO,. The good retention is
due to the strong AI-N ionic bond related
higher trapping capability. The very fast
100us erase is owing to the high eectric field
(E) over tunnel SiO, from D (egxE) continuity
of high-x HFAIO (x=17) barrier and AIN
(x=10) trapping layer. The low P/E voltage is
from the efficient charge-trapping AIN, very
high 3.5fF/um? capacitance density for charge
storage, large E field in SIO, and high
workfunction 1rO, metal gate [6] for low gate
carrier injection during erase. These results
are among the best reported data [1]-[4]
summarized in Table 1.
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The IrO,-HfAIO-AIN-SIO,-Si devices were
formed by first growing a 2.8 nm thermal
SiO,, depositing 12 or 16 nm AIN by PVD [5],
13 nm HfAIO by ALCVD, 50nm IrO,
metal-gate [6], followed by gate definition,
self-aligned ion-implantation and 85 C RTA.
The fabricated devices were characterized by
P/E, cycling and retention tests at 85 C.
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A. P/E Characteristics:

Fig. 1 shows the schematic band diagram
of SIO/AIN/HfAIO/IrO, devices. The strong
trapping AIN can reduce the P/E voltage even
for thin AIN. The 5.1eV high workfunction [6]
is important to scale down the HfAIO
thickness and erase voltage. Thisis evidenced
from the 1 order of magnitude lower Jgin Fig.
2 than a previous report of a similar structure
[3] aso under -10 to -15V erase. This is
consistent with the >10X lower Jg in
IrO./high-« pMOS than mid-gap metal-gate
device [6]. The C-V hysteresis curves, in
Fig.3, show very large AVth shifts of 7-10V.
The capacitance further increases to 3.5
fF/um?® for 12nm AIN MONOS to give large
charge storage at low voltage. The detailed
P/E characteristics from 1d-Vg are shown in
Figs. 4-5 for thicker 16nm AIN MONOS. A
fast P/IE time of 100us-1ms are measured at
+13V, with alarge AVth shift. The AVth and
P/E speed are improved using the thinner
12nm AIN MONOS. As shown in Figs. 6-7,
the 13V 100us program gives 3.3V AVth
change and the -13V 100us erase has -3.7V
AVth. Even a AVth shift of 2.1V and -1.8V is
obtained at 10us and +13V P/E. Such very
fast erase is ~10X better than published data
[1]-[4] with larger AVth. It arises from the
higher electric field in thin 2.8nm SO, due to
a smaller voltage drop in smal EOT high-k
HfAIO (x=17) barrier and trapping AIN (k=10)
from goxE continuity. The high work-function
IrO, gate [6] also helps the erase by largely
reducing charge injection from gate with thin

HfAIO.
B. Retention & Cycling:

Figs. 8-10 show the retention data. The
10-year retention AVth is larger for 12nm than
and 16nm AIN devices with only dightly
faster decay rate. The extrapolated 10-year
memory window at 25°C for 12nm AIN
device, increases from 2.4 to 4.1V with

increasing erase time from 0.1 to 1ms. Still a
large 10-year window at 85°C of 1.9 or 3.4V
was obtained for 100us or 1ms erase and
100us program at +13V. This is above the
best reported data [1]-[4] in Table 1. Besides,
the 85°C highand low-level retention decay
rale of 120 and only 64mV/dec are
comparable with published data [1]-[4], with
added merit of the largest initial AVth of 5.5V
(3.7V) a 1ms (0.1ms) -13V erase. This large
memory window arises form the strong Al-N
ionic bond to give better trapping capability
than Al,O5; and SisN,. Good endurance is also
obtained in Figs. 11-12. At 85°C and +13V,
big 10°-cycled memory window of 2.9 or
4.6V and 10k-cycled 10-year retention
window of 1.6 or 2.7V are obtained at 0.1ms
or 1ms erase. Such excellent endurance is due
to the fast P/E time with less stress to tunnel
SO, Table 1 summarizes the important
memory data. At 85°C and +13V P/E, good
memory integrity of fast 100 to 1000us erase
time, large AVth of 3.7 or 55V, bhig
10°-cycled AVth of 2.9 or 4.6V, and good
retention of large 10-year memory window of
1.9 or 3.4V are obtained at the same time in
this MONOS device.

T~ B

Fast erase, large AVth, good retention
and cycling are ssimultaneously obtained in
SIO,/AIN/HfAIO/rO, devices.
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Fig.l. Band diagram of IrO,-HfAIO-AIN-SIO-Si MONOS
memory in erase state. The higher work-function IrO, alows
thinner HfAlO w/o large electron injection into AIN.
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Fig.3. C-V hysteresis curves of MONQOS capacitor with 16nm
AIN for various V4. The capacitance density increases to
3.5fF/um? for 12nm AIN device.
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Fig.5. Erase characteristics of MONOS memory with 16nm
AIN. The device was initially programmed at 13V for 100ps.
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Fig.7. Erase characteristics of MONOS memory with 12nm
AIN. The device was initially programmed at 13V for 100ps.
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Fig.2. J-V¢ curves of MONOS memory with 12nm and 16nm
AIN at 25 and 85°C The Jyis 1 order of magnitude lower than

the data from [3] due to higher ®g of IrO,.
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Fig.6. The measured program characteristics of MONOS with

12nmAIN.
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Fig.8. Retention of MONOS devices with 16nm AIN at 25C.

The P/E decay rates are only 72/22 mV/dec.
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Fig.9. Retention of MONOS devices with 12nm AIN at 25

The P/E decay rates are 92/49 mV/dec.

‘ 3
6+ i
5_f-fProgram: 13V 100ps ]
a4l Erase: -13V 100ps 2.9v | |

= —o— Program: 13V 100us

= 3 Erase: -13V 1ms R
> 2r - - - P 4.6V
1} //////o 1
0+ o PR |

10° 10" 10* 10° 10* 10

Number of P/E cycles

Fig.11. Endurance of MONOS memory with 12nm AIN at

857C. High AVth can be maintain up to 10° P/E.
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Fig.10. Retention of MONOS devices with 12nm and 16nm AIN

at 85°C. The P/E decay rates are 120/64 mV/dec.
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Fig.12. Retention of 10k P/E-cycled MONOS devices with 12nm

AIN at 85C. Large AVth of 1.6 and 2.7V are still obtained.

P/E condition for | Initial AVth [ AVth (V) for 10-year | 85°C-P/E decay | AVth @Cycles [AVth (V) for 10-year after
retention & cycling| (V) @85C retention @85C rate (mV/dec) & 85C 10k cycles @ 85C
13V 100ps/
3.7 19 120/ 52 29@10° 16
-13V 100ps
ThisWork
13V 100ps/
55 34 120/ 64 46@10° 2.7
-13V 1ms
Tri-gate [1] 11.5V 3m¢/ 125/125 1.5@10*
1.2 1.1 (@25C only) No data
SiO,/SisN4/SiOz/poly -11.5V 100ms (@25 only) (@25C)
FinFET [2] 13V 10ps/
5 29 60/ 150 42 @10 No data
Si Oz/Si 3N4/S O, -12V 1ms
SiO/SisNs 13.5V 100ps/
44 2,07 140/ 75 4@10° 1.36
Al,O4/TaN [3] -13V 10ms
SiOZ/A|20/ 9V >1mg/
0.9 0.9 No charge loss No data No data
SiOJ/paly [4] no data

Table.1. Comparisons of P/E speed, AVth window (extrapolated for 85°C 10-years retention), retention decay rate and endurance.




