行政院國家科學委員會補助專題研究計畫成果報告

多半是正色散光纖和波長多工的色散補償光固子通信系統之研究

計畫類別: C 個別型計畫 整合型計畫

計畫編號:NSC 89 - 2215 - E - 009 - 020

執行期間:88年8月1日至89年7月31日

計畫主持人: 祁甡教授 交通大學光電工程研究所

本成果報告包括以下應繳交之附件:

赴國外出差或研習心得報告一份 赴大陸地區出差或研習心得報告一份 出席國際學術會議心得報告及發表之論文各一份 國際合作研究計畫國外研究報告書一份

執行單位:交通大學光電工程研究所

中 華 民 國 89年 10 月 15 日

行政院國家科學委員會專題研究計畫成果報告

多半是正色散光纖和波長多工的色散補償 光固子通信系統之研究

The study of using mostly normal dispersion fiber and WDM in dispersion compensated soliton transmission systems

計畫編號: NSC 89-2215-E-009-020

執行期限:88年8月1日至89年7月31日

主持人: 祁甡教授 交通大學光電工程研究所

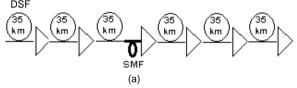
E-mail: schi@cc.nctu.edu.tw

一、中文摘要

本計劃研究使用色散補償的光固 子通信系統。探討多半是正色散光纖 的色散補償光固子傳輸,其傳輸特性 將有別於多半是負色散光纖的色散 補償光固子通信系統。研究這二系統 所要求之光固子入射能量、光脈衝寬 度、及適當頻寬之光濾波器之不同, 並計算系統可達的最大信號率和傳 輸距離。

關鍵詞:色散管理、光固子

Abstract


The dispersion managed soliton transmission system using mostly normal dispersion fiber is investigated. It is shown that, with the same net anomalous dispersion, the optimum energy enhancement is larger for the system using mostly normal dispersion fiber than the system using mostly anomalous dispersion fiber. The allowed transmission distance for the system using mostly normal dispersion fiber is longer than those using mostly anomalous dispersion fiber.

Keywords: Dispersion management, Energy enhancement, Optical soliton

二、緣由與目的

The dispersion management has become an important technique for optical soliton

transmission because the soliton interactions

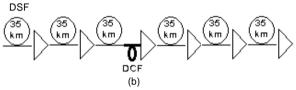


Fig. 1. The schematic diagram of a dispersion management unit cell for the (a) scheme-A having mostly normal dispersion fiber and (b) scheme-B having mostly anomalous dispersion fiber.

and Gordon-Haus timing jitters can be greatly reduced by using the dispersion management. In a dispersion managed transmission system, the soliton generally propagates in the anomalous dispersion regime of a long dispersion-shifted fiber (DSF) and then the accumulated dispersion is compensated by a much shorter dispersion compensation fiber (DCF) [1,2]. Recently, in order to sufficiently utilize the huge bandwidth of the DSF, the wavelength of the signal in a soliton dispersion managed transmission has been extended to the normal dispersion regime of the DSF [3,4]. It is found that the soliton can maintain a stable pulse variation even more than 90% of the fiber is in the normal dispersion regime as long as the net dispersion is anomalous. In this letter, we will investigate the energy enhancement of the soliton in a dispersion managed transmission system using the mostly normal dispersion fiber and compare it with the system using the mostly anomalous dispersion fiber.

We consider a system using the mostly normal dispersion fiber as shown in Fig.1(a). where the soliton propagates in normal dispersion regime of a long DSF and a much shorter standard single mode fiber (SMF) periodically; this system is called scheme-A. A system using the mostly anomalous dispersion fiber is shown in Fig.1(b), where soliton propagates in anomalous dispersion regime of a long DSF and a much shorter DCF periodically; this system is called scheme-B. We numerically simulate the soliton propagation in both systems. We have found that, with the same net anomalous dispersion,

the optimum energy enhancement is larger for the system using mostly normal dispersion fiber than the system using mostly anomalous dispersion fiber. The allowed transmission distance for the system using mostly normal dispersion fiber is longer than those using mostly anomalous dispersion fiber.

三、結果與討論

The soliton transmission in a singlemode fiber can be described by the modified nonlinear Schrödinger equation. The initial pulsewidth (full width at half maximum) is 10 ps and the amplifier spacing is 35 km. The energy needed to form a soliton in a uniform fiber is proportional to the dispersion. However, in a dispersion managed soliton system, since the rate of self phase modulation (SPM) is reduced, more energy is to balance the path-average dispersion when compared to the equivalent uniform dispersion system [5-7]. Furthermore, from the semi-empirical formula describing the energy enhancement soliton in dispersion managed transmission system, it is found that the energy enhancement is dependent on the dispersion map strength [8] and the location of the amplifier [9]. In numerical simulations, the second-order dispersions for scheme-A and -B are listed in table I, where the scheme-A and -B have the same path-average

second-order dispersion and the dispersion map strength S. The DCF and SMF are viewed as the dispersion compensation elements and the lengths of DCF and SMF are not incorporated into the transmission distances, but the losses in the DCF and SMF are considered. The path-average second-order dispersion is defined in scheme-A as

$$\overline{S}_2 = (S_2^{DSF} \times L_{DSF} + S_2^{SMF} \times L_{SMF})/(L_{DSF} + L_{SMF})$$
 (1)

where β_2^{DSF} and β_2^{SMF} are the second-order dispersions for DSF and SMF, respectively, and L_{DSF} and L_{SMF} are the lengths of DSF and SMF, respectively. The dispersion map strength S is defined in the scheme-A as

$$S = \left| \frac{(s_2^{DSF} - \overline{s}_2) \cdot L_{DSF} - (s_2^{SMF} - \overline{s}_2) \cdot L_{SMF}}{f_{\min}^2} \right|$$
(2)

where τ_{min} is the minimum full-width at half maximum of the soliton at the unchirped position in the dispersion cycle. Similar definitions of \overline{S}_2 and S are used in the scheme-B. In our case, the fiber lengths are 210 km, 4.51074 km and 0.69459 km for L_{DSF}, L_{SMF} and L_{DCF}, respectively. The energy enhancement factor F_{en} is defined as F_{en} = E_{sol} / E_0 [6], where E_{sol} is the energy of the soliton in a dispersion managed system and E_0 is the energy of the soliton of equal pulsewidth in a uniform fiber system with the same path-average second-order dispersion.

 $TABLE\ I$ Choice of the central wavelength and the second-order dispersion of signals in the scheme-A and -B.

Scheme	$\lambda_0(nm)$	$S_2 (ps^2/Km)$	$S_2 (ps^2/Km)$	$\frac{-}{S_2}$ (ps ² /Km)	S
		DSF	SMF/DCF		
A	1550.00	0.4	-21	-0.05	1.89
В	1558.19	-0.5	136	-0.05	1.89

(zero-dispersion wavelength of the DSF = 1553.64 nm)

Fig.2(a) and 2(b) show the pulsewidth variation and self-frequency shift of the signals versus transmission distance at the beginning of every dispersion management unit cell for different Fen's of scheme-A and -B, respectively; the solid lines and dotted

lines are for the scheme-A and -B, respectively. Comparing the pulsewidth variations of scheme-B when $F_{en}=2.50$ with other values of F_{en} , we have found $F_{en}=2.50$ is the optimum enhancement and the pulsewidths

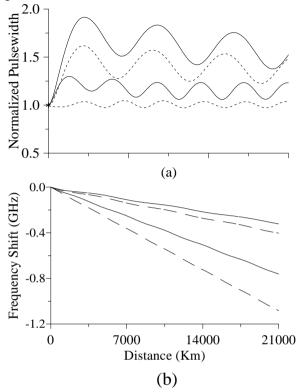


Fig.2: (a) The pulsewidth variations and (b) the self-frequency shifts of the signal versus transmission distance at the beginning of every dispersion management unit cell, the solid and dotted lines indicate the scheme-A and -B, respectively.

signals at the beginning of every dispersion management unit cell are very close to the initial pulsewidth. Fig.3 shows the stable pulsewidth variation in a unit cell with F_{en} = 2.50; the solid lines and dotted lines are for the scheme-A and -B, respectively. With the same F_{en}, we have found that the average pulsewidth of the soliton broadens more in scheme-A than the one in scheme-B. Since the Kerr effect is dependent on the power of signal, the energy enhancement in scheme-A has to be increased to maintain a stable soliton propagation. Fig.4 shows pulsewidth variation and self-frequency shift of the pulse versus transmission distance in scheme-A with $F_{en} = 3.38$. Comparing the pulsewidth variation of scheme-A when F_{en} = 3.38 with other values of F_{en} , we know that $F_{en} = 3.38$ is the optimum value in schemeA. In the mean time, the self-frequency shifts of $F_{en}=3.38$ in the scheme-A and $F_{en}=2.50$ in the scheme-B are found to be equal. Therefore, the optimum enhancement factors for the scheme-A and -B have the same self-frequency shift. We have also found when F_{en}

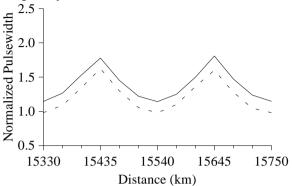
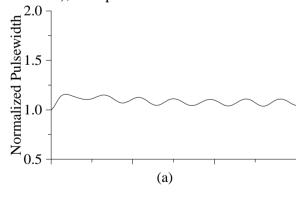



Fig.3: The pulsewidth variation in a unit cell with Fen = 2.50; the solid lines and dotted lines are for the scheme-A and -B, respectively.

= 2.50 in the scheme-B that the pulsewidth variation quickly become stable. On the otherhand, when $F_{en} = 3.38$ in the scheme-A, the pulsewidth variation become stable after long propagating distance. During the transient stage, the pulse adjusts itself by shedding some of its energy, and finally the stable pulse emerges. We use the stable pulses for both the scheme-A and scheme-B as the initial pulses and calculate the Q-value by simulating the transmissions of 1024 pseudorandom bits (512 ONE's and 512 ZERO's), the spontaneous emission factor of

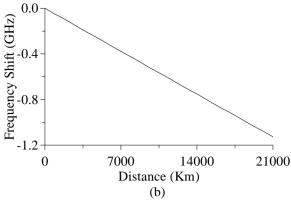


Fig.4: The pulsewidth variations and self-frequency shifts of the signal versus transmission distance at the every beginning of dispersion management unit cell with Fen = 3.38 in the scheme-A.

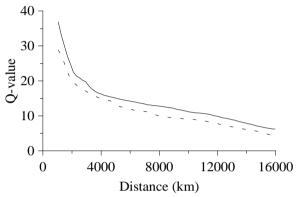


Fig.5: The Q-value versus transmission distance, the solid line and dotted line indicate the signals with Fen = 3.38 in the scheme-A and Fen = 2.50 in the scheme-B, respectively.

an amplifier is assumed to be 1.2, the bit rates are 20 Gbits/s. Fig.5 shows the Q-value versus transmission distance for scheme-A and -B, respectively. The solid line and dotted line indicate the signals of average power -2.19 dBm ($F_{en} = 3.38$) and -3.39 dBm ($F_{en} = 2.5$) in scheme-A and -B, respectively. A 10^{-9} bit-error rate corresponds to Q=6. The allowed transmission distances with 10^{-9} bit-error rate for scheme-A and -B are 16000 and 14070 km, respectively. For the same transmission distance, the scheme-A has a higher Q-value because of its higher signal-to-noise ratio.

In conclusion, we have found that the scheme of the system having mostly normal dispersion of fiber needs a larger energy enhancement of soliton than those of having mostly anomalous dispersion of fiber. It is because the soliton broadens more in the mostly normal dispersion fiber system and needs more energy to balance the path-

average dispersion and maintain a stable soliton transmission. The allowed transmission distance for the system using mostly normal dispersion fiber is longer than those using mostly anomalous dispersion fiber.

四、計畫成果自評

This project has been performed thoroughly. The results are outstanding in the respects of dispersion managed soliton transmission system using mostly normal dispersion fiber. The allowed transmission distance for the system using mostly normal dispersion fiber is longer than those using mostly anomalous dispersion fiber. The research paper is published.

五、參考文獻

- [1] M. Suzuki, I. Morita, N. Edagawa, S. Yamamoto, H. Taga and S. Akiba, "Reduction of Gordon-Haus timing jitter by periodic dispersion compensation in soliton transmission," Electron Lett., Vol.31, pp.2027-2029, 1995.
- [2] M. Suzuki, I. Morita, N. Edagawa, S. Yamamoto and S. Akiba, "20 Gbits/s-based soliton WDM transmission over transoceanic distances using periodic compensation of dispersion and its slope," Electron Lett., Vol.33, pp.691-692, 1997.
- [3] J. M. Jacob, E. A. Golovchenko, A. N. Pilipetskii, G. M. Carter and C. R. Menyuk, "Experimental Demonstration of Soliton Transmission Over 28 Mm Using Mostly Normal Dispersion Fiber," IEEE Photon. Tech. Lett. Vol.9, pp.130-132, 1997.
- [4] E. A. Golovchenko, J. M. Jacob, A. N. Pilipetskii, C. R. Menyuk and G. M. Carter, "Dispersionmanaged solitons in a fiber loop with in-line filtering," Opt. Lett. Vol.22, pp.289-291, 1997.
- [5] N. J. Smith and N. J. Doran, "Modulation instabilities in fibers with periodic dispersion management," Opt. Lett., V.21, pp.570-572, 1996.
- [6] N. J. Smith, F. M. Knox, N. J. Doran, K. J. Blow and I. Bennion, "Enhanced power solitons in optical fibers with periodic dispersion management, "Electron. Lett. Vol.32, pp.54-55, 1996.
- [7] J. H. B. Nijhof, N. J. Doran, W. Forysiak and F. M. Knox, "Stable soliton-like propagation in dispersion managed systems with net anomalous, zero and normal dispersion, "Electron. Lett. Vol.33, pp.1726-1727, 1997.
- [8] N. J. Smith, N. J. Doran, F. M. Knox, and W. Forysiak, "Energy-scaling characteristics of

solitons in strongly dispersion-managed fibers," Opt. Lett., Vol.21, pp.1981-1983, 1996. [9] M. Matsumoto, "Analysis of interaction between stretched pulses propagating in dispersionmanaged fibers," IEEE Photon. Tech. Lett. Vol.10, pp.373-375, 1998.