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# < 4 & In this program, a novel technique
for extraction of general filter network model
parameters (coupling matrix) from scattering
parameters obtained via EM simulation is
proposed. The coefficients of the polynomials
of the rational functions Si3; and Sy; are found
by applying the Cauchy method. Then, the
corresponding transversal coupling matrix is
obtained analytically. To obtain coupling
matrix with topology corresponding to the
physical structure, a multiple similarity
transform is proposed to apply to the starting
transversal coupling matrix. A set of rotation
angles in the multiple similarity transform is
determined by means of an efficient and fast
optimization procedure. The validity of the
proposed scheme will be tested by a
microstrip quadruplet filter.
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I . Introduction

Microwave filters  incorporating the
generalized Chebyshev class of filtering functions
have found wide applications in both satellite and
terrestrial communication systems. A great deal of
effort has been made, over past three decades, in
analytically synthesizing filter coupling matrix
according to an adequate topology with an
optimal cost model. The most recent contribution
to this subject would be R.J. Cameron’s work [1].

Once the required coupling matrix and filter
topology are synthesized, physical realization of
the filter would largely rely on a costly,
experience-based and intricate tuning. It is well
known that the core task in filter tuning is a
diagnosis of the filter coupling status that
corresponds to the current filter response, which
could be in various shapes. By comparing the
designed circuit model and parameters (i.e.
coupling matrix) against the diagnosed ones, the
tuning direction and magnitude can be easily
decided. Note that the diagnosed parameters must
have relevance with those of the designed.



To identify all parameters corresponding
to cross couplings, frequency alignment, and
source-load coupling, powerful CAD tools are
needed. Recently, an elegant diagnosis method
is proposed to help designing of symmetric
coupled-resonator filters [2]. However, the
method in [2] has not taken the source-load
coupling into account. In this program, we
propose a diagnosis scheme, which is
applicable to arbitrary topologies with or
without source-load coupling.

IO . The CAD method for filter diagnosis

The extraction method proposed here has
two major steps. In the first step, we extract the
(N+2) x (N+2) transversal coupling matrix, for
the filter of order N, from the EM simulated
response as Alejandro et al. have done in [3].
In [3], the authors apply the Cauchy method to
get the rational polynomial approximation of
S,(©) and S, (Q) from the EM simulated
results, and then generate the corresponding
transversal coupling matrix by the method
proposed by Cameron [1]. Extracting the
coefficients of the rational function by Cauchy
method is attractive since there is no need of
calibrating the reference plane as that in [2, 4].
In this step, we would get the transversal
coupling matrix like the follows (take the
quadruplet filter for instance).

0 My M, Mg M, M

g M, 0 0 0 M
0 M, 0 0 M,| (1
0 0 My 0 M

s« O o M, M

Mg M, M, M, M, O
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The equivalent circuit of the transversal
network with M-matrix in Eqgn.(1) is shown in
Fig.1 (a). The coupling matrix is related to the

responses of S, () and
following equation [5]

S,.(Q) via the

Sy =1+ Zj[A_l]n (2)
SZl = _Zj[Ail]mz,l (3)
Here, A=QU,]1+[M]-j[R] )

Q=(f, IAf)(f/f,—f,/f), [Uy] is similar to
the (N+2)x(N+2) identity matrix except that
[Uoly =Uolyion:2 =0 , [M] is the
(N+2) x (N+2) symmetric coupling matrix,
f,is the center frequency of the filter and
Af is its bandwidth, and [R] is the diagonal

matrix [R]=diag{l, R, -~ R} - R

loss !

. . fo1
which value is ﬁ— accounts for the

u

resonator loss. Q, is the unloaded quality

factor of the resonator. Note that R is set to

loss

be zero in the filter parameter extraction
process since the assumption of lossless
network must be satisfied in the extraction of
s,(@and s, () [3]. After getting the coupling
matrix of prescribed topology, one can put the

R back to calculate the practical filter

loss

response.

In the second step, the transversal
coupling matrix is transformed into the
prescribed topology. It is known that by
applying the multiple similar transformations
to the coupling matrix, one can get the
equivalent coupling matrix with the same
electrical performance as the original coupling



matrix. Some methods may be found in the
literature, which describe how to find the
sequence of rotations (and the corresponding
angles) required for obtaining a few specific
topologies [1, 6, 7]. However, to the best of
authors’ knowledge, how to transfer the
transversal coupling matrix into the topology
shown in Fig.2 is still not known. Fortunately,
one can apply the numerical optimization
technique to determine the sequence and
rotation angles of the multiple similarity
transformations as Macchiarella has done in
[8]. The method, reported in [8], works well
for the synthesis of a filter with order up to 12.
The initial coupling matrix being used in [8] is
the canonical folded form or generic form,
which corresponds to the filter of order N with
maximum of N-2 finite transmission zeros.

In this paper, we apply the optimization
method as proposed by Macchiarella to
transform the transversal coupling matrix to
the prescribed topology. Note that using the
transversal coupling matrix as initial coupling
matrix extends the method of [8] applicable to
a filter of order N with maximum of N finite
transmission zeros. In the follows, we take the
quadruplet filters with coupling route shown in
Fig. 1(b) as an example since it will be used in
the next section. Applying the multiple similar
transformations to the transversal coupling
matrix M in Eq. (1), we would get the new
coupling matrix M and M can be
expressed as

M = (R, - Ry, - Ry - Ry, Ry - Rye)
‘M -(Rys' "Ry Ry -Ry -R,,' -R,.)
=S(9y5: FsrerFis) M-S (95, 9prenr Gis)
4)

where R; (§;) is the rotation matrix of

order N+2 corresponding to pivot (i, j), and

angle ;. R;(9;) is defined as follows:

Rij (i,i) = Rij (1, )= Cos(lgij)
R; (1, j) =Ry (],1) =sin(9;)
Ry(K),, =1 L(i<D)=LN+2 ()

Ry (k,i) Ry (1K), =0

k=i, j

=0
k=i, j

The cost function U for the topology

shown is Fig. 1(b) is defined as

U (S Sgreor Sys)

S Msz [ +[Mss [ +[ Mz [ +| Mac (6)
+Mu—Mu P +|Maz—Mas |

+| Mz =Mz P +[Mss—Mu P
The first four terms in the cost function
indicate which cross coupling elements must
vanish while the last four terms indicate the
symmetry of the coupling route. If the
symmetric condition was not included in the
cost function, we might get the non-physical
solutions. In the practical implementation of
the minimization procedure, the Gauss-Newton
method is used to determine the rotation angles

(95, %42 95) , which minimize the cost

function U . Once the rotation angles are
determined, we can get the corresponding
coupling matrix M modei .

It should be mentioned that the proposed
extraction scheme could be applied to arbitrary
topologies once their feasibility has been
assessed. Depending on the setting of different
cost functions, different topologies can be
obtained after multiple similar transformations.
For the filter of order N, one can choose the
N x N coupling matrix or (N+2) x (N+2)
coupling matrix as the initial coupling matrix,
depending on the maximum number of finite
transmission zeros. If the maximum number of



finite transmission zeros is less than N-2, either
NxN [8] or (N+2)x(N+2) coupling matrix
[9] can be chosen. Otherwise, the
(N+2) x (N+2) transversal coupling matrix
should be applied.

Il. FILTER DESIGN EXAMPLES

In this section, we will focus on development
two novel quadruplet filters with source-load
coupling and utilize the CAD tool introduced
in previous section to do diagnosis of proposed
filters. The design procedures are summarized
as following. Follows the synthesis method
described in [1], one would get the ideal
coupling matrix with the topology shown in
Fig 2. The corresponding spacing between
every resonator is determined through the
characterization of the couplings as described
in chapter 8 of [10]. After EM simulation, the
values of unwanted cross couplings are
extracted. Fixing the values of unwanted
couplings, the optimization technique is then
applied to determining the required frequency
shifts of resonators and the change of other
coupling elements to compensate the distortion
of |Sy1|.- Two examples are given to show the

design procedures. The first filter, shown in Fig.

3, is designed to have two pairs of real
frequency transmission zeros at normalized
frequency Q=+2+6 for skirt selectivity. The
second filter, shown in Fig. 6, is intended to
have one pair of real frequency transmission
zero at normalized frequency Q=+4.5 for
selectivity and another pair at o=+j1.55 for
in-band flap group delay. The center frequency,
the fractional bandwidth, and the maximum
in-band return loss of both filters are 2.4GHz,
3.75% and 20dB respectively. The filters are
built on a 20-mil-thick Rogers RO4003
substrate with ¢, =3.38, tanod =0.0021. The

commercial EM simulation software Sonnet
9.0 [11] is used to perform the simulation.

A. QUADRUPLET FILTER WITH TWO PAIR OF
REAL FREQUENCY TRANSMISSION ZEROS

In order to see the effect of the controlling
line, we exclude the controlling line at first and
adjust the quadruplet filter following the
previously mentioned procedures.  After
extracting the unwanted diagonal cross
couplings of the quadruplet filter and
compensate them, we would get the EM
simulated response shown as circles in Fig.
5(a). Using the CAD tool developed in section
I together with the cost function defined in
Eq. (6), the extracted coupling matrix M; (with
the value of cost function U =10") is
obtained as following.

[0 1.0089 0 0 0
1.0089 -0.0021 0.8514 —0.0090 -0.1436
0 0.8514 0.0317 0.7380 —0.0090
0 —0.0090 0.7380 0.0317 0.8514 0
0 —0.1436 -0.0090 0.8514 -0.0021 1.0089
0 0 0 0 1.0089 0 |

o O o

The corresponding response of M; is also
shown in Fig. 4(a) as solid line for comparison.
After adding the controlling line of
source-load coupling, the EM simulated
response is shown in Fig. 4(b) as circles. The
corresponding extracted coupling matrix M,
(with the value of cost function U =107") is

0 1.0189 0 0 0.0032  0.0035
1.0189 -0.0120 0.8572 -0.0057 -0.1420 0.0033
0 0.8572  0.0204  0.7390 —0.0058 0
0 —0.0057 0.7390  0.0204  0.8571 0
0.0032 -0.1420 -0.0058 0.8571 -0.0120 1.0189

0.0035 0.0033 0 0 1.0189 0

M, =

The corresponding response of coupling matrix
My is also shown in Fig. 4(b) as solid line.



Comparing M; and M,, it can be easily
observed that the introduction of controlling
line is only a small perturbation to the original
quadruplet. In other words, the controlling line
has negligible contribution to the passband
response. Besides, the existence of the tiny
unwanted diagonal cross couplings Mss and
My in matrix M, explain why the response is
asymmetric because the response becomes
symmetric as the Mg, and My, are excluded
from M,. Taking matrix M, into equation (2)
and (3), and setting unloaded quality factor
Q, =150, the results are shown in Fig. 5 as
dashed lines. The measured responses are also
shown in Fig. 5 as solid lines. Comparing the
circuit model responses with measured
responses an excellent fit can be observed
except some frequency drift toward lower
frequency.

B. QUADRUPLET FILTER FOR FLAP GROUP
DELAY AND SKIRT SELECTIVITY

As mentioned in section II, the unwanted
cross couplings M3 and My, would destroy the
in-band group delay flatness. To reduce the
strength of unwanted couplings, we use the
L-shaped resonator and arrange the resonators
in square to maximize the distance between
diagonal resonators as shown in Fig. 7. The
coupled lines with length L4, L, and L3 control
the strength of coupling between L-shape
resonators  respectively.  The inductive
source-load coupling is effectively controlled
by changing the length of controlling line with
both ends connected to ground. Resonant
frequencies of resonators can be tuned by

adjusting the length hl and h2. Following
similar procedures in the previous design, we
can get the extracted coupling matrix M3 as

0 —-1.0945 0 0 0.0052  0.0099

-1.0945 0.3663 -1.0093 -0.0274 -0.1681 0.0054
M. = 0 -1.0093 0.3402 -0.6241 -0.0272 0
T 0 -0.0274 -0.6241 0.3404 -1.0089 0

0.0052 -0.1681 -0.0272 -1.0089 0.3664 —1.0936
0.0099  0.0054 0 0 —-1.0936 0

The corresponding response of M fit well with
the EM simulated results as shown in Fig.8.
Taking M3 into equation (2) and (3) and setting
unloaded quality factor q, =150, we have the
filter responses shown in Fig.8 as doted lines.
The experimental results are also shown in Fig.
9 as solid lines that they are similar to the
circuit model results except similar frequency
drift as the former example. The frequency
drift might come from the discrepancy of the
substrate dielectric const. In other words, the
dielectric const &, might be greater than data
sheets’ value 3.38.

From above two examples, we can
conclude that the controlling line of
source-load coupling can effectively adjusting
the position of finite transmission zeros with
negligible perturbation to the passband. It is
suggested that one can design the symmetric
folded coupled-resonator filter at first and then
adds the controlling line to control the
source-load coupling without fine-tuning other
portion of the filter. The design method may
apply to higher order symmetric folded
coupled-resonator filter.

IV.Conclusion
A novel diagnosis scheme has been
proposed. Following a systematic design flow,

two quadruplet filters with source-load



coupling where one was designed for
quasi-elliptical and another was designed for
flat group delay responses, were fabricated and
the measured results agree well with that of
theory. It has been shown that the diagnosis
method described in this paper helps a lot to
judge the unwanted effects in the microstrip
quadruplet filter where these effects was
usually very difficult to specify in microstrip’s
open environment.
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@ Resonator
O Source/Load

main line coupling
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Fig.1. Coupling routes of (a) a transversal filter,

(b) a cross-coupled quadruplet filter with

diagonal cross couplings.

Fig.2 Coupling and routing scheme of
symmetric cross-coupled quadruplet filter with
source-load coupling

(a) (b)
Fig. 3(a) quadruplet filter with the capacitive
S/L coupling controlled by the controlling line
(b) photograph of the fabricated filter with
dimension (in mils) S1=4, S2=8, S3=41,
E1=90, E2=20, W1=64, W2=30, h1=310,
h2=250, g1=42, g2=26, Line=160

18,118, dB

_B I i |
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(b)
Fig.4 (a) response of quadruplet filter (b)
response of quadruplet filter with controlling



line of source-load coupling. Circle: EM
simulated results; solid line: circuit model.
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Fig.5 Experimental and circuit model results.

Solid line: experimental results, dashed line:

circuit model including loss term.

Group delay (ns)

93 2.35 24 2.45 25
frequency (GHz)

Fig. 7. Response of quadruplet filter with
(@) (b) controlling line of source-load coupling. Circle:

EM simulated results; solid line: circuit model.
Fig. 6 (a) quadruplet filter with the inductive

S/L coupling controlled by the controlling line
(b) photograph of the fabricated filter with
dimension.d=20,Line=800,5=4,L3=575,L1=94
0,L2=770,L3=575,h1=340,h2=304 (in mil)
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(b)
Fig.8 Experimental and circuit model results (a)
return loss and insertion loss (b) group delay.
Solid line: experimental results, dashed Line:
circuit model including loss term.



