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Abstract. Stable stationary solutions correspond to memory capacity in the application of
associative memory for neural networks. In this presentation, existence of multiple stable stationary
solutions for Hopfield-type neural networks with delay and without delay is investigated. Basins of
attraction for these stationary solutions are also estimated. Such a scenario of dynamics is established
through formulating parameter conditions based on a geometrical setting. The present theory is
demonstrated by two numerical simulations on the Hopfield neural networks with delays.
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1. Introduction. The studies of neural networks have attracted considerable
multidisciplinary research interest in recent years. The developments for neural net-
work models and the theory for the models are, on the one hand, driven by application
motif or inspired by biological neuronal behaviors. On the other hand, the neural net-
work theory has motivated and elicited further progress in dynamical system theory.
For example, theory for existence of many stable patterns or chaotic dynamics for
systems in phase space of large dimension is in strong demand for neural network
applications. The progress in this direction of research has also enriched dynamical
system theory [6, 17, 27].

The applications of neural networks range from classifications, associative mem-
ory, image processing, and pattern recognition to parallel computation and its ability
to solve optimization problems. The theory on the dynamics of the networks has been
developed according to the purposes of the applications. In the application to parallel
computation and signal processing involving finding the solution of an optimization
problem, the existence of a computable solution for all possible initial states is the
best situation. Mathematically, this means that the network needs to have a unique
equilibrium which is globally attractive. Such a convergent behavior is referred to
as “monostability” of a network. On the other hand, when a neural network is em-
ployed as an associative memory storage or for pattern recognition, the existence of
many equilibria is a necessary feature 7, 11, 16, 21]. The notion of “multistability”
of a neural network is used to describe coexistence of multiple stable patterns such as
equilibria or periodic orbits. In general, if the dynamics for a system are bounded, the
existence of multiple stable patterns is accompanied with coexistence of stable and
unstable equilibria or periodic orbits. The existence of unstable equilibria is essential
in certain applications of neural network. For example, unstable equilibria are related
to digital constraints on selection in winner-take-all problems [32, 33].
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Classical recurrent neural networks are usually systems of ordinary differential
equations. Recently, neural network systems with delays have also been studied ex-
tensively, thanks to the need from practical applications and mathematical interests.
In this presentation, we propose an approach to investigate existence of multiple sta-
tionary solutions and their stability for recurrent neural networks with delay and
without delay. We shall illustrate our approach through the Hopfield-type model.

Hopfield-type neural networks and their various generalizations have been widely
studied and applied in various scientific areas. A typical form for such a network is
given by

e

€T; t n ‘
:7%+2Tijgj(xj(t*ﬁj))+fi 1=1,2,...,n,
T j:l

where C; > 0 and R; > 0 are, respectively, the input capacitance and resistance
associated with neuron 7; I; is the constant input; Tj; are the connection strengths
between neurons; 7;; > 0 are the transmission delays; and g¢;,7 = 1,2,...,n, are
neuron activation functions.

The classical Hopfield-type neural network [16] is system (1.1) without delay, that
is, 7;; = 0 for all ¢,5. For the Hopfield-type neural networks, the theory of unique
equilibrium and global convergence to the equilibrium has been extensively studied;
cf. [9, 10] for the networks without delays and [5, 13, 19, 23, 24, 29, 30, 31, 34, 35] for
the delay cases.

In contrast to these studies, we propose a treatment to explore the existence
of multiple stationary solutions for (1.1) through a geometrical formulation on the
parameter conditions. Stability of these equilibria for (1.1) with and without delay
shall also be investigated. In addition, estimations of basins of attraction for these
stable stationary solutions are derived. The stationary equations are identical for
system (1.1) with delay and without delay. Thus, confirmation for the existence of
equilibrium points is valid for both cases. However, stability of the equilibrium points
and dynamical behaviors can be very different for the systems with delay and without
delay. It is very interesting to explore such a difference as well as a possible coincidence
of behaviors.

The theory for existence of multiple stable patterns has been developed for cellular
neural networks [8, 17, 26, 27]. The neurons in such a system are locally connected
and no time lags were considered therein. Our approach can be adopted to such a
network with delays, as remarked in the later section. There are other interesting
studies on delayed neural networks in [1, 2, 12, 22, 25].

This presentation is organized as follows. In section 2, we establish conditions for
existence of 3" equilibria for the Hopfield network. 2" equilibria among them will be
shown to be asymptotically stable for the system without delays, through a lineariza-
tion analysis. In section 3, we shall verify that under the same conditions, there are
2™ regions in R™, each containing an equilibrium, which are positively invariant under
the flow generated by the system with delays and without delays. Subsequently, it
is argued that these 2" equilibria are asymptotically stable, even in the presence of
delays. We also formulate more sufficient conditions for stability of these 2™ equilib-
ria. We extend our theory to more general activation functions, including those with
saturations, in section 4. Two numerical simulations on the dynamics of two-neuron
networks, which illustrate the present theory, are given in section 5. We summarize
our results with a discussion (section 6).
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2. Existence of multiple equilibria and their stability. In this section, we
shall formulate sufficient conditions for the existence of multiple stationary solutions
for Hopfield neural networks with and without delays. Our approach is based on a
geometrical observation. The derived parameter conditions are concrete and can be
examined easily. We also establish stability criteria of these equilibria for the sys-
tem without delays, through estimations on the eigenvalues of the linearized system.
Stability for the system with delays will be discussed in the next section. After re-
arranging the parameters, we consider system (1.1) in the following forms: for the
network without delay,

da;(t . :
(21) x ( ) = 7blilfz(t)+wagj($J(t))+Jl, 1= 1,2,...,717
j=1

dt

and for the network with delays,

da;(t - :
(22) v ( ) :_bzxz(t)+Zw1jgj(x](t_7—zg))+Jz 22172,...,TL.
j=1

dt

Herein, b; > 0, 0 < 73; < 7 := maxi<; j<n 7. While (2.1) is a system of ordinary
differential equations, (2.2) is a system of functional differential equations. The initial
condition for (2.2) is

z;(0) = ¢i(0), —7<6<0, i=12,...,n,

and it is usually assumed that ¢; € C([-7,0],R). Let £ > 0. For x € C([—,{],R"™)
and ¢ € [0, ], we define

(2.3) x(0) =x(t+0), 6¢e[-T0].

Let us denote F' = (FY,..., F,), where F; is the right-hand side of (2.2),
Fi(Xt) = —bx;(t) + Zwijgj (xj(t —75)) + Js,
j=1

where x = (1,...,2,). A function x = x(¢) is called a solution of (2.2) on [—7,¢) if
x € C([-7,£),R") and x; defined as (2.3) lies in the domain of F' and satisfies (2.2)
for t € [0,¢). For a given ¢ € C([—7,0],R™), let us denote by x(¢; ¢) the solution of
(2.2) with x¢(0; ¢) := x(0 4 0; ¢) = ¢(0) for 6 € [—7,0].

The activation functions g; usually have sigmoidal configuration or are non-
decreasing with saturations. Herein, we consider the typical logistic or Fermi function:
forall j=1,2,...,n,

1

:m, e >0.

(2.4) 9i(&) = 9(&) :
One may also adopt g;(¢) = 1/(1 + e~¢/55), g; > 0, or other output functions, as
discussed in section 4. Note that the stationary equations for systems (2.1) and (2.2)
are identical; namely,

(25) FZ(X) = —bm—i—Zw”gJ(mJ)—f—Jl :0, i:1,2,...,n,
j=1
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FIG. 1. The graph for function u(y) =y — y? and y1 = g(p;), y2 = 9(q:)-

where x = (21,...,x,). For our formulation in the following discussions, we introduce
a single neuron analogue (no interaction among neurons),
3
5 = &) = b Fwig() + i, (R
Let us propose the first parameter condition:
bie 1 .
(H1): 0 < WL” < T i1=1,2,...,n.

LEMMA 2.1. Under condition (Hy), there exist two points p; and ¢; with p; <
0 < ¢; such that f/(p;) =0, fi(g;) =0 fori=1,2,...,n.
Proof. We compute that

(2.6) g6 = (0 +e o) 2

Note that g is strictly increasing and that the graph of function ¢’(£) is concave down
and has its maximal value at £ = 0. We let y = ¢g(§), £ € R. Then y € (0,1) and
g(0) = 1/2. Tt follows from (2.6) that

1 1 1
/ 2 2
9=y <y > ~(y -y
On the other hand, for each i, since f/(§) = —b; + wi;g'(€), we have f/(§) = 0 if and
only if b; = w;;¢'(€); equivalently,

biS

— =y—y

Wi
From the configuration in Figure 1, it follows that, for each 4, there exist two points
Diy i, pi < 0 < g;, such that f/(p;) = f/(g;) = 0 if the parameter condition 0 <
bie/w;i; < 1/4 holds. This completes the proof. ]

Note that condition (H;) implies w;; > 0 for all ¢ = 1,2,...,n, since each b; is

already assumed to be a positive constant. We define, for i =1,2,...,n,

J?(f) = —bi& +wiig(§) + ki,
fi(§) = =bi +wiig(§) + Kk,
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Fic. 2. (a) The graph of g with e = 0.5; (b) Configurations for fi and f;.

where
k;r = Z |wij| + J;, k; = — Z |wij\ + J;.
J=1#i =1
It follows that
(2.7) filz:) < Fi(x) < fiw:)
for all x = (z1,...,2,) and ¢ = 1,2,...,n, since 0 < g; <1 for all j.

We consider the second parameter condition which is concerned with the existence
of multiple equilibria for (2.1) and (2.2):

(Ha): filps) <0, filg) >0, i=1,2...,n

The configuration that motivates (Hs) is depicted in Figure 2. Such a configuration is
due to the characteristics of the output function g. Under assumptions (Hy) and (Hz),
there exist points a;, b;, & with a a; < b; < & such that fl(al) fi(b i) = fi(é:) =0 as
well as points a;, b;, & with a; < b; < & such that fl(az) fz( i) = fl(cz) =0.

THEOREM 2.2. Under (Hy) and (Hs), there exist 3" equilibria for systems (2.1)
and )

I(Jroof The equilibria of systems (2.1) and (2.2) are zeros of (2.5). Under condi-
tions (H;) and (Hsy), the graphs of fz and f; defined above are as depicted in Figure
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2. According to the configurations, there are 3" disjoint closed regions in R™. Set
0 = {(z1,22,...,2,) € R” | 2; € Q"} with o = (a1,0a2,...,0,), and o; = “1,”

“m,” or “r,” where

Q={reRla<z<a}, U :={zxeR| b <z<b},

Herein, “l,” “m,” and “r” mean, respectively, “left,” “middle,” and “right.” Consider
any fixed one of these regions Q. For a given X = (%1, Za,...,%,) € Q%, we solve
n
hi(ws) = =biwi + wig(w:) + Y wigg(E;)+J; =0
Jj=1,j#i
for x;, i = 1,2,...,n. According to an estimate similar to (2.7), the graph of h; lies

between the graphs of fl and f;. In fact, the graph of h; is a vertical shift of the
graph of fi or f;. Thus, one can always find three solutions, and each of them lies in
one of the regions in (2.8) for each i. Let us pick the one lying in Q7 and set it as
x, for each i. We define a mapping H, : Q% — Q% by Hy(X) = x = (X1, X0, - -+, X,,)-
Restated, we set

x; = (halgn) 71 (0) if o = 417

X; = (h2|52;n)71(0) lf Q; = “m,”

X; = (hl 92)71(0) if Q; = “r.”

Since g is continuous and h; is a vertical shift of function £ — —b;& + w;;g(§) by the
quantity Z?:L i wij9(Z;) +Ji, the map H, is continuous. It follows from Brouwer’s
fixed point theorem that there exists one fixed point X = (%1, Zo,...,Z,) of H, in
Q% which is also a zero of the function F, where F = (Fy, Fs, ..., F,). Consequently,
there exist 3™ zeros of F', hence 3™ equilibria for systems (2.1) and (2.2), and each of
them lies in one of the 3™ regions Q%. This completes the proof. O

We consider the following criterion concerning stability of the equilibria:

(2.9)

(Hs): =bi + Y |wijlg'(n;) <0, ¢'(n;) := max{g'(x;) | w; = &;,45}, i=1,2,...,n
j=1

A simplified yet more restrictive version for condition (Hs) is that for i =1,2,...,n,

n
(2.10) b, > 4¢'(n) Z |wi;| with ¢'(n) := max{¢'(z;) | x; = ¢, a;,5 =1,2,...,n}.
j=1

THEOREM 2.3. Under conditions (Hy), (Hz), and (Hs), there exist 2" asymptot-
ically stable equilibria for the Hopfield neural networks without delay (2.1).

Proof. Among the 3" equilibria in Theorem 2.2, we consider those X = (%1, ..., T,)
with #; € Q! or O for each . The linearized system of (2.1) at equilibrium X is

dy;

= —by; + Zwijg;(fj)yj, i=1,2,...,n.

J=1
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Restated, y = Ay, where DF(X) =: A = [a;j]nxn With

—b1 + wn1g’ (Z1) w129 (Z2) s wing' (Tn)

w219 (Z1) —ba + woag' (Z2) wong' (Tn)
laij] = :
wnlg/(fl) anQ/(jQ) tee _bn + wnng/(jn)
Let
n n n
ri= Y lagl= Y lwgd @)= Y lwyld' (@), i=12,...,n.
Jj=1,j#i Jj=1,j#i j=1,j#1

According to Gerschgorin’s theorem,

)\k S LTLJ B(aii, TZ‘)

i=1

for all k = 1,2,...,n, where \; are the eigenvalues of A and B(ay;,r;) := {( € C |
|¢ — aii] < r;}. Hence, for each k, there exists some i = i(k) such that

n
Re(A) < =bi +wiig' (Z:) + Y |wijlg/ ().
=L

Notice that for each j, ¢’(€) < ¢'(¢;) (resp., ¢'(§) < ¢'(a;)) if € > ¢&; (vesp., & < a;).
Since % is such that z; € QL or 2}, we have z; > ¢j or z; < aj forall j=1,2,...,n.
It follows that Re(Ax) < 0 by (2.9). Thus, under (Hs), all the eigenvalues of A have
negative real parts. Therefore, there are 2" asymptotically stable equilibria for system
(2.1). The proof is completed. 0

We certainly can replace condition (Hsz) by weaker ones, such as an individual con-
dition for each equilibrium. Let X be an equilibrium lying in Q% with a = (aq, ..., ay)
and a; = “1” or a; = “I,” that is, ; € Q! or QF, for each i. For such an equilibrium
we consider, for 1 =1,2,...,n,

n

bi>wig (&) + Y lwilg' (&), & =k if o =17 & =ax if ap = 17
J=1,j#i

k=1

N

Such conditions are obviously much more tedious than (Hj).

3. Stability of equilibria and the basins of attraction. We plan to inves-
tigate the stability of equilibrium for system (2.2), that is, with delays. We shall
also explore the basins of attraction for the asymptotically stable equilibria, for both
systems (2.1) and (2.2), in this section.

Note that the function § — [wi; + 37, 5, wisllg’(§) is continuous for all i =
1,2,...,n. From (2.9) and w;; > 0, it follows that there exists a positive constant ¢
such that

(3.1) b; > rnax{

wii + Z |Wij|] gl(f)if_diJrGo,éiﬁo}, i=1,2,...,n

=15
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Herein, we choose ¢ such that eg < min{|a; — p;|, |¢; — q;|} for all i = 1,2,... n. For
system (2.1), we consider the following 2" subsets of R™. Let a = (a, ..., q,) with
; = “1” or “r,” and set

(3.2) QY = {(x1, 22, ..., xp) | 7 € QL if a; = 4,7 € O if oy = 07},

where Q) ;= {£ € R | £ < i+ e}, W= {E€R|E>¢ — e} For system (2.2), we
consider the following 2" subsets of C([ ,0l,R™). Let a = (aq, ..., ay) with a; = “1”

W M

or “r,” and set
(3.3) A ={o = (p1,02,---,0n) | pi € Ai if a; = “) ;€ Al if a; = “17},

where

Ai = {pi € C([-7, 0, R) | ¢:(0)
Aj = {pi € C([=7, 0L, R) [ ¢i(0)

THEOREM 3.1. Assume that (Hy) and (Hy) hold. Then each Q* and each A®
are positively invariant with respect to the solution flow generated by systems (2.1)
and (2.2), respectively.

Proof. We prove only the delay case, i.e., system (2.2). Consider any one of the
2™ sets A®. For any initial condition ¢ = (¢1,d2,...,0,) € A%, we claim that the
solution x(¢; ¢) remains in A% for all ¢ > 0. If this is not true, there exists a component
x;(t) of x(t; ¢) which is the first (or one of the first) escaping from A} or Al. Restated,
there exist some ¢ and ¢; > 0 such that either z;(¢t1) = ¢ — €o, %(tl) < 0, and
x;(t) > ¢ —eg for —7 <t <t or x;(t1) = G; + €0, dzi( 1) >0, and z;(t) < a; + € for
—7 <t <ty. For the first case z;(t1) = ¢ (tl) < 0, we derive from (2.2)
that

a; + €o for all 0 € [—7,0]},
¢ — €o for all § € [—7,0]}.

(3.4)

dl‘i
o (t1) = =b;i(¢; — €0) + wiig(x;(ty — 135)) + Z w”g zj(t1 —m5)) + Ji <0.

On the other hand, recalling (Hz) and previous descriptions of ¢; and €y, we have
Ji(¢; — €0) > 0 which gives

(3.5) —b;(&; — €0) +wiig(¢é; — €0) + k;
= —bi(éi — 60) + w”—g(éi — 60) - Z |w¢j| + J; > 0.
J=1,j#i

Notice that ¢; is the first time for z; to escape from Al. We have g(z;(t1 — 7)) >
g(&; — €o), by the monotonicity of function g. In addition, by w;; > 0 and |g(-)] <1
we obtain from (3.5) that

—b;(&; — €0) + wiig(wi(t1 — 74)) + Z wijg(@;(ts — 7i5)) + Ji
J=Lj#i
> —bi(é — €0) + wiig(éi —€0) — Y |wij| +Ji >0,
J=1,j#i
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which contradicts (3.4). Hence, z;(t) > ¢ — ¢ for all ¢ > 0. Similar arguments can be
employed to show that x;(t) < a;+¢g for all t > 0 for the situation that z;(t1) = a;+€o
and dj;’fi (t1) > 0. Therefore, A® is positively invariant under the flow generated by
system (2.2). The assertion for system (2.1) can be justified similarly. o

THEOREM 3.2. Under conditions (Hy), (Hz), and (H3), there exist 2" exponen-
tially stable equilibria for system (2.2).

Proof. Consider an equilibrium X = (%1, Za,...,T,) € Q% for some a = (a1, oo,
ceyQp), with a; = “1” or “r,” obtained in Theorem 2.2. We consider the single-
variable functions G;(-), defined by

Gi(¢) =bi — ¢ — Y _ |wijlg'(&)e™™,

Jj=1

(1385

where &; = a; + €y (resp., ¢; — €) if a; = “1” (resp., “r”). Then, G;(0) > 0 from
(3.1) or (H3). Moreover, there exists a constant g > 0 such that G;(u) > 0 for
i =1,2,...,n, due to continuity of G;. Let x(t) = x(t;¢) be the solution to (2.2)
with initial condition ¢ € A% defined in (3.3). Under the translation y(t) = x(t) — X,
system (2.2) becomes

= —hii(t) + > wislg(ai(t —7i3)) — 9(F;)],

Jj=1

(3.6)

where y = (y1,...,Yn). Now, consider functions z;(-) defined by
(37) Zz(t) :eut|yl(t)|7 1= 1,27,71

The domain of definition for z;(-) is identical to the interval of existence for y;(-). We
shall see in the following computations that the domain can be extended to [—T, 00).
Let 6 > 1 be an arbitrary real number and let

3.8 K := max sup |z;(0) — z;| p > 0.
(3.8) 199{06[_7709 (0) }

It follows from (3.7) and (3.8) that z;(t) < Ké for t € [-7,0] and all i = 1,2,...,n.
Next, we claim that

(3.9) %(t) < K& forallt>0,i=1,2... n

Suppose this is not the case. Then there are an ¢ € {1,2,...,n} (say ¢ = k) and a
t1 > 0 for the first time such that

zi(t) < Ké, te[-7,t1], i=1,2,...,n, i £k,
zp(t) < K6, te[-1,t),

d
zp(t1) = K6  with %zk(tl) > 0.

Note that zx(t1) = Ké > 0 implies yi(¢1) # 0. Hence |yx(t)| and zx(t) are differen-
tiable at t = ¢;. From (3.6), we derive that

d n
(3.10) 2wt < —brlyk(t)] + > lwrslg ()l (tr = 7a5)]
j=1
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for some g; between x;(t1 — 7;) and ;. Hence, from (3.7) and (3.10),

dzk(lﬁ) i
— < pe g (t)] + e | =bilyk(t)] + > lwilg' ()l (b1 — 7))
j=1
n
< pan(ts) = bez(ts) + ) lwislg' ()€™ 2 (t — ;)
j=1
n
(3.11) —(be — wzk(ty) + Y lwrslg' (€)™ | sup  z(0)]
i=1 0€(ty—7,t1]
where & = G; + €y (resp., ¢ — €o) if a; = “1” (resp., “r”). Herein, the invariance

property of A% in Theorem 3.1 has been applied. Due to G;(x) > 0, we obtain

de(tl)
0< < — (b — p)zr(t1) + E w el sup  z;(0
dt —(br — )z (t1) < 1| kJ‘g ) beltsmrit] J( )
{b — = E wijlg' (€ e‘”’“}Ké
(3.12) <o,

which is a contradiction. Hence the claim (3.9) holds. Since § > 1 is arbitrary, by
allowing § — 17, we have z;(t) < K for all £ > 0,4 =1,2,...,n. We then use (3.7)
and (3.8) to obtain

lzi(t) — 75| < e max ( sup |xj(9)—xj|>

1<j<n \ gg[-,0]

fort >0andalli=1,2,...,n. Therefore, x(t) is exponentially convergent to X. This
completes the proof. ]

In the following, we employ the theory of the local Lyapunov functional [15]
and the Halanay-type inequality [4, 14] to establish other sufficient conditions for
asymptotic stability and exponential stability for the equilibria of system (2.2).

THEOREM 3.3. There exist 2™ asymptotically stable equilibria for system (2.2)
under conditions (Hy) and (Ha) and one of the following conditions:

(Hy): 2b; > Z|ww| +g Z |wj;| form; =a; and &, i=1,2,...,n,
Jj=1 Jj=1
(Hs): min [Qb - Z wislg' (& ] 28X [Z; Iwﬁg’(m)] for {; = a; and ¢;,
Jj=

7n; = a; and ¢&;.

Proof. Similarly to (3.1), there exists ¢y > 0 such that (Hy) holds for n; = a; + €,
¢; — €9, and (H5) holds for fj = dj + €0, ¢ — €0, M = 4; + €0, C; — €0, 1 = 1,2,...,n,
by continuity of ¢’. We thus define A% as in (3.3). The following computations are
reserved for solutions lying entirely within each of the 2™ positively invariant regions
A“.



MULTISTABILITY IN NEURAL NETWORKS 1311

(i) We employ the following Lyapunov functional:

Zyz Y b / — g(z;)%ds,

=1 j=1 771]

where y(t) = x(t) — X. By recalling (3.6) and using (Hy), we derive

%:22%( { biyi(t +sz] l‘] Tij))_g(mj)]}

+ Z Z |wijllg(x; () — g(z;)]* — Z Z |wijllg(z;(t — 755)) — g(z;)]
< —QZbiyZ +ZZ|WU|ZJI +ZZ|WU (t)
:Z{ 2b +Z|Wu|+ leﬂ|}yl

We thus conclude the asymptotic stability for equilibrium X via applying the theory
of the local Lyapunov functional; cf. [15].
(ii) Recall (3.6), and let

(3.13) W0 = 5 360

Then,
t) = Z yi(t) { zyz + Z sz x] Tij)) - g($])]}
i=1
<Z{ zyl Z‘wlﬂg <] yz )+yj2'(t_7—ij)]}

=1

< —Z [bi ~5 Z |wz'j|g'(§j)] Y (t)
; | Z'wﬂlg o ] 2 S
< —BW(y )()+C sup W( )(s),

t—7<s<

where

ﬁ = 11’§Ilzléln { Z |w7,j‘g 5] = aj + €0, cj O} ,
< = 121%)(” {Zl |wj7f|gl(771)7777, =a; + €0, C; — 60} .
j=
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By (Hjs), we have 8 > ¢ > 0. By using the Halanay inequality, we obtain that

(3.14) W) < ( sup W<y><s>)

—7<5<0

for all ¢ > 0, where ~ is the unique solution of v = 8 — (7. It follows that

(3.15) ;Zy?(t)ﬁl sup <;Zy?(8))]e‘”t-

—7<s<0

Hence, the equilibrium X is asymptotically stable. 1]

COROLLARY 3.4. Under conditions (Hy), (Hz), and (Hs), there exist 2" expo-
nentially stable equilibria for system (2.2).

We observe from (2.1) and (2.2) that for every %,

Fi(x), F, (x¢) < 0 whenever x; > 0 is sufficiently large,
Fi(x), Fi(x;) > 0 whenever z; < 0 and |z;] is sufficiently large,
since b; > 0 and »77_, wy;jg;(2;(t)) + J; and 37 wi;gj(2;(t — 755)) + J; are bounded

for any x and x,. Therefore, it can be concluded that every solution of (2.1) and (2.2)
is bounded in forward time.

4. Further extension. We shall extend our studies in sections 2 and 3 to more
general activation functions in this section.

4.1. Activation functions in general form. Let us consider the activation
functions {g;(+)}7 which are C? and satisfy

(©) : { ui < gi(€) <wi,  gi€) >0,
"l (€—0i)gi(§) <0 forall § €R,

i=1,2,...,n. Herein, u;, v;, and o; are constants with u; < v;,7 =1,2,...,n. Under

these circumstances, (H;) can be modified to

. b; )
(H): 0= ggﬂggi(ﬁ) < =< rgggf}é(f) (=gilo9), i=1,2,...,n.

As in section 2, we define
fi(€) = =bi€ + wiigi(§) + Ji.

LEMMA 4.1. For g; in the class (C), under condition (H;'), there exist constants
{pi}t and {q:}} with p; < o; < q; such that f{(p;) = fl(¢;) = 0 for each i =
1,2,...,n.

We define
(4.1) fi(€) = —bi€ +wiigi(€) + K, fi(€) = —bif + wiigi(€) + k7,
where
(4.2) K= Y pilwl+ i kD= Y plwil + s

=15 j=1j#i
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with p; = max{|u;|,|v;|}. We locate the points a; < b; < & and @; < b; < &, where
filai) = fi(bi) = fi(¢;) = 0 and fi(a;) = fi(bi) = fi(&;) = 0.

Let n € R and k € {1,...,n} be such that g;.(n) = max{g}(§) : £ = a;, ¢,
1=1,2,...,n}. Consider

(Hs'): b > gi.(n) , i=1,2,...,n.

n
wii + Z |wij |

J=1,5#i

THEOREM 4.2. Let g; be in the class (C). Under conditions (Hy'), (Hz), and
(Hs"), there exist 3" equilibria for systems (2.1) and (2.2) with 2™ among them being
exponentially stable.

4.2. Saturated activation functions. In this subsection, we investigate sys-
tems (2.1), (2.2) with saturated activation functions. In particular, we consider the
following continuous functions:

9i(§) = ¢ increasing if p; <& < ¢,
U if qi < 5 < 00,
where p;,g; are constants with p; < ¢; for i = 1,2,...,n. Such a class of functions

includes the piecewise linear function with saturations:

9i(§) = uwit+ 7€ —pi) i pi <E<q,
i if ¢; <& < o0

for each i. Typical graphs for these functions are depicted in Figures 3(a) and (c).
With such activation functions, existence of multiple equilibria for (2.1) and (2.2) can
be obtained under condition

(Hg): b; > 0, =b;p; +wiju; + k7 <0, —bigi+wuvi +k; >0, i=1,2,...,n,

where k;f, k; are defined as in (4.2). We define fi, fi as in (4.1). The graphs of f;
and f; are depicted in Figures 3(b) and (d). Under condition (Hy), we also locate
the points a; < IA)Z < ¢ and a; < b; < &, where fi(di) = fl(lA)Z) = fl(él) = 0 and
filas) = fi(bi) = fi(¢;) = 0.

Note that we do not need differentiability at corner points p;,q; of g; in our
analysis; moreover, ¢;(§) = 0 for £ < p; and £ > ¢;. Thus, (Hj) is already satisfied if
b; >0 fori=1,2,...,n. With these formulations, we can derive that there exist 3"
equilibria for systems (2.1) and (2.2), and that 2" of them are exponentially stable
under condition (Hy).

4.3. Unbounded activation functions. Our theory can also be extended to
certain unbounded activation functions with controlled slopes, for example, the acti-
vation functions g; with bounded slopes in Figure 4. Herein, we require that the slopes
m; of the right- and m% of the left-hand parts of g; satisfy b; > w;;m}, b; > wiimi» for
1=1,...,n.

5. Numerical illustrations. In this section, we present two examples (with
delays) to illustrate our theory.
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Fic. 3. (a) The graph for a continuous activation function g; with saturations. (b) The graphs
for fi and f; induced from the activation function in (a). (c) The graph for a piecewise linear

activation function g; with saturations. (d) The graphs for fz and f; induced from the activation
Sfunction in (c).

- pa r
slope = m!

(gi.vi)
(‘.Irf ? f..' )

(pi, u; (pi, ;)

. —
slope = m;

@ (b)

F1G. 4. (a) The graph for an unbounded piecewise linear activation function. (b) The graph for
an unbounded activation function with bounded slopes.

Ezample 5.1. Consider the two-dimensional neural network
dl‘l(t)
dt = —xl(t) + 1891($1(t — 10)) + 592($2(t — 10)) — 97

d:v;t(t) = —3x5(t) + 5g1(21(t — 10)) + 30g2(z2(t — 10)) — 15,
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TABLE 1 . .
Local extreme points and zeros of fi1, f1, f2, f2.

41 = —3.993889 p; = —1.762747 by = —0.757751 q=1.762747 & =14

ap =—14 b1=0.757751 ¢1=3.993889
G = —3.320288 py = —1.443635 by = —0.452309 ¢2=1.443635  &2=6.666650
az = —6.666650 b2=0.452309 ¢2=3.320288

Ia(t)

Fi1c. 5. Illustrations for the dynamics in Example 5.1.

where g1(x) = g2(x) = g(z) in (2.4) with € = 0.5. A computation gives

filz) = —z1 +18g(z1) — 4,  fi(z1) = —1 + 18g(z1) — 14,
fa(wg) = —3xo + 30g(w2) — 10,  fa(za) = —3x5 4 30g(x2) — 20.

Herein, the parameters satisfy our conditions in Theorem 3.2:

bie 1 1 %_ 1 1

diti H;): —_— =< = = < Z.
Condition ( 1)0<w11 36<4’ <w22 20<4

s fi(pr) = —1.722534 < 0, fi(qu) = 1.722534 > 0,
fa(ps) = —4.085501 < 0, fo(ga) = 4.085501 > 0.
by = 1> 0.025246 = wi1g (1) + |wizlg’ (72),
by = 3 > 0.081566 = |wa1|g’ (m1) + wag' (m2),

Condition (Hz)

Condition (Hgj)

where 11 = £3.993889, 72 = £3.320288 are defined in (2.9). Local extreme points and
zeros of fl, fi, fg, fa are listed in Table 1. The dynamics of this system are illustrated
in Figure 5, where evolutions of 56 initial conditions have been tracked. The constant
initial conditions are plotted in red dots, and the time-dependent initial conditions are
plotted in purple curves. The evolutions of components z; (t) and x2(t) are depicted
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time £

F1c. 6. Evolution of state variable x1(t) in Example 5.1.

time 1

Fi1c. 7. Evolution of state variable x2(t) in Example 5.1.

in Figures 6 and 7, respectively. There are four exponentially stable equilibria in the
system, as confirmed by our theory. The simulations demonstrate the convergence
to these four equilibria from initial functions ¢ lying in the basin of the respective
equilibrium.

Ezxample 5.2. In this example, we simulate the neural network

dx;t(t) = —21(t) + 18¢1 (z1(t — 10)) + 11ga(z2(t — 10)) + 1,
d:c;t(t) = —3wy(t) + 11g1 (z1(t — 10)) + 3092 (w2 (t — 10)) + 4

with the output function g;(§) = h(&), where

(51) h(©) = 5l +1] — e~ 1)),

for each i. The parameters also satisfy the conditions in our formulations with such an
output function. We demonstrate the dynamics as well as evolutions of components
x1(t), x2(t) for the system in Figures 8, 9, and 10, respectively.
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xy(f)

Fic. 8. Illustrations for the dynamics in Example 5.2.

time £

Fi1c. 9. Evolution of state variable x1(t) in Ezample 5.2.

6. Discussions. Our approach can also be adapted to the cellular neural net-
works with delays. The cellular neural networks (CNNs) were introduced by Chua
and Yang [8] in 1988. A model called delayed cellular neural network [24] is given by

60 PO Y gkl Y bkt )+

JENR() JENR()

where N, (i) = {i — 1,4, 4+ 1} if r = 1. The standard activation function for such a
network is the piecewise linear h defined in (5.1). Notably, (6.1) is a system of CNNs
with cells coupled in the one-dimensional manner, and its local coupling structure is
expressed in the equations. Global exponential stability of a single equilibrium for
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time 1

F1c. 10. Evolution of state variable x2(t) in Example 5.2.

(6.1) has been studied by many researchers, for instance, the authors of [3, 20]. The
CNNs can be built by multidimensional couplings among cells. Since there are finitely
many cells at most, the CNNs can always be rewritten in a one-dimensional coupling
form by renaming the indices [28]. It can then be written in a form similar to (1.1).
Such an arrangement, however, destroys the local connection representation. While
previous studies on multistability for the CNNs without delays [17, 26, 27] employed
the structure of local connections among cells of CNNs, our approach does not rely
on such a structure. Moreover, our theory generalized the multistability to the CNNs
with delays (6.1).

In this investigation, we have obtained existence of 2" stable stationary solutions
for recurrent neural networks comprised of n neurons, with delays and without delays.
The theory is primarily based upon an observation on the structures of the equations.
It is thus rather general and can be applied to at least the Hopfield-type neural
networks and the cellular neural networks. The analysis is valid for the networks with
various activation functions, including the typical sigmoidal ones and the saturated
linear ones, as well as some unbounded activation functions. In fact, our formulation
depends on the configuration of the activation functions instead of the precise form of
the functions. The theorems thus developed are pertinent in neural network theory.

Stable periodic orbits and limit cycle attractors are also important for memory
storage and other neural activities. By similar analysis, we can also establish existence
of multiple limit cycles for systems (1.1) and (6.1) with periodic inputs J; = J;(t) =
Ji(t + T). The result will be reported in another article. The approach in this
presentation can be adopted to discrete-time neural networks as well.

The major discussions on neural networks have been centered around monostabil-
ity, in an abundance of articles in the areas of physics, information sciences, electrical
engineering, and mathematics. Multistability in neural networks is, however, essen-
tial in numerous applications such as content-addressable memory storage and pattern
recognition. Recently, further application potentials of multistability have been found
in decision making, digital selection, and analogy amplification [18].

We have exploited further interesting structures of Hopfield-type neural networks
in this study. Our investigations have provided computable parameter conditions for
multistable dynamics in the recurrent neural networks and are expected to contribute
toward practical applications.



MULTISTABILITY IN NEURAL NETWORKS 1319

Acknowledgment. The authors are grateful to the reviewers for their sugges-

tions on improving the presentation.

[16]
(17]
18]
[19]
[20]
21]
22]
23]
24]
[25]
[26]
27]

(28]

REFERENCES

J. BELAIR, S. A. CAMPBELL, AND P. VAN DEN DRIESSCHE, Frustration, stability, and delay-
induced oscillations in a neural network model, SIAM J. Appl. Math., 56 (1996), pp.
245-255.

S. A. CAMPBELL, R. EDWARDS, AND P. VAN DEN DRIESSCHE, Delayed coupling between two
neural network loops, STAM J. Appl. Math., 65 (2004), pp. 316-335.

J. CA0, New results concerning exponential stability and periodic solutions of delayed cellular
neural networks, Phys. Lett. A, 307 (2003), pp. 136-147.

J. CAa0 AND J. WANG, Absolute exponential stability of recurrent neural networks with Lipschitz-
continuous activation functions and time delays, Neural Netw., 17 (2004), pp. 379-390.

T. CHEN, Global exponential stability of delayed Hopfield neural networks, Neural Netw., 14
(2001), pp. 977-980.

S. S. CHEN AND C. W. SHIH, Transversal homoclinic orbits in a transiently chaotic neural
network, Chaos, 12 (2002), pp. 654-670.

L. O. CHuA, CNN: A Paradigm for Complexity, World Scientific, River Edge, NJ, 1998.

L. O. Cuua AND L. YANG, Cellular neural networks: Theory, IEEE Trans. Circuits and Sys-
tems, 35 (1988), pp. 1257-1272.

F. Forti, On global asymptotic stability of a class of monlinear systems arising in neural
network theory, J. Differential Equations, 113 (1994), pp. 246-264.

M. Forti AND A. TESI, New conditions for global stability of neural networks with application
to linear and quadratic programming problems, IEEE Trans. Circuits Systems I Fund.
Theory Appl., 42 (1995), pp. 354-366.

J. Foss, A. LONGTIN, B. MENSOUR, AND J. MILTON, Multistability and delayed recurrent loops,
Phys. Rev. Lett., 76 (1996), pp. 708-711.

K. GoPALSAMY, Stability and Oscillations in Delay Differential Equations of Population Dy-
namics, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1992.

K. GopraLsaMy AND X. HE, Stability in asymmetric Hopfield nets with transmission delays,
Phys. D, 76 (1994), pp. 344-358.

A. HALANY, Differential Equations, Academic Press, New York, 1966.

J. HALE AND S. V. LUNEL, Introduction to Functional-Differential Equations, Springer-Verlag,
New York, 1993.

J. HOPFIELD, Neurons with graded response have collective computational properties like those
of two-state neurons, Proc. Natl. Acad. Sci. USA, 81 (1984), pp. 3088-3092.

J. JUANG AND S.-S. LIN, Cellular neural networks: Mosaic pattern and spatial chaos, SIAM J.
Appl. Math., 60 (2000), pp. 891-915.

R. L. T. HAHNLOSER, On the piecewise analysis of networks of linear threshold neurons, Neural
Netw., 11 (1998), pp. 691-697.

X. Liao, G. CHEN, AND E. N. SANCHEZ, Delay-dependent exponential stability analysis of
delayed neural networks: An LMI approach, Neural Netw., 15 (2002), pp. 855-866.

S. MoHAMAD AND K. GOPALSAMY, Ezponential stability of continuous-time and discrete-time
cellular neural networks with delays, Appl. Math. Comput., 135 (2003), pp. 17-38.

M. MORITA, Associative memory with non-monotone dynamics, Neural Netw., 6 (1993), pp.
115-126.

L. OLIEN AND J. BELAIR, Bifurcations, stability, and monotonicity properties of a delayed
neural network model, Phys. D, 102 (1997), pp. 349-363.

J. PENG, H. Q1a0, AND Z. B. Xu, A new approach to stability of neural networks with time-
varying delays, Neural Netw., 15 (2002), pp. 95-103.

T. RoskA AND L. O. CHuA, Cellular neural networks with non-linear and delay-type template
elements and non-uniform grids, Int. J. Circuit Theory Appl., 20 (1992), pp. 469-481.

L. P. SHAYER AND S. A. CAMPBELL, Stability, bifurcation, and multistability in a system of two
coupled neurons with multiple time delays, SIAM J. Appl. Math., 61 (2000), pp. 673-700.

C.-W. SHIH, Pattern formation and spatial chaos for cellular neural networks with asymmetric
templates, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 8 (1998), pp. 1907-1936.

C.-W. SHIH, Influence of boundary conditions on pattern formation and spatial chaos in lattice
systems, STAM J. Appl. Math., 61 (2000), pp. 335-368.

C.-W. SHiH AND C. W. WENG, On the template corresponding to cycle-symmetric connectivity
in cellular neural networks, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 12 (2002), pp.
2957-2966.



CHANG-YUAN CHENG, KUANG-HUI LIN, AND CHIH-WEN SHIH

P. VAN DEN DRIESSCHE AND X. ZOU, Global attractivity in delayed Hopfield neural network
models, STAM J. Appl. Math., 58 (1998), pp. 1878-1890.

P. VAN DEN DRIESSCHE, J. WU, AND X. Zou, Stabilization role of inhibitory self-connections
in a delayed neural network, Phys. D, 150 (2001), pp. 84-90.

D. Xu, H. Zuao, aND H. Znu, Global dynamics of Hopfield neural networks involving variable
delays, Comput. Math. Appl., 42 (2001), pp. 39-45.

J. F. YanG AND C. M. CHEN, Winner-take-all neural networks using the highest threshold,
IEEE Trans. Neural Networks, 11 (2000), pp. 194-199.

Z. Y1, P. A. HENG, AND P. F. FunG, Winner-take-all discrete recurrent neural networks, IEEE
Trans. Circuits Syst. II, 47 (2000), pp. 1584-1589.

J. ZHANG AND X. JIN, Global stability analysis in delayed Hopfield neural network models,
Neural Netw., 13 (2002), pp. 745-753.

H. Zuao, Global asymptotic stability of Hopfield neural network involving distributed delays,
Neural Netw., 17 (2004), pp. 47-53.



