
行政院國家科學委員會專題研究計畫  成果報告 

 

 

類神經網路的數學研究(3/3) 

 

 
計畫類別：個別型計畫 

計畫編號： NSC94-2115-M-009-001- 

執行期間： 94 年 08 月 01 日至 95 年 07 月 31 日 

執行單位：國立交通大學應用數學系(所) 

 

 

 

 

計畫主持人：石至文 

 

 

 

 

 

報告類型：完整報告 

 

處理方式：本計畫可公開查詢 

 

 
 

 

中 華 民 國 95 年 11 月 1日

 



NSC 95 年計畫成果報告 

 
計畫名稱：類神經網路的數學研究 
計劃主持人：石至文 
報告中文摘要： 
 
    本三年期計畫得到幾個研究成果，其中有些已經發表、有些仍在
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個研究中，我們研究傳統的 Hopfield neural networks 及有時間遲滯項
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MULTISTABILITY IN RECURRENT NEURAL NETWORKS∗

CHANG-YUAN CHENG† , KUANG-HUI LIN† , AND CHIH-WEN SHIH‡

Abstract. Stable stationary solutions correspond to memory capacity in the application of
associative memory for neural networks. In this presentation, existence of multiple stable stationary
solutions for Hopfield-type neural networks with delay and without delay is investigated. Basins of
attraction for these stationary solutions are also estimated. Such a scenario of dynamics is established
through formulating parameter conditions based on a geometrical setting. The present theory is
demonstrated by two numerical simulations on the Hopfield neural networks with delays.
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1. Introduction. The studies of neural networks have attracted considerable
multidisciplinary research interest in recent years. The developments for neural net-
work models and the theory for the models are, on the one hand, driven by application
motif or inspired by biological neuronal behaviors. On the other hand, the neural net-
work theory has motivated and elicited further progress in dynamical system theory.
For example, theory for existence of many stable patterns or chaotic dynamics for
systems in phase space of large dimension is in strong demand for neural network
applications. The progress in this direction of research has also enriched dynamical
system theory [6, 17, 27].

The applications of neural networks range from classifications, associative mem-
ory, image processing, and pattern recognition to parallel computation and its ability
to solve optimization problems. The theory on the dynamics of the networks has been
developed according to the purposes of the applications. In the application to parallel
computation and signal processing involving finding the solution of an optimization
problem, the existence of a computable solution for all possible initial states is the
best situation. Mathematically, this means that the network needs to have a unique
equilibrium which is globally attractive. Such a convergent behavior is referred to
as “monostability” of a network. On the other hand, when a neural network is em-
ployed as an associative memory storage or for pattern recognition, the existence of
many equilibria is a necessary feature [7, 11, 16, 21]. The notion of “multistability”
of a neural network is used to describe coexistence of multiple stable patterns such as
equilibria or periodic orbits. In general, if the dynamics for a system are bounded, the
existence of multiple stable patterns is accompanied with coexistence of stable and
unstable equilibria or periodic orbits. The existence of unstable equilibria is essential
in certain applications of neural network. For example, unstable equilibria are related
to digital constraints on selection in winner-take-all problems [32, 33].
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Classical recurrent neural networks are usually systems of ordinary differential
equations. Recently, neural network systems with delays have also been studied ex-
tensively, thanks to the need from practical applications and mathematical interests.
In this presentation, we propose an approach to investigate existence of multiple sta-
tionary solutions and their stability for recurrent neural networks with delay and
without delay. We shall illustrate our approach through the Hopfield-type model.

Hopfield-type neural networks and their various generalizations have been widely
studied and applied in various scientific areas. A typical form for such a network is
given by

Ci
dxi(t)

dt
= −xi(t)

Ri
+

n∑
j=1

Tijgj(xj(t− τij)) + Ii, i = 1, 2, . . . , n,(1.1)

where Ci > 0 and Ri > 0 are, respectively, the input capacitance and resistance
associated with neuron i; Ii is the constant input; Tij are the connection strengths
between neurons; τij > 0 are the transmission delays; and gi, i = 1, 2, . . . , n, are
neuron activation functions.

The classical Hopfield-type neural network [16] is system (1.1) without delay, that
is, τij = 0 for all i, j. For the Hopfield-type neural networks, the theory of unique
equilibrium and global convergence to the equilibrium has been extensively studied;
cf. [9, 10] for the networks without delays and [5, 13, 19, 23, 24, 29, 30, 31, 34, 35] for
the delay cases.

In contrast to these studies, we propose a treatment to explore the existence
of multiple stationary solutions for (1.1) through a geometrical formulation on the
parameter conditions. Stability of these equilibria for (1.1) with and without delay
shall also be investigated. In addition, estimations of basins of attraction for these
stable stationary solutions are derived. The stationary equations are identical for
system (1.1) with delay and without delay. Thus, confirmation for the existence of
equilibrium points is valid for both cases. However, stability of the equilibrium points
and dynamical behaviors can be very different for the systems with delay and without
delay. It is very interesting to explore such a difference as well as a possible coincidence
of behaviors.

The theory for existence of multiple stable patterns has been developed for cellular
neural networks [8, 17, 26, 27]. The neurons in such a system are locally connected
and no time lags were considered therein. Our approach can be adopted to such a
network with delays, as remarked in the later section. There are other interesting
studies on delayed neural networks in [1, 2, 12, 22, 25].

This presentation is organized as follows. In section 2, we establish conditions for
existence of 3n equilibria for the Hopfield network. 2n equilibria among them will be
shown to be asymptotically stable for the system without delays, through a lineariza-
tion analysis. In section 3, we shall verify that under the same conditions, there are
2n regions in R

n, each containing an equilibrium, which are positively invariant under
the flow generated by the system with delays and without delays. Subsequently, it
is argued that these 2n equilibria are asymptotically stable, even in the presence of
delays. We also formulate more sufficient conditions for stability of these 2n equilib-
ria. We extend our theory to more general activation functions, including those with
saturations, in section 4. Two numerical simulations on the dynamics of two-neuron
networks, which illustrate the present theory, are given in section 5. We summarize
our results with a discussion (section 6).
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2. Existence of multiple equilibria and their stability. In this section, we
shall formulate sufficient conditions for the existence of multiple stationary solutions
for Hopfield neural networks with and without delays. Our approach is based on a
geometrical observation. The derived parameter conditions are concrete and can be
examined easily. We also establish stability criteria of these equilibria for the sys-
tem without delays, through estimations on the eigenvalues of the linearized system.
Stability for the system with delays will be discussed in the next section. After re-
arranging the parameters, we consider system (1.1) in the following forms: for the
network without delay,

dxi(t)

dt
= −bixi(t) +

n∑
j=1

ωijgj(xj(t)) + Ji, i = 1, 2, . . . , n,(2.1)

and for the network with delays,

dxi(t)

dt
= −bixi(t) +

n∑
j=1

ωijgj(xj(t− τij)) + Ji, i = 1, 2, . . . , n.(2.2)

Herein, bi > 0, 0 < τij ≤ τ := max1≤i,j≤n τij . While (2.1) is a system of ordinary
differential equations, (2.2) is a system of functional differential equations. The initial
condition for (2.2) is

xi(θ) = φi(θ), −τ ≤ θ ≤ 0, i = 1, 2, . . . , n,

and it is usually assumed that φi ∈ C([−τ, 0],R). Let � > 0. For x ∈ C([−τ, �],Rn)
and t ∈ [0, �], we define

xt(θ) = x(t + θ), θ ∈ [−τ, 0].(2.3)

Let us denote F̃ = (F̃1, . . . , F̃n), where F̃i is the right-hand side of (2.2),

F̃i(xt) := −bixi(t) +

n∑
j=1

ωijgj(xj(t− τij)) + Ji,

where x = (x1, . . . , xn). A function x = x(t) is called a solution of (2.2) on [−τ, �) if
x ∈ C([−τ, �),Rn) and xt defined as (2.3) lies in the domain of F̃ and satisfies (2.2)
for t ∈ [0, �). For a given φ ∈ C([−τ, 0],Rn), let us denote by x(t;φ) the solution of
(2.2) with x0(θ;φ) := x(0 + θ;φ) = φ(θ) for θ ∈ [−τ, 0].

The activation functions gj usually have sigmoidal configuration or are non-
decreasing with saturations. Herein, we consider the typical logistic or Fermi function:
for all j = 1, 2, . . . , n,

gj(ξ) = g(ξ) :=
1

1 + e−ξ/ε
, ε > 0.(2.4)

One may also adopt gj(ξ) = 1/(1 + e−ξ/εj ), εj > 0, or other output functions, as
discussed in section 4. Note that the stationary equations for systems (2.1) and (2.2)
are identical; namely,

Fi(x) := −bixi +

n∑
j=1

ωijgj(xj) + Ji = 0, i = 1, 2, . . . , n,(2.5)
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Fig. 1. The graph for function u(y) = y − y2 and y1 = g(pi), y2 = g(qi).

where x = (x1, . . . , xn). For our formulation in the following discussions, we introduce
a single neuron analogue (no interaction among neurons),

dξ

dt
= fi(ξ) := −biξ + ωiig(ξ) + Ji, ξ ∈ R.

Let us propose the first parameter condition:

(H1): 0 <
biε

ωii
<

1

4
, i = 1, 2, . . . , n.

Lemma 2.1. Under condition (H1), there exist two points pi and qi with pi <
0 < qi such that f ′

i(pi) = 0, f ′
i(qi) = 0 for i = 1, 2, . . . , n.

Proof. We compute that

g′(ξ) =
1

ε
(1 + e−ξ/ε)−2e−ξ/ε.(2.6)

Note that g is strictly increasing and that the graph of function g′(ξ) is concave down
and has its maximal value at ξ = 0. We let y = g(ξ), ξ ∈ R. Then y ∈ (0, 1) and
g(0) = 1/2. It follows from (2.6) that

g′(ξ) =
1

ε
y2

(
1

y
− 1

)
=

1

ε
(y − y2).

On the other hand, for each i, since f ′
i(ξ) = −bi + ωiig

′(ξ), we have f ′
i(ξ) = 0 if and

only if bi = ωiig
′(ξ); equivalently,

biε

ωii
= y − y2.

From the configuration in Figure 1, it follows that, for each i, there exist two points
pi, qi, pi < 0 < qi, such that f ′

i(pi) = f ′
i(qi) = 0 if the parameter condition 0 <

biε/ωii < 1/4 holds. This completes the proof.
Note that condition (H1) implies ωii > 0 for all i = 1, 2, . . . , n, since each bi is

already assumed to be a positive constant. We define, for i = 1, 2, . . . , n,

f̂i(ξ) = −biξ + ωiig(ξ) + k+
i ,

f̌i(ξ) = −biξ + ωiig(ξ) + k−i ,
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Fig. 2. (a) The graph of g with ε = 0.5; (b) Configurations for f̂i and f̌i.

where

k+
i :=

n∑
j=1,j �=i

|ωij | + Ji, k−i := −
n∑

j=1,j �=i

|ωij | + Ji.

It follows that

f̌i(xi) ≤ Fi(x) ≤ f̂i(xi)(2.7)

for all x = (x1, . . . , xn) and i = 1, 2, . . . , n, since 0 ≤ gj ≤ 1 for all j.
We consider the second parameter condition which is concerned with the existence

of multiple equilibria for (2.1) and (2.2):

(H2): f̂i(pi) < 0, f̌i(qi) > 0, i = 1, 2, . . . , n.

The configuration that motivates (H2) is depicted in Figure 2. Such a configuration is
due to the characteristics of the output function g. Under assumptions (H1) and (H2),

there exist points âi, b̂i, ĉi with âi < b̂i < ĉi such that f̂i(âi) = f̂i(b̂i) = f̂i(ĉi) = 0 as
well as points ǎi, b̌i, či with ǎi < b̌i < či such that f̌i(ǎi) = f̌i(b̌i) = f̌i(či) = 0.

Theorem 2.2. Under (H1) and (H2), there exist 3n equilibria for systems (2.1)
and (2.2).

Proof. The equilibria of systems (2.1) and (2.2) are zeros of (2.5). Under condi-

tions (H1) and (H2), the graphs of f̂i and f̌i defined above are as depicted in Figure
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2. According to the configurations, there are 3n disjoint closed regions in R
n. Set

Ωα = {(x1, x2, . . . , xn) ∈ R
n | xi ∈ Ωαi

i } with α = (α1, α2, . . . , αn), and αi = “l,”
“m,” or “r,” where

Ωl
i := {x ∈ R| ǎi ≤ x ≤ âi}, Ωm

i := {x ∈ R| b̂i ≤ x ≤ b̌i},
Ωr

i := {x ∈ R| či ≤ x ≤ ĉi}.(2.8)

Herein, “l,” “m,” and “r” mean, respectively, “left,” “middle,” and “right.” Consider
any fixed one of these regions Ωα. For a given x̃ = (x̃1, x̃2, . . . , x̃n) ∈ Ωα, we solve

hi(xi) := −bixi + ωiig(xi) +

n∑
j=1,j �=i

ωijg(x̃j) + Ji = 0

for xi, i = 1, 2, . . . , n. According to an estimate similar to (2.7), the graph of hi lies

between the graphs of f̂i and f̌i. In fact, the graph of hi is a vertical shift of the
graph of f̂i or f̌i. Thus, one can always find three solutions, and each of them lies in
one of the regions in (2.8) for each i. Let us pick the one lying in Ωαi

i and set it as
xi for each i. We define a mapping Hα : Ωα → Ωα by Hα(x̃) = x = (x1, x2, . . . , xn).
Restated, we set

xi = (hi|Ωl
i
)−1(0) if αi = “l,”

xi = (hi|Ωm
i
)−1(0) if αi = “m,”

xi = (hi|Ωr
i
)−1(0) if αi = “r.”

Since g is continuous and hi is a vertical shift of function ξ �→ −biξ + ωiig(ξ) by the
quantity

∑n
j=1,j �=i ωijg(x̃j)+Ji, the map Hα is continuous. It follows from Brouwer’s

fixed point theorem that there exists one fixed point x̄ = (x̄1, x̄2, . . . , x̄n) of Hα in
Ωα which is also a zero of the function F , where F = (F1, F2, . . . , Fn). Consequently,
there exist 3n zeros of F , hence 3n equilibria for systems (2.1) and (2.2), and each of
them lies in one of the 3n regions Ωα. This completes the proof.

We consider the following criterion concerning stability of the equilibria:

(H3): −bi +

n∑
j=1

|ωij |g′(ηj) < 0, g′(ηj) := max{g′(xj) | xj = čj , âj}, i = 1, 2, . . . , n.

(2.9)

A simplified yet more restrictive version for condition (H3) is that for i = 1, 2, . . . , n,

bi > g′(η)
n∑

j=1

|ωij | with g′(η) := max{g′(xj) | xj = čj , âj , j = 1, 2, . . . , n}.(2.10)

Theorem 2.3. Under conditions (H1), (H2), and (H3), there exist 2n asymptot-
ically stable equilibria for the Hopfield neural networks without delay (2.1).

Proof. Among the 3n equilibria in Theorem 2.2, we consider those x̄ = (x̄1, . . . , x̄n)
with x̄i ∈ Ωl

i or Ωr
i for each i. The linearized system of (2.1) at equilibrium x̄ is

dyi
dt

= −biyi +

n∑
j=1

ωijg
′
j(xj)yj , i = 1, 2, . . . , n.
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Restated, ẏ = Ay, where DF (x) =: A = [aij ]n×n with

[aij ] =

⎛
⎜⎜⎜⎝
−b1 + ω11g

′(x̄1) ω12g
′(x̄2) · · · ω1ng

′(x̄n)
ω21g

′(x̄1) −b2 + ω22g
′(x̄2) ω2ng

′(x̄n)
...

...
. . .

...
ωn1g

′(x̄1) ωn2g
′(x̄2) · · · −bn + ωnng

′(x̄n)

⎞
⎟⎟⎟⎠ .

Let

ri =

n∑
j=1,j �=i

|aij | =

n∑
j=1,j �=i

|ωijg
′(x̄j)| =

n∑
j=1,j �=i

|ωij |g′(x̄j), i = 1, 2, . . . , n.

According to Gerschgorin’s theorem,

λk ∈
n⋃

i=1

B(aii, ri)

for all k = 1, 2, . . . , n, where λk are the eigenvalues of A and B(aii, ri) := {ζ ∈ C |
|ζ − aii| < ri}. Hence, for each k, there exists some i = i(k) such that

Re(λk) < −bi + ωiig
′(x̄i) +

n∑
j=1,j �=i

|ωij |g′(x̄j).

Notice that for each j, g′(ξ) ≤ g′(čj) (resp., g′(ξ) ≤ g′(âj)) if ξ ≥ čj (resp., ξ ≤ âj).
Since x̄ is such that x̄j ∈ Ωl

j or Ωr
j , we have x̄j ≥ čj or x̄j ≤ âj for all j = 1, 2, . . . , n.

It follows that Re(λk) < 0 by (2.9). Thus, under (H3), all the eigenvalues of A have
negative real parts. Therefore, there are 2n asymptotically stable equilibria for system
(2.1). The proof is completed.

We certainly can replace condition (H3) by weaker ones, such as an individual con-
dition for each equilibrium. Let x̄ be an equilibrium lying in Ωα with α = (α1, . . . , αn)
and αi = “r” or αi = “l,” that is, x̄i ∈ Ωl

i or Ωr
i, for each i. For such an equilibrium

we consider, for i = 1, 2, . . . , n,

bi > ωiig
′(ξi) +

n∑
j=1,j �=i

|ωij |g′(ξj), ξk = čk if αk = “r,” ξk = âk if αk = “l,”

k = 1, . . . , n.

Such conditions are obviously much more tedious than (H3).

3. Stability of equilibria and the basins of attraction. We plan to inves-
tigate the stability of equilibrium for system (2.2), that is, with delays. We shall
also explore the basins of attraction for the asymptotically stable equilibria, for both
systems (2.1) and (2.2), in this section.

Note that the function ξ �→ [ωii +
∑n

j=1,j �=i |ωij |]g′(ξ) is continuous for all i =
1, 2, . . . , n. From (2.9) and ωii > 0, it follows that there exists a positive constant ε0
such that

bi > max

{[
ωii +

n∑
j=1,j �=i

|ωij |
]
g′(ξ) : ξ = âi + ε0, či − ε0

}
, i = 1, 2, . . . , n.(3.1)
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Herein, we choose ε0 such that ε0 < min{|âi − pi|, |či − qi|} for all i = 1, 2, . . . , n. For
system (2.1), we consider the following 2n subsets of R

n. Let α = (α1, . . . , αn) with
αi = “l” or “r,” and set

Ω̃α = {(x1, x2, . . . , xn) | xi ∈ Ω̃l
i if αi = “l,”xi ∈ Ω̃r

i if αi = “r”},(3.2)

where Ω̃l
i := {ξ ∈ R | ξ ≤ âi + ε0}, Ω̃r

i := {ξ ∈ R | ξ ≥ či − ε0}. For system (2.2), we
consider the following 2n subsets of C([−τ, 0],Rn). Let α = (α1, . . . , αn) with αi = “l”
or “r,” and set

Λα = {ϕ = (ϕ1, ϕ2, . . . , ϕn) | ϕi ∈ Λl
i if αi = “l,”ϕi ∈ Λr

i if αi = “r”},(3.3)

where

Λl
i := {ϕi ∈ C([−τ, 0],R) | ϕi(θ) ≤ âi + ε0 for all θ ∈ [−τ, 0]},

Λr
i := {ϕi ∈ C([−τ, 0],R) | ϕi(θ) ≥ či − ε0 for all θ ∈ [−τ, 0]}.

Theorem 3.1. Assume that (H1) and (H2) hold. Then each Ω̃α and each Λα

are positively invariant with respect to the solution flow generated by systems (2.1)
and (2.2), respectively.

Proof. We prove only the delay case, i.e., system (2.2). Consider any one of the
2n sets Λα. For any initial condition φ = (φ1, φ2, . . . , φn) ∈ Λα, we claim that the
solution x(t;φ) remains in Λα for all t ≥ 0. If this is not true, there exists a component
xi(t) of x(t;φ) which is the first (or one of the first) escaping from Λl

i or Λr
i. Restated,

there exist some i and t1 > 0 such that either xi(t1) = či − ε0,
dxi

dt (t1) ≤ 0, and

xi(t) ≥ či − ε0 for −τ ≤ t ≤ t1 or xi(t1) = âi + ε0,
dxi

dt (t1) ≥ 0, and xi(t) ≤ âi + ε0 for

−τ ≤ t ≤ t1. For the first case xi(t1) = či − ε0 and dxi

dt (t1) ≤ 0, we derive from (2.2)
that

dxi

dt
(t1) = −bi(či − ε0) + ωiig(xi(t1 − τii)) +

n∑
j=1,j �=i

ωijg(xj(t1 − τij)) + Ji ≤ 0.

(3.4)

On the other hand, recalling (H2) and previous descriptions of či and ε0, we have
f̌i(či − ε0) > 0 which gives

−bi(či − ε0) + ωiig(či − ε0) + k−i(3.5)

= −bi(či − ε0) + ωiig(či − ε0) −
n∑

j=1,j �=i

|ωij | + Ji > 0.

Notice that t1 is the first time for xi to escape from Λr
i. We have g(xi(t1 − τii)) ≥

g(či − ε0), by the monotonicity of function g. In addition, by ωii > 0 and |g(·)| ≤ 1,
we obtain from (3.5) that

−bi(či − ε0) + ωiig(xi(t1 − τii)) +

n∑
j=1,j �=i

ωijg(xj(t1 − τij)) + Ji

≥ −bi(či − ε0) + ωiig(či − ε0) −
n∑

j=1,j �=i

|ωij | + Ji > 0,
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which contradicts (3.4). Hence, xi(t) ≥ či− ε0 for all t > 0. Similar arguments can be
employed to show that xi(t) ≤ âi+ε0 for all t > 0 for the situation that xi(t1) = âi+ε0
and dxi

dt (t1) ≥ 0. Therefore, Λα is positively invariant under the flow generated by
system (2.2). The assertion for system (2.1) can be justified similarly.

Theorem 3.2. Under conditions (H1), (H2), and (H3), there exist 2n exponen-
tially stable equilibria for system (2.2).

Proof. Consider an equilibrium x̄ = (x̄1, x̄2, . . . , x̄n) ∈ Ωα for some α = (α1, α2,
. . . , αn), with αi = “l” or “r,” obtained in Theorem 2.2. We consider the single-
variable functions Gi(·), defined by

Gi(ζ) = bi − ζ −
n∑

j=1

|ωij |g′(ξj)eζτij ,

where ξj = âj + ε0 (resp., čj − ε0) if αj = “l” (resp., “r”). Then, Gi(0) > 0 from
(3.1) or (H3). Moreover, there exists a constant μ > 0 such that Gi(μ) > 0 for
i = 1, 2, . . . , n, due to continuity of Gi. Let x(t) = x(t;φ) be the solution to (2.2)
with initial condition φ ∈ Λα defined in (3.3). Under the translation y(t) = x(t) − x̄,
system (2.2) becomes

dyi(t)

dt
= −biyi(t) +

n∑
j=1

ωij [g(xj(t− τij)) − g(xj)],(3.6)

where y = (y1, . . . , yn). Now, consider functions zi(·) defined by

zi(t) = eμt|yi(t)|, i = 1, 2, . . . , n.(3.7)

The domain of definition for zi(·) is identical to the interval of existence for yi(·). We
shall see in the following computations that the domain can be extended to [−τ,∞).
Let δ > 1 be an arbitrary real number and let

K := max
1≤i≤n

{
sup

θ∈[−τ,0]

|xi(θ) − x̄i|
}

> 0.(3.8)

It follows from (3.7) and (3.8) that zi(t) < Kδ for t ∈ [−τ, 0] and all i = 1, 2, . . . , n.
Next, we claim that

zi(t) < Kδ for all t > 0, i = 1, 2, . . . , n.(3.9)

Suppose this is not the case. Then there are an i ∈ {1, 2, . . . , n} (say i = k) and a
t1 > 0 for the first time such that

zi(t) ≤ Kδ, t ∈ [−τ, t1], i = 1, 2, . . . , n, i �= k,

zk(t) < Kδ, t ∈ [−τ, t1),

zk(t1) = Kδ with
d

dt
zk(t1) ≥ 0.

Note that zk(t1) = Kδ > 0 implies yk(t1) �= 0. Hence |yk(t)| and zk(t) are differen-
tiable at t = t1. From (3.6), we derive that

d

dt
|yk(t1)| ≤ −bk|yk(t1)| +

n∑
j=1

|ωkj |g′(ςj)|yj(t1 − τkj)|(3.10)
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for some ςj between xj(t1 − τkj) and x̄j . Hence, from (3.7) and (3.10),

dzk(t1)

dt
≤ μeμt1 |yk(t1)| + eμt1

[
−bk|yk(t1)| +

n∑
j=1

|ωkj |g′(ςj)|yj(t1 − τkj)|
]

≤ μzk(t1) − bkzk(t1) +

n∑
j=1

|ωkj |g′(ςj)eμτkjzj(t1 − τkj)

≤ −(bk − μ)zk(t1) +

n∑
j=1

|ωkj |g′(ξj)eμτkj

[
sup

θ∈[t1−τ,t1]

zj(θ)

]
,(3.11)

where ξj = âj + ε0 (resp., čj − ε0) if αj = “l” (resp., “r”). Herein, the invariance
property of Λα in Theorem 3.1 has been applied. Due to Gi(μ) > 0, we obtain

0 ≤ dzk(t1)

dt
≤ −(bk − μ)zk(t1) +

n∑
j=1

|ωkj |g′(ξj)eμτkj

[
sup

θ∈[t1−τ,t1]

zj(θ)

]

< −
{
bi − μ−

n∑
j=1

|ωij |g′(ξj)eμτkj

}
Kδ

< 0,(3.12)

which is a contradiction. Hence the claim (3.9) holds. Since δ > 1 is arbitrary, by
allowing δ → 1+, we have zi(t) ≤ K for all t > 0, i = 1, 2, . . . , n. We then use (3.7)
and (3.8) to obtain

|xi(t) − x̄i| ≤ e−μt max
1≤j≤n

(
sup

θ∈[−τ,0]

|xj(θ) − x̄j |
)

for t > 0 and all i = 1, 2, . . . , n. Therefore, x(t) is exponentially convergent to x̄. This
completes the proof.

In the following, we employ the theory of the local Lyapunov functional [15]
and the Halanay-type inequality [4, 14] to establish other sufficient conditions for
asymptotic stability and exponential stability for the equilibria of system (2.2).

Theorem 3.3. There exist 2n asymptotically stable equilibria for system (2.2)
under conditions (H1) and (H2) and one of the following conditions:

(H4): 2bi >

n∑
j=1

|ωij | + [g′(ηi)]
2

n∑
j=1

|ωji| for ηi = âi and či, i = 1, 2, . . . , n,

(H5): min
1≤i≤n

[
2bi −

n∑
j=1

|ωij |g′(ξj)
]
> max

1≤i≤n

[
n∑

j=1

|ωji|g′(ηi)
]

for ξj = âj and čj ,

ηi = âi and či.

Proof. Similarly to (3.1), there exists ε0 > 0 such that (H4) holds for ηi = âi + ε0,
či − ε0, and (H5) holds for ξj = âj + ε0, čj − ε0, ηi = âi + ε0, či − ε0, i = 1, 2, . . . , n,
by continuity of g′. We thus define Λα as in (3.3). The following computations are
reserved for solutions lying entirely within each of the 2n positively invariant regions
Λα.
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(i) We employ the following Lyapunov functional:

V (y)(t) =
n∑

i=1

y2
i (t) +

n∑
i=1

n∑
j=1

|ωij |
∫ t

t−τij

[g(xj(s)) − g(xj)]
2ds,

where y(t) = x(t) − x. By recalling (3.6) and using (H4), we derive

dV (y)(t)

dt
= 2

n∑
i=1

yi(t)

{
−biyi(t) +

n∑
j=1

ωij [g(xj(t− τij)) − g(xj)]

}

+

n∑
i=1

n∑
j=1

|ωij |[g(xj(t)) − g(xj)]
2 −

n∑
i=1

n∑
j=1

|ωij |[g(xj(t− τij)) − g(xj)]
2

≤ −2

n∑
i=1

biy
2
i (t) +

n∑
i=1

n∑
j=1

|ωij |y2
i (t) +

n∑
i=1

n∑
j=1

|ωij |[g′(ηj)]2y2
j (t)

=

n∑
i=1

{
−2bi +

n∑
j=1

|ωij | + [g′(ηi)]
2

n∑
j=1

|ωji|
}
y2
i (t) < 0.

We thus conclude the asymptotic stability for equilibrium x̄ via applying the theory
of the local Lyapunov functional; cf. [15].

(ii) Recall (3.6), and let

W (y)(t) =
1

2

n∑
i=1

y2
i (t).(3.13)

Then,

dW (y)(t)

dt
=

n∑
i=1

yi(t)

{
−biyi(t) +

n∑
j=1

ωij [g(xj(t− τij)) − g(xj)]

}

≤
n∑

i=1

{
−biy

2
i (t) +

1

2

n∑
j=1

|ωij |g′(ςj)[y2
i (t) + y2

j (t− τij)]

}

≤ −
n∑

i=1

[
bi −

1

2

n∑
j=1

|ωij |g′(ξj)
]
y2
i (t)

+
1

2

[
max

1≤i≤n

n∑
j=1

|ωji|g′(ηi)
]

n∑
i=1

sup
t−τ≤s≤t

y2
i (s)

≤ −βW (y)(t) + ζ sup
t−τ≤s≤t

W (y)(s),

where

β := min
1≤i≤n

{
2bi −

n∑
j=1

|ωij |g′(ξj), ξj = âj + ε0, čj − ε0

}
,

ζ := max
1≤i≤n

{
n∑

j=1

|ωji|g′(ηi), ηi = âi + ε0, či − ε0

}
.
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By (H5), we have β > ζ > 0. By using the Halanay inequality, we obtain that

W (y)(t) ≤
(

sup
−τ≤s≤0

W (y)(s)

)
e−γt(3.14)

for all t ≥ 0, where γ is the unique solution of γ = β − ζeγτ . It follows that

1

2

n∑
i=1

y2
i (t) ≤

[
sup

−τ≤s≤0

(
1

2

n∑
i=1

y2
i (s)

)]
e−γt.(3.15)

Hence, the equilibrium x̄ is asymptotically stable.
Corollary 3.4. Under conditions (H1), (H2), and (H5), there exist 2n expo-

nentially stable equilibria for system (2.2).
We observe from (2.1) and (2.2) that for every i,

Fi(x), F̃i(xt) < 0 whenever xi > 0 is sufficiently large,

Fi(x), F̃i(xt) > 0 whenever xi < 0 and |xi| is sufficiently large,

since bi > 0 and
∑n

j=1 ωijgj(xj(t)) + Ji and
∑n

j=1 ωijgj(xj(t− τij)) + Ji are bounded
for any x and xt. Therefore, it can be concluded that every solution of (2.1) and (2.2)
is bounded in forward time.

4. Further extension. We shall extend our studies in sections 2 and 3 to more
general activation functions in this section.

4.1. Activation functions in general form. Let us consider the activation
functions {gi(·)}n1 which are C2 and satisfy

(C) :

{
ui ≤ gi(ξ) ≤ vi, g′i(ξ) > 0,
(ξ − σi)g

′′
i (ξ) < 0 for all ξ ∈ R,

i = 1, 2, . . . , n. Herein, ui, vi, and σi are constants with ui < vi, i = 1, 2, . . . , n. Under
these circumstances, (H1) can be modified to

(H1
′): 0 = inf

ξ∈R

g′i(ξ) <
bi
ωii

< max
ξ∈R

g′i(ξ) (= g′i(σi)), i = 1, 2, . . . , n.

As in section 2, we define

fi(ξ) = −biξ + ωiigi(ξ) + Ji.

Lemma 4.1. For gi in the class (C), under condition (H1
′), there exist constants

{pi}n1 and {qi}n1 with pi < σi < qi such that f ′
i(pi) = f ′

i(qi) = 0 for each i =
1, 2, . . . , n.

We define

f̂i(ξ) = −biξ + ωiigi(ξ) + k+
i , f̌i(ξ) = −biξ + ωiigi(ξ) + k−i ,(4.1)

where

k+
i :=

n∑
j=1,j �=i

ρj |ωij | + Ji, k−i := −
n∑

j=1,j �=i

ρj |ωij | + Ji(4.2)
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with ρj = max{|uj |, |vj |}. We locate the points âi < b̂i < ĉi and ǎi < b̌i < či, where

f̂i(âi) = f̂i(b̂i) = f̂i(ĉi) = 0 and f̌i(ǎi) = f̌i(b̌i) = f̌i(či) = 0.
Let η ∈ R and k ∈ {1, . . . , n} be such that g′k(η) = max{g′i(ξ) : ξ = âi, či,

i = 1, 2, . . . , n}. Consider

(H3
′): bi > g′k(η)

[
ωii +

n∑
j=1,j �=i

|ωij |
]
, i = 1, 2, . . . , n.

Theorem 4.2. Let gi be in the class (C). Under conditions (H1
′), (H2), and

(H3
′), there exist 3n equilibria for systems (2.1) and (2.2) with 2n among them being

exponentially stable.

4.2. Saturated activation functions. In this subsection, we investigate sys-
tems (2.1), (2.2) with saturated activation functions. In particular, we consider the
following continuous functions:

gi(ξ) =

⎧⎨
⎩

ui if −∞ < ξ ≤ pi,
increasing if pi ≤ ξ ≤ qi,
vi if qi ≤ ξ < ∞,

where pi, qi are constants with pi < qi for i = 1, 2, . . . , n. Such a class of functions
includes the piecewise linear function with saturations:

gi(ξ) =

⎧⎨
⎩

ui if −∞ < ξ ≤ pi,
ui + vi−ui

qi−pi
(ξ − pi) if pi ≤ ξ ≤ qi,

vi if qi ≤ ξ < ∞

for each i. Typical graphs for these functions are depicted in Figures 3(a) and (c).
With such activation functions, existence of multiple equilibria for (2.1) and (2.2) can
be obtained under condition

(Hs): bi > 0,−bipi + ωiiui + k+
i < 0, −biqi + ωiivi + k−i > 0, i = 1, 2, . . . , n,

where k+
i , k

−
i are defined as in (4.2). We define f̂i, f̌i as in (4.1). The graphs of f̂i

and f̌i are depicted in Figures 3(b) and (d). Under condition (Hs), we also locate

the points âi < b̂i < ĉi and ǎi < b̌i < či, where f̂i(âi) = f̂i(b̂i) = f̂i(ĉi) = 0 and
f̌i(ǎi) = f̌i(b̌i) = f̌i(či) = 0.

Note that we do not need differentiability at corner points pi, qi of gi in our
analysis; moreover, g′i(ξ) = 0 for ξ < pi and ξ > qi. Thus, (H3) is already satisfied if
bi > 0 for i = 1, 2, . . . , n. With these formulations, we can derive that there exist 3n

equilibria for systems (2.1) and (2.2), and that 2n of them are exponentially stable
under condition (Hs).

4.3. Unbounded activation functions. Our theory can also be extended to
certain unbounded activation functions with controlled slopes, for example, the acti-
vation functions gi with bounded slopes in Figure 4. Herein, we require that the slopes
mr

i of the right- and ml
i of the left-hand parts of gi satisfy bi > ωiim

r
i, bi > ωiim

l
i for

i = 1, . . . , n.

5. Numerical illustrations. In this section, we present two examples (with
delays) to illustrate our theory.
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Fig. 3. (a) The graph for a continuous activation function gi with saturations. (b) The graphs

for f̂i and f̌i induced from the activation function in (a). (c) The graph for a piecewise linear

activation function gi with saturations. (d) The graphs for f̂i and f̌i induced from the activation
function in (c).

.

.
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.

.

Fig. 4. (a) The graph for an unbounded piecewise linear activation function. (b) The graph for
an unbounded activation function with bounded slopes.

Example 5.1. Consider the two-dimensional neural network

dx1(t)

dt
= −x1(t) + 18g1(x1(t− 10)) + 5g2(x2(t− 10)) − 9,

dx2(t)

dt
= −3x2(t) + 5g1(x1(t− 10)) + 30g2(x2(t− 10)) − 15,
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Table 1

Local extreme points and zeros of f̂1, f̌1, f̂2, f̌2.

â1 = −3.993889 p1 = −1.762747 b̂1 = −0.757751 q1=1.762747 ĉ1=14
ǎ1 = −14 b̌1=0.757751 č1=3.993889

â2 = −3.320288 p2 = −1.443635 b̂2 = −0.452309 q2=1.443635 ĉ2=6.666650
ǎ2 = −6.666650 b̌2=0.452309 č2=3.320288
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Fig. 5. Illustrations for the dynamics in Example 5.1.

where g1(x) = g2(x) = g(x) in (2.4) with ε = 0.5. A computation gives

f̂1(x1) = −x1 + 18g(x1) − 4, f̌1(x1) = −x1 + 18g(x1) − 14,

f̂2(x2) = −3x2 + 30g(x2) − 10, f̌2(x2) = −3x2 + 30g(x2) − 20.

Herein, the parameters satisfy our conditions in Theorem 3.2:

Condition (H1): 0 <
b1ε

ω11
=

1

36
<

1

4
, 0 <

b2ε

ω22
=

1

20
<

1

4
.

Condition (H2): f̂1(p1) = −1.722534 < 0, f̌1(q1) = 1.722534 > 0,

f̂2(p2) = −4.085501 < 0, f̌2(q2) = 4.085501 > 0.

Condition (H3): b1 = 1 > 0.025246 = ω11g
′(η1) + |ω12|g′(η2),

b2 = 3 > 0.081566 = |ω21|g′(η1) + ω22g
′(η2),

where η1 = ±3.993889, η2 = ±3.320288 are defined in (2.9). Local extreme points and

zeros of f̂1, f̌1, f̂2, f̌2 are listed in Table 1. The dynamics of this system are illustrated
in Figure 5, where evolutions of 56 initial conditions have been tracked. The constant
initial conditions are plotted in red dots, and the time-dependent initial conditions are
plotted in purple curves. The evolutions of components x1(t) and x2(t) are depicted
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Fig. 6. Evolution of state variable x1(t) in Example 5.1.
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Fig. 7. Evolution of state variable x2(t) in Example 5.1.

in Figures 6 and 7, respectively. There are four exponentially stable equilibria in the
system, as confirmed by our theory. The simulations demonstrate the convergence
to these four equilibria from initial functions φ lying in the basin of the respective
equilibrium.

Example 5.2. In this example, we simulate the neural network

dx1(t)

dt
= −x1(t) + 18g1(x1(t− 10)) + 11g2(x2(t− 10)) + 1,

dx2(t)

dt
= −3x2(t) + 11g1(x1(t− 10)) + 30g2(x2(t− 10)) + 4

with the output function gi(ξ) = h(ξ), where

h(ξ) =
1

2
(|ξ + 1| − |ξ − 1|),(5.1)

for each i. The parameters also satisfy the conditions in our formulations with such an
output function. We demonstrate the dynamics as well as evolutions of components
x1(t), x2(t) for the system in Figures 8, 9, and 10, respectively.
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Fig. 8. Illustrations for the dynamics in Example 5.2.
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Fig. 9. Evolution of state variable x1(t) in Example 5.2.

6. Discussions. Our approach can also be adapted to the cellular neural net-
works with delays. The cellular neural networks (CNNs) were introduced by Chua
and Yang [8] in 1988. A model called delayed cellular neural network [24] is given by

dxi(t)

dt
= −xi(t) +

∑
j∈Nr(i)

aijh(xj(t)) +
∑

j∈Nr(i)

bijh(xj(t− τ)) + Ji,(6.1)

where Nr(i) = {i − 1, i, i + 1} if r = 1. The standard activation function for such a
network is the piecewise linear h defined in (5.1). Notably, (6.1) is a system of CNNs
with cells coupled in the one-dimensional manner, and its local coupling structure is
expressed in the equations. Global exponential stability of a single equilibrium for
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Fig. 10. Evolution of state variable x2(t) in Example 5.2.

(6.1) has been studied by many researchers, for instance, the authors of [3, 20]. The
CNNs can be built by multidimensional couplings among cells. Since there are finitely
many cells at most, the CNNs can always be rewritten in a one-dimensional coupling
form by renaming the indices [28]. It can then be written in a form similar to (1.1).
Such an arrangement, however, destroys the local connection representation. While
previous studies on multistability for the CNNs without delays [17, 26, 27] employed
the structure of local connections among cells of CNNs, our approach does not rely
on such a structure. Moreover, our theory generalized the multistability to the CNNs
with delays (6.1).

In this investigation, we have obtained existence of 2n stable stationary solutions
for recurrent neural networks comprised of n neurons, with delays and without delays.
The theory is primarily based upon an observation on the structures of the equations.
It is thus rather general and can be applied to at least the Hopfield-type neural
networks and the cellular neural networks. The analysis is valid for the networks with
various activation functions, including the typical sigmoidal ones and the saturated
linear ones, as well as some unbounded activation functions. In fact, our formulation
depends on the configuration of the activation functions instead of the precise form of
the functions. The theorems thus developed are pertinent in neural network theory.

Stable periodic orbits and limit cycle attractors are also important for memory
storage and other neural activities. By similar analysis, we can also establish existence
of multiple limit cycles for systems (1.1) and (6.1) with periodic inputs Ji = Ji(t) =
Ji(t + T ). The result will be reported in another article. The approach in this
presentation can be adopted to discrete-time neural networks as well.

The major discussions on neural networks have been centered around monostabil-
ity, in an abundance of articles in the areas of physics, information sciences, electrical
engineering, and mathematics. Multistability in neural networks is, however, essen-
tial in numerous applications such as content-addressable memory storage and pattern
recognition. Recently, further application potentials of multistability have been found
in decision making, digital selection, and analogy amplification [18].

We have exploited further interesting structures of Hopfield-type neural networks
in this study. Our investigations have provided computable parameter conditions for
multistable dynamics in the recurrent neural networks and are expected to contribute
toward practical applications.
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