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PATTERNS GENERATION AND SPATTIAL ENTROPY IN
TWO-DIMENSIONAL LATTICE MODELS

JUNG-CHAO BAN, SONG-SUN LIN, AND YIN-HENG LIN

ABSTRACT. Patterns generation problems in two-dimensional lattice models
are studied. Let S be the set of p symbols and Zopyo¢, £ > 1, be a fixed finite
square sublattice of Z2. Function U : Zjyx2¢ — S is called local pattern.
Given a basic set B of local patterns, a unique transition matrix Az which
is a ¢2 x ¢2 matrix, ¢ = pﬂ, can be defined. The recursive formulae of
higher transition matrix A, on Zssxne have already been derived [4]. Now
ALY, m > 1, contains all admissible patterns on Z(,,1)¢xn¢ Which can be
generated by B. In this paper, the connecting operator C,,, which comprises
all admissible patterns on Z(,,1)¢x2¢, is carefully arranged. Cy, can be used
to extend A}’ to A:L”Jrl recursively for n > 2. Furthermore, the lower bound
of spatial entropy h(Az) can be derived through the diagonal part of Cp,.
This yields a powerful method for verifying the positivity of spatial entropy
which is important in examining the complexity of the set of admissible global
patterns. The trace operator T,, of C,, can also be introduced. In the case
of symmetric Az, T2, gives a good estimate of the upper bound on spatial
entropy. Combining C,, with T,, helps to understand the patterns generation
problems more systematically.

1. INTRODUCTION

Lattices are important in scientifically modelling underlying spatial struc-
tures. Investigations in this field have covered phase transition [11], [12], [34], [35],
[36], [37], [38], [45], [46], [47], [48], chemical reaction [7], [8], [24], biology [9], [10],
[21], [22], [23], [31], [32], [33] and image processing and pattern recognition [16],
[17], [18], [19], [20], [25]. In the field of lattice dynamical systems (LDS) and cellu-
lar neural networks (CNN), the complexity of the set of all global patterns recently
attracted substantial interest. In particular, its spatial entropy has received con-
siderable attention [1],[2], [3], [4], [5], [13], [14], [15], [28], [29],[30], [39], [40], [41],
[42], [43], [44].

The one dimensional spatial entropy h can be found from an associated transition
matrix T. The spatial entropy h equals log p(T), where p(T) is the maximum
eigenvalue of T.

In two-dimensional situations, higher transition matrices have been discovered in
[30] and developed systematically [4] by studying the patterns generation problem.

This study extends our previous work [4]. For simplicity, two symbols on 2 x 2
lattice Zoxo are considered. A transition matrix in the horizontal (or vertical)
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direction

a1l a2 a1z G4
_ a21 QA22 Q23 (24
(1.1) Ay =
a31 asz2 a3z 34
41 A42 A43 A44

which is linked to a set of admissible local patterns on Zsyo is considered, where
a;j € {0,1} for 1 < 4,5 < 4. The associated vertical (or horizontal) transition
matrix By is given by

bir b1z bz bus

bayr  baa baz  boy
1.2 By =
(1.2) 2 b31 bza b3z b3

byr bao baz bay
Ay and B9y are connected to each other as follows.

bir bi2 | bar  bag

biz big | bag Doy Ax Ao
1.3 Ay = _ ; ; ,
(1) 2 bs1  b32 | bar bao [Az;:s Ag.a
b3z b3s | bagz  bas
and

a1l aiz | 21 G22
13 Q14 | G23 (24 By B,
(1.4) B, { SRR

az1 Az | a41 42 B33 DBay
a33 a34 | 43 Q44

Notably if Ay represents the horizontal (or vertical) transition matrix then B
represents the vertical (or horizontal) transition matrix. Results that hold for A,
are also valid for By. Therefore, for simplicity, only A, is presented herein.

The recursive formulae for n-th order transition matrices A,, defined on Zsx,,
were obtained [4] as follows

bllAn;l leAn;2 b21An;1 bZZAn;Q
b13An;3 b14An;4 bQBAn;3 b24An;4

15 Aps1 =
( ) i b31An;1 b32An;2 b41An;1 b42An;2
b3z Anz b3aApa bazAns baaApa
whenever
_ An,l An;Z
(1.6) An[ i A]

for n > 2, or equivalently,

_ balAn;l ba2An;2
(17) An—l—l;a n |: baSAn;S ba4An;4 ’

for a € {1,2,3,4}. The number of all admissible patterns defined on Z,, ., which
can be generated from As is now defined by
Fm’n(AZ) = |AZL71|

= the summation of all entries in 2" x 2" matrix A™ 1.

(1.8)
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The spatial entropy h(As) is defined as

1 1
(1.9) h(Ag) = lim ——logl,, ,(A2) = lim —log|AT1|.
n mn

m,n—oo M m,n— o0

The existence of the limit (1.9) has been shown in [4], [15], [30]. When h(A2) > 0,
the number of admissible patterns grows exponentially with the lattice size m x n.
In this situation, spatial chaos arises. When h(A3) = 0, pattern formation occurs.

To compute the double limit in (1.9), n > 2 can be fixed initially and m allowed
to tend to infinite [30] and [4]; then the Perron-Frobenius theorem is applied;
(1.10) Jim_ - log |47 = log p(A),

which implies
1
(1.11) h(Az) = lim —logp(A,,),
n—oo N

where p(M) is the maximum eigenvalue of matrix M. A, is a 2" x 2" matrix, so
computing p(A,) is usually quite difficult when n is larger. Moreover, (1.11) does

not produce any error estimation in the estimated sequence — log p(A,,) and its
n

limit h(Ag). This causes a serious problem in computing the entropy. However,
for a class of Ay, the recursive formulae for p(A,) can be discovered, along with a
limiting equation to p* = exp(h(Az)), as in [4].

This study takes a different approach to resolve these difficulties. Previously, the
double limit (1.9) was initially examined by taking the m-limit firstly as in (1.10).
Now, for each fixed m > 2, the n-limit in (1.9) is studied. Therefore, the limit

1
(1.12) lim —log |A™

n—oo N

is considered. Write
Apnit Amona

1.13 A = T S I
( ) " |: Am,n;?) Am,n;4 :|
The investigation of (1.12) would be simpler if a recursive formula such as (1.7)
could be found for Ay, ».o. The first task in this study is to solve this problem.
For matrix multiplication, the indices of A,.,, a € {1,2,3,4} are conveniently
expressed as

Anii1 Anii2
1.14 A, = ’ ’ .
( ) |: An;21 An;22
Then
277171
(115) Am,n;oc = Z Ags,)n;oﬂ
k=1
where
(1.16) AP = Anigis Aniags A
(1.17) k=14 2"7(j; — 1),
i=2
and

(118) a:2(j1 *1)+jm+1.
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As,]f,)n;a in (1.16) is called an elementary pattern of order (m,n), and is a funda-
mental element in constructing A, ».o in (1.15). Notably the elementary patterns
are in lexicographic order, according to (1.17). As in [4], the following m-th order
ordering matrix.

Xm,n;l Xm,n;Z
Xm,n;S Xm,n;4

is represented to record systematically these elementary patterns, where
k
(120) Xm,n;oz = (Agn,)n;a)igkrg2m_1

is a 2™~ column vector.
The first main result of this study is to introduce the connecting operator C,,,
and to use it to derive a recursive formula like (1.7) for Agf,)n;a. Indeed,

Cm;ll Cm;12 Cm;lS C'm;14

1.21 C. = Cm;21 Cm;22 Cm;23 Cm;24
(1.21) me | C C C C

m;31 m;32 m;33 m;34

C’m;41 Cm;42 Cm;43 C(Tn;44

Sm;ll Sm;12 Sm;21 Sm;22
1.99 _ Sm;lS Sm;14 Sm;23 Sm;24
(1.22) 1 s S. S. S.

m;31 m;32 m;41 m;42

Smi:3z Smiza Smiaz Smiaa

where

m—2
ws = ([ 2  22]) )
(1.23) i3 id 2;3 2:4 a2/ g1 mi

ay; ag;
Egm—2x2m—2 ® 1] 2'7
az; QAqj gm—1y9om—1

is a 2™~ x 2™~ 1 matrix where Ej,x, is the kx k full matrix; ® denotes the Kronecker
product, o denotes the Hadamard product and the product ® which involves both
the Kronecker product and the Hadamard product, as stipulated by Definition 2.2.

In Theorem 2.4, Cp,;; is shown to be a;,i,0i,4, Qi >, With 41 = 4 and
im+1 = j. Therefore, all admissible paths of As from ¢ to j with length m are
arranged systematically in matrix C,,;;;. Now, the recursive formula is

o

gm—1 gm—1
l l
Z (Sm;al)klAsn),n;l Z (SW;OCQ)MAgn),n;Z
k — —

(1.24) AP o= 2N s :

> (Smsaz) AL s > (Smsat) AL s

=1 =1
form>2n>2 1<k<2m!and1 < a<4. (1.24) is the generalization of

(1.7).
The recursive formula (1.24) immediately yields a lower bound on entropy. In-
deed, for any positive integer K and diagonal periodic cycle 5133 - - - Bx Bk +1, where

B; € {1,4} and Br41 = b,

1
(125) h(AQ) > m7 log p(sm;ﬂlﬂzrsm;ﬁzﬂs to Sm;ﬂKﬁK-H)'
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Equation (1.25) implies h(A3) > 0, if a diagonal periodic cycle of 318s - - Bk 1
applies, with a maximum eigenvalue of Sy,.3,8, - - - Sm;3,3, that greater than one.
This method powerfully yields the positivity of spatial entropy, which is hard in
examining the complexity of patterns generation problems.

However, the subadditivity of I',, ,,(A2) is known to imply

1
(1.26) h(Az) < —10gTmn(A2)

as in [15]. Consequently, (1.8), (1.10) and (1.26) indicate an upper bound of entropy
as

1
(1.27) h(A2) < ~ log p(An),
n
for any n > 2.
However, the Perron-Frobenius theorem also implies

1
(1.28) limsup — log tr(A7 1) = log p(A,,),

m— 00

where tr(M) denotes the trace of matrix M [26], [27]. Therefore, (1.28) implies
1
(1.29) h(A2) = limsup — log tr(A™1).
m,n—oo0 M
In studying the double-limit of (1.29), for each fixed m > 2, the n-limit in (1.29)
1
(1.30) limsup — log tr(A™~1)
n—oo N

is first considered. (1.30) can be studied by introducing the following trace operator

[ Cm‘ll Cm'22
1.31 T,, = = ;
( ) L Cm;33 C’m;44

Then, a recursive formula for ¢r(A”) can be verified

tTXm,2;1
(1.32) tr(AT) = [T72 :
tTXm72;4

!
for n > 2, where tr(X,, nia) = (trAEf?n;a)’i<k<2m,1 and |v| = ZUj for vector

j=1
v=(v1, -+ ,v)". Consequently, (1.29) and (1.32) yield

1
(1.33) h(Ag) = limsup - log p(Ty,)-

Notably, for a large class of Ag, the limit sup in (1.28), (1.29), (1.30) and (1.33)
can be replaced by limit. See section 3 for details.

Now, (1.33) can be applied to find the upper bounds of entropy. For example,
when A, is symmetric,

1
(134) h(A2) < o IOgP(T2m>7

for any m > 1. Since

(1.35) T, < B,
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can be shown for any n > 2. Generally, (1.33) and (1.34) yield better approximation
than (1.11) and (1.27).

In summary, this study yields lower-bound estimates of entropy like (1.25) by
introducing connecting operators C,,, and upper-bound estimates of entropy like
(1.34) by introducing trace operators T,,. This approach accurately and effectively
yields the spatial entropy.

The rest of this paper is organized as follows. Section 2 derives the connect-
ing operator C,,, which can recursively reduce higher order elementary patterns to
patterns of lower order. Then, the lower-bound of spatial entropy can be found
by computing the maximum eigenvalues of the diagonal periodic cycles of sequence
Smiap. Section 3 addresses the trace operator T,, of C,,. The entropy can be
calculated by computing the maximum eigenvalues of T,,. When Ay is symmetric,
the upper-bounds of entropy are also found. Section 4 briefly discusses the theory
for many symbols on larger lattices.

2. CONNECTING OPERATORS

2.1. Connecting operators and ordering matrices. This section derives con-
necting operators and investigates their properties. For clarity, two symbols on
2 x 2 lattice Zyxo are examined first. Section 4 addresses more general situations.

Let Ao and By be defined as in (1.1)~(1.4). The column matrices A, and By of
A, and By are defined by

ail  Gz1 | Q12 G22 5 5
~ a31  a41 | G32 G40 Az Asp
2.1 A = = ~ ~0
( ) 2 ai3 a3 | a4 a24 { Az;s A2;4 }
a3z Q43 | 34 Q44
and
b1 ba1 | b1z ba ~ ~
g b31 ba1 | b3z b2 { Bs1 B2 }
2.2 By = = ’ ’
(2:2) 2 b1z baz | bia Doy B3 Doy
b33 b43 b34 b44
, respectively.
For matrices of higher order n > 2, A,, A, and A,41,« are defined as in
(1.5)~(1.7).
For matrix multiplication, the indices of A,,, are conveniently expressed as
Apjr A2
2.3 A, = ’ ’ .
( ) |: An;21 An;22

Clearly, A,.o = Ap;j,j,, Where
(2.4) a=a(ji,j2) = 2(j1 — 1) + jo.
For m > 2, the elementary pattern in the entries of A} is represented by
Anijrjz Aniags  Ansimimsrs

where j, € {1,2}. A lexicographic order for multiple indices

Imt+1 = (J1j2 -+ JmIm+1)
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is introduced, using

(2.5) X(Tma1) =1+ Y 2" — 1).
s=2

Now,

(2‘6) Agi)n;a = An%jljzAmjzjs T An;jmjm+17

where

(2.7) a=a(ji,jm+1) = 2(j1 — 1) + Jm+1

and

(28) k= X(Jm+1)

is given in (2.5). Notably, (2.5) and (2.8) do not involve j,+1 but (2.7)does.
Therefore, A" can be expressed as

m _ Am,n;l Am:”?z

(2.9) AT = [ A } :
where

gm—1
(2.10) Am,n;a = Z A'srlf,)n;oz'

k=1
Furthermore,
(2.11) Xm,n;a = (Agrlg,)n;a)ingmel'

1<k <om Xmnia 15 2 2m~1 column-vector that consists of all elementary
patterns in A, n.o. The ordering matrix X,, ,, of A7 is now defined by

Xm,n;l Xm,n;Q

(212) Xm,n - Xm,n;B Xm7n;4

The ordering matrix X,, ,, allows the elementary patterns to be tracked during
the reduction from AT, ; to AT'. This careful book-keeping provides a systematic
way to generate the admissible patterns and later, lower-bound estimates of spatial
entropy.

The following simplest example is studied first to illustrate the above concept.

Ezxample 2.1. For m = 2, the following can easily be verified;

2
An;11 + An;lZAn;Ql An;llAn;IZ + An;lZAn;22

2.13 AZ =
( ) " An;ZlAn;ll + An;22An;21 An;21An;12 + A?L;QQ
and
Ag)’ul = A2, Aéi)ul = An124n.01,
(2 14) AS»BL’Q = An;llAn;IZu Agrzl’z = An;lQAn;227

AS'BL;B = Am?lAn;lla Agr)L,?, = An;QZAn;21»
Agr)LA = An;QlAn;u; A;?’ZL,AI = A?L;22‘
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Therefore,
. A1 A
Xo,.1 = n;11 . Xopo = n;114n,12 7
it |: A7L;12An;21 :| 2,m;2 |: An;IQAn;QQ
(2.15)
X2 3= An;QIAn;ll ol = An;ZlAn,12
" Apo2Ano1 |’ g A%;QQ :

Applying (1.7), and by a straightforward computation,

A2
2.16 Xoni11 = n+1;11
( ) 2l [ Apti1240 1121
b%Ai;l +b12b13An2An;3 bi1b12An;1 Anse + b12b1aAn o An
bi3b11An;3An1 + biabizAna A3 bi3b12 A3 An2 + b%4A$L;4

ba1b31 AL + baobsgAniaAns ba1b32 A1 Anio + baobsa ApoAna
bazbs1 A3 An:1 + basbszApaAns basbsa Apiz Ao + boabss A2 4

Clearly, the j; jo entries of A%H;u and A, 4+1,1245+1;21 in (2.16) consist of entries
of X3 . in (2.14) with @ = a(j1,72) in (2.4). Moreover, the terms in (2.16) can
be rearranged in terms of X ,,.o by exchanging the second row in the first matrix
with the first row in the second matrix in (2.16) as follows.

b3, biabis Az, bi1b12  biabiy ApiAna
bo1b31  baobss AppAnz bo1bza  baobsy ApoAna
(2.17)

bl3b11 b14b13 An;SAn;l b13b12 b%4 An;SAn;Q
b23b31 b24b33 An;4An;3 b23b32 b24b34

Applying (1.1), (1.2) and (2.1), (2.17) can be rewritten as
[ aly  ajzam ] [ A2y } { ai1a12 (12022 } { An114n2 }

(13031 014041 Ani12An:21 13032 (14042 An1245;22

2
az1a11 Q22021 An;21An;11 a21a12 a59 An;QIAn;12
2
(23031 (24041 An;22An;21 (23032 424042 An;22

(32;11 o 42;11)X2,n;1 (32;11 o 14:12;12)X2,n;2 }
(B2 0 A2.11) X2 ni3  (Baji2 0 Ao12) Xo nia

Therefore, after the entries of X5 ;41,1 as in (2.17) or (2.18) have been permuted,
X2.n+1;1 can be represented by a 2 x 2 matrix

(2.18) = {

5 Xont1;11 Xong1;1;2
(2.19) X2,n+1;1 = P(X2,n+1;l) = ¥ ;n+1;1; X n+1:15 )
2,n+1;1;3 2,n+1;1;4

where
Xony1;151 = 52;11X2,n;1,
Xomt1i1;2 = S2;12 X0
(2.20) 2,n+1;1;2 2;1242 n;2,

X2,n+1;1;3 = S2;13X2,TL;37
Xont1;154 = 52,14 X2 4
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and

52;11 = 32;11 o A2;11 = C2;11,
Sa12 = Ba,11 0 Agi2 = Cao,
S2:13 = Ba;12 0 Ag.11 = Cao1,
S2.14 = Ba.12 0 Ag.12 = Cay02,

(2.21)

The above derivation indicates that X5 1., can be reduced to Xs ;.5 via mul-
tiplication with connecting matrices C,n3. This procedure can be extended to
introduce the connecting operator C,, = [ Cy.ap ], for all m > 2.

Before C,,, is introduced, three products of matrices are defined as follows.

Definition 2.2. For any two matrices M = (M;;) and N = (Ny;), the Kronecker
product (tensor product) M ®N of M and N is defined by
(2.22) M ® N = (M;;N).
For anyn > 1,

ON"=N@N®: - -®N,
n-times in N.
Next, for any two m X m matrices

P = (P;) and Q = (Qi;)
where P;; and Q; are numbers or matrices, the Hadamard product PoQ is defined
by
where the product Pij-Q;; of Pij and Q;; may be a multiplication between numbers,

between numbers and matrices or between matrices whenever it is well-defined.
Finally, product @ is defined as follows. For any 4 x 4 matriz

mi1 Miz M21 Moz

mi3 Mg M2z M2y My May
2.24 My = — ; ;
(224) 2 mg1 M3z Ma1 M2 [ Mz My }

mg3 M34 M4g3 M4q
and any 2 X 2 matric

| M1 Mg

(2.25) N = [ S ] ,

where m;; are numbers and Ny, are numbers or matrices, for 1 < 4,7,k < 4, define

m11N1 mialNa mo1 N1 moaNo
- mi13N3  miaNy ma3N3 mosNy

2.26 My®N =
(2.26) 2 m31 N1 mgaNo ma N1 mgaNo
m33N3  m3zaNy my3N3 maaNy

Furthermore, for n > 1, the n+ 1 th order of transition matriz of My is defined by
Mn+1 = ®M3 = M2®M2® s ®M2,
n-times in My. More precisely,

o _ M2.1 o (®Mn—1) ]\42_2 o (®Mn—1)
M, 11 =Mo®(@&M5 1) = e Sy
+1 2®(® 2 ) ]\42;3 ° (®MS 1) M2;4 ° (®M2 1)
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(2.27)
mi1Mp;1 miaMp.o | morMp,1  maaMy.0
_ | _masMng maaMpg | mozMng maaMpa | | Mpyin Mg
m31Mn;1 m32Mn;2 m41Mn;1 m42Mn;2 Mn+1;3 Mn+1;4
masMp,z  MaaMp.a | MasMpz  MaaMya
where
. _ M, M,.o
M, = M7~ = s i .
" 2 Mn;3 Mn;4
Here, the following convention is adopted,
MY = Eayo.
Definition 2.3. For m > 2, define
(2.28)
Cm;ll Cm;lQ Om;13 Cm;14 Sm;ll Sm;12 Sm;Ql Sm;22
C, = C'Tn,;21 Cm;22 Cm;23 Cm;24 _ Sm;lS Sm;14 Sm;23 Sm;24
" Cm;Sl Cm;32 Cm;33 Cm;34 Sm;31 Sm;32 Sm;41 Sm;42
Cm;41 Cm;42 Cm;43 C’771;44 Sm;33 Sm;34 Sm;43 Sm;44
where
-2
_ (ol Qa2 [ Baa Baa ™
Cmiap = °\®| Bys B
(a3 Qa4 2;3 2:4
(229) 2x2/ 9gm—1yom—1
o (E27n,—2><2m—2 X <|: a1 Q24 ])) .
a’3ﬁ a’45 2m—1x2m—1
Similarly, for By, define
(2.30)
Um;ll Um;12 Um 13 Um 14 Wm 11 Wm;lZ Wm;21 Wm;22
U — Un2t Unp22 Unp2s Ung2a Wiz Wmia Wiz Wioa
" Unist Unz2 Unizs Unisa Wizt Wiz Wit Wi
Uniar Unmnyaz Unaz Upiaa Wmizz Wmzsa Winaz Winaa
where
m—2
U _ A21 Ag:n
mief A23 Ag.a
(231) 2x2/ gm—1y9om—1
o] (E2m 2y9ogm—2 ® <|: blﬁ b2ﬁ )) .
b36 b4ﬁ om—1ywom—1

Sm = [Sm;ag] and Wm = [Wm;ag].
Now C,,+1 can be found from C,, by a recursive formula, as in (1.7).

Theorem 2.4. Foranym >2 and 1 < o, 3 < 4,

| @0, Cmi1s a0y Cmi2g
(2.32) Cm+tiap = [ aasCmi3p  aaysCmap |’
and

_ | o Umip  bayUmis
(2.33) Um+l;0¢ﬁ - |: ba3 U',n;Sﬂ bOL4Um;4:B .
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Proof. By (2.27),

R NP By o (8BT™2) By o (XBY2)
Bm 1 — B Bm 2 — 271 = 2 _ b N 2 _
©Bs 20(9By) { Bazo (@By %) Baao (&BF7)

Therefore,
Om+1;aﬁ = (B2;a © (®Bq2n_1)) o (EIZW*1><2W*1 ® AQ;ﬁ)

[ aa1(Ba1 0 ®BY™2)  aao(Bag o OBy ?) -

’ ~ ’ N FEom—1yom— As.
I aa3(B2;3 ° ®Bg7,72) aa4(32;4 o ®B7277,—2) ] ( 2 1x2 1 ® 2,5)
[ aa1[(Bziy 0 @B %) 0 (Epm-2xom-2 @ Az)]  aaz[(Baz © @By ?) 0 (Egm-2xm-2 @ Azp)
L aaB[(BZ;S © ®E%72n72) o (Egm-2yom-2 ® AZ;ﬂ)] aa4[(B2;4 © ®E%72n72) o (Egm-2yom-2 @ A2;B)]
[ aalcm;lﬂ aa2Cm;2ﬁ
| @03Cm;38  @aaCmup |’

A similar result also holds for Uy,,ng; the details are omitted here. The proof is
complete. O

Notably, (232) implies Cm;ij is Ay Aigig * " aimimﬂ with il =4 and im+1 = ]
Cpnyij consist of all words(or paths) of length m starting from ¢ and ending at j.
Indeed, the entries of C,, and B,,, 1 are the same. However, the arrangements are
different. C,, can also be used to study the primitivity of A,, n > 2, as in [6].

That the recursive formula (1.24) holds remains to be shown. Indeed, in (2.6)
substituting n for n 4+ 1 and using (1.7),

A(’f)

m,n+1;a
(2.34) = Ant 1 Antigags * Antljmin

— ﬁ |: bailAn;ll bai2An;12 :|
i1 baiSAn;Ql bai4An;22

where «; = a(j;, jit1), for 1 < i < m. After m matrix multiplications are executed
in (2.34),

A(k) A(k)
(2.35) A;’f’)nﬂ;a — W]z,nﬂ;a;l m n+1l;0;2

Agny)n+1§a;3 A'l(n?n+1;a;4
where

2717.71

k l

(236) Agn,)nle;a;ﬁ = Z K(ma «, ﬁ; k7 Z)Agn)’nﬁ

=1

is a linear combination of Ai)n,ﬂ with the coefficients K (m;«, 8;k,l) which are
products of by, ;,1 <1 <m. K(m;a«, B;k,1) must be studied in more details.
Note that

A 11 Amont12
2.37 Ay = | el e
( ) 1 |: Am,n+1;3 Am,n+1;4
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gm—1 gm—1

} : (k) } : (k)
Am,n—i—l;l Am7n+1;2

k=1 k=1

277171 mel
3 (k) 3 (k)
Am,n+1;3 Am,n+1;4
k=1 k=1
2m71 (k}) 2m71 (k) 2m71 (k) 2m71 (k)
k=1 L Am,n+l;1;1 k=1 L Am,n+l;1;2 k=1 L Am,n+l;2;1 k=1 L Am,n+l;2;2
2m= (k) 2m= (k) 2m= (k) 2m= (k)
_ k=1 . Am,n+1;1;3 k=1 . Am,n+1;1;4 k=1 . Am,n+1;2;3 k=1 Ny Am,n+1;2;4
- 2m= k 2m= k 2m= k 2m= (k)
k=1 . Am,n+1;3;1 k=1 . Am,n+1;3;2 k=1 L Am,n+1;4;1 k=1 L Am,n+1;4;2
2m= (k) 2m= (k) 2m= (k) 2m= (k)
k=1 Am,n+1;3;3 k=1 Am,n+1;3;4 k=1 Am,n+1;4;3 k=1 Am,n+1;4;4

Now, Xy nt1:q:8 is defined as

k
(2.38) Xmnt1058 = (Agn,)nJrl;a;ﬁ)t‘

As in (2.17), the entries of X, 41,0 are rearranged into a new matrix

% Xm n+1;0;51 Xm +1;052
(2.39) Xmn+tia = P(Xmnt1ia) = Xppmitoas X e
m,n+1;a;3 m,n+1;a;4

From (2.36) and (2.38),
(2.40) Xm,n+1;a;ﬁ = K(m; «, ﬁ)XmJHB
where
K(m; a, B) = (K(m; a, B; k, 1)), 1 < k,1 <2771

is a 2771 x 2m~1 matrix. Now, K(m;, 3) = Sp.ap must be shown as follows.

Theorem 2.5. For any m > 2 and n > 2, let Sp.ap be given as in (2.28) and

(2.29). Then,
K(m; o, B) = Smsap,
i.e.,
(2.41) Xonnt ;058 = SmiaXm,nig,
or equivalently, the recursive formula (1.24) holds. That is,
2m—1t 2m—t
> Sma)ki Ay Y (Smia2)i AL
(2.42) AY = 2L it
Z (Sm?ai;)klA’STlL),n;?) Z (Sm;a4)klA§iL),n;4
=1 1=1
Moreover, forn =1,
2m—1 2m—1t
Z (Smia1)kl Z (Smia2)ki
(243) A= | S =
Y Smasdit Y (Smiaa)
1=1 1=1

forany 1 <k <2m ! and a € {1,2,3,4}.
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Proof. The result is proven by the induction on m.

When m = 2, and a = 1, (2.41) was proven as in Example 2.1. The case with
a =2, 3 and 4 can also be proved analogously; the details are omitted.

Now, (2.41) ia assumed to hold for m; the goal is to show that it also holds for
m + 1. Since

Am-{-l = A 1 m _ An+1;1 An+1;2 Am,n+1,1 Am,n+1;2
= 41 =
nl " ntl An+1;3 An+1;4 Am,n+1,3 Am,n+1;4

(2.11) implies

An+1§1Xm,n+1;1 :| X _ |: AnJrl;le,nJrl;Q :|
9 m—+1n+1;2 —

an+1 n+1:1 —
’ ’ An+1;2Xm,n+1;3 An+1;2Xm,n+1;4

Apt13Xmnt1:1 Ant13Xm nt152
Xmt1,n+133 = { ' TR, and X pg1a = ; L2

An+1;4Xm,n+1;3 An+1;4Xm,n+1;4
For a = 1, by induction on m,

(An-i-l;l,P(Xm,n—i-l;l)v An+1;2P(Xm,n+1;3))t

[T bllAn;l b12An;2 Sm;lle,n;l Sm;lZXm,n;Q
blSAn;B b14An;4 Sm;lSXm,n;S Sm;14Xm,n;4

b21An;1 b22An;2 Sm;?)le,n;l Sm;32Xm,n;2
basAps  bogAna Sm:33Xmmz  SmizaXm,na

bllsm;llAn;le,n;l + b12Sm;13An;2Xm,n;3 bllsm;12An;1Xm,n;2 + b12Sm;14An;2Xm,n;4
blSSm;llAn;BXm,n;l + b14Sm;13An;4Xm,n;3 blSSm;IQAn;BXm,n;2 + b14Sm;14An;4Xm,n;4

b215m:31 An;1 Xmns1 + b22Sm:33An2 Xmonis  b21Sm:324n1 X m ni2 + 0205m:34 Ano Xom nea
b235m;31 An;3 X n;1 + 024Sm:33AnaXm ni3  b23Smi32An;3 X m ni2 + 0245m;34 404 Xom nsa

Hence X,;,41,n+1;1 can be represented by a matrix

o X111 Xnglnt1;1,2
Xm+1,n+1;1 = P(Xm+1,n+l;1) = |: X ’ ity X 5 3L,
m+1,n+1;1,3 m+1,n+1;1,4

[ b11Sm;11 b125mi13 } [ An1 X ns1 } [ b11Sm;12 b12Sm;14 ] [ A X oni2 ]
b21Sm:31  0225m.:33 An2 X ni3 b21Sm;32  b22Sm:34 Apo X

b13Sm;11 b14Sm;13 An;SXm,n;l blSSm;12 b14Sm;14 An;3Xm,n;2
bQBSm;Sl b24Sm;33 An;4Xm,n;3 b235m;32 b24sm;34 An;4Xm,n;4

Once again, (1.1), (1.2) and (2.1) can be used to recast the matrix )A(m+17n+1;1
as

Cl110m;11 G120m;21 X Clucm;m a120m;22 X
m+1,n;1 m+1,n;2

013Om;31 a14Cm;41 a130m;32 a14Cm;42

azlcm;u azzcm;zl Xot1mes a21Cm;12 a22Cm;22 X0t me
m+1,n; m+1,n;
a23Cm:31  a24Crpm1 a23Cm:32  a24Cn a2
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According to Theorem 2.4, the above matrix becomes

_ Cm-{-l;lle-‘rl,n;l Cm+1;12Xm+1,n;2 _ Sm-l—l;lle-‘rl,n;l Sm+1;12Xm+l,n;2
Crg1:21 Xm+1,n:3  Cmg1,22Xm+1,n4 Sm+1:13Xm+1,n:3  Sm+1;14Xm41,n:4

The cases with o = 2,3 and 4 can also be considered analogously (2.41) follows.
Next, (2.42) follows easily from (2.35), (2.36) and (2.41).
Equation (2.43) remains to be shown. If the 2 x 2 matrix

_ | A Are ] _ { A Agp } _ [ 11 }
2.44 A = ’ ’ = ’ ’ =
(2.44) ! { Ao A2 A1z A 11

is introduced, then the previous argument also hold for n = 1. Hence, (2.43) holds.
The proof is complete. O

For any positive integer p > 2, applying Theorem 2.5 p times permits the elemen-
tary patterns of A7" | to be expressed as the product of a sequence of Sy,.5,4,,, and
the elementary patterns in A7'. The elementary pattern in A7 is first studied.

For any p > 2 and 1 < g < p— 1, define

A(k) A(k)
(2.45) AR — mn+p;a;B1;82;-- iBq;1 m n+p;a;B1;82;-- :8q;2
: m,n4p;e;B1;62;-- 384 AR A

m,n+p;a;B1;82; 58433 m,n+p;a;B1;082;- ;854

Then
27)’1,71 27)’1,71 P
k l
(2.46) A;I?n-%p;a;ﬁuﬂz;w;ﬁp - Z Z (HK(m;ﬂi—lvﬁﬁli—lvli))AEnzjr)uﬁp’
L=1  l,=1 i=1

where By = « and [y = k can be easily verified. Therefore, for any p > 1, a
generalization for (2.37) can be found for A™, ~as a 2PT1 x 2PT! matrix

n+p
(2.47) ey = [Amntpiaipista sy)
where
gm—1
(2.48) AmntpiaipiiBa By = Z Agrlzc,)n;a;ﬁl;ﬁz---;ﬁp'
k=1

In particular, if o; 51,82+, B, € {1,4}, then Ay nipiaipyip.---:, lies on the diag-

onal of A7, in (2.47).
Now, define
(k)
(2'49) Xm,n+p;a;ﬂ1;62;"- ;617 = (Am7n+p;a;ﬁ1;ﬁ2;~u ;ﬁp)t'

Therefore, Theorem 2.5 can be generalized to
Theorem 2.6. For anym >2, n>2 andp>1,
(2.50) X ntpiaifisBa- 38, = Smiaf SmiBiBa *** SmiBy—1 8y XmniB,

where «, B; € {1,2,3,4} and 1 < i < p.
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Proof. From (2.46), (2.40) and (2.42)

p
(k) (1)
Am,n+p;o¢;ﬁ1;ﬁ2;< He) Z Z HK m; ﬁz laﬁzy i—1, ))Ampn Bp
l1— p—l =1
5 (1))
= Z Z H m; ﬁi—lﬁi)li—lli)Am[:n;ﬁp
=1 lp=1 =1

27n1 27n1

1=1 p—l
om— 1

lp
= ) (Smipos SmipaBs ** Smipy_18, ol Agnfmp

ly=1
27n—1

l
Z (Sm;aﬁl SmiiBa Sm§6p71ﬂp)klpA1(7’:zl;ﬁp

=1

is derived. By (2.49), then

_ (A(R)
Xmerp;a;ﬂl BB — (Am,nﬂn;a;ﬁl iB2; 3 Bp )t

2771.71
p)
= (D (Smsap Smipi s+~ Smsgy 18, Jklp A,
1,=1

= Smiap SmiBi B SmiBy_ 18y Xm,niB,-

The proof is complete.

(p)
Z Z miBoB oty (Smii B2 )il - (Sm;ﬁp—lﬁp)lp—llpAmzjn;ﬁp

)t

15

O

2.2. Lower bound of entropy. In this subsection, the connecting operator C,,
is employed to estimate the lower bound of entropy, and in particular, to verify the

positivity of entropy.
First, recall some properties of I'y, ,, and spatial entropy.
Iy, satisfies the subadditivity in m and n:

(2.51) Tritman < Ty nDimg s
and

(2.52) Linatne < Ty Tmong s
or equivalently,

(2.53) |ATFme| < AT AT
and

(2.54) AT | < AT IIAT,
for positive integers m, n, my,ny, mo and no. Here
(2.55) A = [ 1 1 ]

is applied.

The subadditivity property implies

1
(2.56) hmsup — log AT < —log |AZ_1|
Pq

m,n—0o0
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for any p and ¢ > 2. Therefore,

1
h(Ag) = lim —]log|ATY|
m,;n—oo MmN
exists, and equals
1
2.57 inf — log |[AP7!|.
(2.57) R g A

In particular, A(As) has an upper bound
1

(2.58) h(Az) < — log |AP~1|
pq

for any p and ¢ > 2.
Similarly, when A, is horizontal (or vertical) transition matrix for any m > 1
and g > 2,

1 1
(2.59) limsup — log [A7'] < — log [A}"].
n—oo M q
Hence, the spatial entropy is h,,(A2) on an infinite lattice Zp,41x00 (0F Zooxm+t1)
and

o1 mi el m
(2.60) hm(Ag) = nth;o - log |ATY| = ;ggglog |A7"]-

For the proof of the above results, see [15].
Furthermore, by Perron-Frobenius theorem,

1
(2.61) lim - log |ATY| = log p(A,,).

m— 00

Therefore, for any n > 2
1
(2.62) h(Az) < —log p(An).

For a proof of (2.61), see [4], [30].
The following notation is adopted.

Definition 2.7. Let X = (X1,---, Xu)?, where Xy are N x N matrices. Define
the summation of Xy by

N
(2.63) X[ =) Xk
k=1
If M = [M;;] is a M x M matrix, then
M M
(2.64) IMX| =Y "> M;X;.
i=1 j=1
Note that, (2.63) implies
27n—1

(2.65) | X i

= Z Ags,)n;a = Amm;w
k=1

As usual, the set of all matrices with the same order can be partially ordered.

Definition 2.8. Let M = [M;;] and N = [N;;] be two M x M matrices, M > N if
Mij ZN” fO?" all 1 Sl,j §M
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Notably, if Ay > A} then A, > A/, for all n > 2. Therefore, h(A2) > h(A}).
Hence, the spatial entropy as a function of As is monotonic with respect to the
partial order >.

Definition 2.9. A K + 1 multiple index

(2.66) By = (8182 - - BrPr+1)
is called a (periodic) cycle if

(2.67) Bs1 = Bu.

1t is called a diagonal cycle if (2.67) holds and

(2.68) B € {1,4}

foreach1 <k<K+1.
For a diagonal cycle (2.66), denote

(2~69) BK = B1; B2+ 5 Bk
and
(2.70) By = Br; Br; -+ 3 B (n times)

First, prove the following Lemma.
Lemma 2.10. Let m > 2, K > 1, Bx be a diagonal cycle. Then, for any n > 1,
(2.71) P(ATK12) 2 P((Smspr 2 Smipass =~ Smirc i 1) Xm 28, 1)
Proof. Since By is a periodic cycle, Theorem 2.6 implies
(2.72) Xk 2,8 = (Smipy g Smipapa ** SmifrBrc1) Xm,2:, -

Furthermore By is diagonal, and [ X, k49,31 | = Ay ni 12,5 lies on the diagonal
part as in (2.47) with n 4+ p = nK + 2, therefore

(2.73) P(Ak +2) 2 P X 2,87 1)-

Therefore, (2.71) follows from (2.72) and (2.73).
The proof is complete. ]
The following lemma is valuable in studying maximum eigenvalue of

(Smipa -+ Smipr 1) Xm 28 in (2.71).

Lemma 2.11. For anym > 2, 1 <k <2™" 1 and a € {1,4}, if

(274) tr(Agj,)Z;a) = Oa

then for all 1 <1< 2m~ 1

(2.75) (Sm,al)kl =0 and (Sm;a4)kl = 0,

i.e., the k-th rows of matrices Spm;a1 and Sp.qa are zeros. Furthermore, for any
diagonal cycle By, let U = (uy,ug, -+ ,ugm-1) be an eigenvector of

S 82 Om:BaBs ** OmiBr s W uk 0 for some 1 <k < 21 then

(2.76) tr(A%), ) > 0.

Proof. Since Af,’f?Q;a can be expressed as in (2.43). Therefore, tr(Af,]f))m) =0 if and
only if (2.75) holds for all 1 < [ < 2™~!. The second part of the lemma follows
easily from the first part.

The proof is complete. ([l
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By Lemma 2.10 and Lemma 2.11, the lower bound of entropy can be obtained
as follows.

Theorem 2.12. Let 3102 - Bg 1 be a diagonal cycle. Then for any m > 2,

1
(2.77) h(A2) 2 —==108 P(Smign g2 Smifas =~ Smifiac b )-
and
1
(2'78) h(AQ) > m710g p(Wm§ﬁ1ﬁ2Wm;ﬁ2ﬁ3 T Wm;ﬂK[h)'

In particular, if a diagonal cycle 102 --- B B1 exists and m > 2 such that
p(Sm;5152Sm;/3253 T Sm;ﬁKﬁl) > 1,

or

p<Wm§3152Wm;5253 T Wm;ﬁxﬁ1) >1
then h(Ag) > 0.

Proof. First, show that

1 n
(2'79) h(AZ) > — hm sup (IOg p(|(5m§51ﬁ2 Sm;ﬁ2ﬁ3 T Sm;ﬁkﬁl) Xm,Q;ﬁl |)

n—oo

Indeed, from (1.11) and (2.71),

1
h(Ag) = lim e

n—oo

5 log p(Ank+2)

1 m
= nh—>n;o m log p(Ar 12)

> ﬁ lim sup — (IOg p(|(Sm;5152 T Sm%ﬁkﬁl)nXm72§51 |))

n—oo

Now, the following remains to be shown
(2.80)

. 1
lim sup E(log p('(Sm;ﬁ1ﬁz T Sm;ﬂxﬁJnXm,?;ﬂﬁ D = log p(Sm;ﬁlﬁz T Sm;ﬁkﬁl)'

n—oo

Since X 25, = (AW, 5), if tr(A, ;) = 0 then Lemma 2.11 implies the k-th
row of Sp.8,3, is zero which implies that the k-th row of (Sm.5,8, - - Smik s, )" 18
also zero for any n > 1.

If tr(A'), 5 ) =0 for all 1 <k < 271, then Spup,5, = 0. (2.80) holds trivially.
Now, assume that 1 < k' < 2™~ ! exists such that tr(AfS%ﬁ ) > 0. Define
N x . N
(2.81) X =A%) 0= (X0, Xu),

Wheretr(A( 9.5,) > 0for 1 <k <M <2m~ L Thenp(X)>Ofor1<j<M
Let M be the M x M sub-matrix of Sp,.5,8, = - Sm:8, 3, from which the k-th row

and k-th column have been removed whenever tr(AfT]f?Q; ﬁ1) =0forl1<k<2m1
Clearly,

(282) |(Sm;5152 T Sm;ﬁkﬁl)nXm72;51| = |MnX|7

and

(283) p(Sm;ﬁlﬁQ T Sm;ﬂkﬁl) = p(M)
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The proof of (2.80) comprise three steps, according to
(i) M is primitive,
(ii) M is irreducible, and
(iii) M is reducible.
(i) M is primitive. Then by Perron-Frobenius Theorem the maximum eigen-
value p(M) of M is unique with maximum modulus, i.e.

(2.84) p(M) = A1 > |Aj],

for all 2 < j < M, where A; are eigenvalues of M. Moreover, a positive
eigenvector vi = (vq,va, -+ ,vpr)" is associated with Ay [26], [27]. Further-
more, Jordan canonical form theorem states that a non-singular matrix
P = [P;;]arxm exists, such that the real Jordan canonical form of M is

MO -0
. o, -0

(2.85) M = PMP~! = . s
0 o e T

where J,,, 2 <k < ¢ are real Jordan blocks and the associated eigenvalue
Ar of Jy, satisfies (2.84). Moreover, the positivity of eigenvector vy implies
that P can be chosen such that

M
(2.86) > py=1
=1

and
(287) Plj >0
for all 1 < j < M. Therefore, by (2.86)
IM"X| = [PM"X| = [PM"P~'PX]|
= |(PMP~1)"PX| = [M"PX|
M R M R
=MD PGX Y an X}
j=1 j=1

where
(2.88) lim g, ; =0,

for all 1 <j < M, by (2.84).
Hence, by (2.87) and (2.88),

1 A
(2.89) lim - log p(IM™X|) = log \;.
Combining with (2.82), (2.83) and (2.89), (2.80) follows.

(ii) M is irreducible.
If M is irreducible but imprimitive, then k& > 2 exists, such that

AL = |Ag] = =] >[N



20 JUNG-CHAO BAN, SONG-SUN LIN, AND YIN-HENG LIN

for all 7 > k. Then, by applying a permutation, M can be expressed as

0 M, 0 .- 0
0 0 My --- 0
(2.90) M = : : C : :
0 0 Mi_1x
Mg 0 0
and,
M, 0 0
0 My --- 0
(2.91) M= o
0 - 0 M,
where M; = M; ;1M1 jy2---M;_y; is primitive with the maximum

eigenvalue \¥, see [26], [27]. Hence, by the same argument as in (i)
1 A
lim — log p(IM"™* X]) = A,
n—oo n

(2.80) follows.
(iii) M is reducible.
In this case, by applying a permutation, M can be expressed as a block
upper triangular matrix:

]\/[11 ]\412 Mlk
0 ]\422 MQk
(2.92) M = _ ,
0 0 . S
0 0 - 0 My

where M;; is either irreducible or zero. Furthermore,

k
o(M) = | o(M;)),

j=1

where o(M) and o(Mj;) are the sets of eigenvalues of M and M;;, respec-
tively. In particular, 1 < j < k exists, such that

(2.93) p(M;) = p(M) = A1

[26], [27]. Therefore, applying (2.83), (2.93) and the same argument as in
(ii) yields (2.80).
The proof is complete.

Definition 2.13. Let D denote the set of all diagonal cycle:

D = {1052 PrBr+1|51P2 - - BxBr+1 satisfies (2.67) and (2.68)},
define

1
(2'94) D (AQ) = Sup mK log p(Sm;ﬁlﬁz Sm;ﬁzﬁB. U Sm%ﬁKﬁl )
m>2,61 32+ Br+1€D M
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and

1
(295) h’:k (AQ) = sup K IOg p(Wm;ﬁlﬁz Wm;ﬂzﬁS U Wm%ﬁKﬁl)'
m>2, B1---BreD M

Then Theorem 2.12 implies

Knowing whether the equality holds for A, is of interest, since h.(Az) and hl (Asg)
are more manageable than h(As). However, a class of As has been found for what
equality (2.96) holds; details can be found in Example 2.14. of the next subsection.

2.3. Examples of transition matrices with positive entropy. In this sub-
section, various examples are studied to elucidate the power of Theorem 2.12 in
verifying that the entropies are positive. First, Golden-Mean type transition ma-
trices are studied.

Ezample 2.14. (A) Golden-Mean
When two symbols on two-cell horizontal lattice Zsx1 and vertical lattice
Z1 %2 are considered and both transition matrices are given by golden-mean,

ie.,
1 1
Hl - Vl - { 1 0 :| )
then the (horizontal) transition matrix Ag on Zayo is
1 1 1 0
1 01 0
(2.97) Ay = 110 0l
0 00 O
as in [41]. Verifying
(2.98) By = Ay = By = As.
is also easy. Furthermore, for any n > 2,
A, B, A, O
| A1 Bpa | _ | Cn O Cp O
(2.99) Ant1 = [ Cos1 O || A, B, 0 0]
0 0 0 O

where
A, B,
An+1 = I: C«Z OL :|

with Cp, = B,,' and A4, = A,,, i.e., A,, are symmetric for all n > 2.
Moreover, the following two properties hold:
(i) For any m > 2,
(2100) Cm;ll = AWL—la
where
(2.101) A= aiidilr  a120a21
’ ~ | a13a31  aisaq

and
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(ii) for any m > 2,

1
(2.102) —log p(Am-1) < h(h) < —log pl(Anm).

1

m
Therefore,

(2.103) h(Az2) = he(A2) > 0.

The numerical results appears in Example 3.12.
(B) Simplified Golden-Mean.
Consider

(2.104) Ay =

O = =
o OO =
o O O
o o oo

(2.104) cannot be generated from one-dimensional transition matrices Hj
and Vi, as in the Golden-Mean (2.97). Equation (2.104) is obtained by
letting as3 = asz = 0 in the Golden-Mean (2.97). (2.98) is easily verified,
and for any n > 2,

A7 -1

(2.105) N

oo S o

0
A, O 0
0

Furthermore, (i), (ii) and (2.103) hold as in (A).
(C) Generally, if Ay satisfies the following three conditions
(C1) By = A,
(02) ai; = 1 ifAQ;j #0 for 1 S] §4,
(CS) Zg;l Z Ag;j for 1 S] S 47
then (i), (ii) and (2.103) hold. The matrices Ao, which satisfy (C1), (C2)
and (C3) can be listed as

1 1 1 0
1 a3 0
(2.106) A
0 O 0 O
and
1 1 1 1
1 1 a3 ao
(2.107) o
1 asqs aa3 aaa

where a;; is either 0 or 1 in (2.106) and (2.107).
Notably, if (C2) and (C3) are replaced by
(02)/ A4 = 1if Ag;j 7é 0 for 1 S] S 4,
(C?))/ 12{2;4 Z AQ;]' for 1 Sj é 4,
then for any m > 2,

(2.108) Crmiaa = Am_1
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with
A41014 (42024

(2. 109) A =
43034 (44044

and property (ii) and equation (2.103) hold.

In Example 2.14, the diagonal parts As,; or Ag.4 are dominant. In this case, only
Cm;11 or Chy.aa is required to apply Theorem 2.12. In contrast, when Ay, and Agy
are no longer dominant as in the following examples, Ag.2 and A3 can complement
each other to establish that the entropy is positive.

Ezample 2.15. (A) Consider

0 1 1 0
1 0 1 0
(2.110) Aa=111 0 0l
0 0 0O
that (2.98) holds can be verified and
0 1 1 0
02;11* 1 0|’ 02;22: 1 0
1 1 0 0
Co33 = 0 0l Coua = 0 0
Therefore, i
1
S2,1452.41 = 11 |
and 1
h(Ag) > 1 log 2.
(B) Consider
0 1 1 0
1 0 1 1
(2.111) Ay = 10 0 1
1 1 1 0
Then verifying
01 1 0 01 1 0 01 1 0
1 0 1 1 ~ 1 0 0 1 ~ 1 1 0 1
Ba=l1 01 1| Bem 110 1] adbe=11 1 ¢
01 1 0 1 1 1 0 01 1 0
is simple.
Furthermore,
0 1 1 0
Co11 = 10| Capo = 0 1
1 0 0 1
02;33: O 1 ) 02;44: 1 0
and
0 1 1 0
Uz = | 0l Uzp2 = 01|
1 0 0 1
U2§33 1 1 ) U2;44— 1 0
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Now, for any diagonal cycle, 81 ---Bxf1, p(S2.8.8, - S2:8x5) = 1, h(A2) > 0
cannot be established.
However,

Wa11Wao,14Wa.a1 = Uz;11Us,22Us.33 = [ 1 (1) ]
which implies
h(Az) > éIOgg,
where

(2.112) g= %(1+\/5)

is the golden mean, which is a root of A2 — X\ — 1 = 0.

This example demonstrates the asymmetry of A, and By in applying Theorem
2.12, to verify the entropy is positive. Both C,, and U,, are typically checked for
completeness.

Example 2.16. Consider

1 1 1 1
0 0 01
(2.113) Ay = 00 0 1
| 1.0 0 0
Then it is easy to check that
(2 0 G 0
Wo11Wo1aWoun = 0 0 ] , S344 = [ 0 0 ] ;
and
G 0 00
1 0 e 0O
Ss4=1 9 o o o |’
0 0 0 0
where
1 1 1 0
(2.114) G—[l O}andel—[o O}
Therefore,
h(As) > max{ > log 2, ~log g, ~ log g} = ~ 1
max{=log2, = logg, - lo = —logg.
2) = 6 g 73 gga4 g4 3 g9
FEzxzample 2.17. Consider
0 1 1 1
1 0 00
(2.115) Ay = 100 0
1 0 00
Then
01 10
1 100 ~ ~
Bg = 101 0 = AQ and BQ = AQ.
00 00
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Therefore
I T O
02711—|:1 1:|:G
Furthermore,
Csn=G®e ¢
and

Comar = G @ (@(e1 @ G')™ 1)

can be proved, and which implies
1 1
(2.116) om log p(Com:11) = 3 log g.

for all m > 1. Hence, h(A3) > 1logg. Moreover, in Remark 3.10 (ii), it can be
shown that h(As) = 3 logyg

3. TRACE OPERATORS

3.1. Trace operator T,,. The preceding section introduces connecting operators
C,, which can be used to find lower bounds of spatial entropy. This section studies
the diagonal part of C,,, which can be used to investigate the trace of A7'. When
A, is symmetric, Ts,, gives the upper bound of spatial entropy.

The trace operator is defined first.

Definition 3.1. For m > 2, the m-th order trace operator T,, of As is defined by

Cm;ll Cm;22 :l _ |: Sm;ll Sm;14 :l

3.1 T,, =
( ) l: Cm;33 Cm;44 Sm;41 Sm;44

where Cp,.i5 is as given in (1.23) or (2.29).
Similarly, the m-th order trace operator T, of By is defined by

— |: Um;ll Um;22 :| — |: Wm;ll Wm;14 :|

3.2 T
( ) Um;33 Um;44 Wm;41 Wm;44

where Up,yi; is as given in (2.51).

The relationships between the trace operator T,,, T;n and A,,, B,, are given as
follows.

Theorem 3.2. For any m > 2,
(3.3) ] ]
ailr  azi a12 a2
E2m72><2m72 ® i a31 a41 :| E27n—2><2m72 ® |: a32 a42 :|
Tm = (Bm)2m><2mo

[ a13 Qa93 aig Aa24
I EQm—2><2m—2 ® i CL33 a43 :| EQm—ZXQm—2 ® |: a34 CL44 :|
and
(3.4)
[ [ b11 bgl b12 b22
E2m—2><2m—2 ® I b31 b41 Egm—2x2m—2 ® b32 b42

[ b13 b23 b14 b24
E2n1—2><2m72 ® b33 b43 E27n72><2n172 ® b34 b44
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In particular,
(3.5) T <B,, and T, < A,,.
Proof. By (3.1) and (2.29),

a a a a
E27n—2><2m—2 ® B 21 E2m—2><2m,—2 ® 12 22
asy  aq1 a32 42

I']-T-"m — (Bm)Qm x2m O

a a a a
E2m—2><2m—2 ® 13 23 E2m—2><2m—2 ® 14 24
a33 Q43 az4 Q44

A similar result also holds for T/,. Hence, (3.5) follows immediately.
The proof is complete. O

Notably, the trace operator T,, (or T},) preserves all periodic words a;, i, Giyiy « - - Qipyipyy
(biyinbigis =+~ biyyineyy ) With i1 = 41 of length m systematically as B, (or A,,).
The traces of the elementary patterns are defined accordingly.

Definition 3.3. For m,n > 2 and 1 < a <4, define
(3.6) tin e = tr(AR)a),

m,n;x

(37) tT(Xm,n;oz) = (tgr]i)n;a)lngT”*la
and
(3.8) tmn = (tr(Xomn1)s t1(Xmna))'s

which are 2™~ 1 and 2™ vectors, respectively.

Note that

2m,71

m m—1 k k
tr(A7) = tr(hl, A+ ey Al
|t7a(Xm’n;1)| + ‘tT(Xm,n;ﬁl)‘

= ltmnl

(3.9)

First prove that T,, can reduce the traces of higher-order to lower-order.
Proposition 3.4. Form > 2 and n > 2,
(3.10) trntl = Tmbmon
Proof. By Theorem 2.5, it is easy to see
tr(Xm,n+151) Crn1tr (Ximni1) + Crg2tr (Xom,nia)

tr(Xm,7L+1;4) Cm;33t7'(Xm,n;1) + Cm;44tr(Xm,n;4)

Then, (3.10) follows immediately.
The proof is complete. O

Repeatedly applying Proposition 3.4 yields the following result.
Theorem 3.5. Form > 2 andn > 1,
(3.11) tr(Ane) = T tm,2|

(3.12) = D 1S Smpass  SmipuBia T (Xm 25,00l
Bre{1,4}
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Proof.
tr(A™)
277171 2m71 2771—1 2m71
k k k k
= Z tT(Agn,)n;l;l) + Z tr(Agn,)n;l;ﬁl) + Z tr(A1(11,)n;4;1) + Z tr(Agn,)n;ﬁl;él)
k=1 k=1 k=1

k=1 =
= [tr (X ns10) [ 4 [0 (X ssa) | 4 [0 (X i) | =+ (07 (X nsaa) |
= |tr(sm;11Xm,n71;1)| + |t7"(Sm;14Xm,n71;4)| + ‘tT(SmAle,nfl;l)' + |t7'(Sm;44Xm,n71;4)‘
= |Tmtm7n71|7

here Theorem 2.4 is used.
Reduction on n, yields
tr(AT) = | T *tm o]
Finally, (3.12) follows from (3.1) and (3.8).
The proof is complete. O
The following lemma is needed to show (1.33).

Lemma 3.6. Let V,,, be a nonnegative eigenvector of T, with respect to the maz-
imum eigenvalue p(Ty,). If p(T,,) > 0, then
<Vm, tm 2> > 0

where { , ) denotes the standard inner product of c2".
Proof. Let Vi, = (u1,--- ,up,uj, - ,uy,) be a nonnegative eigenvector of T,
where M = 2™~1. Since p(T,,) > 0, by Lemma 2.11, if ux, > 0 (or uj > 0) then
tr(Asrlf?Q;l) >0 (or tr(Af,ll)’QA) > 0). The result follows by (3.8).

The proof is complete. O

Now, (1.33) can be proved.

Theorem 3.7. For any m > 2,

1
(3.13) limsup — log ¢tr(A") = log p(T,,),
n—oo N
and
(3.14) h(Ag) = lim sup — log o(Tr).

Furthermore, if A,, are primitive for all n > 2, then limsup in (3.13) and (3.14)
can be replaced by lim, 1i.e.,

1
(3.15) lim —logtr(A]") = log p(Ty,)
n—oo N
and
1
(3.16) h(Ag) = lim alogp(']rm).

Proof. By Perron-Frobenius theorem, for all n > 2, we have

1
(3.17) limsup — log tr (A7) = log p(Ay).

m—oo N

Therefore, by (3.17) and Theorem 3.5, we have

1
h(Ag) = nlim —log p(A,,) = limsup — log tr(A7) = limsup — log Ty tm 2]

—oon n,m—oo M1 n,m— 00
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By Lemma 3.6 and by argument used to prove Theorem 2.12,

1
(3.18) lim sup — log | T}, ., 2| = log p(T'y,)
n

n—oo

can be shown, and (3.13) and (3.14) follow immediately.
When A,, are primitive for all n > 2, (3.15) and (3.16) follow.
The proof is complete. O

Now, the symmetry of Ay is established to be able to be inherited by the higher
order matrices.

Proposition 3.8. If Ay is symmetric, then A, is also symmetric for each n > 3.

Proof. The proposition is proven by induction on n.

| My M,
LetM_[M,3 M,

matrices. Then, the transpose matrix M? of M is

Mt|:M1t Mdt:|

} be a square matrix and M;, 1 < i < 4, all be square

Myt My
Therefore, M is symmetric if and only if
M," = My, M3 = M, and M,* = M,.

In particular, Ay is symmetric if and only if

(319) At2;1 = Ag;l, At2;3 = A2;2 and AtQA = A2;4.
Now, A, is assumed to be symmetric, such that

(3.20) Af“l =An1, Afl;?) = A, and AZA =A,4.

Since

Apa Ay,
An+1§0¢ = [AQ;Q]QXQ ° [ An:; Anj ]

(3.19) and (3.20) imply
Al pia = A, Abps = Anpipand Al = Apgra

Hence, A, 11 is symmetric.
The proof is complete. O

Now, upper estimates of spatial entropy h(Az) are obtained when A is symmet-
ric.

Theorem 3.9. If Ay is symmetric then for any m > 1,
1
(3.21) h(Ag) < om log p(Tam,)-

Proof. By Proposition 3.8, A%2™ is symmetric for any m > 1. The symmetry of A2™
implies that all eigenvalues of A2™ are non-negative. Hence,

(3.22) p(An)*™ = p(A™) < tr(A7™).
On the other hand, the subadditivity of (2.58) implies

(3.23) h(Ag) < log |A2™MF),

1
(2mk + 1)n



TWO-DIMENSIONAL PATTERNS GENERATION PROBLEMS 29

Therefore, (3.22), (3.23) and (3.11) imply

hhe) € Mmoo log A2 < lim o log p(A27)

< nl;rréo Yo log tr(A%™) = nILH;O Yoo log | T %tom 2

< 5 log p(T2m).-
The proof is complete. ([

Notably, T,, (or T/,) yields a better estimate than B,, (or A,,) whenever

(3.24) h(As) < —log p(T,)
holds.
Remark 3.10. (i) The problem in which A, are primitive for all n > 2 has

already been investigated [6]. In [6], various sufficient conditions have been
found to ensure that A,, are primitive for alln > 2. Notably, limit in (3.15)
and (3.16), instead of limsup in (3.13) and (3.14), causes A, to have a
unique mazimum eigenvalue with a mazimum modulus. Therefore, A,, may
be imprimitive but (3.15) and (3.16) still hold. For example, Golden-Mean
and simplified Golden-Mean in Example 2.14 are imprimitive but (3.15)
and (3.16) still hold. The remaining matrices of these A, are primitive if
their rows and columns with zero entries are removed.
(ii) In general, limsup cannot be replaced by limit. For example, consider

(3.25) Ay =

Further computation shows that
Tomt+1 =0

and

’

(®(G ®e)™ ) ®G (
e1® (G ®@e)™ 1) e1 @ (&(
(1) } and e; = (1)

Therefore, p(Toma1) = 0. Furthermore, it can be shown that
(3.26) p(Tom) < g™ + g™
Combining (2.116) and (3.26), h(As) = % logg. Hence (3.14) holds only for
limsup. Unlike (2.62) this example demonstrates that (3.24) does not hold
for any n = 2m + 1. This phenomenon is a disadvantage in determining
the upper estimate of entropy associated with replacing A, with T,,.

TZm =

for all m > 1, where G =

Example 3.11. Consider

Ag

[ e B s R Y
o O O
oo o
O = =
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which was studied as in Example 2.16. Now, A5 is asymmetric. Furthermore,
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tr(A2) =3
can be obtained for all n > 2. Hence, (3.22) and then (3.21) fail when m = 1.
However,
G 0 00
| 0 e 0 O
Ciss =19 0 0 0|
0 0 00
11 |10 100 4
where G = [ 10 ], el = { 0 O} and 0 = [ 0 0 } Hence tr(A7) grows at

least exponentially with exponent p(G) = g, the golden-mean.

Whether (3.21) holds for some m > 2 is of interest.

FEzxzample 3.12. Consider the Golden-Mean

which was studied as in Example 2.14. A, is symmetric, so the numerical results

Ap

can be obtained as follows.

1 1
1 0
11

0 0

O = =

0

o O o o

m

p(Amfl)%

P(Tm)%

p(A,)

0 O Ui W N

9
10
11
12
13
14
15
16

1.3415037626
1.3804413572
1.4041128626
1.4201397131
1.4316975290
1.4404277508
1.4472546963
1.4527395436
1.4572426033
1.4610058138
1.4641976583
1.4669390746
1.4693191202
1.4714048275
1.4732476160

1.5537739740
1.4892228485
1.5069022259
1.5017251916
1.5035148094
1.5028716910
1.5031163748
1.5030208210
1.5030591603
1.5030435026
1.5030500001
1.5030472703
1.5030484295
1.5030479329
1.5030481473

1.5537739740
1.5370592754
1.5284545258
1.5233415461
1.5199401525
1.5175154443
1.5156994341
1.5142884861
1.5131606734
1.5122385423
1.5114705290
1.5108209763
1.5102644390
1.5097822725
1.5093605030

Notably, both p(An,)# and p(Tam)zw are monotonically decreasing in m. In
contrast, p(Am,l)% and p(']I‘ngrl)2m1+1 are monotonically increasing in m, that
p(Tam)z7 gives better upper bound than p(Apn,)# . That p(Tami1) 77T are lower

bounds is conjectured. If they were, then p('H‘m)% would yield a very sharp esti-
mates.

4. MORE SYMBOLS ON LARGER LATTICE

As mentioned in the introduction, many physical and engineering problems in-
volve many (more than two) symbols and larger lattices. Therefore, the results
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found in the previous sections must be extended to any finite number of symbols

p > 2 on any finite square lattice Zojxo, ;>1. The results are only outlined here,

and the details are left to the readers. Proofs of theorems are omitted for brevity.
For fixed p > 2 and [ > 1, denote by

l2

(4.1) q=p .

The horizontal and vertical transition matrices are given by

a1 ar2 4142
az 1 a2 -+ 4242
(4.2) Ay =
Ag21 Qg2 2 -+ Qg2 g2
and
bii b2 0 b
ba1  bao -0 by
(43) B2 - . 9
bq271 qu,? Tt qu,q2
respectively.
Now, Ay and By are related to each other by
Ag Ags -+ Agy
Ag.q41 Aggra -+ Aaog
(4.4) Ay = . .
A2;q(q*1)+1 Tt T A2;q2
where
ba,l boz,2 e ba,q
ba,qul ba,q+2 T ba,Qq
(45) A2;a = . . ;
ba,q(q—l)#—l ba,q(q—1)+2 o bag
and
Baa By -+ Bay
Bag 1 Baigv2 --+ Bag
(4.6) By = . . .
B2;q(q—1)+l T o By
where
Ao, 1 Ao, 2 o Qe q
Qa,q+1 QAo ,q+2 T Qa2q
(47) B2;(x - . . . B
Oa,g(g—1)+1  Qag(g—1)+2 °  CQa,g?

respectively, where 1 < o < ¢?. The column matrices A\; and I’Bg, Ay and By are
defined as in (2.1) and (2.2). For higher order transition matrices A,,, n > 3, are
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defined as
An;l An;2 . An;q
An; +1 An; 42 e An;2
(4.8) A, = X a 24
A”?Q(‘Z—l)-‘rl An;(q—l)q+2 s An;qz
where
(4.9)
boz»lAn—lgl ba,ZAn—l;Q . ba,qAn—l;q
ba,q+1An—1;q+1 ba,q+2An—1;q+2 . ba,QqAn—l;Qq
An;a = . . .
baqa—1)+14n—13q(g-1)+1  ba,ga—1)+24n—1:q(a—1)+2 Doz Anig2

Rewriting the indices of A,,, as follows, facilitates matrix multiplication.

An;ll An;12 e An;lq
(4 10) A An;21 An;22 e An;2q
Apqr Angz -+ Angg

Clearly, A,.o = Ap;j,j,, Where

(4.11) a = a(j1, j2) = q(j1 — 1) + ja.

For m > 2, the elementary pattern in the entries of A]" is given by
A Ansings ** Ansjmjim 1

where js € {1,2,--- ,q}.
The lexicographic order for multiple indices

Jm—H = (.jljZ o 'jmjm-‘rl)
is introduced by

(4.12) X(Tmi1) =14 ¢ G — 1),
=2
Specify
Ag@c,)n;a = An;j1j2 An;j2j3 T A”;jmjm+1’

where o = a(j1, jm+1) satisfies (4.11) and k = x(Jm+1) is as given in (4.12). Based
on this arrangement, A" can be written as

Am,n;l Am,n;2 e Am,n;q
m Am,n;q+1 Am7"§Q+2 T Am,n;Zq
An = . . . . I
Amnigq-D+1  Ammigg-1+2 ~ Amnig
where
gt

Am,n;a = Z quli)na
k=1 o
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Moreover, X, 0 = (Ag,’f?n;a)t, where 1 < k < ¢™ ! and X, 5.0 is a ¢™ !-vector
that comprise all elementary patterns in A, .o. The ordering matrix X, ,, of A"
is now defined as

Xm,n;l Xm,n;2 e Xm,n;q
Xm,n;q-&-l Xmﬂt;q-&-Q T Xm,n;Qq

Xm,n = . . . . )
Xm,n;q(qfl)Jrl Xmm;q(qfl)JrZ o Xngg?

and X, n+1.3 can be reduced to X3 .3 by multiplication with connecting matrices
Cim;a,3.- The connecting operator C,, is defined as follows.

Definition 4.1. For m > 2, define

Cm;l,l Cm;1,2 T Cm;l,q2
Om;?,l Cm;2,2 T Cm;?,q2
Cmigza Cmigr2 0 COmigzg2
(4.13)
Sm;l,l T Sm;l,q Sm;q,l T Sm;q’q
Sm;17q(q—1)+1 o Smitg? Sm;qﬂ(q—l)ﬂ o Smigg?
Sm;q(qfl)Jrl,l T Sm;q(qfl)ﬂyq Smsg2,1 o Smigzg
L Sm;q(q—1)+17q(q—1)+1 T Sm;q(q—l)-s-l,q2 SM;q2,q(q—1)+1 T Sm;tfﬂ2
where
(4.14)

Cm;a,ﬁ = ((BQ;a)qu o (®]E£n_2)q><q)qul><q7nfl o (Equzrxquz ® Ag;g)qulxqul.
Like Theorem 2.4, Cy,41,a,3 can be obtained in terms of Cp,; 3.

Theorem 4.2. For anym >2 and 1 < o, 8 < ¢?

aa;lcm;lﬁ a/a;2cm;2,ﬁ T G,a;qcm;qﬁ
Aa;q+1Cmsq+1,8 Aaiq+2Cmsg+2,8 o a;2¢Cmi2g,8
Cm+1;a,,8 = . . .
Aaig(q-1)+10mig(g-1)+1,8  Qasq(q-1)+2Cmig(a-1+2.8 "~ Ga;2Cmie2
Denote by
(k) (k) (k)
“?m7n+1;a;1 “?m7n+1;a;2 e Am7n+l;a;q
k
A(k) - Am,n+1;a;q+1 Am,n+1;a;q+2 Am,n+1;a;2q
m,n+1l;a — . . :
(k) (k) . (k)
Am,n+1;a;q(q—1)+1 Am,n+1;a;q(q—1)+2 Am,n+1;0¢;q2
k k . . . . l
and X ni1,08 = (Agn)n—i-l'aﬂ)t where Agn)n+1.a,ﬂ is a linear combination of Aﬁn{m.

Now, Theorem 2.5 can be generalized to the following theorem.
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Theorem 4.3. For any m > 2 and n > 2, let Sy.q.3 be as given in (4.13) and

(414) Then Xm,n+l;aﬂ = Sm;a,ﬂXm,n;B-

10.

11.
12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.
28.

)
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