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Boundary Influence On The Entropy Of A Lozi-Type Map
Yu-Chuan Chang and Jonq Juang

Abstract: Let T' be a Henon-type map induced from a spatial discretization of a
Reaction-Diffusion system. With the above-mentioned description of T, the follow-
ing open problems were raised in [Afraimovich and Hsu, 2003]. Is it true that, in
general, h(T') = hp(T) = hn(T) = huy, 00, (T)? Here h(T) and he,, e, (T) (see
Definitions 7?7 and ??) are, respectively, the spatial entropy of the system 7" and the
spatial entropy of T with respect to the lines £(;y and £(5), and hp(T') and hy(T')
are spatial entropy with respect to the Dirichlet and Neuman boundary conditions.
If it is not true, then which parameters of the lines £;), i = 1,2, are responsible
for the value of h(T')? What kind of bifurcations occurs if the lines £;) move? In
this paper, we shed some light on these open problems with T being replaced by a
Lozi-type map.

ME: BTl RE-FEBCRR < ZRBEBILFE SR Henon ZURERLST, £FELL AR
T, IREEEHABBUIERIRER Afraimovich FIFFEURAE 2003 G AR Z AT R, —i%
K NWT) = hp(T) = hn(T) = hegy p) (T)RERE? BEE h(T)Hh ) 0, (T)(R
TEE 118 1.2) DRIRARMTHIZZ R R TH FERERRL (1)L (2)«hp (T)52h N (T )BIZ2[HHH, T
hp(T)8hy (T)ZEFER Dirichlet B Neuman 38 FUEMHIZ2RHH, BE, S18E, HlE
MLy, 1= 1,2, KIS EE (T )WERZEBRR? RIFERL ) B, KRR 7
temam S, B Lozi BURBRRSS AT TR H T — £k RARTEE R RIE Lo

Cellular Neural Networks : Defect Patterns And Stability
Jonq Juang, Chin-Lung Li and Shih-Chia Tseng

Abstract:Of concern is one-dimensional Cellular Neural Networks (CNNs) with
a piecewise-linear output function for which the slope of the output outside linear
zone is r > 0. We impose a symmetric coupling between the nearest neighbors. Two
parameters a and 3 are used to describe the weights between the cell with itself and
its nearest neighbors, respectively. We study patterns that exist as stable defect
equilibria (see Definitions 1.1 and 1.2). In particular, we give an infinite-dimensional
version of Gerschgorin’s Theorem and derive a concept of J-extendability to deter-
mine whether two local-defect patterns can be glued together. Using such tools, we
give aregion in (7, a, 3)-space for which the corresponding defect patterns have non-
zero spatial entropy, while the associated mosaic patterns have zero spatial entropy.

WE: EERHRXT, B2 MiEmiC s R H B0 b B i ik s, At
KB EESLDSMIRZEr > 0, ROESIHIVHARZ HRB—-HEEES, BREz
FoRE A AT B B AT MR R & B RIRERL, TR G T BRI SRR R E B fE T v fE
& (ZHEERLINER1.2), R, B F—EEEHEEEYN Gerschgorin EH H &
i —{Eo-extendability FIHELSIRLE MIEREEER S AT ESTE—id. HAELETAESE,
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e E— B (r, a, ) ZHEE, HAAYERERETeREEE TR0 22 R E AR S
BRfeREMMAIRE, FAEE, RS IERTE LRI A RE ) 75,

Fourier Coefficients, Lyapunov Exponents, Invariant
Measures and Chaos

Huan-Hsun Hsu and Jonq Juang

Abstract:A complex and unpredictable frequency spectrum of a signal has long
been seen in physics and engineering as an indication of a chaotic signal. The first
step to understand such phenomenon mathematically was taken up by Chen, Hsu,
Huang and Roque-Sol. In particular, they look for possible connections between
chaotic dynamical systems and the behavior of its Fourier coefficients. Among other
things, they found variety of sufficient conditions on the Fourier coefficients of the
n-th iterate f™ of an interval map f, for which the topological entropy of f is pos-
itive. In this thesis, we explore the relationship between the Fourier coefficients of
an interval map and its Lyapunov exponent and invariant measure. Specifically, the
relationships between those three quantities of two family of interval maps, piece-
wise linear maps admitting a Markov partition and quadratic family, are considered.

M RALIZE, fE9#E kTR b, HF RS — @& B TR E R IECE e e
PR E. BURERMEEOTRRREEMEN, MFTRA LS KRR E LB &
RACAR BRI R B TR FRo BRE BT ASRE TR L B —ERHH n XBRZEAME
FIZERRE, W DUERHSE (AR MR BRI R TE 0 el TEERa SCE T, BMAMH H — st
R — (R KB, RZERE, BT R AE BN S R (. EHBMIEEHE—
{BE AL 5 AT R _E A Fr B R B R — R K R E sE =R R

Partial-State Coupling, Nonlinearities, and Synchronization
Jonq Juang, Chin-Lung Li, and Yu-Hao Liang

Abstract: Partial-state coupling plays a surprising role in determining if a cou-
pled system can achieve synchronization. For instance, synchronization for the
single z;-component coupled Lorenz equations can not occur, while synchroniza-
tion for other partial-state couplings can be realized. The purpose of this paper is
to address these coupling issues in a general framework. Some sharp conditions are
given on the nonlinearities of the subsystem and on the coupling scheme to ensure
the synchronization. We apply our theorems to three examples: coupled Lorenz-
equations [?]; coupled chaotic works [?]; coupled Duffing oscillators [?]. The results
on the latter two examples appear to be new.

HE: BERENREERG ARG T LZEIRS b, hE—ERAREIN A, 2ERT,
fELorenz A, BEHEE—2 0 BU N ERERDL, BERSERMBMARET, AFL
AU ER, ERm RN RN EEA SN MEE —RERNEE T, — LNk
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HEBIR S, CRBHEEEFRIERNFRA AR EREHE T, RMERAEMNEEE=(E
Bl #E Lorenz AER; BERLTIE; M& Duffing Bi&T. FERBEMEGIFHIHERLL
FRHTH

Papers published or accepted:

Snap-Back Repellers And Chaotic Traveling Waves

In One-Dimensional Cellular Neural Networks
Ya-Wen Chang, Jonq Juang and Chin-Lung Li
International Journal of Bifurcation and Chaos (IJBC), accepted.

Abstract: In 1998, Chen et al., [6] found an error in Marotto’s paper [24].
It was pointed out by them that the existence of an expanding fixed point
z of a map F in B,(z), the ball of radius r with center at z which does
not necessarily imply that F is expanding in B, (z). Subsequent efforts (see
e.g., [6], [22]-[23].) in fixing the problems all have some discrepancies since
they only give conditions for which F is expanding ”locally”. In this paper,
we give sufficient conditions so that F is ”globally” expanding. This, in
turn, gives more satisfying definitions of a snap-back repeller. We then use
those results to show the existence of chaotic backward traveling waves in a
discrete time analogy of one-dimensional Cellular Neural Networks (CNNs).
Some computer evidence of chaotic traveling waves is also given.

ME: 7£ 19984 ,Chen % A [6]7E Marotto RIFRC [24] %8B T — (AR, 7£ Chen
FAEREL, —E mapFIREE —~EERVEER 2z , AIFEDPER r. BOE
zFI K B, (z) b, SN L ERERFED, (2) 2B RN, BREZER TEIEEHRE
IR (FER #1F, [6], [22]-[23].) RUFEREAA LM T8, ABMMEERETFR
" RER” AR, TEER R ICE, Belia T —ERX T RGEEF 22 ER, B35
#AM%5 T snap-back repeller BB ER. Rk, T HELERR LR, 76LH#
— e HERRF IR SRS RS (CNNs) M, JBHiHY backward traveling waves HJf7
. fEiERamCE, MG F TEMERR backward traveling waves —46%8
f_ERBRE

Cellular Neural Networks : Mosaic Patterns, Bifurcation
and Complexity

Jong Juang, Chin-Lung Li and Ming-Huang Liu
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International Journal of Bifurcation and Chaos, Vol. 16, No. 1 (2006)
47-57

Abstract: We study a one-dimensional Cellular Neural Network with an
output function which is non-flat at infinity. Spatial chaotic regions are com-
pletely characterized. Moreover, each of their exact corresponding entropy
is obtained via the method of transition matrices. We also study the bifur-
cation phenomenon of mosaic patterns with bifurcation parameters z and .
Here z is a source (or bias) term and (3 is the interaction weight between the
neighboring cells. In particular, we find that by injecting the source term,
i.e. z # 0, a lot of new chaotic patterns emerge with a smaller interaction
weight 3. However, as [ increases to a certain range, most of previously ob-
served chaotic patterns disappear, while other new chaotic patterns emerge.

MR BMEERE — AR R AR R BB U, FEE % AR R B
EERATHT AR, FFSEMN S BRI ] Do Btiiig Hizk, B2
Sl A2 R DARE FR IR AT T BRI, BMAI A2 86 KEfam— LB
WACRHI D BER R, FEEH 2 —(EIREEH. SR A8 L E R A, it —
BN B ES, BFAEREMARBEZR, FERNERSBESNGES. R
e G INEI R —EE 2%, 7% LS EREERK, HRNAE LR
MSHHREGEL,

Eigenvalue Problems and their Application to The Wavelet
Method of Chaotic Control

Jonq Juang and Chin-Lung Li
Journal of Mathematical Physics, 47, 072704 (2006) (16 pages)

Abstract:Controlling chaos via wavelet transform was recently proposed by
Wei, Zhan and Lai ([11]). It was reported there that by modifying a tiny frac-
tion of the wavelet subspace of a coupling matrix, the transverse stability of
the synchronous manifold of a coupled chaotic system could be dramatically
enhanced. The stability of chaotic synchronization is actually controlled by
the second largest eigenvalue A\ («, 3) of the (wavelet) transformed coupling
matrix C(a, 3) for each o and (3. Here (3 is a mixed boundary constant and
a is a scalar factor. In particular, 3 = 1(resp., 0) gives the nearest neighbor
coupling with periodic(resp., Neumann) boundary conditions. The first rig-
orous work to understand the eigenvalues of C'(«a, 1) was provided by Shieh,
Wei, Wang and Lai ([9]). The purpose of this paper is two-fold. First,
we apply a different approach to obtain the explicit formulas for the eigen-

values of C'(a, 1) and C(a,0). This, in turn, yields some new information
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concerning Aj(a, 1). Second, we shed some light on the question whether
the wavelet method works for general coupling schemes. In particular, we
show that the wavelet method is also good for the nearest neighbor coupling
with Neumann boundary conditions.

R FI M ERR SRR R, 2B Wel, Zhan and Lai ([11]) fEHGIHR
o EfRE T, FEHEW—ERE BRI 22 RGN 38, B — RS
BENRERHAR A BBV E M, WG B g R, WATERN LSS,
EEEERSRENE, R LE, BRMEERNBEERC (o, 3)ZE_KREE
B (o, B)FrigHl, I, CR—HREEAEY, I B o —EERT. Fhli,0 =
L(THHFERSO) #6F TRAGERA A AR (HHER Neumann) ;855 M, 55— &%
W EBEEC (o, 1) EBETIERH Shieh, Wei, Wang and Lai ([9]) AT#é. 55—
T am S BRI R A, 88—, TMIER TAREEL ST XEERFC (o, 1)8C (o, 0)H
FEEEAR. £, BRFERN (o, )RREH T —EHNERN. £, HfHEH
B — MRS A 7 R AR, R, B8R L A RE R S aREH
Neumann &5 tHRIFAT,

Perturbed Block Circulant Matrices And Their Application
to the Wavelet Method of Chaotic Control

Jing-Wei Chang, Jonq Juang and Chin-Lung Li
Journal of Mathematical Physics, accepted.

Abstract:Controlling chaos via wavelet transform was proposed by Wei,
Zhan and Lai [Phys. Rev. Lett. 89, 284103 (2002)]. It was reported there
that by modifying a tiny fraction of the wavelet subspace of a coupling ma-
trix, the transverse stability of the synchronous manifold of a coupled chaotic
system could be dramatically enhanced. The stability of chaotic synchro-
nization is actually controlled by the second largest eigenvalue Aa(«, 3) of the
(wavelet) transformed coupling matrix C'(a, 3) for each a and 3. Here 3 is a
mixed boundary constant and « is a scalar factor. In particular, 5 = 1(resp.,
0) gives the nearest neighbor coupling with periodic(resp., Neumann) bound-
ary conditions. In this paper, we obtain two main results. First, the reduced
eigenvalue problem for C(«,0) is completely solved. Some partial results for
the reduced eigenvalue problem of C(«, ) are also obtained. Second, we
are then able to understand behavior of Aa(c,0) and Ay(«, 1) for any j and
n € N. Our results complete and strengthen the work of Shieh et al. [J.
Math. Phys. to appear| and Juang and Li [J. Math. Phys. to appear].

HE: FORE, BROEEREE, EFEREREEC (o, 0)EERNFEEIRIE. &
Eo > 0 (M) MEEETFHES ¢ RETNESGEFRFHC (o, f)R—HEHRER
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Perturbed Block Circulant Matrices And Their Application
to the Wavelet Method of Chaotic Control

Jonq Juang* Chin-Lung Lif and Jing-Wei Chang?

*Department of Applied Mathematics, National Chiao Tung University,
Hsinchu, Taiwan, R.O.C.(jjuang@math.nctu.edu.tw).
tDepartment of Applied Mathematics, National Chiao Tung University,
Hsinchu, Taiwan, R.O.C.(presidentf.am92g@nctu.edu.tw).
tDepartment of Applied Mathematics, National Chiao Tung University,
Hsinchu, Taiwan, R.O.C.(jof12789@yahoo.com.tw).

Abstract: Controlling chaos via wavelet transform was proposed
by Wei, Zhan and Lai [Phys. Rev. Lett. 89, 284103 (2002)].
It was reported there that by modifying a tiny fraction of the
wavelet subspace of a coupling matrix, the transverse stability of
the synchronous manifold of a coupled chaotic system could be
dramatically enhanced. The stability of chaotic synchronization is
actually controlled by the second largest eigenvalue Aa(c, 3) of the
(wavelet) transformed coupling matrix C(a, 3) for each « and £.
Here 3 is a mixed boundary constant and « is a scalar factor. In
particular, 5 = 1(resp., 0) gives the nearest neighbor coupling with
periodic(resp., Neumann) boundary conditions. In this paper, we
obtain two main results. First, the reduced eigenvalue problem for
C(a,0) is completely solved. Some partial results for the reduced
eigenvalue problem of C(a, 3) are also obtained. Second, we are
then able to understand behavior of Az(a,0) and Az(a, 1) for any
wavelet dimension j € N and block dimension n € N. Our results
complete and strengthen the work of Shieh et al. [J. Math. Phys.
47, 082701 (2006)] and Juang and Li [J. Math. Phys. 47, 072704
(2006)].

1. INTRODUCTION

Of concern here is the eigencurve problem for a class of ”perturbed” block circulant
matrices.

C(a, B)b = A(a, B)b. (1.1a)

Here C(a, 3) is an n x n block matrix of the following form.
1



Cl(aaﬁ) 02(a71) 0 0 Cg(a7ﬂ)

C¥(a,1) Ci(a,1) Cafa,l) 0 0
Cla, ) =
0 0 C¥(a,1) Ci(a,1)  Co(ay1)
CQ(aaﬂ) 0 0 C,QT(O[, 1) fcl(a7 )f nxn.
(1.1b)
Here
-1-p5 1 0 0
1 -2 1 0
0 1 -2 1 - 0
Gen=| . SO
0 0 1 -2 1
0 o 1 -2/,
= Ay(B,27) — %eei (1.1c)

where e = (1,1,...,1)T, j is a positive integer, a > 0 is a (wavelet) scalar factor and
0 € R represents a mixed boundary constant. Moreover,

: : af
CQ(CY,B) = 0 0 +ﬁ66
6 0 0
= Ay(3,27) + AP T (1.1d)
=: A2( Y, 22j€€ , .
0 0 - 01
0 0 0 1 0
I= (1.1e)
o1 0 -~ 0O
10 - 0 0

The dimension of C(a, 3) is n27 x n27. From here on, we shall call n and j the block

and the wavelet dimensions of C(«, 3), respectively. C(a,3) is a block circulant

matrix (see e.g., [1]) only if 8 = 1. It is well-known, see e.g., Theorem 5.6.4 of [1],
2



that for each « the eigenvalues of C(«, 1) consists of eigenvalues of a certain linear
combinations of its block matrices. Such results are called the reduced eigenvalue
problem for C(a, 1).

This problem arises in the wavelet method for a chaotic control ([7]). It is found
there that the modification of a tiny fraction of wavelet subspaces of a coupling
matrix could lead to a dramatic change in chaos synchronizing properties. We
begin with describing their work. Let there be N nodes (oscillators). Assume u;
is the m-dimensional vector of dynamical variables of the ith node. Let the iso-
lated (uncoupling) dynamics be u; = f(u;) for each node. Used in the coupling,
h:R™ — R™ is an arbitrary function of each node’s variables. Thus, the dynamics
of the ¢th node is

N
u; = f(ui) + eZaijh(uj),i =1,2,...,N, (1.28,)
j=1
N
where € is a coupling strength. The sum Zaij = 0. Let u = (uy,ug,...,uy)?,
j=1

F(u) = (f(w), f(ug), ..., fan)T, H(u) = (h(w), h(uz),...,h(uy))?, and A =
(ai;). We may write (1.1a) as

= F(u) + eA x H(u). (1.2b)

Here x is the direct product of two matrices B and C defined as follows. Let
B = (bij )k, xks be a ki x ky matrix and C = (Cj;)k,xks be a ko X k3 block matrix.
Then

k2
BxC= (Z bitCj )by x k-
=1

Many coupling schemes are covered by Equation(1.2b). For example, if the Lorenz
system is used and the coupling is through its three components x, y, and z, then
the function A is just the matrix

100
Ir=[0 1 0 (1.3)
00 1

The choice of A will provide the connectivity of nodes. For instance, the nearest
neighbor coupling with periodic, Neumann boundary conditions and mixed bound-
ary conditions are, respectively, given as A = A; (1, N)+Ax(1, N)+AT(1,N) =: Ap,
A=A (0,N)+ Ay(1,N)I =: Ay and A = A, (3, N)+ Ay(8, N) + AT (3, N) + (1 —
ﬁ)Ag(LN)f =: A, where those Als, i = 1,2, are defined in (1.1c,d).

Mathematical speaking ([5]), the second largest eigenvalue Ay of A is dominant in
controlling the stability of chaotic synchronization, and the critical strength ¢, for

synchronization can be determined in term of Ao,
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L
o= (1.4)

The eigenvalues of A = Ap are given by \; = —4sin? w, i=1,2,...,N. In general,
a larger number of nodes gives a smaller nonzero eigenvalue A, in magnitude and,
hence, a larger ¢.. In controlling a given system, it is desirable to reduce the crit-
ical coupling strength €.. The wavelet method in [7] will, in essence, transform A
into C(a, ). Consequently, it is of great interest to study the second eigencurve of
C(a, B) for each 8. By the second largest eigencurve \o(a, 3) of C'(a, ) for fixed S,
we mean that for given a > 0, A2(av, 3) is the second largest eigenvalue of C(«, 3).
We remark that 0 is the largest eigenvalue of C(a, 8) for any o > 0 and 3 € R. This
is to say for fixed 8, Aa(a, 8) = 0 is the first eigencurve of C(a, 3). A numerical
simulation [7] of a coupled system of N = 512 Lorenz oscillators shows that with
h = I3 and A = Ap, the critical coupling strength €, decreases linearly with respect
to the increase of o up to a critical value a.. The smallest ¢, is about 6, which is
about 103 times smaller than the original critical coupling strength, indicating the
efficiency of the proposed approach.

The mathematical verification of such phenomena is first achieved by Shieh, Wei,
Wang and Lai [6]. Specifically, they solved the second eigencurve problem of C(a;, 1)
with n being a multiple of 4 and j being any positive integer. Subsequently, in [4],
the second eigencurve problem for C(a,0) and C(«,1) with n being any positive
integer and j = 1 are solved without touching on the reduced eigenvalue problem.
In this paper, we obtain two main results. First, the reduced eigenvalue problem
for C(a,0) is completely solved. Some partial results for the reduced eigenvalue
problem of C(a, 3) are also obtained. Second, we are then able to understand be-
havior of A2(c,0) and As(a, 1) for any j and n € N.

2. REDUCED EIGENVALUE PROBLEMS

Writing the eigenvalue problem C(a, )b = Ab, where b = (b, by, .y by)T and
b; € C?', in block component form, we get

C¥(a,1)b;_1 + Ci(a,1)b; + Cy(a,1)b;y 1 = Ab;, 1 <i<n. (2.1a)
Mixed boundary conditions would yield that
CT (o, 1)bo+C(a, 1)b1+Ca(a, 1)by = Aby = Oy (a, )b14+Cs(a, 1)ba+C7 (av, §)by,,
and
CT (o, 1)b,_1+C1(a, 1)by+Ca(ct, 1)byyq = Aby,

= CQ(CVa ﬁ)b1+C2T(O‘, 1)bn—1+fcl (aa B)fbna
4



or, equivalently,

C3 (a,1)bg = (Ci(a, f) = C1(a, 1))by + C3 (o, B)by,

1-6 0 0 0 0 B
.y 0 (:) ? + weéf]bl +1 O (:) 0 L
0 0 - 0 0 - 00
= (1-pB)C¥ (e, 1)Ib; 4 BCy(a, 1)b,, (2.1Db)
and
Coa, 1)byyy = (IC1(a, B)I — Ci(a, 1))by, + Ca(av, B)by
= (1—B)CT (e, 1)Ib, + BCs(cr, 1)by. (2.1c)
To study the block difference equation (2.1), we set
b, = &, (2.2)
where v € C? and 6 € C.
Substituting (2.2) into (2.1a), we have
[CT(a,1) + 6(Cy(a,1) = X)) + 6%Co (e, 1)]v = 0. (2.3)
To have a nontrivial solution v satisfying (2.3), we need to have
det[CT (a,1) + 6(Cy(a, 1) — M) + 62Cy(a, 1)] = 0. (2.4)

Definition 2.1. Equation (2.4) is to be called the characteristic equation of the
block difference equation (2.1a). Let 0 = §(\) # 0 and v, = v (\) # 0 be complex
numbers and vectors, respectively, satisfying (2.3). Here k = 1,2,...,m and m < 27.
Assume that there exists a A € C, such that b; = Eznzlckéi()\)vk()\), j=0,1,...n+1,
satisfy equation (2.1b,c), where ¢ € C. If, in addition, b;, j = 1,2, ...,n, are not
all zero vectors, then such 0 (\) is called a characteristic value of equation (2.1) or
(1.1a) with respect to A and v, () its corresponding characteristic vector.

Remark 2.1. Clearly, for each o and 3, A in the Definition of 2.1 is an eigenvalue

of C(a, B).



Should no ambiguity arises, we will write C% (a,1) = C¥, Ci(a,1) = Cy and
Ca(a, 1) = Cy. Likewise, we will write As(3,27) = Aa(B) and A1(3,27) = A1(B).

Proposition 2.1. Let p(A) = {0;(A\) : §;(N) is a root of equation (2.4)}, and let
p(A) = {ﬁ : 0;(A) is a root of equation (2.4)}. Then p(A) = p(A\). Let ¢; and
ok be in p(X). We further assume that 6; and v; = (vi1,--- ,vin)T satisfy (2.3).

Suppose 6; - 0, = 1. Then 0y, and v, = (Vioi, Vioi_1," - ,'UiQ,'Uil)T =: v} also satisfy
(2.8). Conversely, if §; - 0 # 1, then vy, # v5.

Proof. To proof p(\) = p()), we see that

1 1
det[CT + 6(Cy — N) + 62Cs) = 52det[6—202T +5(CL = AD) + C)]
1

1 1 1
= 52det[?C’2T +5(CL =D + )" = 6%det[CT + < (Cy — \I) + 0]

4]
Thus, if 4 is a root of equation (2.4), then so is . To see the last assertion of the
proposition, we write equation (2.3) with § = §; and v = v; in component form.

27

> UCT)imim + 6:(C1)imVim + 67 (Ca)imvim] = 0,1 =1,2,...,27. (2.5)

m=1

Here C7 = C; — M. Now the right hand side of (2.5) becomes

27

1 _
(5)2{ Z [(C2)1(2 +1-m)Vi(2i +1-m) + Ok (C1)1(25 41—m) V(29 +1—m)
m=1
+61(CF )12 41-m)Vi(2i+1-m)] }
1, &
= (E)Q{Z [(CT) @ +1-1ymVi2i+1-m) + 0k (C1) (29 41— 1)ymVi(2i +1—m)
m=1
+6]%(02)(2j+1_l)m)’Ui(2j+1_m)]},l = 17 2, veey 23 (26)

We have used the fact that
(A)(ZjJrlfl)m = (AT)Z(ZjJrlfm)a (27)

where A = CI or Cy or Cy to justify the equality in (2.6). However, (2.7) follows
from (1.1c) and (1.1d). Letting v;(2i4+1—m) = Vkm, we have that the pair (0, vx)
satisfies (2.3). Suppose v, = v}, we see, similarly, that the pair (5%, vy, ) also satisfy
(2.3). Thus F = .

O
Remark 2.2. Equation (2.4) is a palindromic equation. That is for each A, § and

§~1 are both the roots of (2.4). However, eigenvalue problem discussed here is not
a palindromic eigenvalue problem [3].



Definition 2.2. We shall call v* and —v°, the symmetric vector and antisymmetric
vector of v, respectively. A vector v is symmetric (resp., antisymmetric) if v = v*
(resp., v = —v°).

Theorem 2.1. Let 6 = e%i, k is an integer and i = \/—1, then dok, k=0,1,...,n-1,
are characteristic values of equation (2.1) with 8 = 1. For each «, if A € C satisfies

det[C5 + b2 (Cr — M) 4 65,Ca] = 0,

for some k € Z, 0 <k <n—1, then X is an eigenvalue of C(c,1).

Proof. Let A be as assumed. Then there exists a v € (Czj, v # 0 such that
[CT 4 601 (Cy — AI) + 62,Co]v=0.

Let b; = (gk,v, 0 <j <n+1. Then such bls satisfy (2.1a), (2.1b), and (2.1c). We
just proved the assertion of the theorem. (Il

Corollary 2.1. Set

Ty = Cy + 02105 + 6,.Cs. (2.8)

Then the eigenvalues of C(a, 1), for each «, consists of eigenvalues of Ty, k =
n—1

0,2,4,...,2(n —1). That is p(C(«, 1)) = U p(Tax). Here p(A) = the spectrum of
k=0

the matriz A.

Remark 2.3. C(a,1) is a block circulant matrix. The assertion of Corollary 2.1

is not new (see e.g., Theorem 5.6.4 of [1]). Here we merely gave a different proof.

To study the eigenvalue of C(«, 0) for each «, we begin with considering the eigen-
values and eigenvectors of C + Cy + Cy and C — C; + Cs.

Proposition 2.2. Let T1(C) (resp., To(C)) be the set of linearly independent
eigenvectors of the matriz C' that are symmetric (resp., antisymmetric). Then
Ty (CF +C1+C)| = |T2(CF +C1+Cs)| = |[T1 (CF —C1+Ca)| = [T2(CF —C1+C2)| =
27=1. Here |A| denote the cardinality of the set A.

Proof. We will only illustrate the case for C¥ — Cy + Cy =: C. We first ob-
serve that |Ty(C)| is less than or equal to 2771, So is |T2(C)|. We also remark
the cardinality of the set of all linearly independent eigenvectors of C is 27. If
0 < |T1(C)| < 2771, there must exist an eigenvector v for which v # v*, v # —v*
and v ¢ span{T1(C), T>(C)}, the span of the vectors in T7(C) and T>(C'). It then
follows from Proposition 2.1 that v+ v°, a symmetric vector, is in the span{T1(C)}.
Moreover, v — v® is in span{T>(C)}. Hence v € span{T1(C),T2(C)}, a contradic-
tion. Hence, |T1(C)| = 2/~ 1. Similarly, we conclude that |[T5(C)| = 2971, O
7



Theorem 2.2. Let § = e"Tki, k is an integer, i = \/—1. For each a, if A € C
satisfies

det[C] + 6, (Cy — M) + 62Cs] = 0,

for some k € Z, 1 < k < n—1, then X is an eigenvalue of C(«,0). Let A be
the eigenvalue of C3 + Cy + Cy (resp., —C¥ + Oy — Cy) for which its associated
etgenvector v satisfies Iv=w (resp., Iv = —v), then X\ is also an eigenvalue of
C(a,0).

Proof. For any 1 < k <n —1, let 6; be as assumed. Let A\; and v, be a number
and a nonzero vector, respectively, satisfying

[CT 4 61,(Cy — M\eI) + 62Co)vy, = 0. (2.9)

Using Proposition 2.1, we see that Ay satisfies

det[CT + 63p 1 (C1 — M\eI) + 62, _Cs] = 0. (2.10)

Let va,,—k be a nonzero vector satisfying [CF +062p,—(C1— A1) +063,,_; Colvan—k = 0.
Letting

b; = 6L v + 0105, Von_k,i=0,1,....n 4 1,
we conclude, via (2.9) and (2.10), that b; satisfy (2.1a) with A = A;. Moreover,
Iby = 8wy, + Tva,_f = Sgvan_g + vk = bg.

We have used Proposition 2.1 to justify the second equality above. Similarly,
b, = Ib,,. To see \ = Ak, 1 <k <n-—1,is indeed an eigenvalue of C(a,0) for
each «, it remains to show that b; # 0 for some . Using Proposition 2.1, we have
that there exists an m, 1 < m < 2/ such that vy, = V(2n—k)(2i—m+1) 7 0. We first
show that by # 0. Let m be the index for which v, # 0. Suppose by = 0. Then

Vgm + 5kv(2n—k)m =0
and

V(2 —m+1) T OkV(2n—k) (29 —m+1) = V2n—kym + OkVkm = 0.

And so, vgy, = §%Ukm, a contradiction. Let A\ and v be as assumed in the last
assertion of theorem. Letting b; = v (resp., b; = (—1)*v), we conclude that X is an
eigenvalue of C(«,0) with corresponding eigenvector (by, bg,- - ,bn)T. Thus, A
is an eigenvalue of C(«, 0) for each a. O



Corollary 2.2. Let 0 = e%ki, k is an integer, i = \/—1. Then, for each «,

n—

1

p(C(e,0)) = | p(Me) [0 (To) | o (Tn), where p°(A) (resp., p*5(A)) the set
k=1

of eigenvalues of A for which their corresponding eigenvectors are symmetric (resp.,

antisymmetric).
We next consider the eigenvalues of C(«, 3).
Theorem 2.3. Let 6, = eLnki, k is an integer, i = \/—1. Then, for each «,

(%]

p(T2x) | p° (To), n is odd,
p(Cle, B)) D4 =
U p(ng)UpS(FO)UpAS(Fn), n is even.

k=1

3

Here [%] is the greatest integer that is less than or equal to %.

Proof. We illustrate only the case that n is even. Assume that k is such that
1<k <5 -1 Let b, = 5§kv2k + 6%5%”_%1}2”,%, we see clearly that such
b;, i = 0,1,n,n + 1, satisfy both Neumann and periodic boundary conditions,

respectively. And so
by = (1= B)bg + bg = (1 = 5)Iby + by,
and
bn+1 = (1 - ﬁ)bn-i-l + ﬁbn+1 = (1 - B)Ibn + ﬁbl
Here, dor, 1 < k < § — 1, are characteristic values of equation of (2.1). Thus, if

A € p(Tak), then X is an eigenvalue of C(«, 3). The assertions for I'y and T',, can
be done similarly. O

Remark 2.4. If n is an even number, for each « and (3, half of the eigenvalues of
C(a, B) are independent of the choice of 8. The other characteristic values of (2.1)
seem to depend on 3. It is of interest to find them.

3. THE SECOND EIGENCURVE OF C(a,0) AND C(a, 1)

We begin with considering the eigencurves of T'y, as given in (2.8). Clearly,

2 1 0 - e bopk
1 -2 1 0 0
Ty = b ,1 " - o2 72nCOS %k)eeT
0 0o 1 =2 1
6k 0 1 o mXxXm
=: Dy (k) — a(k)ee”, (3.1)



where m = 27. We next find a unitary matrix to diagonalize D1 (k).

Remark 3.1. Let (A(k), v(k)) be the eigenpair of Dy (k). If eZv(k) = 0, then A(k)
is also an eigenvalue of I'y.

Proposition 3.1. Let

21 k
O = — + "= 1=0,1,...m—1, (3.2a)
m nm
p (k) = (6i01,k’6i291,k7 . ’eime,‘k)T (3.2b)
and
_4(k
p(k):(p&%),...’pmﬁ> ) (3.20)

(i) Then P(k) is a unitary matriz and PH(k)Dy(k)P(k) = Diag(Aox* Am—1.%),
where P is the conjugate transpose of P, and

/\l,k 2200891,k—2,l20,1,..,m—1. (3.2d)

(i) Moreover, for 0 < k < 2n, the eigenvalues of D1(k) are distinct if and only if
k#0,n or2n.

Proof. Let b = (b1, ...,b,)T. Writing the eigenvalue problem D;(k)b = Ab in

component form, we get

bj,1 —(2+)\)bj+b]+1 :0,] :2,3,...,m—1, (338.)
—(2 + )\)b1 ~+ by + b2y _rbm = 0, (33b)
Opb1 + b1 — (2 + /\)bm =0. (33C)

Set b; = &7, where ¢ satisfies the characteristic equation 1 — (2 4+ \)§ + 6% = 0
of the system D;(k)b = Ab. Then the boundary conditions (3.3b) and (3.3¢) are
reduced to

0" = . (3.4)
Thus, the solutions e+, | = 0,1,...,m — 1, of (3.4) are the candidates for the
characteristic values of (3.3). Substituting e®:* into (3.3a) and solving for A,
we see that A = X\, are the candidates for the eigenvalues of D;(k). Clearly,
(A, b) = (Mg, p(k)) satisfies D1(k)b = Ab and b = p;(k) # 0. Thus, A = \; ;, are,
indeed, the eigenvalues of Dj(k). To complete the proof of the proposition, it suf-
fices to show that P(k) is unitary. To this end, we need to compute pf (k) - p, (k).
Clearly, pf! (k) - p,(k) = m. Now, let [ # I, we have that

1—7r
j=1
(2 Hence, P(k) is unitary. The last assertion of the proposition
is obvious. H
10
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To prove the main results in this section, we also need the following proposition.
Some of assertions of the proposition are from Theorem 8.6.2 of [2].

Proposition 3.2. Suppose D = diag(dy, ...,dy,) € R™*™ and that the diagonal
entries satisfy di > -+ > dp,. Let v #0 and z= (21,...,zm)T € R™. Assume that
(Ni(7), vi(7)) are the eigenpairs of D + vzz" with A1 () > A7) > ... > A\ (7). (i)
Let A={k:1<k<m,z, =0}, A°={1,..m}—A. Ifk € A, thend, = \;. (%)
Assume oo > 0. Then the following interlacing relations hold A1 (y) > di > Aa(y) >
dy > ... 2 An(y) = dim. Moreover, the strict inequality holds for these indexes
i€ A°. (iii) Let i € A%, N\;(v) are strictly increasing in v and aan;O () = N for
2

S with N\ € (di,d;—1). In case that
dp — A\

all i, where \; are the roots of g(\) = Z
keAc
1€ A¢, dy = 0.
Proof. The proof of interlacing relations in (#¢) and the assertion in (¢) can be found
in Theorem 8.6.2 of [2]. We only prove the remaining assertions of the propo-
sition. Rearranging z so that z7 = (0,0,...,0,2;,,...,z;,) =: (0,...,0,27), where
i1 <2 < .. <iyand i; € A° j = 1,...,k. The diagonal matrix D is rearranged
accordingly. Let D = diag(D1, D2), where Dy = diag(d;,, ..., d;, ). Following The-
orem 8.6.2 of [2], we see that A;, () are the roots of the scalar equation f, (), where

[y (7)) =1+ 'YZ d_ij =0. (3.5)

Differentiate the equation above with respect to -y, we get

k 2 k 2
% Zi; d>\ij(’7)
Z ] \ +( Z . 2> ' =0.
L T G IR S X (o W CY) L
Thus,
dXi, 1 <& 22
;) =2 Z - 5 >0
dy 72— (di; — Ni; (7))

Clearly, for each ij;, the limit of A;,(y) as v — oo exists, say 5\1-].. Since, for
di]. <A< dij*l?

k 2

Zh _ 1
2.3 — X, (1) A

=1 Y v
Taking the limit as o — oo on both side of the equation above, we get

A 0 (3.6)

k
=1 Y J

J

as desired. O
11



We are now in the position to state the following theorems.

Theorem 3.1. let n and m = 27 be given positive integers. For each k, k =
1,2,--- ,n—1, and o, we denote by A\ (), 1 =0,1,---,29 — 1, the eigenvalues of
Ty. Fork=1,2,--- ,n—1, we let (\j g,ur ), L =0,1,---,27 —1, be the eigenpairs
of D1(k), as defined in (3.1). Then the following hold true.

(i) Mk () is strictly decreasing in o, | = 0,1, ,27 —1 and k =1,2,--- ,n— 1.
(ii) There exist A}, such that lim A\ x(a) = Aj . Moreover, gi(X;,,) = 0, where

a— 00

m

Z (Ni—1,k) /\l 1k +A)

=1

(3.7)

Proof. The first assertion of the theorem follows from proposition 3.2-(iii). Let k
be as assumed. Set, for [ =0,1,...,m — 1,

zm: ore € (1 —emtmik)emfir(1 — ek
e= ek = _ _

Zl+1 = pl (k) 1 _ 67(7'”9 1 — e*el,k
Then

2—2cosmb 2(308’%r -2
2 —2cos Gl’k o )\l,k

Zip12141 = # 0. (3.8)
Let P(k) be as given in (3.2c). Then

—PH (k) -T) - P(k) = Diag(—Xok, .., —Am—1,6) + a(k) P (k)e(P (k)e)".
Note that if k is as assumed, it follows from Proposition 3.1-(ii) that \jx, | =

0,...,m — 1, are distinct. Thus, we are in the position to apply Proposition 3.2.
Specifically, by noting A® = ¢, we see that g, satisfies g(A\) =0, where

m
lz:; Ai—1,k) >\l 1kt )

We have used (3.2d), (3.6) and (3.8) to find g(\). O
We next give an upper bound for Ag ,, k=1,2,--- ,n—1.
Theorem 3.2. The following inequalities hold true.

Aok <Aon, k=12, n—1 (3.9)

Proof. To complete the proof of (3.9), it suffices to show that gi(—Xo,n) < 0. Now,

gr(=Aon) = Z !

= [2c0s(2ELT 4y 9)[2cos(2T 4 b1y 9eps ]
=: h(m,n, k) = h(2j,n, k). (3.10)

12



We shall prove that h(27,n,k) < 0 by the induction on j. For j =1, h(2,n,k) =

1 1 .
—|———| <0,k=1,2,---,,n—1. Assume h(2,n,k) < 0. Here, n € N
cos? (52 )
and k=1,2,---,,n—1. We first note that
2(27 +i—1)m km o\ 20— )m km
cos i1 T o, ) T s\ Tom - Ty,

=:—c080;_1 . ji1, i=1,2,--- 2. (3.11)
Moreover, upon using (3.11), we get that

1
(0089¢_17k7j+1 — 1)(00801‘_17]@3'4_1 — 0059077,,7]'4_1)

1

(cosbiyi1k,j+1 = 1)(co8021 i1 k541 — cO800,n j11)

1

(60501‘_17k7j+1 — 1)(6050i—1,k,j+1 — 605907%]'4_1)

1
(cosi—1,kj+1 + 1)(cosbi1 k j+1 + c0sbon,j+1)

200529i_1,k,j+1 + 2c0860 1 j+1
(c0s20; 1k j+1 — 1)(cos?0; 1k j+1 — c0s?0o nj41)

2
8(cos*0i—1,k,j+1 + cosbo,nj+1)
(c0820; 1k, j+1 — 1)(c0s20; 1k j+1 — c05200 n j41)

_ 2(60529i71,k7j+1 + 6089(]’n7j+1) (3 12)
(cosbi—1 k,; — 1)(cosbi_1 . ; — cosbpn ;) '

We are now in a position to compute k(2771 n, k). Using (3.12), we get that

2J+1

W2 n k) = ( L

— 4(cosb—1,kj+1 — 1)(cosbi_1,k,j+1 — cosbon jt1)

2 2
_ Z (cos*01—1,k,j+1 + cosbon,j+1)
— cosﬁl 1k, — 1)(cosb;_1 1 j — cosbon ;)

< 8(cos®0 k. j+1 + cos0g 5 j+1)h(27,n, k). (3.13)

We have used the facts that cos?6p x j+1 > c08*0; 1k j+1, @ = 2,--+,27, and that

the first term (i=1) of the summation in (3.13) is negative while all the others
13



are positive to justify the inequality in (3.13). It then follows from (3.13) that
h(27F% n, k) < 0. We just complete the proof of the theorem. O

Theorem 3.3. Let n and j be the block and wavelet dimensions of C(«, 1), respec-
tively. Assumen and j are any positive integers. Let Ay(x) be the second eigencurve
of C(a,1). Then the following hold.

(i) A2(@) is a nonincreasing function of .

(i) If n is an even number, then Aa(a) = Ao, whenever a > o* for some a* > 0.
(i11) If n is an odd number, then Aa(a) < Ao, whenever o > @& for some @ > 0.

Proof. We first remark that in the case of 5 = 1, the set of the indexes k’s in (3.1)
is {0,2,4,...,2(n — 1)} := I,. Suppose n is an even number. Then n € I,,. Thus,
6n = —1, 00, = =, and py(n) = (ei%,ei%, . ,e”)T. Applying Proposition 3.1,
we see that py(n) — p§(n), an antisymmetric vector, is also an eigenvector of D;(n).
And so eT(py(n) — p§(n)) = 0. It then follows from Remark 3.1 that Ao, is an
eigenvalue of T',, = D1(n) — p(n)ee? for all a.. The first and second assertions of the
theorem now follow from Theorems 3.1 and 3.2. Let n be an odd number. Then
d; - 0; # 1 for any i € I,,. Thus, if the pair (d;, v;) satisfy (2.3), then v; # —vf.
Otherwise, the pair (§;, v; — (—v;)®) = (0;, v; + v]) also satisfy (2.3). This is a
contradiction to the last assertion in Proposition 2.1. Thus, v - e # 0 for any
i € I,. We then conclude, via Proposition 3.2-(iii) and Theorem 3.2, that the last
assertion of the theorem holds. O

Remark 3.2. (i)Let the number of uncoupled (chaotic) oscillators be N = 2/n. If
n is an odd number, then the wavelet method for controlling the coupling chaotic
oscillators work even better in the sense that the critical coupling strength e can
be made even smaller. (ii)For n being a multiple of 4 and j € N, the assertions in
Theorem 3.3 was first proved in [6] by a different method.

Theorem 3.4. Let n and j be the block and wavelet dimensions of C(«,0), re-
spectively. Assume n and j are any positive integers. Let \o(a) be the second
eigencurve of C(a,0). Then for any n, there exists a & such that Aa(a) = Ao
whenever a > a.

Remark 3.3. For n € N and j = 1, the explicit formulas for the eigenvalues of
C(a,0) was obtained in [4]. Such results are possible due to the fact that the
dimension of the matrices in (2.4) is 2 x 2.
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Abstract: Partial-state coupling plays a surprising role in deter-
mining if a coupled system can achieve synchronization. For in-
stance, synchronization for the single z;-component coupled Lorenz
equations can not occur, while synchronization for other partial-
state couplings can be realized. The purpose of this paper is to
address these coupling issues in a general framework. Some sharp
conditions are given on the nonlinearities of the subsystem and
on the coupling scheme to ensure the synchronization. We apply
our theorems to three examples: coupled Lorenz-equations [10];
coupled chaotic works [12]; coupled Duffing oscillators [16]. The
results on the latter two examples appear to be new.

keywords: Synchronization, partial-state coupling, bounded dissipative.

1. INTRODUCTION

Coupled dynamical systems are typically synthesized from simpler, low dimen-
sional systems to form new and more complex systems for which their analysis
and/ or control remains tractable. These and other motivations have led to nu-
merous studies of coupled systems in a wide range of disciplines. For instance, it
has been observed that coupling allows cells to synchronize to each other. Indeed,
synchronization in coupled systems has been observed in many diverse areas, cou-
pled mechanical and electrical systems [3, 9], laser systems [6, 7], biological systems
[2, 11] and Josephson junctions [14]. Other than dissipation and the type of non-
linearities of chaotic subsystems, the coupling rule plays a very important role in
any discussion of synchronization. Two types of coupling rules need to be specified.
One is the coupling scheme between the subsystems. The other is the coupling
rule within the subsystems. The rule of the latter plays a surprising role. In [9],
the lattices of coupled Rdssler-like equations with diffusive coupling between the
subsystems and a single x;,y; or z;- component’s coupling were considered. It was
numerical reported there that synchronization occurs for either x; or y;- compo-
nent’s coupling with strong enough mutual diffusive coupling. However, the lack
of synchronization in the numerical z;-coupling was also reported there. Similar
results were also stated in [10] for the lattices of coupled Lorenz equations with

the rigorous proof for either x; or y;-component’s coupling. No explanations for
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why the lack of synchronization in the z;-coupling for both cases or z;-coupling for
the first case were offered. The purpose of this paper is to address these coupling
issues in a general framework. Specifically, we give rather general conditions on the
nonlinearities of the subsystem and on the coupling schemes so that the coupled
system can achieve synchronization. Some comparison principles on the coupling
scheme are also derived. We note that our main results can be applied to many
coupled systems. In particular, we apply our theorems to three examples here: cou-
pled Lorenz equations [10]; coupled chaotic works [12]; coupled Duffing oscillators
[16]. For the coupled Lorenz equation, we see that x; and y; component’s couplings
satisfy our sufficient conditions, while the z;-component’s coupling fails to satisfy
our sufficient condition, which, in turn, illustrates the sharpness of our conditions
and sheds some light on why the lack of synchronization. The results on the latter
two examples appear to be new (see our Remarks 4.2-(i) and (ii)). We also note
that different partial-state couplings are considered in [8]. As commented in [§],
additional difficulties arise for the formulation considered here.

We organize the paper as follows. Section 2 is to lay down the foundation of our
work. To do so, we introduce the notion of dual system of the coupled oscillator
system and the notion of self-synchronization of the dual system. Some various no-
tions of synchronization are also recorded there. The relationship between bounded
dissipation and Lyapunov function is also explored in this section. Our main results
are contained in Section 3. The concept of matrix measures, which find success-
ful applications in nonlinear control system, is introduced to obtain the sufficient
conditions on synchronization of the coupled oscillator systems. Some comparison
principles for the coupling systems are also given there. Three examples mentioned
earlier are given in Section 4 to illustrate the effectiveness of our main results.

2. BAsIC FRAMEWORK

In this paper, we will denote scalar variables in lower case, matrices in bold
type upper case, and vectors (or vector-valued functions) in bold type lower case.
We consider an array of m cells, coupled linearly together, with each cell being an
n- dimensional system. The entire array is a system of nm ordinary differential
equations. In particular, the state equations are

Xm'
dt

=f(x;,t)+d- Y gi;Dxj, i=1,2,...,m, (2.1)

j=1

where x; € R", f : R®” x R — R™ and D is an n x n real matrix. Let

(2.2)

Xm Lijn

Then (2.1) can be written as



f(Xht)
X = : +d(G@D)x =: F(x,t) + d(G®D)x, (2.3a)
f(xm,t)

where ® is the Kronecker product, and
fl (Xiﬂ t)
f(x;,t) = : (2.3b)
fn (Xi7 t)

From time to time, we will refer system (2.3) as the coupled system (D, G, F(x,t)).
Suppose the state variables are permuted in the following way:

21, X1
X; = : and X = : (2.4)
Tm,i >~(n
Then (2.3) can be written as
f‘1 (5(7 t)
X = : +d(D® G)x =: F(x,t) + d(D ® G)x, (2.5a)
£ (%, 1)
where
fi(xla t)
i(%,1) = : (2.5b)
fi(Xm7 t)

Such reformulation is certainly not new (see e.g., [10, 15]). From here on, we will
treat ~ as a function that take x into x or x; into X;.

Definition 2.1. System (2.5) is called the dual system of (2.3).

We assume the system of ordinary differential equations under consideration has
a unique solution for all time and for each initial condition. We write x(¢, %, to)
for the unique solution at time t where xg is the initial condition at time tqy. This
will sometimes be simplified as x(t). Let Bj(a) be the ball in R¥ with center at
0 and radius . We define the system to be synchronized if the trajectories of all
the cells approach each other. We define the system to be self-synchronized if the
components z; , of each subsystem x; approach each other. Various notions of
synchronization and self-synchronization are given in the following.

Definition 2.2. (see e.g., Definition 1 of [15]) Let a ball B, («) be given. System

(2.3) is uniformly (resp., self-) synchronized if for each € > 0, there exists a §(¢) >

0 such that if ||x;(to) — x;(t0)]| < () (resp., |zir(to) — z;k(to)] < d(e)), and
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x;(to) and x;(to) € By, () for all 4, j (resp., i, 7, k), then ||x;(t) — x;(¢)]| < € (resp.,
|z; k() — ;1 (t)] < e€) for all t >ty and for all 4, j (resp., 4,7, k).

Definition 2.3. (see e.g., Definition 2 of [15]) Let a ball B, («) be given. System
(2.3) is uniformly asymptotically (resp., self-) synchronized if the followings hold:

(i) It is uniformly synchronized.

(ii) There exists a ¢ > 0 such that for all ¢ > 0 there exists a t. > 0 such
that if HXi(tO) — Xj(to)” < 1) ( resp., |xi,k(t0) — $j7k(t0)| < ) ), and
x;(to) and x;(t9) € By(a) for all ¢,j ( resp., 4,5,k ) and t > tg + ¢,
then ||x;(t) — x;(¢)|| < e. (vesp., |ziw(t) — x;k(t)| <€) for all 4,5 (resp.,
05, k).

Definition 2.4. Let a ball B, (a) be given. System (2.3) is globally (resp., self-)
synchronized if for all € > 0, there exists a t. > 0 such that ||x;(¢) — x;(t)]| < €
(resp., |zik(t) —x;x(t)] <€) for all 4,5 (resp., ¢, 7, k), all x;(to) and x;(to) € Bn(a),
and all ¢ > tg + t..

Proposition 2.1. If a system is globally (resp., self-) synchronized, then it is
uniformly asymptotically (resp., self-) synchronized.

Proof. If a system is as assumed, then given € > 0, there exists a ¢’ such that for
all 4,7 and all x;(to) and x;(t9) € By(«), we have ||x;(t) — x;(t)|| < e for t > t'.
Letting typ = t' and § = ¢, we see immediately that the corresponding system is
uniformly synchronized. Obviously, the assumption in Definition 2.3-(ii) can be
fulfilled by choosing any § > 0. The other assertion in the proposition can be
similarly proved. ([l

Theorem 2.1. System (2.3) is synchronized if and only if its dual system (2.5) is
self-synchronized.

We skip the proof of the theorem due to its triviality. We next give the definition
of the bounded dissipation of a system.

Definition 2.5. A system of n ordinary differential equations is called bounded
dissipative with respect to (a,3) provided that (i) for any initial conditions xg,
there exists a time t* > to such that x(t*) € B,(a); (ii) x(t) € B,(8) for all
xp € B,(«) and all time ¢ > tg. If no confusion arise, we shall just say the system
is bounded dissipative.

Proposition 2.2. System (2.3) is bounded dissipative if and only if its dual system
is bounded dissipative.

Proof. Tt is clear since system (2.5) is derived from system (2.3) by some permuta-
tion. O

To prove the bounded dissipation of the system, it often requires to construct
an approximate Lyapunov function. The following proposition gives the type of

Lyapunov functions that would ensure the bounded dissipation of the system.
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Proposition 2.3. Let a system of n ordinary differential equations be given. Let
V be a continuous real-valued function V : R™ — RT so that V is strictly decreasing
along the solution of the system on R™ — ', where T" is homeomorphic to an open
ball in R™. Suppose

lim V(x) = occ. (2.6)

llx[|—o0

Then the system is bounded dissipative.

Proof. For any xg € R™, we first prove that x(¢) must enter I' at a certain time.
Otherwise, the values of V" at the points of the w-limit set of x(¢) must be the same, a
contradiction. The contradiction comes from the facts that the w-limit set is closed
and invariant and V is strictly decreasing along the solution trajectory, which stays
in R"—TI". We then find a ball B,,(«) so that B,,(a) D T'. Let k1 = maxycp, (o) V(X),
and By, (/) be a ball satisfying V' (x) > k2 whenever x € R"™ — B,,(3), where ko > kj.
Then we conclude that if xg € B, (a), x(t) stays in B, (8) for all time ¢t. We just
complete the proof of the proposition. [

3. MAIN RESULTS

For completeness and ease of references, we begin with recalling the following
definitions and the results (see e.g., [4, 13]).

Definition 3.1. Let || - ||; be an induced matrix norm on C™*". The matrix
I+eAl; -1
measure f;(A) of a matrix on C™*™ is defined to be y;(A) = lim+ I+ eAli =1
e—0 €

Lemma 3.1. Let ||-||x be an induced k-norm on R™*™ where k = 1,2, 00. Then the
matriz measure pi(A) k= 1,2,00 of a matriz A = (a;;) on R"*™ is, respectively,

fioo(A) = max {aii + Z lai;|}, (3.1a)
j#i
p1(A) = max {a;; + > laisl}, (3.1b)
i#j
and
p2(A) = Anax(AF + A) /2. (3.1¢)

Here Amax(A) is the maximum of the eigenvalues of A.

Theorem 3.1. (see e.g., 3.5.32 of [13]) Consider the differential equation x(t) =
A(t)x(t)+v(t), t > 0, wherex(t) € R" A(t) € R™*" and A(t),v(t) are piecewise-
continuous. Let || - ||; be a norm on R™, and || - ||;, pi denote, respectively, the
corresponding induced norm and matriz measure on R™*™. Then whenever t >
to > 0, we have

Ixtto)lexo{ | t (Ao |- [ e [ t A ))dr | [v(s) s < (e

to

< Il oo { | t p(AG)ds }+ / e [ t (A Vs (32

to
5



We next impose conditions on coupling matrices G and D. We assume that the
coupling matrix G satisfies the following

(i) all eigenvalues of G have nonpositive real parts. (3.3a)
(ii) A = 0 is a simple eigenvalue of G and its corresponding

eigenspace is span(e), where e = [1,1,...,1]1. (3.3b)

1xm-

We further assume that the matrix D is, without loss of generality, of the form

(L. 0
D= < 0 0 > (3.3¢)
nxn.

The index k, 1 < k < n, means that the first & components of the subsystem are
coupled. If k # n, then the system is said to be partial-state coupled. Otherwise,
it is said to be full-state coupled.

To study the self-synchronization of (2.5), we first make a coordinate change.
Let A be an m X m matrix of the form

1 -1 0 0
0 . e e
C
A= Lo _'(eT> (3.4a)
o --- 0 1 -1 '
1 1 1

mxXm

where e is given as in (3.3b). It is then easy to see that CC7 is invertible and that
Al= (CT(CCT)—1| 3) (3.4b)
m/.

Setting
E=I,0A, (3.4c)

we see that

ED®GE!'=(I,e A)D®G)I, @A)
CGCT(cchH)t o
* 0 )

ps(S0) s

:D@AGA1=D®<

We remark, via (3.4d), that o(G) — {0} = 0(G), where o(A) is the spectrum of
6



the matrix A. Multiplying E to the both side of equation (2.5a), we get

y = Ex = EF(%,t) + dE(D ® G)E"'y
- 5 G 0)..
=EF(E 'y, t)+d(D® < . 0 ) )y. (3.5)
- T1,i — T2,
yl / . —
Let y = : Then y; = : Setting y; = myz
~ xm—l,i — xm,i Zj:l Ij’i
Yn m ’
: D1 T
Y1
and y = : we have that the dynamics of y is satisfied by the following
Yn

equation

y=dD® G)y +F(y,1) (3.6)

)

Here F is obtained from EF(E~'y,t) accordingly.

We next give conditions on the nonlinearities F. Let k be given as in (3.3c).
Write ¥ and F(y,t) as

(v = o F.(y,t) ) ,
y=| ° and F(y,t) = ( _ respectively. 3.7
( Yu > -0 Fu(y,t) /. 37
Y1 Yi+1
Here y. = and y, = . We assume that F.(y,t) satisfies a
Yk Yn

dual-Lipschitz condition with a dual-Lipschitz constant b. That is,
IFe(y.t)ll: < bllylli (3.8a)

whenever y in B,,_,,,(a), and for all time t. Suppose that F,(¥,t) can be written as

F,(y,t) = Ut)Yu + Ru(y,1)- (3.8b)

Here U(t) is a block diagonal matrix of the form U(t) = diag(Uy(¢),---,U;(t))

where Uj;(t), j = 1,...,[, are matrices of size (m — 1)k; x (m — 1)k; . Here
1

Z k; =n —k, and k; € N. We assume further that the followings hold.

j=1



(1) The matrix measures p;(U,(t)) are less than —r for all ¢ and all j,
where r > 0. (3.8¢)

Rul (yv t)
(i) Let R, (y,t) = Then R,;(y,t), j = 1,...,1, satisfy a strong
Rul (ya t) .
dual-Lipschitz condition with a strong dual-Lipschitz constant b. Specifically, we
assume that

Ye
yul
IR (y:8)l: < b : Ii (3.8d)
yujfl
whenever y in B(,,_1),(c), and for all j = 1,...,l and all time .

Theorem 3.2. Let G and D be given as in (3.3). Assume that F satisfies (3.8a-d),
and system (2.5a) is bounded dissipative with respect to (1,5 ). If d is sufficiently
large, then y(t) must eventually stay in By,_1y,(a). Moreover, tlim y(t) =0.

Proof. In the following proof, we just consider the case of lo-norm. The other norm
can also be done in the similar way. Since system (2.5a) is bounded dissipative
with respect to (7, §), the first assertion of the theorem is obvious. Without loss
of generality, we may assume that ||y (¢)|| < « for all time ¢ > ¢y, Using (3.8b), we
write (3.6) as

Ye dI,®G) 0 )(y) (F(S'))

M = c + 5770 3.9

(5)= ("0 oty ) (3 )+ (R (39

Since U(t) = diag(Uy(t), ..., U;(¢)) is a block diagonal matrix, we will write y,, as
yul

accordingly. Applying the variation of constant formula to (3.9) on y.,
Yui
we get

¢
}_’c(t) _ e(t_to)d(lk®c)}_’c(to) +/ e(t_s)d(lk®G)Fc(}_’(S),S)dS.
to
Let A1 = max{\;|\; € Re(c(G)), the set of the real parts of the spectrum of G}.
Then A\; < 0. Note that

MR || < cpet (3.10)

for some constant ¢; > 0, and v = % Thus,

8



t
¥l < crel ||y (to) | +01b/t 171y (s)lds
0

< creltto)dvg 4 0—2204
for some constant cg = ch}f" Thus
[y < e2a, (3.11a)

whenever ¢ > £y for some t5; > 0. We then apply Theorem 3.1 on y,; and the
resulting inequality is

1¥ur ()] < [|¥ur(to,1)]| exp {/ Mi(Ul(S))ds}

to,1

t t
[ e { [ wimar IR0, 9ls
to‘l S
It then follows from (3.8c-d) and (3.11a) that

b
¥ (O < ae "(t=to1) 4 e
r

)

whenever ¢ > to 1. Moreover, letting w = max{1, 271’}, we have
17 (D]] < wesa (3.11b)
whenever ¢ > t1; for some t1,; > tp,;. Inductively, we get
170 ()]l < V2i1wiesar, j=2,...,1, (3.11c)

whenever ¢ > t; (> tj_1,1). Letting ¢;; = ¢; and summing up (3.11a), (3.11b) and
(3.11c), we get

l l
1T = | D IFus D12 + T @ < (| 1+ 27w er)a = ha,

j=1 j=1

whenever t > t1. Choosing d > 2lcyl‘b \/1 + Zé‘:l 27—127  we see that the contraction
factor h is strictly less than 1, and ||y (¢)|| contracts as time progresses. Moreover,
t; is independent of the initial conditions y(tp). We have completed the proof of

the theorem. O



Corollary 3.1. Suppose F and G are assumed as in Theorem 8.2. Assume, in
addition, that all eigenvalues of G are nonpositive. Let

D _
D= ( IBXk 0 ) =: Dy where Reo(D) > 0. (3.12)
nxn,

If the corresponding coupled system (Dyew, G, F(x,t)) is also bounded dissipative,
then assertions in Theorem 3.2 still hold true.

Proof. Assumption (3.12) is to ensure that (3.10) is still valid. Other parts of the
proof are similar to those in Theorem 3.2 and are thus omitted. (]

We next turn our attention to finding conditions on the nonlinearities f;(u, ),
i=1,...,n, u € R" so that assumptions (3.8a-d) are satisfied. To this end, we
need the following notations. Let X; and X be given as in (2.4). Define

T1 [%1]~
[x]” = : and [x]” = : (3.13)
Tm—1,i ) [in]_

We then break F as given in (2.5a) into two parts so that the breaking is in consis-
tent with y in (3.7). Specifically, we shall write

F(x,1) = ( ::u((i ?) ) (3.14)

Proposition 3.1. Suppose that f;(x,t), i = 1,2,...,k satisfy a Lipschitz condition
on Bp(%) with a Lipschitz constant b. That is

2
filw,t) = fi(v. D)l S bllu—v] i=1,2,....k, (3.15)

for allu, v in B,(5) and all time t. Then (3.8a) holds true.

Af (%, 1)
Proof. Note that EF(%,t) = so that
Af,(x,t)
fixa,t) = fi(x2,t)
[Af'z(x,t)}_ = : 1=1,2,...,n

fi(xm—ht) - fi(xmat)

Since
10



[Af)(x,1)]”

(AL (x,1)]
we conclude that (3.8a) holds. O

The following proposition is very useful in the sense that by checking how each
component f; of the nonlinearity f is formed, one would then be able to conclude
whether (3.8¢-d) are satisfied.

Proposition 3.2. Let u = (uy,...,u,)’ and v = (vi,...,v,)T be vectors in
Bn(§). Let w, = >0 ki, p=1,...,1, where kg = k, and ky,... ki, | are given
as in (8.8¢c). Assume that fori=wy_1+1,...,wp,
fitu,t) — fi(v,t) = Z v (u, v, t)(uj; —v;) +ri(u, v, t). (3.16a)
j=wp—_1+1

We further assume that the followings are true.

(i) Forp=1,...,1, let V), = (v; ;(u,v,t)), where wp_1+1 < 4,5 <w,. Then
wx(Vp) < =7 for allu, v, t and p, where x = 1,2, c0. (5.16b)

(i) Letry = (rw, ,+1(u,v,t),... 70, (u,v,t))T. We have that
U — v
[yl < : I (3.16¢)
Uy — Vw,_,

for allu,v,t,p and some constant b.
Then (3.8¢) and (3.8d) hold true for x = 1,2, c0.

Proof. Let uy = (X, Xw+1,t), w=1,...,m—1, and let U, ; ,(¢) be diagonal ma-
trices of the form
Vw1 +i7wp—1+j(u1) 0
Uijp(t) = - (3.17a)
0 Vw, 1 tiywy 147 (Wm—1)

where p = 1,...,1. It then follows from (3.17a) that F,(y,t) can be written as the
form in (3.8b). In particular, U,(t), p=1,2,...,l, can be chosen as

Up(t) = (Ui jp(t), wp—1+1<4,j <wp, (3.17b)
For fixed p and w = 1,...,m — 1, we define the matrices M;’(¢) as follows
MY (t) = (vafm’wpflﬂ-(uw))kpxkpw 1<i,j <k, (3.18a)

11



By assumption, we see that j. (M) (t)) < —r. Now,

m—1
=Y MY(t) @D, (3.18b)

=1

g

where

1l i=5=w ..
Dy);; = 1<, i <m—1.
(D) { 0 otherwise, =hr=m

It then follows from (3.1a,b), (3.17) and (3.18) that p.(Up(t)) < —r for * = 1 or
oo. For x = 2, we have that

m—1 m—1
U oM (0) + (ME (1) { ( () @ Dy + (MY (¢ ))T®Dw)}

w=

—

o (U,(t) +Ug (1)) .

where o(A) is the set of eigenvalues of A. We remark that the first equality above
can be verified by the definition of eigenvalues due to the structure of Up(¢). It
then follows from (3.1¢) that u2(U,(t)) < —r. The remainder of the proof is similar
as Proposition 3.1, and is thus omitted. ([l

We are now ready to state the main theorem of the paper.

Theorem 3.3. Assume that (2.3) is bounded dissipative. Let the coupling matri-
ces G and D satisfy (3.3) and the nonlinearities f;(x,t), ¢ = 1,2,...,n, satisfy
(3.15) and (3.16). Suppose d is chosen sufficiently large. Then (2.3) and (2.5) are,
respectively, globally synchronized and self-synchronized.

Proof. The proof is direct consequences of Propositions 3.1 and 3.2, and Theorem
3.2. O

Remark 3.1. (i) From here on, we will refer the assumptions in Theorem 3.3 as
synchronization hypotheses. (ii) An example in Section 4 (i)-¢ will illustrate the
sharpness of our sufficient conditions here.

Corollary 3.2. (Comparison Principle for synchronization) Let (D, G, F(x,t))
satisfies synchronization hypotheses. Furthermore, we assume that all eigenval-
ues of G are nonpositive. Assume D satisfies (3.12). Then the coupled system
(Dhyew, G, F(x,1)) is also globally synchronized.

4. APPLICATIONS

To see the effectiveness of our main results, we consider three examples in this
section. These are coupled Lorenz equations [10], coupled chaotic works [12], and
coupled Duffing oscillators [16].

12



(i) We shall begin with Lorenz equations. Let x = (x1, x5, 23)7,

f(x,t) =f(x) = (0(x2 — x1), ra1 — x2 — T123, —bx3 + xlxg)_T

= (fl(xvt)a f2(X7 t)) fg(X, t))T (41)
1 0 O 0 0 O 0 0 0
For D = 0 0 O =:DjorD = 01 0 =:DsorD = 0 0 O
0 0 O 0 0 O 0 0 1

Dg, it was shown (see e.g., [10]) that system (2.3) is bounded dissipative. We re-
mark that in our formulation, we may rearrange the components of the nonlinearity
f so that D always has the form D = D;. Instead, in this section, we will fix the
representation of the nonlinearity f just as given in (4.1).

Three types of coupling within the subsystems are considered in the following.

(a) D = D1_
In this case k£ =1, and

[f1(x:8) = fi(z, 1) = ol (22 = 22) — (21 — 21)| < bf[x — 2]

for some constant b. Hence, condition (3.15) is satisfied. Choosing [ = 1, we have
that fo(x,t) = —x2 — w123 + roy, f3(x,t) = x120 — brs,

fa(x,t) — fa(z,t) = (—x9 — 2123 + r21) — (—20 — 2123 +T21)
= [~(v2 — 22) — 21(w3 — 23)] + (r — 23) (21 — 21) (4.2a)

and

fg(X,t) — fg(z,t) = (I1$2 — bl’g) — (2’12’2 — ng)
= [$1($2 - 2’2) - b($3 — Zg)] + 2’2(371 — 21). (42b)

Writing (4.2a,b) in the vector form, we get

( fa(x,t) — fa(z, t) > _ < R 210) ) ( To — 23 ) N < (r —23)(z1 — 21) )
f3(x,t) — f3(z,1) zi(t)  —b T3 — 23 z2(21 — 21)

=: V() ( T2 ) + 11 (t). (4.2¢)
Tr3 — Z3

Clearly, p2(Vi(t)) = max{—-1,-b} = —1 < 0, and |[r1(¢)|| < b |z1 — #]| for
some constant b. Note that such b exists since system (2.3) is bounded dissipative.
Then it follows from Theorem 3.3 that the coupled system (D1, G, F(x)) is globally
synchronized.

13



(b) D = Do,
In this case k = 1, and f is of course Lipschitz in any bounded domain. Choosing
[ =2, we have that fi(x,t) = —ox1 + o022, f3(x,t) = —bxrs + z122,

fi(x,t) = fi(z,t) = [-o(z1 — 21)] + o (72 — 22)
and

f3(x,t) — f3(2z,t) = [=b(w3 — 23)] + 21(22 — 22) + 22(T1 — 21).

Letting V1 (t) = (—0), Va(t) = (=b), r1(t) = (o(z2 — 22)), and
ra(t) = (x1(z2 — 22) + 22(x1 — 21)) We see that pa(Vi(t)) = —0 <0, p2(Va(t)) =

— 29

—b <0, |r1(t)] < blxa — 22| and |ra(t)] < b < Z > || for some constant b.

—
Thus, the coupled system (D3, G, F(x)) is globally synchronized.

(c) D =D;,

In this case k = 1. Moreover, f; and f; contains the term x5 and 1, respectively,
the only feasible way to break the uncoupled components is to pick [ = 1. Other-
wise, (3.16¢) is violated. For | = 1, we have that

vir=(, 7 %)

For such V(t), we see that ;(V1(t)) is not negative for all time ¢. Here i = 1,2, co.
As indicated in [10], the numerical results show that for such partial coupling the
synchronization fails. All in all, these suggest that our sufficient conditions for the
synchronization are quite sharp.

(d) For other D satisfying (3.3c), it is easy to show that the synchronization can
be achieved.

We summarize our results above as follows.

Theorem 4.1. Let £(x) be given as in (4.1) and G be a symmetry matriz satis-
fying (3.3a, 3.3b). Let D = D¢y, be a symmetric matriz satisfying (3.12). Then
the coupled system (D, G,F(x)) is globally synchronized provided that d is chosen
sufficiently large.

Remark 4.1. It is a nontrivial task to show the bounded dissipations of the coupled
system whenever D and G are not symmetric.

(ii) For the second example, we consider the subsystem (see e.g., [12]) of chaotic
walks. That is,

i = f£(x1) = (f(x1),- -, fu(x1)) (4.3a)

14



where

fi(x1) =sin(zy5) — bx1,4, i =1,2,...,n, and
k= (¢ modn)+1, (4.3b)

Note that in [12], it was demonstrated numerically that subsystems (4.3a) exhibits
hyperchaos. We next show that the coupled system (2.3) with the nonlinearities
given as in (4.3b) is bounded dissipative provided that G is a negative semidefinite
matrix, and D is given as in (3.3c). To this end, we introduce a Lyapunov function
of the form

N
V(x) = E ;

j=11i=1

By taking the time derivative of V' along solutions of (2.3), one obtains

m n k
av .
e Z ij,i(51n(mj7k) —bx;;) + dz <xj,Gx; >
j=1i=1 j=1
< 3OS b2 oyl = b
j=11i=1
m n
Suppose Z Z x?z > mnc%, where ¢y > 0 satisfying
j=11i=1
9 1
—bcy+co < —2—b(mn -1). (4.4)

Then, we may assume, without loss of generality, that |1 1| > ¢o. Now,

m n
b = —bat |+ gl + | | DD —bad, +lajal | +bat ) — |14l
j=1i=1
1

1
< fﬁ(mnf N+ —=(mn—-1)= fzb(mn— 1) <0,

We have used (4.4) and the fact that max (—baz? + |z]) = 75 to justify the above
inequality. It then follows from Proposition 2.3 that the coupled chaotic walk is
bounded dissipative as claimed. By Corollary 3.2 and noting that the permutation
symmetry of equation (4.2), we only consider the case that the matrix D satisfying
(3.3d) with k =1. Lettingl =n—k=mn—1, we see that V, = —b, p=1,2,...,L
Thus, their matrix measure u;(V,) = —b < 0. Moreover, the corresponding remain-
ing terms r;(x,y,t) satisfy (3.16c). Thus, system (2.3) is globally synchronized. In
summary, we have our results in the following.
15



Theorem 4.2. Let f(x) be given as in (4.2) and G be a symmetry matriz satis-
fying (3.3a, 3.8b). Let D be a matriz satisfying (3.12). Then the coupled system
(D, G,F(x)) is globally synchronized provided that d is chosen sufficiently large.

Proof. To complete the proof of the theorem, it suffices to show that the coupled
system (2.5) is bounded dissipative. Writing the first & components of the coupled
system, we get

X1 —bf(l + gl(f(, t) X1
R [ : +dDRG)| (4.5)

X —bxy, + g (X, 1) Xp

where the components of g;(x,t) have the form of sin(x). Applying the variation
of constant formula to (4.5), we see that

t
Zk(t) _ 6(7b1+d]3®G)tzk(O) +/ e(be+dD®G)(tfs)G(x’s>ds
0

g1 (X7 t)
where G(x,t) = Now,

gu(x.1)
b t .
(0 < coe™ e 0)] + covimk [ e 8C-ds
0
< coe™ ||z (0)| + o,

for some constant ¢g > 0 and a = 29+vmk. Similarly, we have ||Xpi(t)]| <
coe™ 2| Rp4s(0)|| + a for all i = 1,...,n — k. Hence,

[%(0)l] < ce™ 2 |%(0)]] + nay
for some constant ¢. Thus, system (2.5) is bounded dissipative with respect to
((n+ Da, ((c+ 1)n + c)a). O

(iii) Finally, we explore the example in [16]. Specifically, the subsystem consid-
ered is the Duffing oscillation defined by

T; =y (4.6a)

Ui = —ay; — x5 + acoswt, (4.6b)

where a and a are positive constants. Letting x; = (21, z42)7 =: (2;,v:)T, we have
f(x,t) = (f1(xi,t), fo(x4,1)) = (yi, —y; — xf’ + acoswt). (4.7a)
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Assume the coupling matrices D and G are, respectively,

0 0
D(c) = 4.
@=(07) (4.7)
and
-2 e—r 0 0 e+r
e+r —2 e€—r 0
0
Gl(e,r) (4.7¢)
0
0 . =2 e—r
€E—r 0 0 e+r —2

s

where € > 0 and r are scalar diffusive and gradient coupling parameters, respec-
tively. Setting x = (z1,...,2m)7, ¥y = (Y1, ym)?, x> = (23,...,23)7, and
g(t) = acos(wt) (1,---,1)T. We see that (2.5) becomes

y = —ay — x>+ g(t) + dcG(e,7)x + dG(e, r)y. (4.8b)
We first study equation (4.8) with » = 0. In order to construct an approximate

Lyapunov function of the coupled system (D(c), G(e,0), F(x,y,t)), we first find a
matrix L so that

L+ L7 = G(e,0), (4.9)

Now, consider the following scalar-valued function

4

1 ™
U(X7y)=§<y,y>+2%+b<x,Lx>+k<x,y>, (4.10)
=1

where b and k are constants to be determined later. Taking the time derivative of
U along solutions of the coupled system (D(c), G(e,0),F(x,y,t)), we have

dU -
s =< y,y>+Zx?yi+b<y,G(e,0)x>+k<y,y>+k<x,y>
i=1
=(k-—a)<y,y>-ka<xy>-k<x,x>+<y+kxgt) >
+d<y,G(c,0)y > +(dc+ kd+b) <y,G(e,0)x > +kdec < x,G(e,0)x >
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Note that

2,

3~

<x,x3>:§ x?E(E xf) >
m
i=1 i=1

and —G(e,0) is a nonnegative definite matrix. We have that, by choosing b =
—d(c+k)and k > 0,

du
E§(k—a)<y,y>—k‘a<x,y>7k<x,x3>+<y+kx,g(t)>

A

k
< (k= a)llyl3 + kallx[allylla = —l1xllz + vVma(llyll> + klx[2)

su(lxl2, 1y l2).

We are now in a position to show the bounded dissipation of the coupled system
(D(c), G(€,0),F(x,y,1)).

Proposition 4.1.

(i) Let b= —d(c+ k), and

4

sal, (4.11)

Then there exists a constant o so that 2 < 0 for ||x[13 + |ly[3 > co.
ii) If ¢ =0, then the first assertion of the proposition still holds true.
prop

Proof. Suppose ||x||2 > 1. Then

k
u(llxla, lyll2) < (k = a)llyll3 + kalx[allylls = 15 + vVima(llyll2 + k[x|2)

sa(xlle, 1y ll2).

It then follows from (4.11) that the the level curve of @ is a bounded closed curve.
We shall call such curve ellipse-like is an elliptic in the plane. Thus, there exists
a ¢ so that %% < 0 whenever |[x[|3 + [|y[|3 > ¢ and ||x[2 > 1. Let ||x[|2 < 1 and

Ix]13 + [|l¥]|3 > c2. Here ¢y is a constant to be determined. Then
u(|lxll2, [lyll2) < (k = a)llyll3 + (ko + v/ma)|lyll2 + vVmak =: h(|ly||2).

Since h(||y||2) is a parabola-like curve which is open downward, there exists a ¢ > 1
such that h(||y|l2) < 0 whenever ||y|l2 > ¢. Thus, if ¢z > ¢?+1, then u(||x||2, [|y|l2) <
0 whenever ||x|[2 < 1 and ||x||3 + [|y||3 > c2. Picking ¢ = max{ci,ca}, we have

that the assertion of the proposition holds true. (Il

Proposition 4.2. Assume (4.11) holds true. Then lim U(x,y) = oo, where r =

T—00
VIR + .
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Proof. From (4.10), we have that

1 T pd
Ux,y) = §|\Y||2+Zf+b<x,Lx>+k<X,y>
i=1

1 1
> Sy + Il + bollxll — kx| - [y,

where by = b||L||. Let by > 0 satisfying ﬁbf + bo > k2. Then suppose ||x|| > b1,
we have

1
Ux,y) = 5lyl* + &[Ix]* = llx]lly | =: ha(l1x]l, 1),

Since the level curve of hy(||x]|, ||y]|) is elliptic-like in the plane. Thus, for any given
M > 0, there exists a d; > 0 such that U(x,y) > M whenever ||x||* + |y||? > d3
and ||x|| > b;.

Suppose ||x|| < b1, we then have

1
Ulx,y) > 5”3’”2 — kb [ly |l + bobT =: ha(|Ix]], ly]]).

Since ho(||x||, ||y ]|) is parabola-like curve which are open upward in the plane. Thus,
for any given M > 0, there exists a do > 0 such that U(x,y) > M whenever
IIx]12 + [|y||* > d3 and ||x|| < b;. Picking o = max{dy,ds}, we have that U(x,y) >
M for all ||x]|? + |ly||? > «?. Thus, the assertion of the proposition holds true. [

Theorem 4.3. Coupled system (D(c), G(e,0),F(x,y,t)) is bounded dissipative,
where € > 0.

Proof. The proof is direct consequences of Propositions 2.3, 4.1 and 4.2. (]

Theorem 4.4. Let f, D(c) and G(e,0) be given as in (4.7a), (4.70), and (4.7¢c), re-
spectively. Let ¢ > 0. Then the coupled system (D(c), G(e,0),F(x,y,t)) is globally
synchronized provided that d is chosen sufficiently large.

Proof. Letting w; = px; + qy;, we see that (4.6) becomes

1
b= — Loy + (4.12a)
"' q

w; = (g — a)w; + pla — g)x, — qx? + ga cos(wt)
+ d(qc — p)(G(e,0)x); + d(G(e, 0)w); (4.12b)

Suppose ¢ = 0. Then we pick ¢ =1 and p = é. In vector form (4.12) becomes

w B fi(x, w, ) 10 w
()= (R ) e ((o o Jesem) (3)
where the ith component of f; (z,w, t) is
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(f'l(x,w,t))' = (é —a)w; + 1(04 - l)xl — g3 + acos wt — (G(e,0)x);

and

(E(x,w,t))i = —ézi + w;.

It is then clear that (4.13) satisfies the assumptions in Theorem 3.2. Hence, the
coupled system (D(c), G(¢,0),F(x,y,t)) is synchronized. Suppose ¢ # 0. Choosing
p and ¢ so that gc = p, we conclude, again, that new coupled system (4.13) satisfies
synchronization hypothesis. (]

We now turn our attention to equation (4.8) with r # 0.

Theorem 4.5. Assume that « > ¢ > 0, € > 0 and r € R. Then coupled system
(D(c), G(e, 1), F(x,y,1)) is bounded dissipative.

Proof. Consider the following scalar-valued function

1 L xd
U(X;Y):*<y,y>+zﬂ+<x,Kx>+c<x,y>, (4.14a)
2 = 4
where ¢ is given as in (4.7b), and the matrix K satisfies

K+ K" = —2¢dcG(1,0) =: K. (4.14b)

Taking the time derivative of U along solutions of coupled system (D(c), G(e, ), F(x,y,1)),
we have

Fri (—a+o)|yll*+ <glt),sx+y>—ca<xy>—c<xXx >
+d < G(e,r)y,y > +dc? < x,G(e,7)x > + < x,K'y >
+de < x,[GT(e,r) + G(e,7)]y >

=(—a+o)|ylP+ <glt),ex+y > —ca<x,y>—-c<xx >

+de < G(1,0)y,y > +dc*e < x,G(1,0)x >

&
< (—a+ oyl + vma(ellx| + [ly[) + callx|lly]l = — x|,

Following the similar arguments as done in proving the assertions of Proposition

4.1 and 4.2, we conclude that (i) %% < 0 whenever [x|? + |ly[> > c¢o for some

¢o > 0 and (ii) lim U(x,y) = oo, where r = /||x||? + |ly||?. It then follows from
Proposition 2.3 that coupled system (4.8) is bounded dissipative.
O

Theorem 4.6. Let £, D(c¢) and G(e,r) be given as in (4.7a), (4.7b) and (4.7¢),
respectively. Let 0 < ¢ < «. Then the coupled system (D(c), G(e,r),F(x,y,t)) is
globally synchronized provided that d is chosen sufficiently large.
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Proof. Since G(e,r) is a circulant matrix (see e.g., [5]), the eigenvalues Ay of G(e, 1)
are

2k 2k
g = —26(1—COSJ)—i2TSinJ, k=0,...,m—1.
n n

Hence G(e,r) satisfies assumptions (3.3a) and (3.3b). The proof of the theorem is
thus similar to that of Theorem 4.4. g

Remark 4.2. (i) It was shown in [8] that there are positive constants dy and
¢o such that, for d > dy, ¢ > cp, the system (D(c),G(e,0),F) given in (4.8) is

synchronized. Our results also work for the case that c¢g = 0 or G(e,r), r # 0. (ii)
It was also shown in [1] that there are positive constants dy and ¢y such that for
d > dy, ¢ > ¢g, the system (D(c), G,F) is synchronized. Here —G is a positive
definite matrix. (iii) The case that the lattices of coupled Rassler-like equations in
[9] is a bit more different, and we will address this issue in a forthcoming paper.
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