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Boundary Influence On The Entropy Of A Lozi-Type Map

Yu-Chuan Chang and Jonq Juang

Abstract: Let T be a Henon-type map induced from a spatial discretization of a

Reaction-Diffusion system. With the above-mentioned description of T , the follow-

ing open problems were raised in [Afraimovich and Hsu, 2003]. Is it true that, in

general, h(T ) = hD(T ) = hN (T ) = hℓ(1),ℓ(2)(T )? Here h(T ) and hℓ(1),ℓ(2)(T ) (see

Definitions ?? and ??) are, respectively, the spatial entropy of the system T and the

spatial entropy of T with respect to the lines ℓ(1) and ℓ(2), and hD(T ) and hN (T )

are spatial entropy with respect to the Dirichlet and Neuman boundary conditions.

If it is not true, then which parameters of the lines ℓ(i), i = 1, 2, are responsible

for the value of h(T )? What kind of bifurcations occurs if the lines ℓ(i) move? In

this paper, we shed some light on these open problems with T being replaced by a

Lozi-type map.

摘要: 若T是一個由反應-擴散系統之空間離散化誘導出的 Henon 型態映射。 伴隨以上所提

的T , 跟隨在後的開放性問題是 Afraimovich 和許教授在2003年出版的書中所提出來。 一般

來說,h(T ) = hD(T ) = hN (T ) = hℓ(1),ℓ(2)(T )是否為真? 此處 h(T )與hℓ(1),ℓ(2)(T )(見

定義1.1與1.2) 分別是系統T的空間熵及T對應於直線ℓ(1)、ℓ(2)、hD(T )與hN (T )的空間熵, 而

hD(T )與hN(T )是對應於 Dirichlet 與 Neuman 邊界條件的空間熵。 假設, 若不為真, 則直

線ℓ(i), i = 1, 2, 的那些參數對h(T )的值影響較大? 假使直線ℓ(i)移動, 將發生何種分岐點? 在

此篇論文中, 我們將以 Lozi 型態映射取代T而提出了一些見解在這未解決的問題上。

Cellular Neural Networks : Defect Patterns And Stability

Jonq Juang, Chin-Lung Li and Shih-Chia Tseng

Abstract:Of concern is one-dimensional Cellular Neural Networks (CNNs) with

a piecewise-linear output function for which the slope of the output outside linear

zone is r > 0. We impose a symmetric coupling between the nearest neighbors. Two

parameters a and β are used to describe the weights between the cell with itself and

its nearest neighbors, respectively. We study patterns that exist as stable defect

equilibria (see Definitions 1.1 and 1.2). In particular, we give an infinite-dimensional

version of Gerschgorin’s Theorem and derive a concept of δ-extendability to deter-

mine whether two local-defect patterns can be glued together. Using such tools, we

give a region in (r, a, β)-space for which the corresponding defect patterns have non-

zero spatial entropy, while the associated mosaic patterns have zero spatial entropy.

摘要: 在這篇論文中, 探討的是一維細胞類神經網路在其輸出函數是片段線性輸出函數, 且此

函數在線性區域以外的斜率r > 0, 我們在最鄰近的細胞之間採用一組對稱的耦合, 用兩個參

數來描述細胞本身與最鄰近細胞間各自的權數。 在這些條件下我們研究存在穩定缺陷平衡的花

樣 (參閱定義1.1和定義1.2)。 特別地, 我們給予一個無窮維觀點的 Gerschgorin 定理並且導

出一個δ-extendability 的概念來決定兩個局部花樣是否可以接合在一起。 使用這些工具方法,
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我們給定一個在(r, a, β)空間的區域, 其相對應的缺陷花樣擁有非零的空間熵而其相關聯的馬

賽克花樣的空間熵卻為零。 更有甚者, 在那些區域所產生的花樣並不是有限型式的子替換。

Fourier Coefficients, Lyapunov Exponents, Invariant

Measures and Chaos

Huan-Hsun Hsu and Jonq Juang

Abstract:A complex and unpredictable frequency spectrum of a signal has long

been seen in physics and engineering as an indication of a chaotic signal. The first

step to understand such phenomenon mathematically was taken up by Chen, Hsu,

Huang and Roque-Sol. In particular, they look for possible connections between

chaotic dynamical systems and the behavior of its Fourier coefficients. Among other

things, they found variety of sufficient conditions on the Fourier coefficients of the

n-th iterate fn of an interval map f , for which the topological entropy of f is pos-

itive. In this thesis, we explore the relationship between the Fourier coefficients of

an interval map and its Lyapunov exponent and invariant measure. Specifically, the

relationships between those three quantities of two family of interval maps, piece-

wise linear maps admitting a Markov partition and quadratic family, are considered.

摘要: 長久以來, 在物理及工程上, 常利用對一個複雜且不可預測的信號作光譜分析來判斷此信

號是否渾沌。 首先將此現象做數學分析的是陳鞏老師等人。 他們是希望尋求一種關於渾沌動態

系統以及傅利葉係數之間的關係。 陳鞏老師等人找到了許多關於一個系統做 n 次疊代之後的傅

利葉係數, 可以使得這個系統的拓樸熵大於零的充分條件。 在這篇論文當中, 我們創新出一個針

對定義在一個區間的函數, 傅利葉係數, 黎阿普諾夫指數和不變測度的關係。 尤其我們是針對一

個定義在馬可夫分割上的片段線性函數以及二次函數來討論這三種特徵量。

Partial-State Coupling, Nonlinearities, and Synchronization

Jonq Juang, Chin-Lung Li, and Yu-Hao Liang

Abstract: Partial-state coupling plays a surprising role in determining if a cou-

pled system can achieve synchronization. For instance, synchronization for the

single zi-component coupled Lorenz equations can not occur, while synchroniza-

tion for other partial-state couplings can be realized. The purpose of this paper is

to address these coupling issues in a general framework. Some sharp conditions are

given on the nonlinearities of the subsystem and on the coupling scheme to ensure

the synchronization. We apply our theorems to three examples: coupled Lorenz-

equations [?]; coupled chaotic works [?]; coupled Duffing oscillators [?]. The results

on the latter two examples appear to be new.

摘要: 局部狀態的耦合在耦合系統是否可以達到同步化, 扮演一個讓人驚訝的角色。 舉個例子,

在Lorenz 方程式裡, 耦合在單一zi分量並不能發生同步化, 但耦合在其他局部狀態下, 同步化

可以被實現。 這篇論文的主要目的是標記這些耦合的問題在一般廣義的架構下。 一些明顯的條
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件達到同步化, 已經被給定在非線性的子系統以及在耦合結構下。 我們應用我們的定理在三個

例子: 耦合 Lorenz 方程式; 耦合混沌工作; 耦合 Duffing 震盪子。 在最後兩個例子的結果似

乎是新的。

=============================================

Papers published or accepted:

Snap-Back Repellers And Chaotic Traveling Waves

In One-Dimensional Cellular Neural Networks

Ya-Wen Chang, Jonq Juang and Chin-Lung Li

International Journal of Bifurcation and Chaos (IJBC), accepted.

Abstract: In 1998, Chen et al., [6] found an error in Marotto’s paper [24].

It was pointed out by them that the existence of an expanding fixed point

z of a map F in Br(z), the ball of radius r with center at z which does

not necessarily imply that F is expanding in Br(z). Subsequent efforts (see

e.g., [6], [22]-[23].) in fixing the problems all have some discrepancies since

they only give conditions for which F is expanding ”locally”. In this paper,

we give sufficient conditions so that F is ”globally” expanding. This, in

turn, gives more satisfying definitions of a snap-back repeller. We then use

those results to show the existence of chaotic backward traveling waves in a

discrete time analogy of one-dimensional Cellular Neural Networks (CNNs).

Some computer evidence of chaotic traveling waves is also given.

摘要: 在1998年,Chen 等人 [6]在 Marotto 的論文 [24]裡發現了一個錯誤。 在 Chen

等人文章中指出,一個 mapF如果存在一個擴展的固定點z , 則F在以半徑為 r、 圓心在

z所形成的球Br(z)上, 並不必要的推得F在Br(z)是擴展的。 後來接著在為了修正這個

問題 (詳見 例子, [6], [22]-[23].) 的結果都有些地方不一致, 因為他們都僅僅給予F是

”局部”擴展的條件。 在這篇論文裡, 我們給了一個充分的條件使得F是全域擴展。 接著

我們給了snap-back repeller 更滿足的定義。 然後, 我們使用這些結果去說明, 在比擬

一維度離散時間的類神經網絡 (CNNs) 裡, 混沌的 backward traveling waves 的存

在性。 在這篇論文裡, 我們也給予了對於混沌的 backward traveling waves 一些電

腦上的驗證。

Cellular Neural Networks : Mosaic Patterns, Bifurcation

and Complexity

Jonq Juang, Chin-Lung Li and Ming-Huang Liu
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International Journal of Bifurcation and Chaos, Vol. 16, No. 1 (2006)

47-57

Abstract: We study a one-dimensional Cellular Neural Network with an

output function which is non-flat at infinity. Spatial chaotic regions are com-

pletely characterized. Moreover, each of their exact corresponding entropy

is obtained via the method of transition matrices. We also study the bifur-

cation phenomenon of mosaic patterns with bifurcation parameters z and β.

Here z is a source (or bias) term and β is the interaction weight between the

neighboring cells. In particular, we find that by injecting the source term,

i.e. z 6= 0, a lot of new chaotic patterns emerge with a smaller interaction

weight β. However, as β increases to a certain range, most of previously ob-

served chaotic patterns disappear, while other new chaotic patterns emerge.

摘要: 我們主要探討一個細胞類神經網路模型的馬賽克花樣, 在這裡考慮的輸出函數在

無窮遠的地方並不是平坦的。 許多複雜的參數區域是可以被完整地描繪出來, 每一個參

數區域的熵是可以藉由轉換矩陣的方法算出來; 我們也利用參數z和β 來討論一些馬賽

克花樣的分歧現象, 在這裡z是一個偏壓項、β是和鄰近細胞的互動比重。特別地, 對於一

個小的互動比重β, 我們發現當加入偏壓項之後, 許多新的複雜參數區域都會產生。 然

而當β增加到某一個範圍之後, 許多上述的複雜參數區域會消失, 但是又有一些新的複

雜參數範圍會產生。

Eigenvalue Problems and their Application to The Wavelet

Method of Chaotic Control

Jonq Juang and Chin-Lung Li

Journal of Mathematical Physics, 47, 072704 (2006) (16 pages)

Abstract:Controlling chaos via wavelet transform was recently proposed by

Wei, Zhan and Lai ([11]). It was reported there that by modifying a tiny frac-

tion of the wavelet subspace of a coupling matrix, the transverse stability of

the synchronous manifold of a coupled chaotic system could be dramatically

enhanced. The stability of chaotic synchronization is actually controlled by

the second largest eigenvalue λ1(α, β) of the (wavelet) transformed coupling

matrix C(α, β) for each α and β. Here β is a mixed boundary constant and

α is a scalar factor. In particular, β = 1(resp., 0) gives the nearest neighbor

coupling with periodic(resp., Neumann) boundary conditions. The first rig-

orous work to understand the eigenvalues of C(α, 1) was provided by Shieh,

Wei, Wang and Lai ([9]). The purpose of this paper is two-fold. First,

we apply a different approach to obtain the explicit formulas for the eigen-

values of C(α, 1) and C(α, 0). This, in turn, yields some new information
4



concerning λ1(α, 1). Second, we shed some light on the question whether

the wavelet method works for general coupling schemes. In particular, we

show that the wavelet method is also good for the nearest neighbor coupling

with Neumann boundary conditions.

摘要: 利用微波轉換控制混沌系統, 是由 Wei, Zhan and Lai ([11]) 在最近被提

出。 這篇報告中, 藉由修改一個耦合矩陣的微波子空間的極微小的分數, 對於一個耦

合動態系統的同步流型橫截的穩定性, 可以被引人注目性地增大。 對所有的α與β而言,

這種混沌同步化的穩定性, 實際上, 是被微波轉換的耦合矩陣C(α, β)之第二大固有

值λ1(α, β)所控制。 在此,β是一個混合邊界常數, 並且 α是一個純量因子。 特別地,β =

1(相對應於0) 給予了最鄰近耦合的週期 (相對應於 Neumann) 邊界條件。 第一個嚴密

的去瞭解C(α, 1)的固有值工作是由 Shieh, Wei, Wang and Lai ([9]) 所提出。 這一

篇論文的目的被分為兩大類,第一, 我們應用了不同的逼近方式去獲得C(α, 1)與C(α, 0)明

顯的固有值公式。 在此, 對於考慮λ1(α, 1)依次產出了一些新的資訊。 第二, 我們指出

對於一般的耦合設計微波方式的工作。 特別地, 我們顯示出微波方式對於最鄰近耦合的

Neumann 邊界條件也是好的。

Perturbed Block Circulant Matrices And Their Application

to the Wavelet Method of Chaotic Control

Jing-Wei Chang, Jonq Juang and Chin-Lung Li

Journal of Mathematical Physics, accepted.

Abstract:Controlling chaos via wavelet transform was proposed by Wei,

Zhan and Lai [Phys. Rev. Lett. 89, 284103 (2002)]. It was reported there

that by modifying a tiny fraction of the wavelet subspace of a coupling ma-

trix, the transverse stability of the synchronous manifold of a coupled chaotic

system could be dramatically enhanced. The stability of chaotic synchro-

nization is actually controlled by the second largest eigenvalue λ2(α, β) of the

(wavelet) transformed coupling matrix C(α, β) for each α and β. Here β is a

mixed boundary constant and α is a scalar factor. In particular, β = 1(resp.,

0) gives the nearest neighbor coupling with periodic(resp., Neumann) bound-

ary conditions. In this paper, we obtain two main results. First, the reduced

eigenvalue problem for C(α, 0) is completely solved. Some partial results for

the reduced eigenvalue problem of C(α, β) are also obtained. Second, we

are then able to understand behavior of λ2(α, 0) and λ2(α, 1) for any j and

n ∈ N. Our results complete and strengthen the work of Shieh et al. [J.

Math. Phys. to appear] and Juang and Li [J. Math. Phys. to appear].

摘要: 關心的是, 對於β任意固定, 擾動區塊循環矩陣C(α, β)種類的特徵曲線問題。 這

裡α > 0是 (微波) 純量積因子且β ∈ R表示混合邊界常數。C(α, β)是一個區塊循環
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矩陣只有在β = 1。 對於每個α,C(α, 1)的特徵值包含它的區塊矩陣作線性組合後的特

徵值這件事是已經被知道的。 這樣的結果被稱作對於C(α, 1)的降低特徵值問題。 在這

篇論文裡, 我們得到二個主要結果。 首先, 對於C(α, 0)的降低特徵值問題被完全解決

了。C(α, β)的降低特徵值問題也得到一些部分結果。 第二, 對於C(α, 0)和C(α, 1)利

用微波方法控制混沌, 扮演必要角色的第二大特徵曲線問題將被討論。
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Perturbed Block Circulant Matrices And Their Application
to the Wavelet Method of Chaotic Control

Jonq Juang∗ Chin-Lung Li† and Jing-Wei Chang‡

∗Department of Applied Mathematics, National Chiao Tung University,
Hsinchu, Taiwan, R.O.C.(jjuang@math.nctu.edu.tw).

†Department of Applied Mathematics, National Chiao Tung University,
Hsinchu, Taiwan, R.O.C.(presidentf.am92g@nctu.edu.tw).

‡Department of Applied Mathematics, National Chiao Tung University,
Hsinchu, Taiwan, R.O.C.(jof12789@yahoo.com.tw).

Abstract: Controlling chaos via wavelet transform was proposed
by Wei, Zhan and Lai [Phys. Rev. Lett. 89, 284103 (2002)].
It was reported there that by modifying a tiny fraction of the
wavelet subspace of a coupling matrix, the transverse stability of
the synchronous manifold of a coupled chaotic system could be
dramatically enhanced. The stability of chaotic synchronization is
actually controlled by the second largest eigenvalue λ2(α, β) of the
(wavelet) transformed coupling matrix C(α, β) for each α and β.
Here β is a mixed boundary constant and α is a scalar factor. In
particular, β = 1(resp., 0) gives the nearest neighbor coupling with
periodic(resp., Neumann) boundary conditions. In this paper, we
obtain two main results. First, the reduced eigenvalue problem for
C(α, 0) is completely solved. Some partial results for the reduced
eigenvalue problem of C(α, β) are also obtained. Second, we are
then able to understand behavior of λ2(α, 0) and λ2(α, 1) for any
wavelet dimension j ∈ N and block dimension n ∈ N. Our results
complete and strengthen the work of Shieh et al. [J. Math. Phys.
47, 082701 (2006)] and Juang and Li [J. Math. Phys. 47, 072704
(2006)].

1. Introduction

Of concern here is the eigencurve problem for a class of ”perturbed” block circulant
matrices.

C(α, β)b = λ(α, β)b. (1.1a)

Here C(α, β) is an n× n block matrix of the following form.
1



C(α, β) =



C1(α, β) C2(α, 1) 0 · · · 0 CT
2 (α, β)

CT
2 (α, 1) C1(α, 1) C2(α, 1) · · · 0 0

...
. . . . . . . . .

...
...

. . . . . . . . .
...

0 0 · · · CT
2 (α, 1) C1(α, 1) C2(α, 1)

C2(α, β) 0 · · · 0 CT
2 (α, 1) ÎC1(α, β)Î


n×n.

(1.1b)

Here

C1(α, β) =



−1− β 1 0 · · · · · · 0
1 −2 1 0 · · · 0
0 1 −2 1 · · · 0
...

. . . . . . . . . . . .
...

0 · · · 0 1 −2 1
0 · · · · · · 0 1 −2


2j×2j

− α(1 + β)
22j

eeT

=: A1(β, 2j)− α(1 + β)
22j

eeT , (1.1c)

where e = (1, 1, ..., 1)T , j is a positive integer, α > 0 is a (wavelet) scalar factor and
β ∈ R represents a mixed boundary constant. Moreover,

C2(α, β) =


0 0 · · · 0
...

...
0 0
β 0 · · · 0

 +
αβ

22j
eeT

=: A2(β, 2j) +
αβ

22j
eeT , (1.1d)

Î =



0 0 · · · · · · 0 1
0 0 · · · 0 1 0
... · · ·

...
... · · ·

...
0 1 0 · · · 0 0
1 0 · · · · · · 0 0


.

(1.1e)

The dimension of C(α, β) is n2j×n2j . From here on, we shall call n and j the block
and the wavelet dimensions of C(α, β), respectively. C(α, β) is a block circulant
matrix (see e.g., [1]) only if β = 1. It is well-known, see e.g., Theorem 5.6.4 of [1],

2



that for each α the eigenvalues of C(α, 1) consists of eigenvalues of a certain linear
combinations of its block matrices. Such results are called the reduced eigenvalue
problem for C(α, 1).

This problem arises in the wavelet method for a chaotic control ([7]). It is found
there that the modification of a tiny fraction of wavelet subspaces of a coupling
matrix could lead to a dramatic change in chaos synchronizing properties. We
begin with describing their work. Let there be N nodes (oscillators). Assume ui

is the m-dimensional vector of dynamical variables of the ith node. Let the iso-
lated (uncoupling) dynamics be u̇i = f(ui) for each node. Used in the coupling,
h : Rm → Rm is an arbitrary function of each node’s variables. Thus, the dynamics
of the ith node is

u̇i = f(ui) + ε

N∑
j=1

aijh(uj), i = 1, 2, ..., N, (1.2a)

where ε is a coupling strength. The sum
N∑

j=1

aij = 0. Let u = (u1,u2, ...,uN )T ,

F (u) = (f(u1), f(u2), ..., f(uN ))T , H(u) = (h(u1), h(u2), ..., h(uN ))T , and A =
(aij). We may write (1.1a) as

u̇ = F (u) + εA×H(u). (1.2b)

Here × is the direct product of two matrices B and C defined as follows. Let
B = (bij)k1×k2 be a k1 × k2 matrix and C = (Cij)k2×k3 be a k2 × k3 block matrix.
Then

B × C = (
k2∑
l=1

bilClj)k1×k3 .

Many coupling schemes are covered by Equation(1.2b). For example, if the Lorenz
system is used and the coupling is through its three components x, y, and z, then
the function h is just the matrix

I3 =

 1 0 0
0 1 0
0 0 1


.

(1.3)

The choice of A will provide the connectivity of nodes. For instance, the nearest
neighbor coupling with periodic, Neumann boundary conditions and mixed bound-
ary conditions are, respectively, given as A = A1(1, N)+A2(1, N)+AT

2 (1, N) =: AP ,
A = A1(0, N)+A2(1, N)Î =: AN and A = A1(β, N)+A2(β, N)+AT

2 (β, N)+ (1−
β)A2(1, N)Î =: AM , where those A′is, i = 1, 2, are defined in (1.1c,d).
Mathematical speaking ([5]), the second largest eigenvalue λ2 of A is dominant in
controlling the stability of chaotic synchronization, and the critical strength εc for
synchronization can be determined in term of λ2,

3



εc =
Lmax

−λ2
. (1.4)

The eigenvalues of A = AP are given by λi = −4 sin2 π(i−1)
N , i=1,2,...,N. In general,

a larger number of nodes gives a smaller nonzero eigenvalue λ2 in magnitude and,
hence, a larger εc. In controlling a given system, it is desirable to reduce the crit-
ical coupling strength εc. The wavelet method in [7] will, in essence, transform A

into C(α, β). Consequently, it is of great interest to study the second eigencurve of
C(α, β) for each β. By the second largest eigencurve λ2(α, β) of C(α, β) for fixed β,
we mean that for given α > 0, λ2(α, β) is the second largest eigenvalue of C(α, β).
We remark that 0 is the largest eigenvalue of C(α, β) for any α > 0 and β ∈ R. This
is to say for fixed β, λ2(α, β) = 0 is the first eigencurve of C(α, β). A numerical
simulation [7] of a coupled system of N = 512 Lorenz oscillators shows that with
h = I3 and A = AP , the critical coupling strength εc decreases linearly with respect
to the increase of α up to a critical value αc. The smallest εc is about 6, which is
about 103 times smaller than the original critical coupling strength, indicating the
efficiency of the proposed approach.
The mathematical verification of such phenomena is first achieved by Shieh, Wei,
Wang and Lai [6]. Specifically, they solved the second eigencurve problem of C(α, 1)
with n being a multiple of 4 and j being any positive integer. Subsequently, in [4],
the second eigencurve problem for C(α, 0) and C(α, 1) with n being any positive
integer and j = 1 are solved without touching on the reduced eigenvalue problem.
In this paper, we obtain two main results. First, the reduced eigenvalue problem
for C(α, 0) is completely solved. Some partial results for the reduced eigenvalue
problem of C(α, β) are also obtained. Second, we are then able to understand be-
havior of λ2(α, 0) and λ2(α, 1) for any j and n ∈ N.

2. Reduced Eigenvalue problems

Writing the eigenvalue problem C(α, β)b = λb, where b = (b1,b2, ...,bn)T and
bi ∈ C2j

, in block component form, we get

CT
2 (α, 1)bi−1 + C1(α, 1)bi + C2(α, 1)bi+1 = λbi, 1 ≤ i ≤ n. (2.1a)

Mixed boundary conditions would yield that

CT
2 (α, 1)b0+C1(α, 1)b1+C2(α, 1)b2 = λb1 = C1(α, β)b1+C2(α, 1)b2+CT

2 (α, β)bn,

and

CT
2 (α, 1)bn−1+C1(α, 1)bn+C2(α, 1)bn+1 = λbn

= C2(α, β)b1+CT
2 (α, 1)bn−1+ÎC1(α, β)Îbn,

4



or, equivalently,

CT
2 (α, 1)b0 = (C1(α, β)− C1(α, 1))b1 + CT

2 (α, β)bn

= [


1− β 0 · · · 0

0 0 · · · 0
...

...
. . .

...
0 0 · · · 0

 +
α(1− β)

22j
eeT ]b1 + [


0 · · · 0 β

0 · · · 0 0
...

. . .
...

...
0 · · · 0 0

 +
αβ

22j
eeT ]bn

= (1− β)CT
2 (α, 1)Îb1 + βC2(α, 1)bn, (2.1b)

and

C2(α, 1)bn+1 = (ÎC1(α, β)Î − C1(α, 1))bn + C2(α, β)b1

= (1− β)CT
2 (α, 1)Îbn + βC2(α, 1)b1. (2.1c)

To study the block difference equation (2.1), we set

bj = δjv, (2.2)

where v ∈ C2j

and δ ∈ C.

Substituting (2.2) into (2.1a), we have

[CT
2 (α, 1) + δ(C1(α, 1)− λI) + δ2C2(α, 1)]v = 0. (2.3)

To have a nontrivial solution v satisfying (2.3), we need to have

det[CT
2 (α, 1) + δ(C1(α, 1)− λI) + δ2C2(α, 1)] = 0. (2.4)

Definition 2.1. Equation (2.4) is to be called the characteristic equation of the
block difference equation (2.1a). Let δk = δk(λ) 6= 0 and vk = vk(λ) 6= 0 be complex
numbers and vectors, respectively, satisfying (2.3). Here k = 1, 2, ...,m and m ≤ 2j .
Assume that there exists a λ ∈ C, such that bj = Σm

k=1ckδj
k(λ)vk(λ), j=0,1,...,n+1,

satisfy equation (2.1b,c), where ck ∈ C. If, in addition, bj , j = 1, 2, ..., n, are not
all zero vectors, then such δk(λ) is called a characteristic value of equation (2.1) or
(1.1a) with respect to λ and vk(λ) its corresponding characteristic vector.

Remark 2.1. Clearly, for each α and β, λ in the Definition of 2.1 is an eigenvalue
of C(α, β).
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Should no ambiguity arises, we will write CT
2 (α, 1) = CT

2 , C1(α, 1) = C1 and
C2(α, 1) = C2. Likewise, we will write A2(β, 2j) = A2(β) and A1(β, 2j) = A1(β).

Proposition 2.1. Let ρ(λ) = {δi(λ) : δi(λ) is a root of equation (2.4)}, and let
ρ(λ) = { 1

δi(λ) : δi(λ) is a root of equation (2.4)}. Then ρ(λ) = ρ(λ). Let δi and

δk be in ρ(λ). We further assume that δi and vi = (vi1, · · · , vi2j )T satisfy (2.3).
Suppose δi · δk = 1. Then δk and vk = (vi2j , vi2j−1, · · · , vi2, vi1)

T =: vs
i also satisfy

(2.3). Conversely, if δi · δk 6= 1, then vk 6= vs
i .

Proof. To proof ρ(λ) = ρ(λ), we see that

det[CT
2 + δ(C1 − λI) + δ2C2] = δ2det[

1
δ2

CT
2 +

1
δ
(C1 − λI) + C2]

= δ2det[
1
δ2

CT
2 +

1
δ
(C1 − λI) + C2]T = δ2det[CT

2 +
1
δ
(C1 − λI) +

1
δ2

C2].

Thus, if δ is a root of equation (2.4), then so is 1
δ . To see the last assertion of the

proposition, we write equation (2.3) with δ = δi and v = vi in component form.

2j∑
m=1

[(CT
2 )lmvim + δi(C̄1)lmvim + δ2

i (C2)lmvim] = 0, l = 1, 2, ..., 2j . (2.5)

Here C̄1 = C1 − λI. Now the right hand side of (2.5) becomes

(
1
δk

)2{
2j∑

m=1

[(C2)l(2j+1−m)vi(2j+1−m) + δk(C̄1)l(2j+1−m)vi(2j+1−m)

+δ2
k(CT

2 )l(2j+1−m)vi(2j+1−m)]}

= (
1
δk

)2{
2j∑

m=1

[(CT
2 )(2j+1−l)mvi(2j+1−m) + δk(C̄1)(2j+1−l)mvi(2j+1−m)

+δ2
k(C2)(2j+1−l)m)vi(2j+1−m)]}, l = 1, 2, ..., 2j . (2.6)

We have used the fact that

(A)(2j+1−l)m = (AT )l(2j+1−m), (2.7)

where A = CT
2 or C̄1 or C2 to justify the equality in (2.6). However, (2.7) follows

from (1.1c) and (1.1d). Letting vi(2j+1−m) = vkm, we have that the pair (δk, vk)
satisfies (2.3). Suppose vk = vs

i , we see, similarly, that the pair ( 1
δi

, vk) also satisfy
(2.3). Thus 1

δi
= δk.

�

Remark 2.2. Equation (2.4) is a palindromic equation. That is for each λ, δ and
δ−1 are both the roots of (2.4). However, eigenvalue problem discussed here is not
a palindromic eigenvalue problem [3].
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Definition 2.2. We shall call vs and −vs, the symmetric vector and antisymmetric
vector of v, respectively. A vector v is symmetric (resp., antisymmetric) if v = vs

(resp., v = −vs).

Theorem 2.1. Let δk = e
πk
n i, k is an integer and i =

√
−1, then δ2k, k=0,1,...,n-1,

are characteristic values of equation (2.1) with β = 1. For each α, if λ ∈ C satisfies

det[CT
2 + δ2k(C1 − λI) + δ2

2kC2] = 0,

for some k ∈ Z, 0 ≤ k ≤ n− 1, then λ is an eigenvalue of C(α, 1).

Proof. Let λ be as assumed. Then there exists a v ∈ C2j

, v 6= 0 such that

[CT
2 + δ2k(C1 − λI) + δ2

2kC2]v = 0.

Let bj = δj
2kv, 0 ≤ j ≤ n + 1. Then such b′js satisfy (2.1a), (2.1b), and (2.1c). We

just proved the assertion of the theorem. �

Corollary 2.1. Set

Γk = C1 + δ2n−kCT
2 + δkC2. (2.8)

Then the eigenvalues of C(α, 1), for each α, consists of eigenvalues of Γk, k =

0, 2, 4, ..., 2(n − 1). That is ρ(C(α, 1)) =
n−1⋃
k=0

ρ(Γ2k). Here ρ(A) = the spectrum of

the matrix A.

Remark 2.3. C(α, 1) is a block circulant matrix. The assertion of Corollary 2.1
is not new (see e.g., Theorem 5.6.4 of [1]). Here we merely gave a different proof.

To study the eigenvalue of C(α, 0) for each α, we begin with considering the eigen-
values and eigenvectors of CT

2 + C1 + C2 and CT
2 − C1 + C2.

Proposition 2.2. Let T1(C) (resp., T2(C)) be the set of linearly independent
eigenvectors of the matrix C that are symmetric (resp., antisymmetric). Then
|T1(CT

2 +C1+C2)| = |T2(CT
2 +C1+C2)| = |T1(CT

2 −C1+C2)| = |T2(CT
2 −C1+C2)| =

2j−1. Here |A| denote the cardinality of the set A.

Proof. We will only illustrate the case for CT
2 − C1 + C2 =: C. We first ob-

serve that |T1(C)| is less than or equal to 2j−1. So is |T2(C)|. We also remark
the cardinality of the set of all linearly independent eigenvectors of C is 2j . If
0 < |T1(C)| < 2j−1, there must exist an eigenvector v for which v 6= vs, v 6= −vs

and v /∈ span{T1(C), T2(C)}, the span of the vectors in T1(C) and T2(C). It then
follows from Proposition 2.1 that v+vs, a symmetric vector, is in the span{T1(C)}.
Moreover, v − vs is in span{T2(C)}. Hence v ∈ span{T1(C), T2(C)}, a contradic-
tion. Hence, |T1(C)| = 2j−1. Similarly, we conclude that |T2(C)| = 2j−1. �
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Theorem 2.2. Let δk = e
πk
n i, k is an integer, i =

√
−1. For each α, if λ ∈ C

satisfies

det[CT
2 + δk(C1 − λI) + δ2

kC2] = 0,

for some k ∈ Z, 1 ≤ k ≤ n − 1, then λ is an eigenvalue of C(α, 0). Let λ be
the eigenvalue of CT

2 + C1 + C2 (resp., −CT
2 + C1 − C2) for which its associated

eigenvector v satisfies Îv = v (resp., Îv = −v), then λ is also an eigenvalue of
C(α, 0).

Proof. For any 1 ≤ k ≤ n − 1, let δk be as assumed. Let λk and νk be a number
and a nonzero vector, respectively, satisfying

[CT
2 + δk(C1 − λkI) + δ2

kC2]vk = 0. (2.9)

Using Proposition 2.1, we see that λk satisfies

det[CT
2 + δ2n−k(C1 − λkI) + δ2

2n−kC2] = 0. (2.10)

Let v2n−k be a nonzero vector satisfying [CT
2 +δ2n−k(C1−λkI)+δ2

2n−kC2]v2n−k = 0.
Letting

bi = δi
kvk + δkδi

2n−kv2n−k, i = 0, 1, ..., n + 1,

we conclude, via (2.9) and (2.10), that bi satisfy (2.1a) with λ = λk. Moreover,

Îb1 = δk Îvk + Îv2n−k = δkv2n−k + vk = b0.

We have used Proposition 2.1 to justify the second equality above. Similarly,
bn+1 = Îbn. To see λ = λk, 1 ≤ k ≤ n − 1, is indeed an eigenvalue of C(α, 0) for
each α, it remains to show that bi 6= 0 for some i. Using Proposition 2.1, we have
that there exists an m, 1 ≤ m ≤ 2j such that vkm = v(2n−k)(2j−m+1) 6= 0. We first
show that b0 6= 0. Let m be the index for which vkm 6= 0. Suppose b0 = 0. Then

vkm + δkv(2n−k)m = 0

and

vk(2j−m+1) + δkv(2n−k)(2j−m+1) = v(2n−k)m + δkvkm = 0.

And so, vkm = δ2
kvkm, a contradiction. Let λ and v be as assumed in the last

assertion of theorem. Letting bi = v (resp., bi = (−1)iv), we conclude that λ is an
eigenvalue of C(α, 0) with corresponding eigenvector (b1,b2, · · · ,bn)T

. Thus, λk

is an eigenvalue of C(α, 0) for each α. �
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Corollary 2.2. Let δk = e
πk
n i, k is an integer, i =

√
−1. Then, for each α,

ρ(C(α, 0)) =
n−1⋃
k=1

ρ(Γk)
⋃

ρS(Γ0)
⋃

ρAS(Γn), where ρS(A) (resp., ρAS(A)) the set

of eigenvalues of A for which their corresponding eigenvectors are symmetric (resp.,
antisymmetric).

We next consider the eigenvalues of C(α, β).

Theorem 2.3. Let δk = e
πk
n i, k is an integer, i =

√
−1. Then, for each α,

ρ(C(α, β)) ⊃



[ n
2 ]⋃

k=1

ρ(Γ2k)
⋃

ρS(Γ0), n is odd,

n
2−1⋃
k=1

ρ(Γ2k)
⋃

ρS(Γ0)
⋃

ρAS(Γn), n is even.

Here [n
2 ] is the greatest integer that is less than or equal to n

2 .

Proof. We illustrate only the case that n is even. Assume that k is such that
1 ≤ k ≤ n

2 − 1. Let bi = δi
2kv2k + δ2kδi

2n−2kv2n−2k, we see clearly that such
bi, i = 0, 1, n, n + 1, satisfy both Neumann and periodic boundary conditions,
respectively. And so

b0 = (1− β)b0 + βb0 = (1− β)Îb1 + βbn,

and
bn+1 = (1− β)bn+1 + βbn+1 = (1− β)Îbn + βb1.

Here, δ2k, 1 ≤ k ≤ n
2 − 1, are characteristic values of equation of (2.1). Thus, if

λ ∈ ρ(Γ2k), then λ is an eigenvalue of C(α, β). The assertions for Γ0 and Γn can
be done similarly. �

Remark 2.4. If n is an even number, for each α and β, half of the eigenvalues of
C(α, β) are independent of the choice of β. The other characteristic values of (2.1)
seem to depend on β. It is of interest to find them.

3. The Second Eigencurve of C(α, 0) and C(α, 1)

We begin with considering the eigencurves of Γk, as given in (2.8). Clearly,

Γk =



−2 1 0 · · · · · · δ2n−k

1 −2 1 0 · · · 0
0 1 −2 1 · · · 0
...

. . . . . . . . . . . .
...

0 · · · 0 1 −2 1
δk · · · · · · 0 1 −2


m×m

−
α(2− 2 cos πk

n )
m

eeT

=: D1(k)− α(k)eeT , (3.1)
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where m = 2j . We next find a unitary matrix to diagonalize D1(k).

Remark 3.1. Let (λ(k), v(k)) be the eigenpair of D1(k). If eTv(k) = 0, then λ(k)
is also an eigenvalue of Γk.

Proposition 3.1. Let

θl,k =
2lπ

m
+

kπ

nm
, l = 0, 1, ...,m− 1, (3.2a)

pl(k) =
(
eiθl,k , ei2θl,k , · · · , eimθl,k

)T
(3.2b)

and
P (k) =

(
p0(k)√

m
, · · · ,

pm−1(k)√
m

)
. (3.2c)

(i) Then P (k) is a unitary matrix and PH(k)D1(k)P (k) = Diag(λ0,k · · ·λm−1,k),
where PH is the conjugate transpose of P , and

λl,k = 2 cos θl,k − 2, l = 0, 1, ..,m− 1. (3.2d)

(ii) Moreover, for 0 ≤ k ≤ 2n, the eigenvalues of D1(k) are distinct if and only if
k 6= 0, n or 2n.

Proof. Let b = (b1, ..., bm)T . Writing the eigenvalue problem D1(k)b = λb in
component form, we get

bj−1 − (2 + λ)bj + bj+1 = 0, j = 2, 3, ...,m− 1, (3.3a)

−(2 + λ)b1 + b2 + δ2n−kbm = 0, (3.3b)

δkb1 + bm−1 − (2 + λ)bm = 0. (3.3c)

Set bj = δj , where δ satisfies the characteristic equation 1 − (2 + λ)δ + δ2 = 0
of the system D1(k)b = λb. Then the boundary conditions (3.3b) and (3.3c) are
reduced to

δm = δk. (3.4)

Thus, the solutions eiθl,k , l = 0, 1, ...,m − 1, of (3.4) are the candidates for the
characteristic values of (3.3). Substituting eiθl,k into (3.3a) and solving for λ,
we see that λ = λl,k are the candidates for the eigenvalues of D1(k). Clearly,
(λ,b) = (λl,k,pl(k)) satisfies D1(k)b = λb and b = pl(k) 6= 0. Thus, λ = λl,k are,
indeed, the eigenvalues of D1(k). To complete the proof of the proposition, it suf-
fices to show that P (k) is unitary. To this end, we need to compute pH

l (k) · pl′(k).
Clearly, pH

l (k) · pl(k) = m. Now, let l 6= l′, we have that

pH
l (k) · pl′(k) =

m∑
j=1

eij(θl,k−θl′,k) =
m∑

j=1

eij(
2(l−l′)

m π) =
r(1− rm)

1− r
= 0,

where r = ei(
2(l−l′)

m π). Hence, P (k) is unitary. The last assertion of the proposition
is obvious. �
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To prove the main results in this section, we also need the following proposition.
Some of assertions of the proposition are from Theorem 8.6.2 of [2].

Proposition 3.2. Suppose D = diag(d1, ..., dm) ∈ Rm×m and that the diagonal
entries satisfy d1 > · · · > dm. Let γ 6= 0 and z = (z1, ..., zm)T ∈ Rn. Assume that
(λi(γ), vi(γ)) are the eigenpairs of D + γzzT with λ1(γ) ≥ λ(γ) ≥ ... ≥ λm(γ). (i)
Let A = {k : 1 ≤ k ≤ m, zk = 0}, Ac = {1, ...,m} −A. If k ∈ A, then dk = λk. (ii)
Assume α > 0. Then the following interlacing relations hold λ1(γ) ≥ d1 ≥ λ2(γ) ≥
d2 ≥ ... ≥ λm(γ) ≥ dm. Moreover, the strict inequality holds for these indexes
i ∈ Ac. (iii) Let i ∈ Ac, λi(γ) are strictly increasing in γ and lim

α→∞
λi(γ) = λ̄i for

all i, where λ̄i are the roots of g(λ) =
∑

k∈Ac

z2
i

dk − λ
with λ̄i ∈ (di, di−1). In case that

1 ∈ Ac, d0 = ∞.

Proof. The proof of interlacing relations in (ii) and the assertion in (i) can be found
in Theorem 8.6.2 of [2]. We only prove the remaining assertions of the propo-
sition. Rearranging z so that zT = (0, 0, ..., 0, zi1 , ..., zik

) =: (0, ..., 0, z̄T ), where
i1 < i2 < ... < ik and ij ∈ Ac, j = 1, ..., k. The diagonal matrix D is rearranged
accordingly. Let D = diag(D1, D2), where D2 = diag(di1 , ..., dik

). Following The-
orem 8.6.2 of [2], we see that λij (γ) are the roots of the scalar equation fγ(λ), where

fγ(λij
(γ)) = 1 + γ

k∑
j=1

z2
j

dij
− λij

(γ)
= 0. (3.5)

Differentiate the equation above with respect to γ, we get

k∑
j=1

z2
ij

dij − λij (γ)
+ (γ

k∑
j=1

z2
ij

(dij − λik
(γ))2

)
dλij

(γ)
dγ

= 0.

Thus,

dλij
(γ)

dγ
=

1
γ2

k∑
j=1

z2
ij

(dij
− λij

(γ))2
> 0.

Clearly, for each ij , the limit of λij (γ) as γ → ∞ exists, say λ̄ij . Since, for
dij < λ < dij−1,

k∑
j=1

z2
ij

dij
− λij

(γ)
=

1
γ

.

Taking the limit as α →∞ on both side of the equation above, we get

k∑
j=1

z2
ij

dij
− λ̄ij

= 0 (3.6)

as desired. �
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We are now in the position to state the following theorems.

Theorem 3.1. let n and m = 2j be given positive integers. For each k, k =
1, 2, · · · , n− 1, and α, we denote by λl,k(α), l = 0, 1, · · · , 2j − 1, the eigenvalues of
Γk. For k = 1, 2, · · · , n− 1, we let (λl,k, ul,k), l = 0, 1, · · · , 2j − 1, be the eigenpairs
of D1(k), as defined in (3.1). Then the following hold true.
(i) λl,k(α) is strictly decreasing in α, l = 0, 1, · · · , 2j − 1 and k = 1, 2, · · · , n− 1.
(ii)There exist λ∗l,k such that lim

α→∞
λl,k(α) = λ∗l,k. Moreover, gk(λ∗l,k) = 0, where

gk(λ) =
m∑

l=1

1
(λl−1,k)(λl−1,k + λ)

. (3.7)

Proof. The first assertion of the theorem follows from proposition 3.2-(iii). Let k

be as assumed. Set, for l = 0, 1, ...,m− 1,

zl+1 = pH
l (k)e =

m∑
j=1

eijθl,k =
e−θl,k(1− e−imθl,k)

1− e−θl,k
=

e−θl,k(1− e−ik π
n )

1− e−θl,k
.

Then

z̄l+1zl+1 =
2− 2 cos mθl,k

2− 2 cos θl,k
=

2 cos kπ
n − 2

λl,k
6= 0. (3.8)

Let P (k) be as given in (3.2c). Then

−PH(k) · Γk · P (k) = Diag(−λ0,k, ...,−λm−1,k) + α(k)PH
l (k)e(PH

l (k)e)H .

Note that if k is as assumed, it follows from Proposition 3.1-(ii) that λl,k, l =
0, ...,m − 1, are distinct. Thus, we are in the position to apply Proposition 3.2.
Specifically, by noting Ac = φ, we see that λ∗0,k satisfies g(λ) = 0, where

g(λ) =
m∑

l=1

1
(λl−1,k)(λl−1,k + λ)

.

We have used (3.2d), (3.6) and (3.8) to find g(λ). �

We next give an upper bound for λ∗0,k, k = 1, 2, · · · , n− 1.

Theorem 3.2. The following inequalities hold true.

λ∗0,k < λ0,n, k = 1, 2, · · · , , n− 1. (3.9)

Proof. To complete the proof of (3.9), it suffices to show that gk(−λ0,n) < 0. Now,

gk(−λ0,n) =
m∑

l=1

1

[2cos( 2(l−1)π
m + kπ

nm )− 2][2cos( 2(l−1)π
m + kπ

nm )− 2cos π
m ]

=: h(m,n, k) = h(2j , n, k). (3.10)
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We shall prove that h(2j , n, k) < 0 by the induction on j. For j = 1, h(2, n, k) =
1
2

[
1

cos2(kπ
2n )− 1

]
< 0, k = 1, 2, · · · , , n − 1. Assume h(2j , n, k) < 0. Here, n ∈ N

and k = 1, 2, · · · , , n− 1. We first note that

cos

(
2(2j + i− 1)π

2j+1
+

kπ

2j+1n

)
= −cos

(
2(i− 1)π

2j+1
+

kπ

2j+1n

)
=: −cosθi−1,k,j+1, i = 1, 2, · · · , 2j . (3.11)

Moreover, upon using (3.11), we get that

1
(cosθi−1,k,j+1 − 1)(cosθi−1,k,j+1 − cosθ0,n,j+1)

+
1

(cosθ2j+i−1,k,j+1 − 1)(cosθ2j+i−1,k,j+1 − cosθ0,n,j+1)

=
1

(cosθi−1,k,j+1 − 1)(cosθi−1,k,j+1 − cosθ0,n,j+1)

+
1

(cosθi−1,k,j+1 + 1)(cosθi−1,k,j+1 + cosθ0,n,j+1)

=
2cos2θi−1,k,j+1 + 2cosθ0,n,j+1

(cos2θi−1,k,j+1 − 1)(cos2θi−1,k,j+1 − cos2θ0,n,j+1)

=
8(cos2θi−1,k,j+1 + cosθ0,n,j+1)

(cos2θi−1,k,j+1 − 1)(cos2θi−1,k,j+1 − cos2θ0,n,j+1)

=
2(cos2θi−1,k,j+1 + cosθ0,n,j+1)

(cosθi−1,k,j − 1)(cosθi−1,k,j − cosθ0,n,j)
. (3.12)

We are now in a position to compute h(2j+1, n, k). Using (3.12), we get that

h(2j+1, n, k) =
2j+1∑
l=1

1
4(cosθl−1,k,j+1 − 1)(cosθl−1,k,j+1 − cosθ0,n,j+1)

=
2j∑

l=1

2(cos2θl−1,k,j+1 + cosθ0,n,j+1)
(cosθl−1,k,j − 1)(cosθi−1,k,j − cosθ0,n,j)

≤ 8(cos2θ0,k,j+1 + cosθ0,n,j+1)h(2j , n, k). (3.13)

We have used the facts that cos2θ0,k,j+1 > cos2θi−1,k,j+1, i = 2, · · · , 2j , and that
the first term (i=1) of the summation in (3.13) is negative while all the others
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are positive to justify the inequality in (3.13). It then follows from (3.13) that
h(2j+1, n, k) < 0. We just complete the proof of the theorem. �

Theorem 3.3. Let n and j be the block and wavelet dimensions of C(α, 1), respec-
tively. Assume n and j are any positive integers. Let λ2(α) be the second eigencurve
of C(α, 1). Then the following hold.
(i) λ2(α) is a nonincreasing function of α.
(ii) If n is an even number, then λ2(α) = λ0,n whenever α ≥ α∗ for some α∗ > 0.
(iii) If n is an odd number, then λ2(α) < λ0,n whenever α ≥ α for some α > 0.

Proof. We first remark that in the case of β = 1, the set of the indexes k′s in (3.1)
is {0, 2, 4, ..., 2(n − 1)} := In. Suppose n is an even number. Then n ∈ In. Thus,

δn = −1, θ0,n = π
m , and p0(n) =

(
ei π

m , ei 2π
m , · · · , eiπ

)T

. Applying Proposition 3.1,
we see that p0(n)−ps

0(n), an antisymmetric vector, is also an eigenvector of D1(n).
And so eT (p0(n) − ps

0(n)) = 0. It then follows from Remark 3.1 that λ0,n is an
eigenvalue of Γn = D1(n)−ρ(n)eeT for all α. The first and second assertions of the
theorem now follow from Theorems 3.1 and 3.2. Let n be an odd number. Then
δi · δi 6= 1 for any i ∈ In. Thus, if the pair (δi, vi) satisfy (2.3), then vi 6= −vs

i .
Otherwise, the pair (δi, vi − (−vi)s) = (δi, vi + vs

i ) also satisfy (2.3). This is a
contradiction to the last assertion in Proposition 2.1. Thus, vH

i · e 6= 0 for any
i ∈ In. We then conclude, via Proposition 3.2-(iii) and Theorem 3.2, that the last
assertion of the theorem holds. �

Remark 3.2. (i)Let the number of uncoupled (chaotic) oscillators be N = 2jn. If
n is an odd number, then the wavelet method for controlling the coupling chaotic
oscillators work even better in the sense that the critical coupling strength ε can
be made even smaller. (ii)For n being a multiple of 4 and j ∈ N, the assertions in
Theorem 3.3 was first proved in [6] by a different method.

Theorem 3.4. Let n and j be the block and wavelet dimensions of C(α, 0), re-
spectively. Assume n and j are any positive integers. Let λ2(α) be the second
eigencurve of C(α, 0). Then for any n, there exists a α̃ such that λ2(α) = λ0,n

whenever α ≥ α̃.

Remark 3.3. For n ∈ N and j = 1, the explicit formulas for the eigenvalues of
C(α, 0) was obtained in [4]. Such results are possible due to the fact that the
dimension of the matrices in (2.4) is 2× 2.
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Abstract: Partial-state coupling plays a surprising role in deter-
mining if a coupled system can achieve synchronization. For in-
stance, synchronization for the single zi-component coupled Lorenz
equations can not occur, while synchronization for other partial-
state couplings can be realized. The purpose of this paper is to
address these coupling issues in a general framework. Some sharp
conditions are given on the nonlinearities of the subsystem and
on the coupling scheme to ensure the synchronization. We apply
our theorems to three examples: coupled Lorenz-equations [10];
coupled chaotic works [12]; coupled Duffing oscillators [16]. The
results on the latter two examples appear to be new.

keywords: Synchronization, partial-state coupling, bounded dissipative.

1. Introduction

Coupled dynamical systems are typically synthesized from simpler, low dimen-
sional systems to form new and more complex systems for which their analysis
and/ or control remains tractable. These and other motivations have led to nu-
merous studies of coupled systems in a wide range of disciplines. For instance, it
has been observed that coupling allows cells to synchronize to each other. Indeed,
synchronization in coupled systems has been observed in many diverse areas, cou-
pled mechanical and electrical systems [3, 9], laser systems [6, 7], biological systems
[2, 11] and Josephson junctions [14]. Other than dissipation and the type of non-
linearities of chaotic subsystems, the coupling rule plays a very important role in
any discussion of synchronization. Two types of coupling rules need to be specified.
One is the coupling scheme between the subsystems. The other is the coupling
rule within the subsystems. The rule of the latter plays a surprising role. In [9],
the lattices of coupled Rössler-like equations with diffusive coupling between the
subsystems and a single xi, yi or zi- component’s coupling were considered. It was
numerical reported there that synchronization occurs for either xi or yi- compo-
nent’s coupling with strong enough mutual diffusive coupling. However, the lack
of synchronization in the numerical zi-coupling was also reported there. Similar
results were also stated in [10] for the lattices of coupled Lorenz equations with
the rigorous proof for either xi or yi-component’s coupling. No explanations for
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why the lack of synchronization in the zi-coupling for both cases or xi-coupling for
the first case were offered. The purpose of this paper is to address these coupling
issues in a general framework. Specifically, we give rather general conditions on the
nonlinearities of the subsystem and on the coupling schemes so that the coupled
system can achieve synchronization. Some comparison principles on the coupling
scheme are also derived. We note that our main results can be applied to many
coupled systems. In particular, we apply our theorems to three examples here: cou-
pled Lorenz equations [10]; coupled chaotic works [12]; coupled Duffing oscillators
[16]. For the coupled Lorenz equation, we see that xi and yi component’s couplings
satisfy our sufficient conditions, while the zi-component’s coupling fails to satisfy
our sufficient condition, which, in turn, illustrates the sharpness of our conditions
and sheds some light on why the lack of synchronization. The results on the latter
two examples appear to be new (see our Remarks 4.2-(i) and (ii)). We also note
that different partial-state couplings are considered in [8]. As commented in [8],
additional difficulties arise for the formulation considered here.

We organize the paper as follows. Section 2 is to lay down the foundation of our
work. To do so, we introduce the notion of dual system of the coupled oscillator
system and the notion of self-synchronization of the dual system. Some various no-
tions of synchronization are also recorded there. The relationship between bounded
dissipation and Lyapunov function is also explored in this section. Our main results
are contained in Section 3. The concept of matrix measures, which find success-
ful applications in nonlinear control system, is introduced to obtain the sufficient
conditions on synchronization of the coupled oscillator systems. Some comparison
principles for the coupling systems are also given there. Three examples mentioned
earlier are given in Section 4 to illustrate the effectiveness of our main results.

2. Basic Framework

In this paper, we will denote scalar variables in lower case, matrices in bold
type upper case, and vectors (or vector-valued functions) in bold type lower case.
We consider an array of m cells, coupled linearly together, with each cell being an
n- dimensional system. The entire array is a system of nm ordinary differential
equations. In particular, the state equations are

dxi

dt
= f(xi, t) + d ·

m∑
j=1

gij Dxj , i = 1, 2, . . . ,m, (2.1)

where xi ∈ Rn, f : Rn × R → Rn and D is an n× n real matrix. Let

x =

 x1

...
xm


,

xi =

 xi,1

...
xi,n


,

and G = (gij)m×m. (2.2)

Then (2.1) can be written as
2



ẋ =

 f(x1, t)
...

f(xm, t)

+ d(G⊗D)x =: F(x, t) + d(G⊗D)x, (2.3a)

where ⊗ is the Kronecker product, and

f(xi, t) =

 f1(xi, t)
...

fn(xi, t)


.

(2.3b)

From time to time, we will refer system (2.3) as the coupled system (D,G,F(x, t)).

Suppose the state variables are permuted in the following way:

x̃i =

 x1,i

...
xm,i


,

and x̃ =

 x̃1

...
x̃n


.

(2.4)

Then (2.3) can be written as

˙̃x =

 f̃1(x̃, t)
...

f̃n(x̃, t)

+ d(D⊗G)x̃ =: F̃(x̃, t) + d(D⊗G)x̃, (2.5a)

where

f̃i(x̃, t) =

 fi(x1, t)
...

fi(xm, t)


.

(2.5b)

Such reformulation is certainly not new (see e.g., [10, 15]). From here on, we will
treat ˜ as a function that take x into x̃ or xi into x̃i.

Definition 2.1. System (2.5) is called the dual system of (2.3).

We assume the system of ordinary differential equations under consideration has
a unique solution for all time and for each initial condition. We write x(t,x0, t0)
for the unique solution at time t where x0 is the initial condition at time t0. This
will sometimes be simplified as x(t). Let Bk(α) be the ball in Rk with center at
0 and radius α. We define the system to be synchronized if the trajectories of all
the cells approach each other. We define the system to be self-synchronized if the
components xi,k of each subsystem xi approach each other. Various notions of
synchronization and self-synchronization are given in the following.

Definition 2.2. (see e.g., Definition 1 of [15]) Let a ball Bn(α) be given. System
(2.3) is uniformly (resp., self-) synchronized if for each ε > 0, there exists a δ(ε) >

0 such that if ‖xi(t0) − xj(t0)‖ ≤ δ(ε) (resp., |xi,k(t0) − xj,k(t0)| ≤ δ(ε)), and
3



xi(t0) and xj(t0) ∈ Bn(α) for all i, j (resp., i, j, k), then ‖xi(t)− xj(t)‖ ≤ ε (resp.,
|xi,k(t)− xj,k(t)| ≤ ε) for all t ≥ t0 and for all i, j (resp., i, j, k).

Definition 2.3. (see e.g., Definition 2 of [15]) Let a ball Bn(α) be given. System
(2.3) is uniformly asymptotically (resp., self-) synchronized if the followings hold:

(i) It is uniformly synchronized.
(ii) There exists a δ > 0 such that for all ε > 0 there exists a tε ≥ 0 such

that if ‖xi(t0) − xj(t0)‖ ≤ δ ( resp., |xi,k(t0) − xj,k(t0)| ≤ δ ), and
xi(t0) and xj(t0) ∈ Bn(α) for all i, j ( resp., i, j, k ) and t ≥ t0 + tε,

then ‖xi(t) − xj(t)‖ ≤ ε. (resp., |xi,k(t) − xj,k(t)| ≤ ε) for all i, j (resp.,
i, j, k).

Definition 2.4. Let a ball Bn(α) be given. System (2.3) is globally (resp., self-)
synchronized if for all ε > 0, there exists a tε ≥ 0 such that ‖xi(t) − xj(t)‖ ≤ ε

(resp., |xi,k(t)−xj,k(t)| ≤ ε) for all i, j (resp., i, j, k), all xi(t0) and xj(t0) ∈ Bn(α),
and all t ≥ t0 + tε.

Proposition 2.1. If a system is globally (resp., self-) synchronized, then it is
uniformly asymptotically (resp., self-) synchronized.

Proof. If a system is as assumed, then given ε > 0, there exists a t′ such that for
all i, j and all xi(t0) and xj(t0) ∈ Bn(α), we have ‖xi(t) − xj(t)‖ ≤ ε for t ≥ t′.

Letting t0 = t′ and δ = ε, we see immediately that the corresponding system is
uniformly synchronized. Obviously, the assumption in Definition 2.3-(ii) can be
fulfilled by choosing any δ > 0. The other assertion in the proposition can be
similarly proved. �

Theorem 2.1. System (2.3) is synchronized if and only if its dual system (2.5) is
self-synchronized.

We skip the proof of the theorem due to its triviality. We next give the definition
of the bounded dissipation of a system.

Definition 2.5. A system of n ordinary differential equations is called bounded
dissipative with respect to (α, β) provided that (i) for any initial conditions x0,
there exists a time t∗ ≥ t0 such that x(t∗) ∈ Bn(α); (ii) x(t) ∈ Bn(β) for all
x0 ∈ Bn(α) and all time t ≥ t0. If no confusion arise, we shall just say the system
is bounded dissipative.

Proposition 2.2. System (2.3) is bounded dissipative if and only if its dual system
is bounded dissipative.

Proof. It is clear since system (2.5) is derived from system (2.3) by some permuta-
tion. �

To prove the bounded dissipation of the system, it often requires to construct
an approximate Lyapunov function. The following proposition gives the type of
Lyapunov functions that would ensure the bounded dissipation of the system.
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Proposition 2.3. Let a system of n ordinary differential equations be given. Let
V be a continuous real-valued function V : Rn → R+ so that V is strictly decreasing
along the solution of the system on Rn − Γ, where Γ is homeomorphic to an open
ball in Rn. Suppose

lim
‖x‖→∞

V (x) = ∞. (2.6)

Then the system is bounded dissipative.

Proof. For any x0 ∈ Rn, we first prove that x(t) must enter Γ at a certain time.
Otherwise, the values of V at the points of the ω-limit set of x(t) must be the same, a
contradiction. The contradiction comes from the facts that the ω-limit set is closed
and invariant and V is strictly decreasing along the solution trajectory, which stays
in Rn−Γ. We then find a ball Bn(α) so that Bn(α) ⊃ Γ. Let k1 = maxx∈B̄n(α) V (x),
and Bn(β) be a ball satisfying V (x) > k2 whenever x ∈ Rn−Bn(β), where k2 > k1.
Then we conclude that if x0 ∈ Bn(α), x(t) stays in Bn(β) for all time t. We just
complete the proof of the proposition. �

3. Main Results

For completeness and ease of references, we begin with recalling the following
definitions and the results (see e.g., [4, 13]).

Definition 3.1. Let ‖ · ‖i be an induced matrix norm on C n×n. The matrix

measure µi(A) of a matrix on C n×n is defined to be µi(A) = lim
ε→0+

‖I + εA‖i − 1
ε .

Lemma 3.1. Let ‖·‖k be an induced k-norm on R n×n, where k = 1, 2,∞. Then the
matrix measure µk(A) , k = 1, 2,∞ of a matrix A = (aij) on Rn×n is, respectively,

µ∞(A) = max
i
{aii +

∑
j 6=i

|aij |}, (3.1a)

µ1(A) = max
j
{ajj +

∑
i 6=j

|aij |}, (3.1b)

and
µ2(A) = λmax(AH + A)/2. (3.1c)

Here λmax(A) is the maximum of the eigenvalues of A.

Theorem 3.1. (see e.g., 3.5.32 of [13]) Consider the differential equation ẋ(t) =
A(t)x(t)+v(t), t ≥ 0, where x(t) ∈ Rn

, A(t) ∈ Rn×n
, and A(t),v(t) are piecewise-

continuous. Let ‖ · ‖i be a norm on Rn, and ‖ · ‖i, µi denote, respectively, the
corresponding induced norm and matrix measure on Rn×n. Then whenever t ≥
t0 ≥ 0, we have

‖x(t0)‖ exp
{∫ t

t0

−µi(−A(s))ds

}
−
∫ t

t0

exp
{∫ t

s

−µi(−A(τ))dτ

}
‖v(s)‖ds ≤ ‖x(t)‖

≤ ‖x(t0)‖ exp
{∫ t

t0

µi(A(s))ds

}
+
∫ t

t0

exp
{∫ t

s

µi(A(τ))dτ

}
‖v(s)‖ds. (3.2)
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We next impose conditions on coupling matrices G and D. We assume that the
coupling matrix G satisfies the following

(i) all eigenvalues of G have nonpositive real parts. (3.3a)

(ii) λ = 0 is a simple eigenvalue of G and its corresponding

eigenspace is span(e),where e = [1, 1, . . . , 1]T1×m. (3.3b)

We further assume that the matrix D is, without loss of generality, of the form

D =
(

Ik 0
0 0

)
n×n.

(3.3c)

The index k, 1 ≤ k ≤ n, means that the first k components of the subsystem are
coupled. If k 6= n, then the system is said to be partial-state coupled. Otherwise,
it is said to be full-state coupled.

To study the self-synchronization of (2.5), we first make a coordinate change.
Let A be an m×m matrix of the form

A =



1 −1 0 · · · 0

0
. . . . . . . . .

...
...

. . . . . . . . . 0
0 · · · 0 1 −1
1 · · · · · · 1 1


m×m

=:
(

C
eT

)
,

(3.4a)

where e is given as in (3.3b). It is then easy to see that CCT is invertible and that

A−1 =
(
CT (CCT )−1| e

m

)
.

(3.4b)

Setting
E = In ⊗A, (3.4c)

we see that

E(D⊗G)E−1 = (In ⊗A)(D⊗G)(In ⊗A−1)

= D⊗AGA−1 = D⊗
(

CGCT (CCT )−1 0
∗ 0

)
=: D⊗

(
Ḡ 0
∗ 0

)
.

(3.4d)

We remark, via (3.4d), that σ(G) − {0} = σ(Ḡ), where σ(A) is the spectrum of
6



the matrix A. Multiplying E to the both side of equation (2.5a), we get

˙̃y =: E ˙̃x = EF̃(x̃, t) + dE(D⊗G)E−1ỹ

= EF̃(E−1ỹ, t) + d(D⊗
(

Ḡ 0
∗ 0

)
)ỹ. (3.5)

Let ỹ =

 ỹ1

...
ỹn


.

Then ỹi =


x1,i − x2,i

...
xm−1,i − xm,i∑m

j=1 xj,i


.

Setting ỹi =

(
ȳi∑m

j=1 xj,i

)
,

and ȳ =

 ȳ1

...
ȳn


,

we have that the dynamics of ȳ is satisfied by the following

equation

˙̄y = d(D⊗ Ḡ)ȳ + F̄(ȳ, t), (3.6)

Here F̄ is obtained from EF̃(E−1ỹ, t) accordingly.

We next give conditions on the nonlinearities F̄. Let k be given as in (3.3c).
Write ȳ and F̄(ȳ, t) as

ȳ =
(

ȳc

ȳu

)
,

and F̄(ȳ, t) =
(

F̄c(ȳ, t)
F̄u(ȳ, t)

)
,

respectively. (3.7)

Here ȳc =

 ȳ1

...
ȳk


,

and ȳu =

 ȳk+1

...
ȳn

. We assume that F̄c(ȳ, t) satisfies a

dual-Lipschitz condition with a dual-Lipschitz constant b. That is,

‖F̄c(ȳ, t)‖i ≤ b‖ȳ‖i (3.8a)

whenever ȳ in B(m−1)n(α), and for all time t. Suppose that F̄u(ȳ, t) can be written as

F̄u(ȳ, t) = U(t)ȳu + R̄u(ȳ, t). (3.8b)

Here U(t) is a block diagonal matrix of the form U(t) = diag(U1(t), · · · ,Ul(t))
where Uj(t), j = 1, . . . , l, are matrices of size (m − 1)kj × (m − 1)kj . Here

l∑
j=1

kj = n− k, and kj ∈ N. We assume further that the followings hold.
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(i) The matrix measures µi(Uj(t)) are less than −r for all t and all j,
where r > 0. (3.8c)

(ii) Let R̄u(ȳ, t) =

 Ru1(ȳ, t)
...

Rul(ȳ, t)


.

Then Ruj(ȳ, t), j = 1, . . . , l, satisfy a strong

dual-Lipschitz condition with a strong dual-Lipschitz constant b. Specifically, we
assume that

‖Ruj(ȳ, t)‖i ≤ b ‖


ȳc

ȳu1

...
ȳu j−1

 ‖i (3.8d)

whenever ȳ in B(m−1)n(α), and for all j = 1, . . . , l and all time t.

Theorem 3.2. Let G and D be given as in (3.3). Assume that F̄ satisfies (3.8a-d),
and system (2.5a) is bounded dissipative with respect to (τ, α

2 ). If d is sufficiently
large, then ȳ(t) must eventually stay in B(m−1)n(α). Moreover, lim

t→∞
ȳ(t) = 0.

Proof. In the following proof, we just consider the case of l2-norm. The other norm
can also be done in the similar way. Since system (2.5a) is bounded dissipative
with respect to (τ, α

2 ), the first assertion of the theorem is obvious. Without loss
of generality, we may assume that ‖ȳ(t)‖ ≤ α for all time t ≥ t0. Using (3.8b), we
write (3.6) as(

˙̄yc

˙̄yu

)
=
(

d(Ik ⊗ Ḡ) 0
0 U(t)

)(
ȳc

ȳu

)
+
(

F̄c(ȳ, t)
R̄u(ȳ, t)

)
.

(3.9)

Since U(t) = diag(U1(t), . . . ,Ul(t)) is a block diagonal matrix, we will write ȳu as ȳu1

...
ȳul

 accordingly. Applying the variation of constant formula to (3.9) on ȳc,

we get

ȳc(t) = e(t−t0)d(Ik⊗Ḡ)ȳc(t0) +
∫ t

t0

e(t−s)d(Ik⊗Ḡ)F̄c(ȳ(s), s)ds.

Let λ1 = max{λj |λj ∈ Re(σ(Ḡ)), the set of the real parts of the spectrum of Ḡ}.
Then λ1 < 0. Note that

‖etd(Ik⊗Ḡ)‖ ≤ c1e
tdν (3.10)

for some constant c1 > 0, and ν = λ1
2 . Thus,
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‖ȳc(t)‖ ≤ c1e
(t−t0)dν‖ȳc(t0)‖+ c1b

∫ t

t0

ed(t−s)ν‖ȳ(s)‖ds

≤ c1e
(t−t0)dνα +

c2

2
α

for some constant c2 = 2c1b
d |ν| . Thus

‖ȳc(t)‖ ≤ c2α, (3.11a)

whenever t ≥ t0,1 for some t0,1 > 0. We then apply Theorem 3.1 on ȳu1 and the
resulting inequality is

‖ȳu1(t)‖ ≤ ‖ȳu1(t0,1)‖ exp

{∫ t

t0,1

µi(U1(s))ds

}

+
∫ t

t0,1

exp
{∫ t

s

µi(U1(τ))dτ

}
‖Ru1(ȳ(s), s)‖ds.

It then follows from (3.8c-d) and (3.11a) that

‖ȳu1(t)‖ ≤ αe−r(t−t0,1) +
bc2α

r ,

whenever t ≥ t0,1. Moreover, letting ω = max{1, 2b
r }, we have

‖ȳu1(t)‖ ≤ ωc2α (3.11b)

whenever t ≥ t1,1 for some t1,1 ≥ t0,1. Inductively, we get

‖ȳuj(t)‖ ≤
√

2j−1ωjc2α, j = 2, . . . , l, (3.11c)

whenever t ≥ tj,1(≥ tj−1,1). Letting tl,1 = t1 and summing up (3.11a), (3.11b) and
(3.11c), we get

‖ȳ(t)‖ =

√√√√ l∑
j=1

‖ȳuj(t)‖2 + ‖ȳc(t)‖2 ≤ (

√√√√1 +
l∑

j=1

2j−1ω2j c2)α =: hα,

whenever t ≥ t1. Choosing d > 2c1b
|ν|

√
1 +

∑l
j=1 2j−1ω2j , we see that the contraction

factor h is strictly less than 1, and ‖ȳ(t)‖ contracts as time progresses. Moreover,
t1 is independent of the initial conditions ȳ(t0). We have completed the proof of
the theorem. �
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Corollary 3.1. Suppose F̄ and G are assumed as in Theorem 3.2. Assume, in
addition, that all eigenvalues of G are nonpositive. Let

D =
(

D̄k×k 0
0 0

)
n×n,

=: Dnew where Reσ(D̄) > 0. (3.12)

If the corresponding coupled system (Dnew,G,F(x, t)) is also bounded dissipative,
then assertions in Theorem 3.2 still hold true.

Proof. Assumption (3.12) is to ensure that (3.10) is still valid. Other parts of the
proof are similar to those in Theorem 3.2 and are thus omitted. �

We next turn our attention to finding conditions on the nonlinearities fi(u, t),
i = 1, . . . , n, u ∈ Rn, so that assumptions (3.8a-d) are satisfied. To this end, we
need the following notations. Let x̃i and x̃ be given as in (2.4). Define

[x̃i]− =

 x1,i

...
xm−1,i


,

and [x̃]− =

 [x̃1]−
...

[x̃n]−


.

(3.13)

We then break F̃ as given in (2.5a) into two parts so that the breaking is in consis-
tent with ȳ in (3.7). Specifically, we shall write

F̃(x̃, t) =
(

F̃c(x̃, t)
F̃u(x̃, t)

)
.

(3.14)

Proposition 3.1. Suppose that fi(x, t), i = 1, 2, . . . , k satisfy a Lipschitz condition
on Bn(α

2 ) with a Lipschitz constant b. That is

|fi(u, t)− fi(v, t)| ≤ b‖u− v‖, i = 1, 2, . . . , k, (3.15)

for all u, v in Bn(α
2 ) and all time t. Then (3.8a) holds true.

Proof. Note that EF̃(x̃, t) =

 Af̃1(x̃, t)
...

Af̃n(x̃, t)


,

so that

[Af̃i(x̃, t)]− =

 fi(x1, t)− fi(x2, t)
...

fi(xm−1, t)− fi(xm, t)


,

i = 1, 2, . . . , n.

Since
10



F̄c(ȳ, t) =

 [Af̃1(x̃, t)]−
...

[Af̃k(x̃, t)]−


,

we conclude that (3.8a) holds. �

The following proposition is very useful in the sense that by checking how each
component fi of the nonlinearity f is formed, one would then be able to conclude
whether (3.8c-d) are satisfied.

Proposition 3.2. Let u = (u1, . . . , un)T and v = (v1, . . . , vn)T be vectors in
Bn(α

2 ). Let wp =
∑p

i=0 ki, p = 1, . . . , l, where k0 = k, and k1, . . . , kl, l are given
as in (3.8c). Assume that for i = wp−1 + 1, . . . , wp,

fi(u, t)− fi(v, t) =
wp∑

j=wp−1+1

vi,j(u,v, t)(uj − vj) + ri(u,v, t). (3.16a)

We further assume that the followings are true.

(i) For p = 1, . . . , l, let Vp = (vi,j(u,v, t)), where wp−1 +1 ≤ i, j ≤ wp. Then
µ∗(Vp) < −r for all u, v, t and p, where ∗ = 1, 2,∞. (3.16b)

(ii) Let rp =
(
rwp−1+1(u,v, t), . . . , rwp(u,v, t)

)T . We have that

‖rp‖ ≤ b ‖

 u1 − v1

...
uwp−1 − vwp−1

 ‖ (3.16c)

for all u,v, t, p and some constant b.

Then (3.8c) and (3.8d) hold true for ∗ = 1, 2,∞.

Proof. Let uw = (xw,xw+1, t), w = 1, . . . ,m− 1, and let Ui,j,p(t) be diagonal ma-
trices of the form

Ui,j,p(t) =

 vwp−1+i,wp−1+j(u1) 0
. . .

0 vwp−1+i,wp−1+j(um−1)


,

(3.17a)

where p = 1, . . . , l. It then follows from (3.17a) that F̄u(ȳ, t) can be written as the
form in (3.8b). In particular, Up(t), p = 1, 2, . . . , l, can be chosen as

Up(t) = (Ui,j,p(t)) , wp−1 + 1 ≤ i, j ≤ wp. (3.17b)

For fixed p and w = 1, . . . ,m− 1, we define the matrices Mw
p (t) as follows

Mw
p (t) =

(
vwp−1+i,wp−1+j(uw)

)
kp×kp,

1 ≤ i, j ≤ kp. (3.18a)
11



By assumption, we see that µ∗(Mw
p (t)) < −r. Now,

Up(t) =
m−1∑
w=1

Mw
p (t)⊗Dw, (3.18b)

where

(Dw)ij =
{

1 i = j = w,

0 otherwise,
1 ≤ i, j ≤ m− 1.

It then follows from (3.1a,b), (3.17) and (3.18) that µ∗(Up(t)) < −r for ∗ = 1 or
∞. For ∗ = 2, we have that

m−1⋃
w=1

σ{Mw
p (t) +

(
Mw

p (t)
)T } = σ

{
m−1∑
w=1

(
Mw

p (t)⊗Dw +
(
Mw

p (t)
)T ⊗Dw

)}
= σ

(
Up(t) + UT

p (t)
)
,

where σ(A) is the set of eigenvalues of A. We remark that the first equality above
can be verified by the definition of eigenvalues due to the structure of Up(t). It
then follows from (3.1c) that µ2(Up(t)) < −r. The remainder of the proof is similar
as Proposition 3.1, and is thus omitted. �

We are now ready to state the main theorem of the paper.

Theorem 3.3. Assume that (2.3) is bounded dissipative. Let the coupling matri-
ces G and D satisfy (3.3) and the nonlinearities fi(x, t), i = 1, 2, . . . , n, satisfy
(3.15) and (3.16). Suppose d is chosen sufficiently large. Then (2.3) and (2.5) are,
respectively, globally synchronized and self-synchronized.

Proof. The proof is direct consequences of Propositions 3.1 and 3.2, and Theorem
3.2. �

Remark 3.1. (i) From here on, we will refer the assumptions in Theorem 3.3 as
synchronization hypotheses. (ii) An example in Section 4 (i)-c will illustrate the
sharpness of our sufficient conditions here.

Corollary 3.2. (Comparison Principle for synchronization) Let (D,G,F(x, t))
satisfies synchronization hypotheses. Furthermore, we assume that all eigenval-
ues of G are nonpositive. Assume D̄ satisfies (3.12). Then the coupled system
(Dnew,G,F(x, t)) is also globally synchronized.

4. Applications

To see the effectiveness of our main results, we consider three examples in this
section. These are coupled Lorenz equations [10], coupled chaotic works [12], and
coupled Duffing oscillators [16].
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(i) We shall begin with Lorenz equations. Let x = (x1, x2, x3)T ,

f(x, t) = f(x) = (σ(x2 − x1), rx1 − x2 − x1x3, −bx3 + x1x2)T
.

=: (f1(x, t), f2(x, t), f3(x, t))T
. (4.1)

For D =

 1 0 0
0 0 0
0 0 0

 =: D1 or D =

 0 0 0
0 1 0
0 0 0

 =: D2 or D =

 0 0 0
0 0 0
0 0 1

 =:

D3, it was shown (see e.g., [10]) that system (2.3) is bounded dissipative. We re-
mark that in our formulation, we may rearrange the components of the nonlinearity
f so that D always has the form D = D1. Instead, in this section, we will fix the
representation of the nonlinearity f just as given in (4.1).

Three types of coupling within the subsystems are considered in the following.

(a) D = D1.

In this case k = 1, and

|f1(x, t)− f1(z, t)| = σ|(x2 − z2)− (x1 − z1)| ≤ b‖x− z‖

for some constant b. Hence, condition (3.15) is satisfied. Choosing l = 1, we have
that f2(x, t) = −x2 − x1x3 + rx1, f3(x, t) = x1x2 − bx3,

f2(x, t)− f2(z, t) = (−x2 − x1x3 + rx1)− (−z2 − z1z3 + rz1)

= [−(x2 − z2)− x1(x3 − z3)] + (r − z3)(x1 − z1) (4.2a)

and

f3(x, t)− f3(z, t) = (x1x2 − bx3)− (z1z2 − bz3)

= [x1(x2 − z2)− b(x3 − z3)] + z2(x1 − z1). (4.2b)

Writing (4.2a,b) in the vector form, we get

(
f2(x, t)− f2(z, t)
f3(x, t)− f3(z, t)

)
=
(

−1 −x1(t)
x1(t) −b

)(
x2 − z2

x3 − z3

)
+
(

(r − z3)(x1 − z1)
z2(x1 − z1)

)
=: V1(t)

(
x2 − z2

x3 − z3

)
+ r1(t). (4.2c)

Clearly, µ2(V1(t)) = max{−1,−b} = −1 < 0, and ‖r1(t)‖ ≤ b · |x1 − z1| for
some constant b. Note that such b exists since system (2.3) is bounded dissipative.
Then it follows from Theorem 3.3 that the coupled system (D1,G,F(x)) is globally
synchronized.
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(b) D = D2.

In this case k = 1, and f2 is of course Lipschitz in any bounded domain. Choosing
l = 2, we have that f1(x, t) = −σx1 + σx2,, f3(x, t) = −bx3 + x1x2,

f1(x, t)− f1(z, t) = [−σ(x1 − z1)] + σ(x2 − z2)

and

f3(x, t)− f3(z, t) = [−b(x3 − z3)] + x1(x2 − z2) + z2(x1 − z1).

Letting V1(t) = (−σ), V2(t) = (−b), r1(t) = (σ(x2 − z2)), and
r2(t) = (x1(x2 − z2) + z2(x1 − z1)). We see that µ2(V1(t)) = −σ < 0, µ2(V2(t)) =

−b < 0, |r1(t)| ≤ b|x2 − z2| and |r2(t)| ≤ b‖
(

x2 − z2

x1 − z1

)
‖ for some constant b.

Thus, the coupled system (D2,G,F(x)) is globally synchronized.

(c) D = D3.

In this case k = 1. Moreover, f1 and f2 contains the term x2 and x1, respectively,
the only feasible way to break the uncoupled components is to pick l = 1. Other-
wise, (3.16c) is violated. For l = 1, we have that

V1(t) =
(

−σ σ

r − x3(t) −1

)
.

For such V1(t), we see that µi(V1(t)) is not negative for all time t. Here i = 1, 2,∞.
As indicated in [10], the numerical results show that for such partial coupling the
synchronization fails. All in all, these suggest that our sufficient conditions for the
synchronization are quite sharp.

(d) For other D satisfying (3.3c), it is easy to show that the synchronization can
be achieved.

We summarize our results above as follows.

Theorem 4.1. Let f(x) be given as in (4.1) and G be a symmetry matrix satis-
fying (3.3a, 3.3b). Let D = Dnew be a symmetric matrix satisfying (3.12). Then
the coupled system (D,G,F(x)) is globally synchronized provided that d is chosen
sufficiently large.

Remark 4.1. It is a nontrivial task to show the bounded dissipations of the coupled
system whenever D and G are not symmetric.

(ii) For the second example, we consider the subsystem (see e.g., [12]) of chaotic
walks. That is,

ẋ1 = f(x1) = (f1(x1), . . . , fn(x1))
T
, (4.3a)
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where

fi(x1) = sin(x1,k)− bx1,i, i = 1, 2, . . . , n, and

k = (i mod n) + 1. (4.3b)

Note that in [12], it was demonstrated numerically that subsystems (4.3a) exhibits
hyperchaos. We next show that the coupled system (2.3) with the nonlinearities
given as in (4.3b) is bounded dissipative provided that G is a negative semidefinite
matrix, and D is given as in (3.3c). To this end, we introduce a Lyapunov function
of the form

V (x) =
m∑

j=1

n∑
i=1

x2
j,i

2 .

By taking the time derivative of V along solutions of (2.3), one obtains

dV

dt
=

m∑
j=1

n∑
i=1

xj,i(sin(xj,k)− bxj,i) + d
k∑

j=1

< xj ,Gxj >

≤
m∑

j=1

n∑
i=1

−bx2
j,i + |xj,i| =: bm,n.

Suppose
m∑

j=1

n∑
i=1

x2
j,i ≥ mnc2

0, where c0 > 0 satisfying

−bc2
0 + c0 < − 1

2b
(mn− 1). (4.4)

Then, we may assume, without loss of generality, that |x1,1| ≥ c0. Now,

bm,n = −bx2
1,1 + |x1,1|+

 m∑
j=1

n∑
i=1

−bx2
j,i + |xj,i|

+ bx2
1,1 − |x1,1|


< − 1

2b
(mn− 1) +

1
4b

(mn− 1) = − 1
4b

(mn− 1) < 0.

We have used (4.4) and the fact that max (−bx2 + |x|) = 1
4b to justify the above

inequality. It then follows from Proposition 2.3 that the coupled chaotic walk is
bounded dissipative as claimed. By Corollary 3.2 and noting that the permutation
symmetry of equation (4.2), we only consider the case that the matrix D satisfying
(3.3d) with k = 1. Letting l = n− k = n− 1, we see that Vp = −b, p = 1, 2, . . . , l.

Thus, their matrix measure µi(Vp) = −b < 0. Moreover, the corresponding remain-
ing terms ri(x,y, t) satisfy (3.16c). Thus, system (2.3) is globally synchronized. In
summary, we have our results in the following.
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Theorem 4.2. Let f(x) be given as in (4.2) and G be a symmetry matrix satis-
fying (3.3a, 3.3b). Let D be a matrix satisfying (3.12). Then the coupled system
(D,G,F(x)) is globally synchronized provided that d is chosen sufficiently large.

Proof. To complete the proof of the theorem, it suffices to show that the coupled
system (2.5) is bounded dissipative. Writing the first k components of the coupled
system, we get

żk :=

˙ x̃1

...
x̃k

=

 −bx̃1 + g̃1(x̃, t)
...

−bx̃k + g̃k(x̃, t)

+ d(D̄⊗G)

 x̃1

...
x̃k


,

(4.5)

where the components of g̃i(x̃, t) have the form of sin(∗). Applying the variation
of constant formula to (4.5), we see that

zk(t) = e(−bI+dD̄⊗G)tzk(0) +
∫ t

0

e(−bI+dD̄⊗G)(t−s)Ḡ(x, s)ds,

where Ḡ(x, t) =

 g̃1(x̃, t)
...

g̃k(x̃, t)


.

Now,

‖zk(t)‖ ≤ c0e
− b

2 t‖zk(0)‖+ c0

√
mk

∫ t

0

e−
b
2 (t−s)ds

≤ c0e
− b

2 t‖zk(0)‖+ α,

for some constant c0 > 0 and α = 2 c0
b

√
mk. Similarly, we have ‖x̃k+i(t)‖ ≤

c0e
− b

2 t‖x̃k+i(0)‖+ α for all i = 1, . . . , n− k. Hence,

‖x̃(t)‖ ≤ ce−
b
2 t‖x̃(0)‖+ nα

for some constant c. Thus, system (2.5) is bounded dissipative with respect to
((n + 1)α, ((c + 1)n + c)α). �

(iii) Finally, we explore the example in [16]. Specifically, the subsystem consid-
ered is the Duffing oscillation defined by

ẋi = yi (4.6a)

ẏi = −αyi − x3
i + a cos wt, (4.6b)

where α and a are positive constants. Letting xi = (xi1, xi2)T =: (xi, yi)T , we have

f(xi, t) = (f1(xi, t), f2(xi, t)) = (yi,−αyi − x3
i + a cos wt). (4.7a)
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Assume the coupling matrices D and G are, respectively,

D(c) =
(

0 0
c 1

)
(4.7b)

and

G(ε, r) =



−2ε ε− r 0 · · · 0 ε + r

ε + r −2ε ε− r
. . . 0

0
. . . . . . . . . . . .

...
...

. . . . . . . . . . . . 0

0
. . . . . . −2ε ε− r

ε− r 0 · · · 0 ε + r −2ε


,

(4.7c)

where ε > 0 and r are scalar diffusive and gradient coupling parameters, respec-
tively. Setting x = (x1, . . . , xm)T , y = (y1, . . . , ym)T , x3 = (x3

1, . . . , x
3
m)T , and

g(t) = a cos(wt) (1, · · · , 1)T
. We see that (2.5) becomes

ẋ = y (4.8a)

ẏ = −αy − x3 + g(t) + dcG(ε, r)x + dG(ε, r)y. (4.8b)

We first study equation (4.8) with r = 0. In order to construct an approximate
Lyapunov function of the coupled system (D(c),G(ε, 0),F(x,y, t)), we first find a
matrix L so that

L + LT = G(ε, 0). (4.9)

Now, consider the following scalar-valued function

U(x,y) =
1
2

< y,y > +
m∑

i=1

x4
i

4
+ b < x,Lx > +k < x,y >, (4.10)

where b and k are constants to be determined later. Taking the time derivative of
U along solutions of the coupled system (D(c),G(ε, 0),F(x,y, t)), we have

dU

dt
=< y, ẏ > +

m∑
i=1

x3
i yi + b < y,G(ε, 0)x > +k < y,y > +k < x, ẏ >

= (k − α) < y,y > −kα < x,y > −k < x,x3 > + < y + kx,g(t) >

+ d < y,G(ε, 0)y > +(dc + kd + b) < y,G(ε, 0)x > +kdc < x,G(ε, 0)x >.
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Note that

< x,x3 >=
m∑

i=1

x4
i ≥

1
m

(
m∑

i=1

x2
i

)2

≥ 1
m
‖x‖42,

and −G(ε, 0) is a nonnegative definite matrix. We have that, by choosing b =
−d(c + k) and k > 0,

dU

dt
≤ (k − α) < y,y > −kα < x,y > −k < x,x3 > + < y + kx,g(t) >

≤ (k − α)‖y‖22 + kα‖x‖2‖y‖2 −
k

m
‖x‖42 +

√
ma(‖y‖2 + k‖x‖2)

=: u(‖x‖2, ‖y‖2).

We are now in a position to show the bounded dissipation of the coupled system
(D(c),G(ε, 0),F(x,y, t)).

Proposition 4.1.

(i) Let b = −d(c + k), and

0 < k < min{ 4α

4 + α2m
,α}. (4.11)

Then there exists a constant c0 so that dU
dt < 0 for ‖x‖22 + ‖y‖22 ≥ c0.

(ii) If c = 0, then the first assertion of the proposition still holds true.

Proof. Suppose ‖x‖2 ≥ 1. Then

u(‖x‖2, ‖y‖2) ≤ (k − α)‖y‖22 + kα‖x‖2‖y‖2 −
k

m
‖x‖22 +

√
ma(‖y‖2 + k‖x‖2)

=: ū(‖x‖2, ‖y‖2).

It then follows from (4.11) that the the level curve of ū is a bounded closed curve.
We shall call such curve ellipse-like is an elliptic in the plane. Thus, there exists
a c1 so that dU

dt < 0 whenever ‖x‖22 + ‖y‖22 ≥ c1 and ‖x‖2 ≥ 1. Let ‖x‖2 < 1 and
‖x‖22 + ‖y‖22 ≥ c2. Here c2 is a constant to be determined. Then

u(‖x‖2, ‖y‖2) ≤ (k − α)‖y‖22 + (kα +
√

ma)‖y‖2 +
√

mak =: h(‖y‖2).

Since h(‖y‖2) is a parabola-like curve which is open downward, there exists a c > 1
such that h(‖y‖2) < 0 whenever ‖y‖2 ≥ c. Thus, if c2 ≥ c2+1, then u(‖x‖2, ‖y‖2) <

0 whenever ‖x‖2 < 1 and ‖x‖22 + ‖y‖22 ≥ c2. Picking c0 = max{c1, c2}, we have
that the assertion of the proposition holds true. �

Proposition 4.2. Assume (4.11) holds true. Then lim
r→∞

U(x,y) = ∞, where r =√
‖x‖2 + ‖y‖2.

18



Proof. From (4.10), we have that

U(x,y) =
1
2
‖y‖2 +

m∑
i=1

x4
i

4
+ b < x,Lx > +k < x,y >

≥ 1
2
‖y‖2 +

1
4m

‖x‖4 + b0‖x‖2 − k‖x‖ · ‖y‖,

where b0 = b‖L‖. Let b1 > 0 satisfying 1
4mb2

1 + b0 > k2. Then suppose ‖x‖ > b1,
we have

U(x,y) ≥ 1
2
‖y‖2 + k2‖x‖2 − k‖x‖‖y‖ =: h1(‖x‖, ‖y‖).

Since the level curve of h1(‖x‖, ‖y‖) is elliptic-like in the plane. Thus, for any given
M > 0, there exists a d1 > 0 such that U(x,y) > M whenever ‖x‖2 + ‖y‖2 ≥ d2

1

and ‖x‖ > b1.
Suppose ‖x‖ ≤ b1, we then have

U(x,y) ≥ 1
2
‖y‖2 − kb1‖y‖+ b0b

2
1 =: h2(‖x‖, ‖y‖).

Since h2(‖x‖, ‖y‖) is parabola-like curve which are open upward in the plane. Thus,
for any given M > 0, there exists a d2 > 0 such that U(x,y) > M whenever
‖x‖2 + ‖y‖2 ≥ d2

2 and ‖x‖ ≤ b1. Picking α = max{d1, d2}, we have that U(x,y) >

M for all ‖x‖2 + ‖y‖2 ≥ α2. Thus, the assertion of the proposition holds true. �

Theorem 4.3. Coupled system (D(c),G(ε, 0),F(x,y, t)) is bounded dissipative,
where ε > 0.

Proof. The proof is direct consequences of Propositions 2.3, 4.1 and 4.2. �

Theorem 4.4. Let f , D(c) and G(ε, 0) be given as in (4.7a), (4.7b), and (4.7c), re-
spectively. Let c ≥ 0. Then the coupled system (D(c),G(ε, 0),F(x,y, t)) is globally
synchronized provided that d is chosen sufficiently large.

Proof. Letting wi = p xi + q yi, we see that (4.6) becomes

ẋi = −p

q
xi +

1
q
wi (4.12a)

ẇi = (
p

q
− α)wi + p(α− p

q
)xi − qx3

i + qa cos(wt)

+ d(qc− p)(G(ε, 0)x)i + d(G(ε, 0)w)i (4.12b)

Suppose c = 0. Then we pick q = 1 and p = 1
d . In vector form (4.12) becomes

˙(
w
x

)
=
(

f̃1(x,w, t)
f̃2(x,w, t)

)
+ d

((
1 0
0 0

)
⊗G(ε, 0)

)(
w
x

)
,

(4.13)

where the ith component of f̃1(x, w, t) is
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(
f̃1(x,w, t)

)
i
= (

1
d
− α)wi +

1
d
(α− 1

d
)xi − qx3

i + a cos wt− (G(ε, 0)x)i

and (
f̃2(x,w, t)

)
i
= −1

d
xi + wi.

It is then clear that (4.13) satisfies the assumptions in Theorem 3.2. Hence, the
coupled system (D(c),G(ε, 0),F(x,y, t)) is synchronized. Suppose c 6= 0. Choosing
p and q so that qc = p, we conclude, again, that new coupled system (4.13) satisfies
synchronization hypothesis. �

We now turn our attention to equation (4.8) with r 6= 0.

Theorem 4.5. Assume that α > c ≥ 0, ε > 0 and r ∈ R. Then coupled system
(D(c),G(ε, r),F(x,y, t)) is bounded dissipative.

Proof. Consider the following scalar-valued function

U(x,y) =
1
2

< y,y > +
m∑

i=1

x4
i

4
+ < x,Kx > +c < x,y >, (4.14a)

where c is given as in (4.7b), and the matrix K satisfies

K + KT = −2εdcG(1, 0) =: K′
. (4.14b)

Taking the time derivative of U along solutions of coupled system (D(c),G(ε, r),F(x,y, t)),
we have

dU

dt
= (−α + c)‖y‖2+ < g(t), cx + y > −cα < x,y > −c < x,x3 >

+ d < G(ε, r)y,y > +dc2 < x,G(ε, r)x > + < x,K′y >

+ dc < x, [GT (ε, r) + G(ε, r)]y >

= (−α + c)‖y‖2+ < g(t), cx + y > −cα < x,y > −c < x,x3 >

+ dε < G(1, 0)y,y > +dc2ε < x,G(1, 0)x >

≤ (−α + c)‖y‖2 +
√

ma(c‖x‖+ ‖y‖) + cα‖x‖‖y‖ − c

m
‖x‖4.

Following the similar arguments as done in proving the assertions of Proposition
4.1 and 4.2, we conclude that (i) dU

dt < 0 whenever ‖x‖2 + ‖y‖2 ≥ c0 for some
c0 > 0 and (ii) lim

r→∞
U(x,y) = ∞, where r =

√
‖x‖2 + ‖y‖2. It then follows from

Proposition 2.3 that coupled system (4.8) is bounded dissipative.
�

Theorem 4.6. Let f , D(c) and G(ε, r) be given as in (4.7a), (4.7b) and (4.7c),
respectively. Let 0 ≤ c < α. Then the coupled system (D(c),G(ε, r),F(x,y, t)) is
globally synchronized provided that d is chosen sufficiently large.
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Proof. Since G(ε, r) is a circulant matrix (see e.g., [5]), the eigenvalues λk of G(ε, r)
are

λk = −2ε(1− cos
2kπ

n
)− i 2r sin

2kπ

n
, k = 0, . . . ,m− 1.

Hence G(ε, r) satisfies assumptions (3.3a) and (3.3b). The proof of the theorem is
thus similar to that of Theorem 4.4. �

Remark 4.2. (i) It was shown in [8] that there are positive constants d0 and
c0 such that, for d ≥ d0, c ≥ c0, the system (D(c),G(ε, 0),F) given in (4.8) is
synchronized. Our results also work for the case that c0 = 0 or G(ε, r), r 6= 0. (ii)
It was also shown in [1] that there are positive constants d0 and c0 such that for
d ≥ d0, c ≥ c0, the system (D(c),G,F) is synchronized. Here −G is a positive
definite matrix. (iii) The case that the lattices of coupled Rössler-like equations in
[9] is a bit more different, and we will address this issue in a forthcoming paper.
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