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中文摘要
在本計劃執行的第一年中，我們針對多數已

常被應用於核糖核酸結構預測的方法做評估與分
析，此外，我們將搜尋有實用價值的屬性作為檢測
核糖核酸與蛋白質交互關聯的基礎，由於以往所提
出的方法有其個別的應用目的與設計理念，因此必
須先分析其優缺點。我們計畫研發新的結構預測系
統，同時計劃將結構預測與分群合而為一，提升系
統的使用彈性。

關鍵詞: 核糖核酸、二級結構、分群

Abstract
The goal of the first-year period for the project

is to investigate those various methods for RNA
secondary structure prediction. In addition, we planed
to find useful features that can be applied to
identifying the correlation between RNA and proteins.
These previously proposed approaches are based on
different design philosophies as well as with quite
different purposes. We were aimed to evaluate the
pros and cons of these systems, and planed to develop
a novel prediction system that is flexible enough to
deal with a wide variety of RNA secondary structures.
After a thorough analysis and comparison of the
systems available, we have decided to design a new
RNA structural motif predictor combined with RNA
clustering. With this new approach, we expect to
perform RNA clustering and secondary structure
prediction simultaneously.
Keywords: RNA, secondary structures, clustering

Introduction

RNA molecules are the key players in the
biochemistry of the cell, playing many important roles
in regulation, catalysis and structural support. Like
proteins, their functions generally depend on their
structures. Although structural genomics, the
systematic study of all macro-molecular structures in a
genome, is currently focused more on proteins,
thousands of genes produce transcripts exerting their
functions without ever producing protein products [1].
It can be easily argued that the comprehensive
understanding of the biology of a cell requires the
knowledge of identity of all functional RNAs (both

non-coding and protein-coding) and their molecular
structures. Since it is often difficult to acquire the 3D
spectrum data of RNA molecules for structure
determination, versatile and reliable computational
methods that can predict RNA structures are highly
desirable.

Many functional RNAs have evolutionarily
conserved secondary structures in order to fulfill their
roles in a cell. For protein-coding RNAs, some of the
functions can be presented by functional motifs. For
example, several best-understood structurally
conserved RNA motifs are found in viral RNAs, such
as the TAR and RRE structures in HIV and the IRES
regions in Picornaviridae. Apparently, structural
information is very useful in characterizing a class of
functional RNAs. Based on characteristic structures,
we can likely identify novel functional RNAs or
partition given RNAs into biologically meaningful
families. Several systems have been developed to find
consensus structural elements within a family of
functionally related RNAs; however, there is little
work on clustering of unaligned RNAs based on
characteristic secondary structures. Given a set of
unaligned RNA sequences without prior knowledge of
the number or identity of families in the set, our goal is
to automate both clustering and secondary structure
prediction simultaneously. In this report, we propose
an adaptive approximation approach combined with a
genetic programming-based structure prediction
method to identify from unaligned RNAs reasonable
clusters associated with characteristic secondary
structure elements.

Material and Methods

There are currently a lot of various approaches to
RNA secondary structure prediction; nevertheless, few
of them address the issue of simultaneous RNA
clustering and structure prediction. According to the
system log of our earlier system, GPRM, we found
that those RNAs submitted by the users (possibly
biologists) were not necessarily within a single family
per se. This gives us the idea that biologists generally
do not know a specific RNA family in advance. Thus
we aimed to develop a new system to find meaningful
clusters and their characteristic structure motifs at the
same time.

In order to find a reasonable partition for a given
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set of unaligned RNAs without knowing beforehand
how many clusters actually existing in this set, we
assume that each cluster is likely a functional family
that contains characteristic structure elements. Based
on this assumption, our new method is focused on
finding significant consensus structure elements that
can be used to characterize the families of RNAs.
Since the number of clusters and its size are not known
in advance, we adapt a generate-and-test strategy that
iteratively adjusts the hypothesized cluster size until
some significant consensus structure elements can be
found associated with this cluster. After a cluster is
obtained, all its members are then removed from the
given set of RNAs. We can repeat the same
separate-and-conquer strategy to identify other clusters
until the set of RNAs is emptied.

The generate-and-test strategy we use is an
adaptive approximation approach that systematically
revises the hypothesized range of the cluster size. The
cluster size is defined by a range between an upper
bound U and a lower bound L. Without sufficient prior
information of clusters, an initial hypothesis about the
cluster size is generated for a given set of n RNA
sequences. The cluster size is initialized within a range
between an upper bound U=n and a lower bound L=0,
that is, we first assume that all the given RNA
sequences may form an entire family. To the entire
family, a genetic programming-based structure
prediction method is applied to look for the fittest
consensus structure elements. The definition of fitness
is detailed later. If the specificity of the structure
elements associated with a cluster exceeds or equals
some pre-specified threshold, the hypothesis is
considered verified, and the cluster along with the
associated structure elements will be reported. On the
other hand, low specificity suggests that the current
hypothesized cluster size is too big to be real and
needs to be decreased. In this case, we reduce the
current hypothesized cluster by updating U to the
median (i.e. n/2) of the current U(=n) and L(=0), and L
remains the same. With the cluster sized fixed in the
new range [0,n/2], we search the fittest consensus
structure elements and evaluate their specificity again.
If the specificity is still lower than the threshold, we
modify the cluster size by updating U in the same way
as above. The same process for cluster reduction can
be repeated till we find a cluster with high-specificity
structure elements. On the contrary, if the specificity is
over or equal to the threshold, it can mean one of the
two possibilities: (1) the current cluster is likely real,
and any more sequences added will be harmful to the
specificity of consensus structures, or (2) the current
cluster found is only a subset of a bigger real cluster.
To verify which event actually happens, we increase
the cluster size. We set L to the current U’s value, and
change U to the median of its current value and its last.
After the update, the new range for cluster size
becomes [n/2,3n/4], and a new search for the fittest
consensus structure elements constrained by the new
range is conducted. Likewise, we have two possible
outcomes from the examination of consensus structure

specificity, better (or equal to) or worse than the
threshold. Based on the outcome, we can either
increase or decrease the cluster size by revising its
range. As each update generates a tighter range for
cluster size, we expect the range will eventually
converge to the appropriate cluster size.

Consensus structure element prediction can be
considered a supervised learning problem which
involves both positive and negative examples. Positive
examples are a given set of RNA sequences; negative
examples are some number of sequences randomly
generated based on the observed frequencies of
sequence alphabet in positive examples. The objective
here is to learn the structure elements that can be used
to distinguish the given functionally related sequences
from the random sequences.

We modify our previous system, GPRM, an
RNA consensus secondary structure prediction tool, to
find significant structure elements from a dataset that
may contain multiple variable-sized clusters of
unaligned sequences. GPRM has been tested on
several real RNA families, including pseudoknots, and
shown its effectiveness in predicting conserved
structure elements in a given RNA family. To describe
the characteristic structure elements for a cluster, we
adapt the same representation that is expressive
enough to even represent pseudoknots. We also apply
the same genetic operators to optimize candidate
structure elements during evolutionary process. What
is different from the previous work is the fitness
function.

The fitness function is used to measure the
quality of individuals (i.e. candidate structure elements)
in a population. The higher the fitness of an individual,
the better its chances of survival to the next generation.
In the previous work, the input dataset was assumed to
be a single class of functionally related RNA
sequences. We were interested in those structure
elements that can reflect the characteristics conserved
in a family, e.g. the RNA protein binding sites.
Derived from the F-score, the fitness function was
aimed to balance the importance of two measures,
recall (i.e. sensitivity) and precision (i.e. positive
predictive value). It assigns higher values to those
structural motifs commonly shared by the given family
of RNAs, and rarely contained in random sequences.
For a given set of RNA sequences that form a single
family only, the fitness function used in can effectively
guide the evolutionary process in genetic
programming. Nevertheless, when the input dataset
contains multiple functional classes, the recall measure
may dominate the calculation of F-score if the fitness
function treats the entire dataset as a single class. This
will mislead the system to find over-general elements
shared by most sequences. To alleviate the bias, we
define a new measure of recall, and present the fitness
function by taking into account the hypothesized
cluster sizes. In that case, we can better constrain the
search space, and accelerate the convergence of the
optimization process.
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Lessons Learned and Future Work

Without the prior knowledge of the number of
clusters, it is computationally difficult to
simultaneously perform clustering and structure
prediction. According to our preliminary study, the
simple generate-and-test approach combined with the
revised fitness measure in our earlier system can
effectively estimate the family size, and consequently
identify RNA families. With this new combinatorial
approach, we expect to deal with a wider variety of
RNAs even without knowing their family identity.
Furthermore, the common conserved structure motifs
can be considered useful features used to characterize
RNA families. This sheds some light on the possibility
of classifying RNA-protein interactions based on these
features.

In the following year, we plan to design more
thorough tests on the new approach as well to collect
RNA-protein interaction literature and resource of
sorts. For the tests, several objectives are considered.
Firstly, we will test the accuracy of the structure
prediction. Secondly, we will evaluate how well the
clusters predicted correspond to real RNA families.
Thirdly, we will investigate the robustness of the new
approach in terms of various RNA family sizes and
motif forms. Lastly, in addition to structural motifs,
based on the domain knowledge obtained from the
literature available, we plan to derive more useful
features to describe RNA-protein interactions.
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Abstract

The search for structural similarity among proteins
can provide valuable insights into their functional
mechanisms and their functional relationships. Though
the protein 1D sequence contains the information of
protein folding, the performance of predicting the
3D-structure directly from the sequence is still limited.
As the increase of available protein structures, we can
now conduct more precise and thorough studies of
protein structures. Among many is the design of
protein structural alphabet that can characterize
protein local structures. We use the self-organizing
map combined with the minimum spanning tree
algorithm for visualization to determine the alphabet
size and then apply the k-means algorithm to group
protein fragments into clusters corresponding to the
structural alphabet. The intra-cluster and inter-cluster
analyses show the significant structural cohesiveness.
A comparative study of our alphabet with one of the
recently developed structural alphabets also
demonstrated a competitive result.

1. Introduction

Various genome sequencing projects have been
producing numerous linear amino acid sequences;
however, complete understanding of the biological
roles played by these proteins requires knowledge of
their structures and functions [1]. Despite that
experimental structure determination methods provide
reasonable structure information regarding subsets of
proteins, computational methods are still required to
provide valuable information for a large fraction of
proteins whose statures may not be experimentally
determined. Even though the primary sequence implies
the whole information guiding the protein folding, yet
the performance of predicting the 3D-structure directly
from the sequence is still limited. The complexity and
the number of physicochemical, kinetic and dynamic
parameters involved in protein folding prohibit an
efficient 3D-structure prediction without first knowing
the 3D-structures of closely related proteins [2]. Some

ab initio methods do not directly use 3D-structures, but
their applications are often limited to small proteins
[3].

Early analysis of protein structures has shown the
importance of repetitive secondary structures, i.e.
-helix and -sheet. With variable coils, they
constituted a basic standard 3-letter alphabet, and this
has led to early secondary structure prediction
algorithms, e.g. GOR [4], and more recent ones that
apply neural networks and homology sequences [5-8]
with prediction accuracy approaching 80%. In spite of
the increase of predictive accuracy, the approximation
of 3D-structures with only a 3-letter alphabet is
apparently too crude for meaningful 3D reconstruction.
All the predictions are highly dependent on the
definitions of periodic structures, but unfortunately the
structure description is incomplete. As the increase of
available protein structures, it allows more precise and
thorough studies of protein structures. Various more
complex structural alphabets have been developed by
taking into account the heterogeneity of backbone
protein structures through sets of small protein
fragments frequently observed in different protein
structure databases [2][9]. The alphabet size can vary
from several to around 100. For example, Unger et al.
[10] and Schuchhardt et al. [11] used k-means method
and self-organizing maps respectively to identify the
most common folds, but the large number of clusters
(about 100) is not appropriate for prediction. Rooman
et al. found 16 recurrent folding motifs, ranging from 4
to 7 residues and categorized into four classes
corresponding to -helix, -strand, turn and coil [12].
By applying autoassociative neural networks, Fetrow et
al. defined six clusters representing supersecondary
structures that subsume the classic secondary structures
[13]. Bystroff and Baker produced similar short folds
of different lengths and grouped them into 13 clusters
for prediction [14]. Taking into account the Markovian
dependence, Camproux et al. developed an HMM
approach to lean the geometry of the structural alphabet
letters and the local rules for assembly process [15].

In this paper, we propose a multi-strategy approach
to identifying structural alphabet that can characterize
protein local structures. Instead of applying
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cross-validation [14] or shrinking procedures [16] to
refine the clusters directly, we use self-organizing maps
as a visualization tool to determine the size of
structural alphabet. Given the alphabet size, we later
apply the k-means algorithm [17] to group protein
fragments into clusters that correspond to a structural
alphabet. The analysis of structural similarities between
proteins not only provides significant insight into
functional mechanisms and biological relationships, but
also offers the basis for protein fold classification. An
expressive structural alphabet can allow us to quantify
the similarities among proteins encoded in appropriate
letters. It also enables us to work with a primary
representation of 3D structures, simply using standard
1D amino acid sequence alignment methods. To
demonstrate the performance of our new method, we
tested it on the all- proteins in SCOP. The
experimental results show that using our structural
alphabet rather than the standard amino acid letters can
outperform BLAST in finding the best hit for a protein
query. This suggests that our structural alphabet can
successfully reflect protein structural characteristics
which are implied in protein fragments. Besides, in
order to make a consistent and fair comparison, we also
compared our alphabet with others that are also
developed by the SOM, but in a different design
methodology [9][19]. Our structural alphabet shows
competitive performance in protein matching.

2. Material and methods

The use of frequent local structural motifs
embedded in polypeptide backbone has recently shown
improvement in protein structure prediction [1][14][18].
Its success has shed some light on further studies of
structural alphabet. We used the proteins classified to
all-fold within the SCOP database (version 1.65) in
our study with the aim to build the structural alphabet
suitable for all-proteins. The same approach can be
easily applied to other databanks as well.

There are three issues addressed in our study. They
are: (1) protein fragment representation, (2) alphabet
size determination and (3) structural alphabet definition.
Like others, we transform each protein backbone into a
series of the dihedral angles (and , neglecting )
[14][16]. Adapted from [16], the analysis is limited to
fragments of five residues since they are adequate for
describing a short helix and a minimal structure.
With the fixed window size of five residues, we slid the
window along each all-protein in SCOP, advancing
one position in the sequence for each fragment, and
collected a set of overlapped 5-residue fragments. As

the relation between two successive carbons,
i

C and

1i
C , located at the ith and (i+1)th positions, can be

defined by the dihedral angles i of
i

C and i+1 of

1i
C , a fragment of L residues can then be defined as

a vector of 2(L-1) elements. Thus, in our study, each
protein fragment, associated with -carbons

2i
C ,

1i
C ,

i
C ,

1i
C and

2i
C , is represented by a

vector of eight dihedral angles, i.e.
].,,,,,,,[ 211112  iiiiiiii  Based on

this representation, we totally gathered 1,143,072
fragment vectors.

Self-organizing maps (SOM) are widely used as a
data mining and visualization tool for complex data
sets. A self-organizing map usually consists of a regular
2D grid of so-called map units, each of which is
described by a reference vector mi = [mi1, mi2, mi3,…,
mid], where d is the input vector dimension, e.g., d = 8,
in our case of fragment vectors. The map units are
usually arranged in a rectangular or hexagonal
configuration. The number of units affects the
generalization capabilities of the SOM, and thus is
often specified by the researcher/user. It can vary from
a few dozen to several thousands. An SOM is a
mapping from the ensemble of input data vectors
(Xi=[xi1, xi2, xi3,…, xid] Rd) to a 2D array of map units.
During training, data points near each other in input
space are mapped onto nearby map units to preserve
the topology of the input space [19][20]. The SOM is
trained iteratively. In each training step t, distances
between a randomly picked input vector xj and all the
reference vectors are computed. The unit with the least
distance is then selected as the winner unit and denoted
by w. The winner unit and its topological neighbors are
updated to move closer to input vector xj in the input
space by the following rule:

)()()()()1( tmxthttmtm ijwiii  
where t is time, (t) is the adaptation coefficient,
|xj-mi(t)| is the component-wise difference between the
input vector and the ith reference vector, and hwi(t) is
the neighborhood function acting on the array of units,
whose form includes bubble kernel, Gaussian kernel
and other more complicated ones. In our study, we
used the bubble kernel [20][21]. Unlike previous works
that directly apply SOM to obtain clusters of backbone
fragments as the basis to define the structural alphabet,
our approach instead uses SOM only for the
visualization purpose to predetermine the number of
letters in the alphabet.
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By visual inspection of the trained SOM, we can
get a preliminary idea of the number of clusters on the
map. The unified distance matrix (U-matrix) is one of
the most widely used methods for visualizing the
clustering result on the SOM. It shows distances
between neighboring reference vectors, and can be
efficiently visualized using grey shade [22], as shown
in Figure 1(a). In spite of the initial idea of the cluster
structure provided by the U-matrix, a systematic
method to determine the number of clusters on the map
is still desired. We implement a post-process on the
U-matrix that is based on the minimum-spanning-tree
algorithm. Given the grey levels in the U-matrix, we
can build the minimum spanning tree for all the map
units, e.g., in Figure 1(b), all map unit are linked in the
spanning tree. Based on a threshold of the grey level,
we can partition the entire tree into several
disconnected subtrees, by removing the links between
map units with grey levels below the threshold, as
shown in Figure 1(c). Conceptually, it means that we
break the links of a distance longer than some threshold.
Furthermore, those relatively smaller subtrees left can
be also deleted later such that the remaining clusters
can maintain a reasonable size, as presented in Figure
1(d). The number of the subtrees finally kept becomes
the structural alphabet size. As the SOM can be viewed
as a topology preserving mapping from input space
onto the 2D grid of map units [19], the number of map
units can affect the clustering result. We systematically
increase the number of units, and repeat the above
process till the alphabet size stabilizes.

Rather than adapt the two-level approach that first
trains the SOM, then performs clustering of the trained
SOM [19], after determining the alphabet size, we
apply the k-means algorithm to the input data vectors
directly to obtain the clusters. The SOM established a
local order among the set of reference vectors in such a
way that the closeness between two reference vectors in
the Rd space is dependent on how close the
corresponding map units are in the 2D array.
Nevertheless, an inductive bias of this kind may not be
appropriate for structural alphabets since the local
order does not always faithfully characterize the
relation between structural building blocks, and can
sometimes be misleading, e.g. forcing the topology to
preserve mapping from the input space of -helix and
-strand to a 2D grid of units could be harmful to
clustering. As a result, we use the SOM only for
visualization the alphabet size, and rely on the k-mean
algorithm to extract the local features from the input
data that can actually reflect the characteristics of the
clusters respectively. The centroid of each cluster
forms the prototypical representation of each alphabet

letter. Given the clustering result by the k-means
algorithm as the basis of the structural alphabet, we can
transform a protein into a series of the alphabet letters
by matching each of its fragments against our alphabet
prototypes. The control flow of our system named
SMK is illustrated in Figure 2.

(a) (b)

(c) (d)

Figure 1. Visualization of the trained SOM. (a) the
grey shade of the trained SOM, where darker areas
mean larger distances, (b) the minimum spanning tree
for the map units, (c) the disconnected subtrees after
removing the links below some threshold and (d) the
final disconnected subtrees after discarding those
relatively small ones.

3. Experimental results

We tested our approach on the all-proteins in
SCOP. By this experiment, we show that our method
can produce an appropriate structural alphabet for
describing these all- proteins. After transforming
protein backbones into dihedral angles and extracting
protein fragments, we trained the SOM on these
dihedral angle vectors.

Three issues were addressed in the experiments.
First, the meaningfulness of the structural alphabet size
in terms of the number of clusters was presented by
showing the size stability given various parameters.
Second, we demonstrated cluster cohesiveness by
visual superimpositions of protein fragments as well as
computed the intra-cluster and inter-cluster distance.
Third, we proved the fragment clusters found were not
arbitrary by comparing our result with that from a
random background.
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Figure 2. The system control flow of SMK
Since the number of map units has influence over

the SOM’s clustering behavior, to obtain the optimal
number of clusters, we varied the number of units on
the map until the number of clusters found became
steady. The results are shown in Figure 3, which
indicates a distinctive plateau within the range between
nine and twelve. Because eleven is the most frequent
number of clusters on the plateau, as shown in Figure 4,
it is designated as the structural alphabet size.

To further confirm the general geometric
regularities characterized by the structural alphabet, we
also built a negative all- protein fragment set for
comparison. The negative set was derived from the real
all- protein fragment vectors prepared earlier by
rotating the dihedral angles at random (increase or
decrease) within a certain degree, e.g. 30in our
analysis. We compared the clusters produced by

clustering on the real vector set and on the negative
control set. Insignificant difference suggests that the
alphabet we found could be arbitrary. Our experiments
(see Figure 5) show that clustering on the negative
control set cannot even produce consistent clusters,
which supports our hypothesis that the clusters found
from the real fragment vectors reflect the classes of
local protein structures; otherwise, these clustering
results would have been similar.

Given the size, we ran the k-means algorithm on the
input fragment vectors to find the twelve clusters by
which to define the structural alphabet. Figure 6(a) and
(b) shows the fragment superimpositions for the
alphabet. Even though the fragment structures do not
superimpose perfectly, yet the general structural
cohesiveness of each category is quite evident. In
addition, we computed the Euclidean distances from
each fragment in a given cluster to its centroid. The
average of these within-cluster distances was then
compared with the center-to-center distances between
clusters as presented in Table 1. It shows that in most
cases, the center-to-center distance between any two
clusters is greater than the mean distance of all vectors
in that cluster from its center plus one standard
deviation. The result indicates that the individual
clusters are fairly well separated from each other.

The detection and analysis of structural similarities
between proteins allows deeper insight into their
functional mechanisms and relationships. To search for
structural similarities, the structural alphabet provides a
good basis on which to work with a 1D representation.
As a result, numerous 1D alignment algorithms can be
used, with minor modifications, to detect structural
similarities. In our experiments, we first transformed
the 3D structures of proteins into a 1D sequence of the
letters in our structural alphabet. To demonstrate the
applicability of the alphabet, we used FASTA to search
for structural similarities between a query protein and a
bank of proteins, using an identify
matrix of our
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distinctive plateau that suggests the cluster number has
stabilized.
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Figure 4. The frequencies of cluster numbers. It
shows 11 is the most frequent number of clusters.
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Figure 5. The variance in the number of clusters
produced by the SOMs of varying sizes trained on a
negative fragment set. It shows no sign of convergent
cluster number.

alphabet letters to find maximal exact matches. For
comparison, we also conducted the same tests also
using FASTA but based on different structural
alphabets, one developed by de Brevern et al. [9], the
other by the two-level SOM approach [19]. As the
baseline reference, we used BLAST with the standard
20 amino acid letters to find the best sequence hit.

The proteins used in the experiments were selected
from the all-proteins in SCOP. After filtering out
those with more than 30% sequence similarity, we have
totally 1055 proteins. For each run of the experiment,
we randomly picked one protein as the query, and then
matched it against the rest, using FASTA or BLAST
with different alphabets. Given the best hit, we
computed the RMSD between the query and
the hit,

Table 1. Summary of within-cluster distances and
center-to-center distances.

K J I H G F E D C B A

43.15±50.13

88.77±53.33

196.75±97.2

155.02±77.8

220.52±87.79

143.62±90.84

150.41±71.53

193.67±69.19

173.58±77.59

192.84±74.97

186.10±68.07

m
ean±sd

w
ithin-cluster

0 A

0 282.3
B

0 284.59

205.27
C

0 250.31

203.41

216.75
D

0 234.31

251.6

202.8

226.93
E

0 302.93

252.05

197.76

275.08

236.72
F

0 346.14

511.04

388.9

383.86

414.99

399.53
G

0 343.07

220.63

284.51

261.9

243.02

169.3

246.5
H

0 335.84

276.03

346.98

343.02

323.81

333.41

321.03

325.94
I

0 358.58

136.63

341.22

161.11

282.19

183.77

188

208.28

197.44
J

0 86.711

360.95

164.87

278.5

177.48

358.48

233.33

226.52

264.69

245.81
K

center-to-center

and recorded the lowest level in the SCOP hierarchy at
which the query and the hit are both located, i.e. class,
fold, superfamily or family. Smaller RMSD and lower
common level in SCOP hierarchy indicates higher
structural similarity. We repeated the same experiment
for 100 times and the results are summarized in Table 2
and 3. According to Table 2, we notice that our method
SMK and de Brevern et al.’s both produced higher
frequencies at lower common levels than the other two
methods. This suggests that our structural alphabet and
de Brevern et al.’s can better characterize the SCOP
hierarchy. Table 3 shows that SMK has the lowest
mean RMSD and standard deviation among all.
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Table 2. Summary of frequencies at the lowest
common level. The first column shows the methods
used in the experiments. The remaining columns
present the frequency for different levels at which the
query and the best hit are both located.

frequency at different level
Method class fold super family family
BLAST 71 4 5 20
SMK 55 11 5 29
de Brevern 58 4 11 27
2-level SOM 73 6 14 7

Table 3. Summary of average RMSD and standard
deviation between the queries and the best hits.

method
mean
(RMSD)

sd
(RMSD)

BLAST 8.953744 4.764597

SMK 7.290972 3.934283

de Brevern 8.076746 4.819178

2-level SOM 10.38624 5.217078

4. Discussion

In this paper, we propose a multi-strategy approach
to designing the structural alphabet which allows local
approximation of protein 3D structures as well as
enables the applications of 1D alignment algorithms to
search for 3D structural similarities. The success of the
alphabet design depends on three crucial factors. First,
it is the protein fragment representation, which
determines what and how 3D structural characteristics
to be approximated, e.g. thermodynamic stability,
amino acid physicochemical properties,
amino acid usage in known proteins, distances, dihedral
angles, bond lengths, bond angles, etc.

A B

C D

E F

G H

I J

K

Figure 6(a). The superimposition in wireframe
format for the structures of each structural cluster
found by SMK.

A B

C D



13

E F

G H

I J

K

Figure 6(b). The superimposition of the structures
of each structural cluster found by SMK in the
ball-and-stick form.

The effects of the representation selected are entangled
with the performance of the learning approach we
apply to develop the structural alphabet.
Overcomplicated representations can sometimes lead to
overfitting. To avoid this problem, we currently focus
on the dihedral angles. Other features can be easily
included in the representation if proved necessary.

The second factor is the size of the alphabet. We
took advantage of the SOM as a visualization tool that
helps determine the alphabet size. By systematically
varying the number of map units on the map, we
visualized the clustering behavior of the SOM. Our
experiments showed a distinct plateau corresponding to
the convergent number of clusters, compared with the
increasing number of clusters in the results of
clustering on the random negative control dataset. This
suggests that the structural alphabet size we found is
not arbitrary.

Various types of algorithms have been applied to
clustering local protein 3D fragments into a limited set
of fold patters, e.g. self-organizing maps (SOM),
hidden Markov models (HMM), neural networks,
hierarchical clustering, k-means clustering, etc. Each

has its own learning bias and inherent limitations. For
example, the topology (e.g. number of layers or map
units) of neural networks, the SOM and the HMM
strongly affect the performance. The value of k in
k-means algorithm determines the clusters. As a
consequence, the third factor is the learning algorithm.
In our study, we took a multi-strategy approach. We
first used the SOM and the minimum-spanning tree
algorithm to determine the alphabet size, and then
applied the k-means algorithm to group fragments into
meaningful clusters. The number of map units in the
SOM and the value of k in k-means are not
pre-specified in advance, but instead determined
systematically. To verify the correspondence of our
structural alphabet letter to the fold patterns, we
computed the average within-cluster distance for each
alphabet cluster as well as the distance across clusters.
The small average within-cluster distance and the
relatively large between-cluster distance demonstrate
the significance of the structural alphabet we found.
Furthermore, the visualized superimposition of protein
fragments in each cluster also justifies the structural
cohesiveness.

The objective of the paper is to propose a new
approach to developing the structural alphabet. To
verify its usefulness, we tested it on the all-proteins
in SCOP, and the experimental results show its
promising applicability. After the success on the all-
proteins in SCOP, we plan to test our method on
different data banks to further verify its feasibility and
generality. Also as mentioned above, the representation
is a crucial factor in the alphabet design. We will
consider other structural features besides dihedral
angles, add more useful features to enhance our
structural alphabet, and test the new approach on other
families in SCOP.
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