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中文摘要 

在第一年的計畫中我們發展了一個結合分子鉗合與自動特徵篩選PLS的QSAR分析方

法。在我們的方法中，首先利用分子鉗和預測配體與目標分子結合構型並產生其鉗和能量，

稱之為 protein-ligand interaction profile，並淬取出 atom-based，group-based 與 residue-based
能量值。其主要的概念來自 COMBINE 之 QSAR 分析方法。GEMDOCK 預測分子鉗和構

型，並產生蛋白質原子對配體原子的能量值，包含氫鍵，靜電力與凡得瓦力交互作用。這

些蛋白質原子對配體原子的能量值稱之為 atom-based 特徵項。對每一個胺基酸的組成原子

都能計算出一個原子作用能量的總和，其稱之為 residue-based 特徵項。而 group-based 特徵

項則是分離自每個胺基酸的骨幹與側鏈的貢獻能量。這三種特徵淬取方式都會由 GEMPLS
建立不同的 QSAR 模型。GEMPLS 包含了特徵篩選與 QSAR 模型的建立。由演化式方法

篩選可能對抑制性有貢獻的特徵，再由 PLS 建立這些特徵值與抑制性之間的回歸關係，最

後建立 QSAR 分析的預測模型。 

我們也同時將這套 QSAR 分析方法應用到三個不同的目標分子之 QSAR 分析上，包含

神經胺酸酶，糖基磷酸酶 b 與環氧化酵素-2。我們的方法所得到的初步結果與其他知名研

究者已發表的模型相較，其預測能力的表現較佳。在未來的研究中，我們將會投入更多努

力提升方法的準確性與預測力，並結合虛擬藥物篩選建立一高速虛擬藥物預測平台之雛型。 

英文摘要（abstract） 

In first year, we developed a QSAR methodology associating molecular docking and feature 
selection with PLS. The feature of our model generates from the interaction energies of docked 
results, named as protein-ligand interaction profile and was extracted as atom-based, 
group-based and residue-based energetic terms. The concept of our QSAR analysis came from 
COMBINE analysis. First, GEMDOCK predicted the binding conformation for protein-ligand 
and generated atom paired energies. The atom paired energetic terms included hydrogen bonding, 
electrostatic and van der Waals interactions. These atom paired energetic terms would serve as 
atom-based features. The sum of atom paired energies of each residue was residue-based term 
and each residue could divide into two parts of main chain and side chain which called 
group-based terms. GEMPLS served as feature selection and model building in QSAR analysis. 
Potential features for contributing inhibition would be selected by evolutionary strategy and built 
regression by PLS. 

We applied our QSAR methodology to build inhibitory QSAR models of neuraminidase, 
glycogen phosphorylase b and cyclooxygenase-2. We compared our preliminary results to 
published references and our performances showed more prediction power than published 
models. In the recently future, we will make more efforts to improving our methodology and 
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combine virtual screen to create a high through-put prediction environment. 

關鍵詞（keywords） 

QSAR, Virtual screening, GEMQSAR, COMBINE, GEMDOCK, GEMPLS, Neuraminidase, 
Glycogen Phosphorylase b, GPB, Cyclooxygenase-2, COX-2 

前言與研究目的: 

QSAR techniques are commonly regarded as a key role to computational molecular design. 
The major goal of QSAR is to formulate mathematical relationships between physicochemical 
properties of compounds and their experimentally determined in vitro biological activities. Thus 
the derived QSAR model can be subsequently used to predict the biological activities of new 
derivatives. A good QSAR model both enhances our understanding of the specifics of drug 
action and provides a theoretical foundation for lead optimization1.  

The QSAR methodology, COMparative BINding Energy (COMBINE)2; 3, develops a linear 
relationship between binding free energy of the ligand-receptor complexes. In general, residue is 
the basic unit utilized in the feature of binding energy. But there are just a few differences 
between the side chains of compounds of QSAR model. For instance, the activity was changed 
by just one atom altered in the side chain. However, it could be difficult to detect by 
residue-based method. Using residue as the unit is insensitive and easy to generate outliers by 
comparison. In order to make QSAR model more sensitivity, we use group and atom as the new 
feature.  

The partial least square (PLS) analysis4 is able to deal with strongly collinear input data and 
make no restriction on the number of variables used. Unfortunately, the predictive performance 
of PLS model drops and the PLS model becomes complicated when the number of features 
increases. Several feature selection methods for PLS have been proposed, in which genetic 
algorithm (GA) combined with PLS approach (GAPLS) has demonstrated the improvement on 
the prediction and interpretation of model5. GEMPLS is general able to evolve the relationship 
between biological activities and compound features generated by COMBINE.  

In the COMBINE method2; 3, the binding energy of the receptor-ligand complex is 
correlated to the interaction energy components. In this study, “ELE” is electrostatic interactions; 
“VDW” is van der Waals interactions; “HYD” is hydrogen bond interaction. Each selected 
energy component ui contributes to the binding free energy according to its weight wi and PLS 
analysis is applied to obtain the weights wi: 
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The purpose of GEMQSAR is to develop a novel in silico drug screening system 
combining 3D QSAR and virtual screening process. To archive the objective, we first developed 
the methodology of QSAR (GEMPLS6) and applied GEMPLS to evolve the QSAR models. This 
model was generated by the COMBINE method2; 3 according to the three different units of 
interaction energy features. The 3D QSAR methodology were applied on three public data sets 
including 38 influenza neuraminidase inhibitor complexes7, 76 glycogen phosphorylase b 
inhibitors8 and 31 cyclooxygenase-2 inhibitors9. Experiments showed that the reduced units 
were able to improve the predictability and efficiency, and at the same time, the selected features 
in the yielded QSAR model were consistent with some experimental evidences. 

研究方法                                                                               

The final goal of GEMQSAR is to develop a novel in silico drug screening system. The 
relationships of QSAR and docking are shown in Figure 1. The molecular docking technique 
was well established in our past researches10. In the first year, we developed the core 3D QSAR 
methodology of GEMQSAR, named GEMPLS11. Figure 2 shows the main steps of applying 
GEMPLS11 in the COMBINE analysis2; 3: 1) prepare the inhibitor set and model 
protein-inhibitor complexes; 2) refine protein-inhibitor complexes and calculate features (i.e., 
energy interactions); 3) select important features by Mahalanobis distance; 4) select features and 
evolve QSAR models. 5) Performance evaluation. Each step is described in the following 
subsections. 

The COMBINE analysis is the use of structural information about ligand-receptor 
complexes2; 3. When the three-dimensional structure of macromolecule is available, 
ligand-receptor interaction energies could be calculated as features, which are subjected to 
statistical analysis in COMBINE. A subset of these features will be account for the ligand 
affinity. The critical interaction patterns between ligands and the receptor could be identified and 
be used to derive the correlation of binding affinities. 
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Figure 1. The relationships of 3D QSAR and docking process in GEMQSAR 
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Figure 2. The framework and steps of GEMPLS applied in the COMBINE analysis 
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Data preparation and feature extraction 

1)  Prepare Data Sets and Model Protein-Inhibitor Complexes 

We have used three data sets, 38 influenza neuraminidase (NA) inhibitor complexes7, 
glycogen phosphorylase b (GPB)12 and cyclooxygenase-2 (COX2)9 as our validation and test. 
The inhibitory activity data and complex structures were mainly taken from the references7; 9; 12. 
Each cavity was centered the ligand in the complex with a cutoff 7.5 Å, and cavities with ligands 
docked by GEMDOCK. Then aligned all cavities by superposition, and the interactions of these 
gap residues were not considered for the COMBINE analysis.  

2)  Refine protein-inhibitor complexes and calculate features 

The calculated ligand-receptor interaction energies were partitioned on three basis, residue, 
group, and atom. : 1) Residue-based method, the total binding energy of a residue is the basis 
unit. : 2) Group-based method, divide a residue to main chain and side chain, and the group is 
the basis unit. : 3) Atom-base method, the binding energy of an atom is the basis unit. The 
interaction profiles were outputted for QSAR model. The ligand-receptor interaction energies 
included van der Waals interaction (EvdW) and hydrogen bonding interaction (Eh-bond) as below. 
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lig presents the number of atom and rij is the distance of atom i and protein j. Fhb and FvdW are 
hydrogen bonding and van der Waal interaction, respectively. F(rij) is the linear function of six 
parameters. The six parameters of V1–V6 are shown in figure 3. 



 6

-6

-1

4

9

14

19

Distance (r)

En
er

gy

V6

V5

V3
V4V2V1

20-0.46.04.53.63.3Steric (van-der)
20-2.53.63.12.62.3H-bond (polar)
V6V5V4V3V2V1Interactive type

Electrostatic

Steric

H-bond

 
Figure 3. The linear functions and six parameters of hydrogen bonding interaction and van der 
Waals interaction in GEMDOCK 
 

QSAR Model Evolution and building: GEMPLS 

PLS has played a critical role in the derivation of QSAR in CoMFA or COMBINE studies. 
Recently, more and more people recognize the benefits of feature selection before PLS 
regression. GAPLS has been shown as a practical solution. But when the number of features 
becomes large, GAPLS still has difficulty in driving out noises. And scanning for best lv is too 
inefficient and time consuming. Here, we introduce a number of successive enhancements, 
which are described in the following paragraphs, to construct our model GEMPLS to overcome 
the drawbacks of GAPLS. 

The general idea of PLS is to try to extract these latent variables, accounting for as much of 
the manifest feature variation as possible while modeling the inhibitory activities well. To decide 
both the optimum number of latent variables and prediction error of a QSAR model, we defined 
the weighted standard deviation error of the predictions (WSDEP) as the scoring function of our 
GEMPLS: 
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where yi and ypred,i are the observed and predicted inhibitory activities belong to inhibitor i, N is 
the total number of samples, and lv is the number of latent variables in the current model. In 
order to improve on the efficiency, we append an extra bit lv, representing the number of latent 
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variables, to the original chromosome and expect GEMPLS model to efficiently solve the 
problem of the optimum number of latent variables though evolutionary process.  

 

3)  Select Features by Mahalanobis Distance   

Mahalanobis distance is able be used to measure the deviation of a sample from the mean 
of the distribution in multivariable calculus. Therefore, the Mahalanobis distance is adopted to 
identify significant features from all of those.  

)()'( 12 uvuvM −−= ∑ −        (6) 

M is the Mahalanobis distance from the feature vector v (column vector of data matrix here) to 
the mean vector µ, where Σ is the covariance matrix of the features.  

 

4)   Feature Selections and QSAR Models Evolution  

The inhibitory activity usually correlates with few important interaction energy features, 
that is, most of interaction energy features are meaningless or not apparently distinct from each 
other. GEM was applied to find out the significant interaction energy features and PLS was used 
to build the QSAR models based on these selected features. WSDEP was used as the objective 
function to provide a measure of how the internal predictability with respect to the selected 
features. The fittest individual will have the lowest WSDEP.  

GEM, modified and enhanced from our previous works6, consists of five steps briefly 
described in the following:   

 (1) Initiation and evaluation of the initial population (Gt=0). Each chromosome is 
composed by an array of feature set and an lv value. For example, a chromosome has n+3 bits if 
the number of candidate feature is n and three bits for lv value. The initial population (Gt=1) of 
population size (Np) is created by setting feature bits (0 denote the absence of corresponding 
feature, and 1 denote its presence) and an lv value (denote the number of latent variables and 
range in [1~5]) of each chromosome to random values and one, respectively. Then PLS is used 
to build a quasi-QSAR model, and evaluated by the scoring function (WSDEP), for each 
chromosome.   

 (2) Selection of the reproductive population. The chromosomes of reproductive 
population (PsGt) are selected from the population (Gt) with a fixed proportion (Ps) according to 
the stochastic universal sampling.  

 (3) Crossover and mutate the reproductive population (PsGt). The offspring population 
(Goff) is generated by uniform crossover with a probability (crossover rate: Pc) and mutation 
operators, including uniform and biased mutation operators, with a probability (mutation rate: 
Pm).  

 (4) Evaluation of the offspring population (Goff). PLS is then used to build a quasi-QSAR 
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model, evaluated by WSDEP, for each chromosome in the offspring population.  

 (5) Reinsertion of the child population. To form the population of the next generation 
(Gnext), the chromosomes of the current population (Gt) with lower objectives in the preceding 
(1-Ps) proportion are protected to the next generation, while the others are replaced with better 
ones from the offspring population (Goff). Let t = t+1 and Gt = Gnext.  

 (6) The cycle of above four steps (from step 2 to 5) is repeated until the number of 
generation reaches to the maximum number of generations (Nmax). The values of empirical 
parameters are defined as follows: Np = 100, Nmax = 200, Ps = 0.9, P== 0.6, and Pm = 0.05.  

Genetic operator: Biased Mutation. The uniform mutation may incur a risk of local 
convergence and slow evolution because plenty of features will raise the combinatorial 
complexity of feature space. To reduce the phenomena, the uniform mutation was cooperated 
with biased mutation to lead the evolution of GA toward significant feature set and to reduce the 
interference of noise features.  
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where F(xi) is the probability of selection of feature i; xi is the rank of feature i in the descending 
order of Mahalanobis distance of all features, MIN and MAX are the lower and upper bounds, 
respectively, of probability of biased mutation; Nf is the number of significant features. The 
value of F(xi) is derived from xi only when xi is ahead of Nf, otherwise F(xi) is set to MIN. The 
meaning of F(xi) is that the more significant feature, the more higher probability of selection. In 
this study, MAX=0.8, MIN=0.2 and Nf =39. 
5) Performance Evaluation  

The predictability of QSAR model was assessed by the conventional correlation coefficient 

(r
2
), the cross-validated correlation coefficient (q

2
), the cross-validated SDEP (SDEPcv), and 

external SDEP (SDEPex):  

∑
∑

−

−
−= 2

2
,2

)(
)(

1
yy

yy
q

i

ipredi        (8) 

N
yy

SDEP ipredi∑ −
=

2
, )(

     (9) 

where yi and ypred,i are the observed and predicted activity of inhibitor i, ypred,i, respectively, y is 
the average activity value of the inhibitor set, and N is the total number of inhibitors. The model 

with more remarkable predictability can provide the higher correlation coefficient (r 
2
, q 

2
) and 
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the lower SDEP between the observed and predicted inhibitory activities.  

結果與討論 

The ligands were divided to training set and testing set according to the reference7; 9; 12. The 
three methods of feature exaction (residue-based, group-based, and atom-based) were used to 
train three QSAR models by Leave-One-Out method to optimize WSDEP. Our results of 
neuraminidase were shown in Table 1. The q2of the reference in training set was better than the 
results of the three GEMQSAR models, but the q2 of the GEMQSAR models in testing set were 
better the q2 than the reference. Our model although had sight lower training correlation to Wade 
et al but we showed more superior prediction power than Wade et al. The energy basis unit was 
reduced (residue->group->atom), and the q2 in training set improved with feature unit reduced. 
However the q2 in testing set didn’t become better like in training set.  

 

Table 1. Performance comparison of GEMPLS and the reference on neuraminidase 

Model 
Original 
featuresa 

Selected 
featuresb 

Lv c Train r2 d Train q2 e Test r2 Test q2 

Residue-based 153 13 3 0.753 0.611 0.85 0.754 

Group-based 306 14 3 0.737 0.621 0.876 0.798 

Atom-based 1233 33 3 0.794 0.688 0.830 0.769 

Wang et al7 770 330 3 0.877 0.875 0.582 0.566 

a The number of features extracted from original data by different methods 
b The number of features selected by GEMPLS 
c Latent variable 
d The conventional correlation coefficient.  
e The cross-validated correlation coefficient 

 

Generally, PLS easily trended to over-fit when the number of features increasing. Therefore, 
a well-developed strategy of feature extraction should consider the balance of feature number 
and predicting ability. We develop three QSAR model regarding three strategies of feature 
extraction and analysis the relationship of performance and feature numbers. Comparing with 
group-based and residue-based models, the residue-based model had better training quality but 
lower predicting power. The higher predicting ability showed that group-based method extracted 
more accuracy information in our QSAR analysis. In other words, one residue-based unit might 
contain the noises and meaningful features. After dividing feature unit form residue to backbone 
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and side-chain, the meaningful feature was correctly recovered in GEMPLS (Table 2.). Sum up 
the above, the advantages of group-based were: 1) Include residue-based information and delete 
noise of feature by feature selection. : 2) Select fewer features than atom-based and uneasy over 
fitting. According to present results, it is better to use group-based unit to build a QSAR model. 

 

Table 2. The important groups and their GEMPLS coefficient. 

Residue Group type 
Energy 

type 
GEMPLS 
coefficient 

ARG118 side VDW -0.192 

ARG118 side ELE -0.12 

GLU119 side ELE -0.1 

ARG152 main VDW -0.396 

TRP178 side HYD -0.359 

SER179 main VDW -0.135 

SER179 side VDW -0.124 

ILE222 side VDW -0.236 

GLU227 main HYD -0.313 

ALA246 main VDW -0.133 

ALA250 side VDW -0.674 

ALA250 side ELE -0.169 

VAL275 side ELE -0.227 

ARG292 main VDW -0.232 

VAL349 side VDW -0.207 

 

The predicted pIC50 values were plotted against experimental pIC50 values for the group 
model with three latent variables in Figure 4. From Figure 4, the group GEMQSAR model has a 
good prediction. The results of GEMPLS were shown in Figure 5 (a), which showed the 
coefficients of the electrostatic, hydrogen bond and van der Waals. The negative coefficients 
contributed to the activity, and the important groups were listed in table 2. The important 
structural features for a strong inhibitor and corresponding groups were shown in Figure 5 (b). 
Some interactions played critical role to contribute higher activity. : 1) The electrostatic 
interactions in orange groups. : 2) The hydrogen bond interactions in green groups. : 3) The van 
der Waals interactions in gray groups. On the basis of the above COMBINE analysis, we could 
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develop new inhibitors which have high activity according to the suggested properties of the 
GEMQSAR model. 

 
Figure 4. Experimental pIC50 values versus predicted pIC50 values for the group model derived 
from 38 complexes: ●, predicted values for training set from leave-one-out cross-validation at 
three latent variables; △, predicted values for testing set. 
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Figure 5. Selected features of neuraminidase inhibitor model (a) The coefficients of the 
electrostatic, hydrogen bond and van der Waals. (b) The important structural features of binding 
site. 
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Table 3. Performance comparison of GEMPLS and the reference for glycogen phosphorylase b 

Model 
Original 
featuresa 

Selected 
featuresb 

Lv c Train r2 d Train q2 e Test r2 Test q2 

Residue-based 120 16 3 0.481 0.337 0.115 0.002 

Group-based 240 18 3 0.666 0.546 0.286 0.271 

Atom-based 918 32 3 0.699 0.584 0.28 0.26 

Silber et al12 na f na f na f 0.92 na f 0.59 na f 

a The number of features extracted from original data by different methods 
b The number of features selected by GEMPLS 
c Latent variable 
d The conventional correlation coefficient 
e The cross-validated correlation coefficient 
f Data not available 

 

Table 4. Performance comparison of GEMPLS and the reference for cyclooxygenase-2 

a The number of features extracted from original data by different methods 
b The number of features selected by GEMPLS 
c Latent variable 
d The conventional correlation coefficient 
e The cross-validated correlation coefficient 
f Data not available 

 

We applied the same strategy to the other data sets: GPB12 and COX-29, and the results of 
GPB and COX-2 were shown in Table 3 and Table 4, respectively. The low test q2 in both data 

Model 
Original 
featuresa 

Selected 
featuresb 

Lv c Train r2 d Train q2 e Test r2 Test q2 

Residue-based 135 21 3 0.504 0.362 0.066 -2.131 

Group-based 270 19 3 0.527 0.385 0.026 -1.736 

Atom-based 1230 62 3 0.688 0.566 0.066 -1.203 

Pei et al9 na f na f na f 0.61 na f 0.34 na f 
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sets mean that the descriptors of interaction profiles didn’t have a correlation with activities. 
There might be some reasons to explain that. :1) Some atom types weren’t defined clearly in 
GEMDOCK scoring function. For example, the atom type F, was regarded as like C. :2) The 
hydrogen-bond interaction wasn’t sensitive in GEMDOCK scoring function. In QSAR model, 
there was little difference in the side chains of ligands, and it was necessary to generate the 
accurate descriptors of interactions to determine the difference. We would correct the two 
problems to improve the QSAR model in the recently future. 

In summary, we apply GEMQSAR to influenza neuraminidase inhibitor complexes and 
compare three methods of feature exaction (residue-based, group-based, and atom-based).The 
results show that the group-based method has better prediction. The important interactions are 
found in this model, and some suggestions are given to design new inhibitors. In residue-based 
method, a residue may contain useful information and noise. It will reduce the accuracy of 
prediction. In atom-based method, there are too many features in training, and it is easily over 
fitting. Therefore, group-based method is useful to COMBINE model. But we just divide a 
residue to main chain and side chain as a group-based method. In future, it is necessary to 
research how to define a “group”. A good definition of group-based method will improve the 
COMBINE model. 

計畫成果自評 

We developed a QSAR methodology associating molecular docking and feature selection 
with PLS. The feature of our model generates from the interaction energies of docked results, 
named as protein-ligand interaction profile and is extracted as atom-based, group-based and 
residue-based terms. We applied our QSAR methodology to build inhibitory models of 
neuraminidase, glycogen phosphorylase b and cyclooxygenase-2. Our results also compare to 
published references and our performances show more prediction power than other models. In 
the recently future, we will make more efforts to improving our methodology and combine 
virtual screen to create high through-put prediction environment. 
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