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中文摘要 

在學術界中，如何評價配離散股息的股票選擇權這個問題尚未完全解決。Roll (1977)

假定股票的價格減去未來股息的現值服從對數常態分配，另一方面，Musiela and 
Rutkowski (1997)則假定股票的價格加上股息的未來值服從對數常態分配。因為在兩種

假定下，可以很容易地推出封閉公式解，所以這兩種假定廣為多數的學術論文採用。然

而，Frishling (2002)指出，使用這兩種假定下產生的選擇權評價結果會互相矛盾。

他指出應該假定股票在配息日所配的股息會反映到股價的減少。然而，這種假定

雖然貼近市場真實的狀況，但是卻不易推導出封閉公式解，而有些數值方法例如

樹狀結構，也無法有效率地處理評價問題。在本次研究計畫中，我成功推導出一

個新的樹狀結構—階梯格子樹結構，該結構忠實模擬股價因配息而出現不連續的

現象。該樹狀結構十分簡易、易於建構、而且評價效率也甚高。同時我也證明該

樹狀結構會收斂到配股息的股價隨機過程。根據數值實驗的結果，階梯格子樹結

構的精確度、評價速度都較現有方法還要好。此外，階梯格子樹模型可以處理更

一般化的假定，例如在時間點 t 的股票配息可寫成時間點 t 之前的股價以及股息的

函數。這種特性讓本模型能夠更貼近真實市場狀況。 
關鍵字:階梯格子樹模型、股息、股票選擇權、評價。 

 

英文摘要 

Pricing options on a stock that pays discrete dividends has not been satisfactorily 
settled in the literature. Roll (1997) assumes that the stock price minus the present 
value of future dividends follows a lognormal diffusion process. On the other hand, 
Musiela and Rutkowski (1997) assume that the stock price plus the forward value of 
future dividends follows the lognormal diffusion. Both assumptions are widely 
accepted in academic literature since analytical formulas can be easily derived. 
Unfortunately, Frishling (2002) shows that these two assumptions produce inconsistent 
option prices. Frishling shows it is more reasonable to assume that the stock price 
jumps down with the amount of dividend paid at the exdividend date. However, it is 
hard to derive analytical pricing formulas for this assumption and some numerical 
methods like lattices are inefficient when used to implement this assumption. My 
project successfully constructs a new lattice, the stair lattice, which does not change the 
dividend-paying regime. The stair lattice is simple to construct, easy to understand, and 
efficient. It is furthermore guaranteed to converge to the price process of the stock that 
pays multiple discrete dividends. Numerical experiments confirm the stair lattice's 
superior performance to existing methods in terms of accuracy, speed, and/or generality. 
Besides, the stair lattice can be extended so a future dividend paid at time t depends on 
the stock prices and the dividends prior to time t in arbitrary ways. This extension 
makes our model more realistic and flexible. 
 
Keywords: stair lattice, dividend, stock option, pricing 



1 Preface

By assuming that the stock price follows the lognormal diffusion, Black and Scholes (1973)
arrive at their ground-breaking option pricing model for non-dividend-paying stocks. Merton
(1973) extends the model to the case where the underlying stock pays a non-stochastic
continuous dividend yield. In reality, however, almost all stock dividends are paid discretely
rather than continuously. For simplicity, this dividend setting is called the discrete dividend
setting if the amounts of future dividends are known today. Pricing options on a stock
that pays discrete dividends seems to be investigated first in Black (1975). The discrete-
dividend option pricing problem has drawn a lot of attention in the literature. Frishling
(2002) summarizes that there are three different ways to model the stock price process with
discrete dividends. But only one model that assumes the stock price jumps down with
the amount of dividend paid at the exdividend date can produce reasonable option prices.
However, it is hard to derive analytical pricing formulas for this model and some numerical
methods like lattices are inefficient when used to implement it. My project will provide a
novel tree model for solving this problem.

2 The Goal of This Research Project

My research project intends to construct a new lattice, the stair lattice, that simulate the
stock price process with discrete dividends. It can successfully model the jumping of stock
price at the exdividend date. It is also guaranteed to converge to the price process of the stock
that pays multiple discrete dividends. And the stair lattice is proved to be constructable
and efficient. Besides, the stair lattice can be extended so a future dividend paid at time
t depends on the stock prices and the dividends prior to time t in arbitrary ways. This
extension makes the stair lattice more realistic and flexible.

3 Literature Review

Frishling (2002) summarizes that there are three different ways to model the stock price
process with discrete dividends. These three different models are introduced as follows:
Model 1. Roll (1977) suggests that the stock price is divided into two parts: the stock
price minus the present value of future dividends over the life of the option and the present
value of future dividends. The former part (call it net-of-dividend stock price) is assumed
to follow a lognormal diffusion process, whereas the latter part is assumed to grow at the
risk-free rate. Thus vanilla options can be computed by applying the Black-Scholes formula
with the stock price replaced by the net-of-dividend stock price. Cox and Rubinstein (1985)
also call this model the ad hoc adjustment.
Model 2. Musiela and Rutkowski (1997), following Heath and Jarrow (1988), suggests
that the cum-dividend stock price, defined as the stock price plus the forward values of
the dividends paid from today up to maturity, follows a lognormal diffusion process. Thus
vanilla options can be computed by the Black-Scholes formula by replacing the stock price
with the cum-dividend stock price and by adding the forward values of the dividends prior
to maturity to the strike price.



Model 3. The stock price jumps down with the amount of dividend paid at the exdividend
date, and follows lognormal price process between two exdividend dates.

Although above three models all address the discrete-dividend problem, Frishling (2002)
shows that these three models generates very different option prices since these three stock
price models are very different. A simple argument is given to explain the differences among
these models. Assume that the volatility input to these three models is σ. Then Model 1
sets the volatility of the net-of-dividend stock price as σ while Model 3 sets the volatility
of the stock price as σ. The volatility of the stock price in Model 1 is lower than that in
Model 3 since the volatility of the present value of future dividends, a component of stock
price, is assumed to be 0 in Model 1. Model 1 therefore produces lower option prices and
the price difference between these two models becomes larger as the volatility of the stock
price becomes larger. Similarly, Model 2 produces higher option prices than Model 3 since
Model 2 assigns the volatility of the forward values of the dividends, which is not a part of
stock price, to be σ.

Model 1 and Model 2 are widely accepted in academic literature (see Geske (1979), Wha-
ley (1981, 1982), Carr (1998), and Chance et al. (2002)) in solving the discrete-dividend
problem, since closed-form option pricing formulas can be easily derived. However, these
two models suffer from the following problems:
• These two models can not provide consistent and reasonable option prices. For example,
Frishling (2002) shows that Model 1 could incorrectly renders a down-and-out barrier op-
tion worthless simply because the net-of-dividend stock price reaches the barrier when the
dividend(s) are big enough. In reality, the option has a reasonable chance to survive since
the dividend(s) are paid later than the option initial date. Similar problem could occur for
pricing a up-and-out barrier option with Model 2. Besides, Bender and Vorst (2001) also
show that arbitrage opportunities exist in Model 1 if the volatility surface is continuously
interpolated around exdividend date.
• Bos and Vandermark (2002) show that both models violate a perfectly reasonable conti-
nuity requirement. A dividend paid just before maturity should be equivalent to an increase
in the strike price by the dividend amount. Model 1 subtract the present value of the divi-
dend from the stock price input to the Black-Scholes formula is not equivalent to adding the
dividend amount to the strike price. Similarly, a dividend paid just after option initial date
should be equivalent to a decrease in the stock price. Model 2 add the forward value of the
dividend to the stock price input to the Black-Scholes formula also cause the same problem.
• The volatilities of the net-of-dividend stock price (see Model 1) and the cum-dividend
stock price (see Model 2) relate awkwardly to the historical volatility, which is commonly
calculated according to historical stock price.

Although Model 3 is much closer to reality than the other two models, there is no exact
closed-form solution for pricing European-style options. Hull (2000) recommends that an
approximation pricing formula can be obtained by adjusting the volatility parameter input
to Model 1 with a simple formula. Numerical experiments show that the Hull’s volatility
adjustment performs poorly. Bos and Vandermark (2002) present an approach that is a
mixture between the stock and the strike price adjustment or, in other words, Model 1 and
Model 2. Bos and Shepeleva (2002) claim that this approach results in some inaccuracies,
especially for in- and out-of-the-money options. They suggest another pricing formula by
adjusting the volatility input to Model 1 with a complex formula. But their approach can



Figure 1: The CRR Binomial Lattice.

S

Su

Sd

up

dp

2Su

3Su

S

2Sd

3Sd

Su

Sd

0 1 2 3

The initial stock price is S. The upward and downward multiplicative factors for the stock
price are u and d, respectively. The upward and downward branching probabilities are pu

and pd, respectively.

not be easily extended for pricing American options.
Model 3 can also be implemented by the lattice or the related PDE method. But a

naive application of these methods results in combinatorial explosion. Take the well-known
Cox-Ross-Rubinstein (CRR) binomial lattice as an example. Assume that the lattice starts
at time step 0 and ends at time step n. Let R stand for the gross risk-free return per time
step. When the stock does not pay dividends, in one time step the price S becomes Su (the
up move) with probability pu and Sd (the down move) with probability pd ≡ 1 − pu, where
pu ≡ (R − d)/(u − d). The relation ud = 1 is enforced by the CRR binomial lattice. A
simple 3-time-step binomial lattice is illustrated in Fig. 1. The binomial lattice recombines;
thus the size of the lattice is only quadratic in n. Unfortunately, the recombination property
disappears if the stock pays discrete dividends. Consider the 4-time-step binomial lattice
with an ex-dividend date at time step 2 in Fig. 2. This lattice splits into 3 lattices after
the ex-dividend date. Each such lattice will be split further into more separate lattices for
each subsequent ex-dividend date. As a result, the lattice size grows exponentially with the
number of exdividend dates. It will be referred to as the bushy lattice. The bushy lattice
implements the Model 3, but the exponential complexity renders it impractical.

In additional to the first two models mentioned in Frishling (2002), efficient numerical
algorithms and simple formulas can also result by approximating the discrete dividend with
either (1) a fixed dividend yield on each dividend-paying date or (2) a fixed continuous
dividend yield. The first approach is followed by Geske and Shastri (1985). They replace
the discrete dividends with fixed dividend yields. The resulting lattice hence recombines and



Figure 2: The Bushy Lattice.
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A dividend D is paid out at time step 2. Three separate lattices beginning at time step 2
are colored in white, light gray, and dark gray, respectively.

is efficient. This approximation approach works well for American options. But it produce
significant pricing errors for European options. The second approach is followed by Chiras
and Manaster (1978). They transform the discrete dividends into a fixed continuous dividend
yield and then apply the Merton formula. As this approach can be shown to be equivalent
to the first approach in pricing European options, it shares the same faults.

4 Research Method: Construction of the Stair Lattice

4.1 The Mathematical Assumptions and Required Financial Back-
ground

In Model 3, the stock price is assumed to follow the lognormal diffusion process:

dS(t)

S(t)
= r dt + σdωt,

where S(t) denotes the stock price at year t, r denotes the annual risk-free interest rate, σ
denotes the volatility, and ωt denotes the standard Brownian motion. In the discrete-time



lattice model, it is assumed that there are n equal time steps between year 0 and year T .
The length of each time step ∆t is equal to T/n. Thus, time step i in the discrete-time
model corresponds to year i∆t in the continuous-time model. The upward and downward
multiplicative factors u and d for the stock price equal eσ

√
∆t and e−σ

√
∆t, respectively, for

the CRR and stair lattices. Si denotes the stock price at year i∆t (or, equivalently, time
step i for a lattice). The stock is assumed to pay m dividends Dt1 , Dt2 , . . . , Dtm , where Dti

is paid out at time step ti. Assume that t1 < t2 < · · · < tm for convenience. Under the
discrete dividend assumption, any arbitrary dividend Dti is already known at time step 0. In
general, Dti can be determined by a function of stock prices and/or the dividends paid up to
time step ti under the path-dependent dividends assumption. The stock price simultaneously
falls by the amount αDti . For simplicity, α is assumed to be 1 throughout the paper, but a
general α poses no difficulties to the stair lattice. When the ex-dividend stock price becomes
negative, it is assumed to stay at zero from that point onward. Harvey and Whaley (1992),
in contrast, assume that the dividend is not paid if its amount exceeds the prevailing stock
price. The stair lattice can easily incorporate their assumption, too.

The option is assumed to start at time step 0 and mature at time step n. The strike
price for this option is K. Define (A)+ to denote max(A, 0) for simplicity. The payoff for a
European option at maturity is

final payoff =

{
(Sn − K)+, for a call,
(K − Sn)+, for a put.

An American option gives the holder the right to exercise the option before maturity. The
exercise value for an American option at a non-dividend-paying time step i is

exercise value =

{
Si − K, for a call,
K − Si, for a put.

The exercise strategy for an American option at an ex-dividend date is only slightly
more complicated. It is never optimal to exercise an American call immediately after the
underlying stock pays a dividend because it is dominated by the strategy of exercising the
call immediately before. Similarly, it is never optimal to exercise a put before the stock pays
a dividend. Consequently, the exercise value for an option at a dividend-paying time step i
is

exercise value =

{
S∗

i − K, for a call,
K − Si, for a put,

where S∗
i and Si denote the stock price immediately before paying the dividend, and the

price immediately after paying the dividend, respectively. An option will be exercised early
by the owner if the option’s continuation value (i.e., the value to hold the option) is smaller
than its exercise value.

4.2 Construction of the Stair Lattice

The main ideas are illustrated by the 4-time-step lattice in Fig. 3. This 4-time-step stair
lattice contains two ex-dividend dates: one at time step 1 and the other at time step 3.
For simplicity, the same D-dollar dividend is paid at each ex-dividend date. The price drop



Figure 3: The Structure of the Stair Lattice.
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The gray nodes are the nodes right after the dividend is paid. S ′ and S ′′ denote the largest
stock price at time step 2 and time step 4, respectively. The stock price for each node on
the third tread is represented as S ′′uk = S ′′ekσ

√
∆t, where k is parenthesized.

due to the dividend payout is represented by a riser. Each tread covers a time interval
between two adjacent ex-dividend dates except the first tread, which covers the time interval
between time step 0 and the first ex-dividend date. The branches follow the CRR lattice
structure except those from the nodes at ex-dividend dates. For example, the stock price
at the root node is S. The stock prices for its two successor nodes are Su and Sd, where
ud = 1. Because of the CRR lattice structure, the stock prices on the same tread are Puk,
where P is the stock price of some specific node on the tread and k is an even integer. For
example, the stock price for each node on the third tread can be represented as S ′′uk, where
S ′′ denotes the largest stock price at time step 4 and k is parenthesized. Technically, any
node’s stock price can be picked for P because the stock prices on the same tread are part
of the geometric sequence

. . . , Pu−4, Pu−2, P, Pu2, Pu4, . . .

Note that the first tread contains a single, complete CRR lattice. The lattice structure on
each subsequent tread is composed of a CRR binomial lattice with the initial part truncated.

The next step is to construct the branches out of the gray nodes at an ex-dividend date
to complete the stair lattice. Fig. 4 illustrates what happens at an ex-dividend date by
zooming in the first three time steps of the stair lattice in Fig. 3. Nodes X and Y are from
the first ex-dividend date. The ex-dividend stock price at node X is SX = Su − D. The
two branches from X follow the CRR lattice structure. S ′, the stock price for the top node
at time step 2, therefore equals SXu. Define the V -log-price of stock price V ′ as ln(V ′/V );



Figure 4: Branching Scheme at the Ex-Dividend Date.
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Nodes X and Y are at the first ex-dividend date (time step 1). Both nodes are represented
by dotted ellipses. The cum-dividend stock prices at X and Y are Su and Sd, respectively,
whereas the net-of-dividend stock prices at X and Y are SX(≡ Su−D) and SY (≡ Sd−D),
respectively. The stock price for the top node at time step 2 is S ′ (= SXu). The integer

k in parentheses for each node at time step 2 means the stock price equals S ′ekσ
√

∆t. The
cross right above Z denotes the mean of the stock price process one time step from Y , or
SY e(r−σ2/2) ∆t. The three branches of Y are marked with thick solid lines.

a V -log-price of z implies a stock price of V ez. Since the stock price for each node on the
second tread can be expressed in terms of S ′uk for some even integer k, the S ′-log-prices for
nodes at time step 2 in Fig. 4 are integral multiples of 2σ

√
∆t .

The branches from node Y are constructed as follows. Let the ex-dividend stock price
for node Y be SY . At least three branches are required for node Y to match the first two
moments of the logarithmic stock price process for degrees-of-freedom considerations. Three
nodes at time step 2 follow node Y . By the lognormality of the stock price, the mean and
the variance of the SY -log-prices at these nodes equal

µ ≡ (r − σ2/2) ∆t,

Var ≡ σ2∆t.

Note that the distance between two adjacent nodes’ SY -log-prices at time step 2 is 2σ
√

∆t .
Thus there exists a unique node Z at time step 2 whose SY -log-price µ̂ lies in the interval

[ µ − σ
√

∆t, µ + σ
√

∆t).

In other words, the SY -log-price of node Z, i.e., µ̂, is closest to µ among the SY -log-prices
of the nodes at time step 2. Use µ̂ to denote the mean tracker of node Y . The middle



branch from node Y will be connected to node Z. Figure 4 illustrates the case where
µ̂ = ln(S ′/SY ) − 4σ

√
∆t (or, 2 nodes below S ′).

In general, the SY -log-prices of the two nodes connected by the upper and lower branches
from node Y can be expressed as µ̂+�uσ

√
∆t and µ̂−�dσ

√
∆t for some even positive integers

�u and �d. It is clear that the jump sizes �u and �d should be as small as possible to minimize
the size of the stair lattice. And �u and �d should also be properly selected to make the
branching probabilities of node Y valid. Let pu

Y , pm
Y , and pd

Y denote the probabilities for the
upper, middle, and lower branches from node Y , respectively. Define

β ≡ µ̂ − µ,

α ≡ β + �uσ
√

∆t ,

γ ≡ β − �dσ
√

∆t .

Note that the first equation implies that β ∈ [−σ
√

∆t, σ
√

∆t). Note also that α > β > γ.
The probabilities can be derived by solving

pu
Y α + pm

Y β + pd
Y γ = 0, (1)

pu
Y α2 + pm

Y β2 + pd
Y γ2 = Var, (2)

pu
Y + pm

Y + pd
Y = 1. (3)

Equations (1) and (2) match the first two moments of the logarithmic stock price, and Eq. (3)
ensures that pu

Y , pm
Y , pd

Y as probabilities sum to one. The three equations do not automatically
guarantee 0 < pu

Y , pm
Y , pd

Y < 1. A proof to show that they actually do with �u = �d = 2 is
given in section 4.3. The stair lattice hence does not lead to branches with huge jump
sizes. This finding is essential to the efficiency of the algorithm. The same procedure can be
repeated for nodes below Y . To handle multiple dividends, just apply the procedure to each
ex-dividend date.

Because the first and second moments are matched via Eqs. (1)–(3), the stair lattice
converges to the stock price process with discrete dividends. The option price computed
on the lattice therefore converges to the option price under the lognormal diffusion. This
guarantee solves the accuracy problem affecting many other approximation schemes.

4.3 Proof of Valid Branching Probabilities

Define

det = (β − α)(γ − α)(γ − β),

detu = (βγ + Var)(γ − β),

detm = (αγ + Var)(α − γ),

detd = (αβ + Var)(β − α).

Then Cramer’s rule applied to Eqs. (1)–(3) gives pu
Y = detu/det, pm

Y = detm/det, and
pd

Y = detd/det. Note that det < 0 because α > β > γ. To ensure that the branching
probabilities are valid, it suffices to show that pu

Y , pm
Y , pd

Y ≥ 0. As det < 0, it is sufficient
to show detu, detm, detd ≤ 0 instead. Finally, as α > β > γ, it suffices to show that



βγ + Var ≥ 0, αγ + Var ≤ 0, and αβ + Var ≥ 0 under the premise β ∈ [−σ
√

∆t, σ
√

∆t).
Indeed,

βγ + Var = β2 − 2βσ
√

∆t + σ2∆t = (β − σ
√

∆t)2 ≥ 0,

αγ + Var = β2 − 4σ2∆t + σ2∆t = β2 − 3σ2∆t < 0,

αβ + Var = β2 + 2βσ
√

∆t + σ2∆t = (β + σ
√

∆t)2 ≥ 0,

as desired.

4.4 Extend the Stair Lattice Model to Price Options on a Stock
That Pays Path-Dependent Dividends

The stochastic dividend assumption is more general and realistic than the discrete dividend
assumption. However, the option can only be hedged if the dividends are known exoge-
nously or completely determined by the stock price process as argued in Cox and Rubinstein
(1985) unless one adds nonstandard derivatives such as the forward contracts on dividends
in Chance et al. (2002). We call Cox and Rubinstein’s assumption the path-dependent divi-
dends assumption since the future dividend, says Dti , completely depends on the stock prices
and the dividends prior to time step ti. To be more precise, Dti can be expressed as

Dti ≡ f(S0, S1, S2 . . . , Sti , Dti−1
, Dti−2

. . .)

for some function f . In reality, dividends can be explained by a variety of factors such as the
net operating profits, long-run sustainable (or permanent) earnings, and so on. If the stock
prices and the dividends paid previously serve as good proxies for these factors, a dividend
function that fit the path-dependent dividends assumption can be constructed. Indeed,
some empirical dividend models do attempt to fit path-dependent dividends assumptions
with slight modification. I will first review one of such dividend models proposed by Marsh
and Merton (1987), and then show how the stair lattice can incorporate their dividend model.

Marsh and Merton (1987) derive a dividend model by following Lintner’s (1962) stylized
facts established by Linter in a classic set of interviews with managers about their dividend
policies. Their dividend model can be expressed by a regression formula of the permanent
earnings and the dividends paid previously. They argue that their formula can not be directly
estimated because management assessments of changes in a firm’s permanent earnings are
not observable. Thus they assume the permanent earing to cum-dividend stock price ratio
is a positive constant. Under this assumption, their dividend model can be expressed by
a regression formula of the net-of-dividend stock prices and the dividends paid previously.
To illustrate the main idea briefly on how the stair lattice incorporate Marsh and Merton’s
dividend model, their dividend model is expressed by assuming that the length between two
ex-dividend dates is two time steps as follows:

log

[
Dt+2

Dt

]
+

Dt

St−2

= a0 + a1 log

[
St + Dt

St−2

]
+ a2 log

[
Dt

St−2

]
+ u(t + 2), (4)

where u(t+2) denotes the disturbance term at time step t+2. One of their empirical studies
uses the value-weighted NYSE index over the period 1926–81 to estimate the parameters a0,



Figure 5: A 4-Time-Step Stair Lattice that Incorporate the Marsh and Merton’s
Dividend Model.
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Table 1: The Branching Probabilities for the States with Trinomial Branches in
Fig. 5.

A B C D E F G
Upper 0.4983 0.0001 0.0004 0.4699 0.4905 0.4397 0.3744
Middle 0.5017 0.5133 0.5280 0.5296 0.5095 0.5584 0.6165
Lower 1.4 × 10−6 0.4866 0.4715 0.0005 4.6 × 10−5 0.0019 0.0091

a1, and a2 by ordinary least squares method and obtains a0 = −0.101, a1 = 0.437, and
a2 = −0.042. By assuming that the disturbance term u(t + 2) = 0, Eq. (4) can be rewritten
as

Dt+2 = 10
a0+a1 log

[
St+Dt
St−2

]
+a2 log

[
Dt

St−2

]
− Dt

St−2
+log Dt ≡ f(St−2, St, Dt) (5)

under the path-dependent dividends framework.
I will show how the stair lattice can incorporate the dividend model mentioned above.

Extra states are added to some nodes of the stair lattice to keep the information required
for computing future dividends. For example, to compute Dt+2, additional states are added
to keep the information like the stock prices (St and St−2) and the dividends (Dt). A simple
4-time-step stair lattice in Fig. 5 illustrate how this mechanism works. The top cell of each
node (in white color) denotes the stock price (at a non-dividend paying date) or the cum-
dividend stock price (at an ex-dividend date) of that node. Some nodes have more cells (in
light-gray or dark-gray) that represent additional states for keeping necessary information.
The stock price (at a non-dividend paying date) or the net-of-dividend stock price (at an ex-



dividend date) of a state is marked directly on that state. The settings are listed as follows.
The stair lattice begins at time step 0 with stock price 100. The length of each time step of
the stair lattice is 0.25 year, the risk-free interest rate is 10%, and the volatility of the stock
price is 30%. Thus the upward multiplication factor (u) and the downward one (d) are about
1.162 and 0.861, respectively. The settings for dividends are given as follows. The dividends
are assumed to be paid for each 2 time steps and the last dividend paid at time step -1 is
5. Let the net-of-dividend stock prices at time step -1 and -3 be 110 and 80, respectively.
Note that two dividends will be paid at time step 1 and time step 3, respectively. These two
dividends are estimated by Eq. (5).

The cum-dividend stock price at time step 1 are 100×u ≈ 116.183 and 100×d ≈ 86.071,
respectively. The dividend paid at time step 1 is obtained by substituting D−1 (=5), S−1

(=110), and S−3 (=80) into Eq. (5) to get 4.518. Thus the net-of-dividend stock prices at
time step 1 are 116.183 − 4.518 ≈ 111.666 and 86.071 − 4.518 ≈ 81.553, respectively. By
following the method for constructing the stair lattice mentioned before, the stock prices
at time step 2 can be represented as 129.737 × uk for nonpositive even integers k. The
binomial and the trinomial branching schemes for the two nodes at time step 1 can also be
constructed.

To compute the dividend paid at time step 3 (D3) by Eq. (5), three parameters S−1,
D1, and S1 are needed. While S−1 and D1 are known to be 110 and 4.518 respectively, two
possible net-of-dividend stock price (111.666 and 81.553) may occur at time step 1. These
two possible prices result in two different dividend payouts at time step 3. Thus, additional
states are added to the stair lattice to keep the information about S1. These states are
colored in light-gray and the dark-gray to denote the cases that S1 are 111.666 and 81.553,
respectively. The branches that connect these two types of states are also colored in light-
gray and the dark-gray, respectively. Since no dividend is paid at time step 2, all the states
at the same node at time step 2 have the same stock prices. By substituting S1 = 111.666
and S1 = 81.553 into Eq. (5), we compute the dividend D3 as 4.043 and 3.547 , respectively.
For the top node (with cum-dividend stock price 150.773) at time step 3, the net-of-dividend
stock price is 150.773 − 4.043 ≈ 146.690. For the second node (with cum-dividend stock
price 111.666) at time step 3, two possible dividend payouts should be considered. The
net-of-dividend stock price is 111.666 − 4.043 ≈ 107.622 for the state B that represents the
case S1 = 111.666. The net-of-dividend stock price is 111.666−3.547 ≈ 108.119 for the state
C that represents the case S1 = 81.553. The net-of-dividend stock prices for other nodes at
time step 3 can be similarly computed. The stock price for the top node at time step 4 is
146.690×u ≈ 170.249. All the stock prices at time step 4 can be represented as 170.249×uk

for nonpositive even integers k. The branching schemes for all the colored states at time
step 3 can be constructed by following the method for constructing stair lattice mentioned
before. The trinomial branching probabilities for all the states with trinomial branches are
listed in Table 1.

5 Discussions and Conclusions

I will first give some numerical results to verify the superiority of the stair lattice model. A
simple conclusion is then given to summarize fruitful results of this project.



Table 2: Pricing a Call Option with Single Discrete Dividend.

0.4 0.5
X FDY Model1 Hull Model2 Stair MC FDY Model1 Hull Model2 Stair MC

95 *16.263 *16.336 17.090 17.112 16.821 16.933 *19.890 *19.969 20.901 20.937 20.570 20.843
100 *14.214 *14.270 15.044 15.048 14.758 14.754 *17.964 *18.003 *18.959 *18.971 18.591 18.584
105 *12.400 *12.439 *13.222 *13.206 12.924 12.989 *16.194 *16.222 17.194 17.182 16.829 16.929

The initial stock price is 100, the risk-free rate is 3%, the time to maturity is 1 year, and a
5-dollar-dividend is paid at year 0.6. The volatilities of the stock price are shown in the first
row. The strike prices are listed in the first column. FDY denotes the fixed dividend yield
approach of Geske and Shastri (1985). Model1 and Model2 denote the option prices generated
by Model 1 and Model 2, respectively. Hull denotes volatility adjustment approach of Hull
(2000). Stair denotes the stair lattice model. MC denotes the prices generated by Model 3
that based on Monte Carlo simulation based with 100,000 trials. Option prices that deviate
from MC by 0.3 are marked by asterisks.

5.1 Numerical Results

I first compare Geske and Shastri’s fixed dividend yield model, Hull’s volatility adjustment
model, the stair lattice model, and the aforementioned three discrete dividend models for
pricing European options. Geske and Shastri (1985) use fixed dividend yields to approximate
discrete dividends. The fixed dividend yield is defined as the discrete dividend amount
divided by the initial stock price. For example, the dividend yield is 5% if the initial stock
price is 100 and the discrete dividend is 5. I use FDY to denote their approach. Note that
Chiras and Manaster (1978) approximate the discrete-dividend problem by transforming the
discrete dividends into a fixed continuous dividend yield. This approach is equivalent to the
FDY model in pricing a European option. Model 1 generates lower option prices than Model
3 as argued before. To remove this difference, Hull (2000) recommends that the volatility
of net-of-dividend stock price be adjusted by the volatility of the stock price multiplied by
S(0)/(S(0) − D), where D denotes the present value of future dividends paid between time
0 to time T . We use Hull to denote Hull’s volatility adjustment approach. Besides, we use
Model1 and Model2 to denote the option prices generated by Model 1, Model 2, Stair to
denote the prices generated by the stair lattice model, MC to denote the prices generated by
Model 3 that based on Monte Carlo simulation with 100,000 trials. We use MC to serve as
the benchmark.

The numerical results for these models are listed in Table 2 and 3, where Table 2 focuses
on the single-discrete-dividend case and Table 3 focuses on the two-discrete-dividend case.
All the prices that deviate from MC by 0.3 are marked by asterisks. It is not surprising that
the option prices generated by Model 2 are higher than the prices generated by Model 3. On
the other hand, Model 1 generates lower option prices than model 3. The difference among
these three models becomes larger as volatility increases. FDY does not approximate Model 3
well as it produces lower option prices than Model 1. Hull’s volatility adjustment approach
seems to overprice the options. It can be observed that only the stair lattice model produces
options prices that are close to the benchmark.



Table 3: Pricing a Call Option with Two Discrete Dividends.

0.4 0.5
X FDY Model1 Hull Model2 Stair MC FDY Model1 Hull Model2 Stair MC

95 *16.303 *16.336 17.090 17.112 16.806 16.836 *19.931 *19.969 *20.901 *20.937 20.568 20.549
100 *14.250 *14.270 *15.044 *15.048 14.733 14.733 *18.001 *18.003 *18.959 *18.971 18.583 18.621
105 *12.433 *12.439 *13.222 *13.206 12.904 12.883 *16.228 *16.222 *17.194 *17.182 16.826 16.829

The numerical settings are the same as those settings in Table 2 except that a 2.5-dollar-
dividend is paid at year 0.4 and year 0.8. Option prices that deviate from MC by 0.3 are
marked by asterisks.

Table 4: Pricing a Call Option with Single Discrete Dividend.

σ X Mix Vol Stair MC

95 16.802 16.792 16.821 16.933
0.4 100 14.737 14.732 14.758 14.754

105 12.899 12.899 12.924 12.989
95 20.550 20.537 20.570 20.843

0.5 100 18.584 18.578 18.591 18.584
105 16.798 16.798 16.829 16.929

RMSE 0.147 0.152 0.130
MAE 0.293 0.306 0.272

The numerical settings are the same as those settings in Table 2. Mix the mixture approach
of Bos and Vandermark (2002). Vol denotes the volatility adjustment approach of Bos and
Shepeleva (2002). RMSE is the root-mean-squared errors. MAE is the maximum absolute
error.

Note that MC in each two-discrete-dividend case in Table 3 is lower than that in the
corresponding case (except one case) in Table 2. The stair lattice model successfully captures
this trend, but all other models fail. Note that both Model 1 and Hull’s volatility adjustment
approach produce similar option prices in the single-discrete-dividend case and the two-
discrete-dividend case. This is because the net-of-dividend stock price in the single-discrete-
dividend case (=100 − 5e−0.03×0.6) is almost equal to that in the multiple-discrete-dividend
case (=100 − 2.5e−0.03×0.4 − 2.5e−0.03×0.8). Model 2 also produces similar option prices in
both cases since the cum-dividend stock prices for both cases are almost equal.

To derive approximation analytical formulas for Model 3, Bos and Vandermark (2002)
present an approach (denoted as Mix) that is a mixture between the stock and the strike price
adjustment or, in other words, Model 1 and Model 2. Bos and Shepeleva (2002) suggests that
the volatility of the net-of-dividend stock price be adjusted by a complex formula. Use Vol

to denote their approach. These two approaches and the stair lattice approach are compared
in Table 4 and 5. Both the root-mean-squared errors and the maximum absolute errors of
the stair lattice model are lower than those of these two approaches. Thus we conclude that
the stair lattice provides more accurate values than the other two approaches. Note Model 3
(see MC) produces lower option prices in each two-discrete-dividend case in Table 4 than that
in the corresponding case in Table 5. Bos and Vandermark’s approach successfully catches
this trend, but Bos and Shepeleva’s approach fails.



Table 5: Pricing a Call Option with Two Discrete Dividends.

σ X Mix Vol Stair MC

95 16.801 16.795 16.806 16.836
0.4 100 14.736 14.734 14.733 14.733

105 12.898 12.901 12.904 12.883
95 20.548 20.541 20.568 20.549

0.5 100 18.583 18.581 18.583 18.621
105 16.797 16.800 16.826 16.829

RMSE 0.026 0.027 0.023
MAE 0.038 0.041 0.038

The numerical settings are the same as those settings in Table 3. RMSE is the root-mean-
squared errors. MAE is the maximum absolute error.

Table 6: Pricing American Calls.

$1.0 $2.0 $3.0 $4.0
X T GW FDY Stair B GW FDY Stair B GW FDY Stair B GW FDY Stair B

1 *5.07 5.09 5.09 5.09 *5.05 5.09 5.09 5.08 *5.05 5.08 5.09 5.08 *5.05 5.08 5.09 5.08
35 4 – 5.41 5.40 5.40 – 5.19 5.18 5.17 – 5.12 5.12 5.11 – 5.10 5.10 5.10

7 – *5.79 5.77 5.76 – *5.29 5.26 5.24 – *5.15 5.14 5.12 – 5.11 5.11 5.10
1 *1.14 1.17 1.17 1.17 *1.03 1.08 1.08 1.07 *1.03 1.04 1.04 1.04 *0.93 1.02 1.03 1.02

40 4 – 2.38 2.40 2.39 – 1.91 1.93 1.92 – 1.60 1.60 1.58 – 1.39 1.40 1.38
7 – 3.05 3.08 3.06 – 2.31 2.33 2.32 – 1.83 1.83 1.81 – *1.51 *1.51 1.48
1 0.08 0.09 0.09 0.09 0.04 0.05 0.06 0.05 0.04 0.04 0.04 0.04 0.02 0.03 0.03 0.03

45 4 – 0.87 0.88 0.88 – 0.62 0.64 0.64 – 0.44 0.46 0.46 – 0.31 0.33 0.32
7 – *1.47 1.51 1.50 – *0.99 1.03 1.02 – *0.66 0.70 0.69 – *0.43 0.46 0.46

The initial stock price is 40, the risk-free interest rate is 5%, and the volatility is 30%. The
ex-dividend dates for the stock are 0.5, 3.5, and 6.5 months. The dividends to be paid at each
ex-dividend date are shown in the first row. The strike prices X are listed in the first column.
The times to maturity T (in months) are in the second column. The values of American
calls priced by the FDY model and the benchmark value are from Geske and Shastri (1985).
(GW) denotes the analytical pricing formula of Geske (1979) and Whaley (1981). (Stair)
denotes the stair lattice model with 140 time steps. Option prices which deviate from the
benchmark values by 0.02 are marked by asterisks.

For American calls with discrete dividends, I compare the stair lattice with the popular
analytical approximation formula of Geske (1979) and Whaley (1981) (abbreviated as GW)
and the FDY model of Geske and and Shastri (1985) in Table 6. The parameters are from
Cox et al. (1979). The benchmark option prices (B) are from Geske and Shastri (1985). Note
that GW bases on Model 1 and thus underprices the options. GW can only price single-dividend
cases because the multiple-dividend cases would have required GW to evaluate a multivariate
cumulative normal density function, whose deterministic computational cost is prohibitive.
This phenomenon is known as the curse of dimensionality (see Lyuu (2002)). Of course, even
if the multivariate integral can be computed efficiently, there is no guarantee that the price
is numerically accurate. Geske and Shastri (1985) claim that FDY model perform well for
pricing American calls. Numerical results in Table 6 show that the stair lattice outperforms
the FDY model.



5.2 Conclusions

Traditional approaches to pricing options on discrete-dividend-paying stocks either produce
biased results or are inefficient. This project suggests a recombining lattice, the stair lattice,
that solves the problem. Numerical results confirm that the stair lattice is both efficient and
accurate. When compared with the existing methods, the stair lattice is found to be more
efficient, more accurate, and/or more general. Moreover, the stair lattice can be extended
so the a future dividend paid at time τ depends on the stock prices and the dividends up to
time τ . This extension makes the stair lattice model more realistic and flexible.

6 Self Evaluation on this Project

This project provides a novel, efficient numerical model for pricing options on discrete-
dividend-paying stocks. It seems that similar ideas can be applied to model the company
asset’s process when solving the credit risk problem with structural form. I plan to revise
my paper and submit it to an academic journal. I will also study how to apply the stair
lattice model to solve the credit risk problem in the future.
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