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中文摘要 
正交分頻多工（Orthogonal Frequency 

Division Multiplexing, OFDM）技術近年來

頗受重視，其應用範圍也越來越廣。OFDM
通訊系統之設計必須要考慮在載波頻率偏

宜（CFO）補償這個重要的課題，因載波頻

率偏移會破化次載波的正交性且將嚴重地

降低系統效能。在此篇報告裡，我們首先證

明摩斯氏（Moose）的最大可能頻率估計法

可 推 廣 到 多 輸 入 輸 出 正 交 分 頻 多 工

（MIMO-OFDM）系的頻率估計子系統中，

並有相當突出的性能表現。我們為了降低複

雜度，更利用 YS 的轉換域方法並將將它推

廣至多天線 OFDM 系統，由模擬成果發現

相當有效地簡化頻率同步估測的複雜度且

同時提高其性能表現。此篇報告的目的是針

對多輸入輸出的正交分頻多工系統的頻率

同步問題去發展一個更有效率的解決方

案。我們發現此計畫報告中的的兩種方法皆

可有效地改良並適用於多輸入輸出的系統。 
關鍵詞：多輸入輸出，正交頻率多工，載波

頻率偏移估測、最大可能估測 

Abstract 
For orthogonal frequency division 
multiplexing (OFDM) based systems, a 
nonzero carrier frequency offset (CFO) 
between the transmitter and receiver destroy 
the orthogonality amongst subcarriers and 
degrades the performance. In this report, we 
extend Moose's maximum likelihood CFO 

estimation algorithm for multiple transmit and 
multiple receive MIMO-OFDM systems. In 
order to reduce the complexity of the CFO 
subsystem, we extend the transform domain 
approach of Yu and Su [10] to the 
MIMO-OFDM scenario. From simulation 
results, we find Yu’s algorithm efficiently 
reduce the complexity of CFO subsystem in 
MIMO-OFDM system and simultaneously 
improve its performance The purpose of this 
report is find a more efficient solution for 
MIMO-OFDM frequency synchronization. 
We find it both feasible and convenient to 
extend two of the OFDM CFO ML estimation 
approaches to the MIMO scenario. 
 
Keywords: MIMO, OFDM, Carrier Frequency 

Offset Estimation, Maximum Likelihood 

Estimation 

1. Introduction 
Orthogonal frequency division multiplexing 
(OFDM) is a popular modulation scheme for 
high-speed broadband wireless transmission 
[1], [2]. It popularity derives mainly from its 
capability to combat frequency selective 
fading as intersymbol interference (ISI) 
caused by multipath delay spread can be 
easily eliminated. By copying a properly 
selected portion (called a cyclic prefix) of an 
OFDM block and appending it to that block, 
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each data-bearing subcarrier experiences only 
at fading if the duration of the cyclic prefix is 
longer than the maximum channel delay 
spread and block length is smaller than the 
channel coherent time. Hence, complicated 
equalization can be replaced by an one-tap 
equalizer in frequency domain. OFDM has 
been adopted as the transmission scheme for 
industrial standards like the asymmetric 
digital subscriber line (ADSL), digital audio 
broadcasting (DAB), terrestrial digital video 
broadcasting (DVB-T), power-line 
transmission, and high-speed wireless 
broadband area networks (WLAN's). It is 
being considered, among others, for air 
interface standards in IEEE 802:15n personal 
area network and 4G mobile network. The 
former adopts the Multiple Input Multiple 
Output (MIMO) technique to enhance the 
capacity, where MIMO refers to systems that 
have multiple transmit antennas and multiple 
receive antennas. Depending on the MIMO 
channel condition, the capacity of MIMO 
system increases with the number of 
transmitter and receive antennas. Recent 
developments in MIMO techniques promise a 
great boost in performance for OFDM 
systems. 
With all its merits, OFDM, however, is 
sensitive to the carrier frequency offset (CFO) 
caused by Doppler shifts or instabilities of and 
mismatch between transmitter and receiver 
oscillators [3]. Depending on the application, 
the offset can be as large as many tens 
subcarrier spacing, and is usually divided into 
integer and fractional CFO parts. 
The presence of a fractional CFO causes 
reduction of amplitude of desired subcarrier 
and induces inter-carrier interference (ICI) 
because the desired subcarrier is no long 
sampled at the zero-crossings of its adjacent 

carriers' spectrum. If the fractional CFO part 
can be perfectly compensated, the residual 
integer CFO does not degrade the signal 
quality but still results in circular shifts of the 
desired output, causing decision errors. 
There have been a multitude of proposals for 
CFO compensation. A maximum likelihood 
estimate was proposed by Moose [4], based on 
the observation of two consecutive and 
identical symbols. Its maximum frequency 
acquisition range is only 1/2 subcarrier 
spacing because of mod 2π ambiguity. Two 
training symbols are also employed by 
Schmidl and Cox [5]. The first has two 
identical halves and serves to measure the 
frequency offset with an ambiguity equal to 
the subcarrier spacing. The second contains a 
pseudonoise sequence and its used to resolve 
the ambiguity, i.e. estimate integer CFO. 
Morelli et al, [6] suggested an estimate based 
on the observation of two consecutive 
symbols. This method overcomes the the 
ambiguity due to phase uncertainty but 
requires heavier computational load. 
Combining the advantages of OFDM and 
MIMO techniques, a variety of MIMO-OFDM 
architectures techniques have been proposed. 
Much less literature on the corresponding time 
and frequency synchronization and channel 
estimation issues can be found though [7-9].  
The rest of the report is organized as follows. 
Section 2 describes system model and signal 
description for CFO of MIMO-OFDM system. 
In Section 3.1, we extend Moose's ML CFO 
estimation algorithm for use in a 
multiple-antenna environments, assuming two 
identical pilot symbols are available. In 
Section 3.2, we then extend the Yu and Su (YS) 
ML CFO estimation algorithm [10] that uses 
multiple repetitive pilot symbols. In Section 4, 
we show our simulation results and discussion 
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to verify the proposed algorithm.  
2. System Model 
2.1 Conventional OFDM System Model 
Description 
Fig. 1 plots a block diagram of a OFDM 
modulator where S/P and DAC are used to 
denote serial-to-parallel converter and 
digital-to-analog converter, respectively. The 
information symbols are used to modulate 
subcarriers via an N-point inverse discrete 
Fourier transform (IDFT). The output of the 
IDFT (IFFT) block is converted to a serial 
complex block and a cyclic prefix (CP) is 
added to each block. The total duration of an 
OFDM symbol (frame) is equal to the length 
of the CP plus that of the IDFT symbol block. 
The CP is a copy of the tail part of the 
time-domain OFDM block and is attached to 
the front of the block. As long as the duration 
of the CP is longer than the channel impulse 
response, intersymbol inference (ISI) can be 
eliminated by the receiver through frequency 
domain excision. An OFDM demodulator is 
shown in Fig. 2. Based on the timing (frame) 
recovery subsystem output, the baseband 
receiver removes the CP part, takes discrete 
Fourier transform (DFT) on the remaining part 
and then compensates for the CFO and 
channel effect using information given by the 
frequency synchronization and channel 
estimation units before making decision on 
symbols modulated on each subcarrier, if no 
soft-decision channel decoding is needed. 
Parallel-to-serial conversion can be performed 
either before or after making symbol decision 
(detection). Fig. 3 depicts a MIMO-OFDM 
system with MT transmit antennas and MR 
receive antennas. System design consideration 
prefers the choice of subcarrier spacing is 
such that each subcarrier suffers only slow flat 
fading. The resulting MIMO-OFDM channel 

can thus be characterized by a family of 
matrices whose members specify the space 
transmission characteristic, i.e., the (i; j) entry 
of a member matrix represents the channel 
response between the ith receive antenna and 
the jth transmit antenna associated with a 
subcarrier. One can also use a tensor to 
describe the space-frequency channel 
responses. The carrier frequency offset (CFO) 
is caused by (i) the time-varying nature of the 
transmission medium, (ii) the instabilities and 
mismatch between the transmitter and receiver 
oscillators and (iii) the relative movement 
between the transmitter and receiver. For all 
practical purpose, different transmit/receive 
RF branches of a MIMO system must be 
frequency-coherent, i.e., the transmitted 
carrier frequency and receiver frequency 
down-converters are each derived from a 
common frequency synthesizer, resulting in 
the model shown in Fig. 4. The cyclic prefix 
(CP) consists of Ng samples, which is 
supposed to be greater than or equal to the 
maximum relative delay that includes users' 
timing ambiguities and the maximum 
multipath delay; see Fig. 5. When this 
assumption is valid, the received time-domain 
sequence, after removing the CP part, is the 
circular convolution of the transmitted 
sequence with the channel impulse response 
plus white Gaussian noise. 
 
2.2 MIMO-OFDM System Model and 
Signal Descriptions  
Consider a frequency selective fading channel 
associated with a MIMO system of MT 

transmit and MR receive antennas. The 
equivalent time-domain baseband signal at the 
output of the ith receive antenna, yi[n], is 
given by 
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(1) 
where {wi[n]} is a complex additive whit 
Gaussian noise (AWGN) sequence and  

  (2) 

is the part of the OFDM signal received by the 
ith receive antenna contributed by the jth 
transmit antenna. Moreover, 

. ][kS j  represents the symbol carried by the 

kth subcarrier at the jth transmit antenna. 

. ][, kH ji  is the channel transfer function 

between the ith receive antenna and the jth 
transmit antenna at the kth subcarrier. 

. ε  denotes the relative carrier frequency 

offset of the channel (the ratio of the actual 
frequency to the intercarrier spacing). 

. jD  is the set of modulated subcarrier for the 

jth transmit antenna. 

. sE is the average energy allocated to the kth 

subcarrier evenly divided across the transmit 
antennas. 

. { }][, nh ji  and ∑ −

=

−
=

1

0

2

,, ][][ L

n
N

knj

jiji enhkH
π

 

are the channel impulse and frequency 
response between the ith receive antenna and 
the jth transmit antenna at the kth subcarrier. 

. L is the maximum channel memory of all 

MTMR SISO component channels. 
 
Fig. 6 plots the transmission channel model 
for the ith receive antenna with respect to the 
MT transmit antennas. Rewriting (2.1) in 
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(3) 
and using the substitutions 

 
we obtain 

 
(4) 
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(6) 
It is clear that the presence of a fractional 
CFO causes reduction of the desired 
subcarrier's amplitude and induces 
inter-carrier interference (ICI). If the 
fractional CFO part can be perfectly 
compensated for, the integer CFO, if exists, 
will result in a circular shift of the desired 
output, causing decision errors. 
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3. Maximum Likelihood Estimate of CFO 
3.1 Generalized Moose Estimate 
Let D be the set of modulated subcarrier 
(indexes) that bear a pseudonoise (PN) 
sequence on the even frequencies and zeros on 
the odd frequencies. The resulting 
time-domain training sequence has two 
identical halves 
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where ( )TM nrnrnr
R

][][][ 21 L and De is 

the subset of even numbers in D. 
Taking into account the AWGN term, we 
obtain 
        [ ] ][][ nwnrny +=            (9) 
[ ] ]2/[][2/ 2/2 NnwenrNny j ++=+ πε   (10) 

where ( )TM nwnwnw
R

][][][ 21 L . As 

illustrated in Fig 7, we define 

 
and 

 
where the subscript indicates either the first or 
the second half of a time-domain OFDM 
frame and the indexes within the bracket 
denotes from which receive antenna the time 

domain sample is derived. 
(9) and (10) then have the simplified 
expressions  

              (11) 

        (12) 

The ML estimate of the parameterε , given the 
received vector ( )][],[ 21 iyiy , is obtained by 
maximizing the likelihood function 
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and ][],[ 21 iwiw  are temporally white 

Gaussian with zero mean and variance Iw
2σ , 

where I is the identity matrix, the multivariate 
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The ML estimate of ε  is given by 

    (18) 

where Arg(x) is the principal argument of the 
complex number x. In summary, the 
generalized Moose estimate for two identical 
halves pilot symbols of length Nw and 
ND-spaced, as shown in Fig. 8, is given by 

 (19) 

The range of this estimator is 
DN

N
2

±  

subcarrier spacings. 
3.2 Extended Yu-Su Estimate 
Consider a MIMO-OFDM system that uses 
multiple identical pilot symbols. After 
discarding the first received symbol, the 
remaining K pilot symbols at the ith receive 
antenna, yi(k,m), can be represented as 
    ),(),(),( mkwmkxmky iii +=       (20) 
for k=1,2,…,K and m=1,2,…,M, where xi(k,m) 
is the mth sample of the kth (time-domain) 
symbol of the channel output at the ith 
receiver antenna. {wi(k,m)} are uncorrelated 
circularly symmetric Gaussian random 
variables at the ith receive antenna with zero 

mean and variance ( ){ }22 ,mkwE iw =σ . Note 

that 

( ) ( ) ( ) NMkj
i emxmkx /12

1 ,1, επ −=     (21) 

where ε  is the relative frequency offset of 
the channel. Let 

  (22) 

where (.)T denotes the matrix transpose. 
( ) ( )εAmYi ,  and ( )mWi  are the vectors of 

dimension Kx1. Then, as shown in Fig 9, we 
have 
( ) ( ) ( ) ( ) MmmWmxAmY iii ,...,1,,1 =+= ε  (23) 

The received samples can thus be expressed 
compactly as ( ) iii WXAY += ε where 

( ) ( )[ ]MYYY iii L1=  is an K × M matrix. 

( ) ( )[ ]MxxX iii ,11,1 L=  is an 1 × M vector 

and ( ) ( )[ ]MWWW iii L1=  is an K × M matrix. 

Since the noise is temporally whit Gaussian, 
Yi(m) is a multivariate Gaussian distributed 

random vector with covariance matrix Iw
2σ . 

The joint ML estimates of A and Xi, treating Xi 
as a deterministic unknown vector, are 
obtained by maximizing the following joint 
likelihood function: 
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after dropping constant and unrelated terms, is 
given by 

( )( ) ( ) ( )∑ ∑= =
−=Λ

RM

i
M

m iii mAxmYmxA 1 1
2,1,1,

(24) 
For a given A, setting 
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we obtain the conditional ML estimate, 
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where KAA H /=+  and H denotes the 
Hermitian operation. By substituting the 

least-square solution, ( )mx
iLS ,1 , we obtain 
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where tr(.) denotes the trace of a matrix, 
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Invoking an approach similar to that used by 
the MUSIC algorithm, we set NMjez /2πε=  
and define the parametric vector 

( ) [ ] ,1 12 TKzzzzA −= L     (28) 

so that the log-likelihood ARA YY
H ˆ=Λ  can 

be expressed as a polynomial of order 2K-1, 
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where ( ) ∑=
ji

YY jiRns
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),(ˆ , for n = j-i, and 

n=-K+1,…, K-1. As the log-likelihood is a 
real smooth function of ε , taking derivative 
of ( )NMje /2πεΛ  with respect to ε  and 

setting ( ) ( ) 0
.

/2 =Λ=∂Λ∂ εεπε NMje , we 

obtain 
( ) 0)(* =− zFzF              (30) 
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of order K-1. If {zi}are the nonzero complex 

roots of ( )z
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where ( )}maxarg{ˆ zz
iz
Λ= . 

We summarize the above ML estimation 
procedure as following. 
1. Collect K received symbols from all receive 
antennas and construct the sample correlation 

matrix YYR̂ , which is given by  

( ) ( )∑ ∑= =
= R

i

M

i
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m i
R

YY mYmY
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R
1 1

1ˆ . 

2. Calculate the coefficients of F(z) based on 

YYR̂  where ( ) ∑
−

=

=
1

1
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K

n

nznnszF , and 

( ) ∑=
ji

YY jiRns
,

),(ˆ  for n = j-i. 

3. Find the nonzero unit-magnitude roots of 
( ) 0)(* =− zFzF . 

4. Obtain the CFO estimate from         

and z
Mj

N ˆln
2

ˆ
π

ε =  and ( )}maxarg{ˆ zz
iz
Λ=  

where ( ) ( ) ( )zARzAz YY
H ˆ=Λ , NMjez /2πε= , and 

( ) [ ]TKzzzzA 121 −= L . 

The range of our estimator is ±M/2 subcarrier 
spacings. 
 
4. Simulation Results and Discussion 
The computer simulation results reported in 
this section are obtained by using a pilot 
format the same as that of the IEEE 802.11a 
standard with a sample interval of 50 ns. The 
frequency-selective fading channel has sixteen 
paths with independent complex Gaussian 
distributed amplitudes and a exponentially 
decaying power delay profile with rms delay 
spreads of 50 ns. The tap coefficients are 
normalized such that the sum of the average 
power per channel is unity. The DFT size is N 
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= 64. The signal-to-noise ratio (SNR), defined 
as the ratio of the received signal power (from 
all MT transmitters) to the noise power at the 
ith receive antenna, is assumed to be the same 
or each receive antenna. For Moose estimate, 
the training part consists of two identical 
halves with length NW = 32. The range of CFO 
estimator is 1±  subcarrier spacings. Fig. 10 
shows the performance of generalized Moose 
CFO estimate for different number of transmit 
and receive antennas. Obviously, the MSE 
performance improves as the number of 
receive antennas, MR, increases. Fig.11 
presents the performance of extended YS 
estimate for different number of transmit and 
receive antennas. The training symbol has two 
identical halves with K = 2 and M = 32. The 
range of CFO estimator is 1± subcarrier 
spacings. For training symbol with two 
identical repetition, the performance of 
extended Yu estimate is the same as the 
performance of generalized Moose's CFO 
estimate. Fig. 12 plots the performance of 
generalized Moose's CFO estimate with two 
identical halves with length NW = 32 for 
different number of transmit and receive 
antennas. Similarly, the performance of CFO 
estimates is an increasing function of the 
number of the receive antennas. We divide 
roughly into four groups. The first group is MR 
= 1;MT = 1; 2; 4; 8, the second is MR = 2;MT = 
1; 2; 4; 8 and so on. For 
first group, the performance of CFO estimate 
with MR = 1; MT = 8 is better than 
with MR = 1; MT = 1 duo to transmit diversity. 
The last group with MR = 8 is 
more close together than the ¯rst group with 
MR = 1 duo to receive diversity. The 
performance of CFO estimate for the second 
group, MR = 2, is roughly 3dB better than 
for the first group, MR = 1, duo to two receive 

antennas received double energy than 
single receive antenna. Fig.13 shows the 
performance of extended Yu estimate and 
generalized Moose estimate. The training 
symbols have 4 repetitions with K = 4 and M 
= 16. The training symbols for generalized 
Moose estimate are length NW = 32 i.e. take 
first two training symbols as one training 
symbol and take last two training symbols as 
one training symbol. The range of generalized 
Moose's CFO estimator is 1±  subcarrier 
spacings. The range of extended Yu estimator 
is 2±  subcarrier spacings. For 4 identical 
pilots, the performance of extended YS 
estimate is better than that of the generalized 
Moose estimate because extend YS estimate 
use all information of the training symbols. 
 
5. Conclusion 
In this project, we have extended both Moose 
and YS maximum likelihood CFO estimation 
algorithms for use in MIMO-OFDM systems. 
As long as the length of cyclic prefix is 
greater than or equal to the maximum delay 
that accounts for the all users' timing 
ambiguities and channel multipath delays. The 
performance of both CFO estimates improves 
as the number of transmit/receive antennas 
increases. In other words, the presence of 
multiple antennas not only promise great 
capacity enhancement but entail performance 
improvement for the associated frequency 
synchronization subsystem. 
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Figure 1：Block diagram of an OFDM modulator. 

 

 

 
Figure 2：A typical OFDM demodulator. 

 
Figure 3：Block diagram of a typical MIMO-OFDM system. 

 

Figure 4：Frequency synthesizer model of a MIMO-CDMA system. 

 

 

Fig. 5: Timing assumption of the MIMO-OFDM receiver under 

consideration. 

 

Fig. 6: Channel model for the ith receive antenna. 
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Fig. 7: Definitions of various vector notations. 

 

Fig. 8: The ND-spaced estimator. 

 

Fig. 9: Symbol arrangement and de¯nitions of the extended Yu's 

ML estimate at the ith receive antenna. 

 

Fig. 10: MSE performance of generalized moose estimate for two 

repetitions, true CFO=0:7 subcarrier spacings. 

 

Fig. 11: MSE performance of extended Yu estimate for two 

repetitions, true CFO=0:7 subcarrier spacings. 

 

 

Fig.. 12: MSE performance of generalized moose estimate for two 

repetitions, true CFO=0:7 subcarrier spacings. 

 

Fig.. 13: MSE performance of CFO estimates for four repetitions, 

true CFO=0:93 subcarrier spacings. 


