
行政院國家科學委員會補助專題研究計畫 ■ 成 果 報 告
□期中進度報告

安全無線感測網路：感測網路串流密碼系統之設計

Wireless Sensor Network: Design of Stream Ciphers

in Sensor Network

計畫類別：□ 個別型計畫 ■ 整合型計畫

計畫編號：NSC 94－2213－E－009－090

執行期間： 2005 年 8 月 1 日至 2006 年 7 月 31 日

計畫主持人：陳榮傑

共同主持人：

計畫參與人員：林志賢、林家瑋、林嘉軒、劉用翔、蔡佩娟

成果報告類型(依經費核定清單規定繳交)：■精簡報告 □完整報告

本成果報告包括以下應繳交之附件：

□赴國外出差或研習心得報告一份

□赴大陸地區出差或研習心得報告一份

□出席國際學術會議心得報告及發表之論文各一份

□國際合作研究計畫國外研究報告書一份

處理方式：除產學合作研究計畫、提升產業技術及人才培育研究計畫、

列管計畫及下列情形者外，得立即公開查詢

 □涉及專利或其他智慧財產權，□一年□二年後可公開查詢

執行單位：國立交通大學 資訊工程學系

中 華 民 國 95 年 10 月 31 日

1.中文摘要

 無線微型感測網路的主要組成元件是感測器。感測器具備有偵測資訊以及無線通訊的

能力，透過無線電的傳輸可以將收集到的相關資訊即時、動態的傳送。在無線微型感測器

網路普及的環境下，網路安全將成為很重要的議題，安全的網路讓使用者可以盡情的享受

無線微型感測安全網路的便利性、功能性、穩定性及隱密性。不同於以往的安全技術設計，

因為受限於無線微型感測器上極有限的記憶體空間、計算能力與低功率需求，需要大量且

複雜運算的公鑰密碼系統，例如 RSA 或橢圓曲線密碼系統，並不適合運用在無線微型感測

器網路上。甚至於密鑰密碼系統中的塊狀密碼系統（Block Cipher System），也因為架構

複雜且運算耗時，也不適合運用在無線微型感測器網路上。而串流密碼系統（Stream Cipher

System）有別於塊狀密碼系統，是種架構相當簡單且加密速度非常快速的密碼系統，非常

適用於記憶體及運算資源有限的感測器上。

 本計畫將針對密碼學中的串流密碼進行徹底且深入的研究，了解各種串流密碼的結構

與性質，分析各種串流密碼技術應用在微型感測器上的優缺點，並且利用各種模擬檢測或

已知的攻擊方法進行安全性的驗證。最後，我們將對各種設定進行細部的調整作最佳化，

達到使用最少的資源而有最大的加解密速度與安全性，並加入省電機制的考量，希望在微

型感測器上極有限的記憶體空間、計算能力與低功率需求的限制下，提供最佳的安全密碼

技術。

關鍵詞：感測網路、串流密碼、線性反饋移位暫存器

2. Abstract
Network is one of the most important research topics in recent years. Sensor

is the main component of this network architecture which collects the environment

information and transmitted to the read-end data center through RF signaling and

ad-hoc routing methodology to make more advanced data analysis. Security is a very

important issue in wireless sensor network. Due to the limitation of memory and

computation power in the sensors, public-key cryptosystems (e.g., RSA and ECC) and

block cipher systems (e.g., DES) are difficult to be embedded in the sensor network.

Stream cipher systems with simple structures and high-speed encryption have the

advantage for severe constraints on the amount of processing power and memory space.

In this project, we will study all of stream cipher systems and give stream

cipher based candidates for the security technique in wireless sensor network. To

verify the security, we use the statistic testing and known attack methods to

analysis our proposed techniques. Eventually, we will develop a secure and

power-saving encryption mechanism that meets the hardware limitation of sensor

node.

Keywords : Sensor Network, Stream Cipher, LFSR Wireless Sensor

3. Design of Stream Ciphers on Sensors
 On Wireless Sensor Networks there are several severe challenges – these sensors have
limited processing power, storage, bandwidth, and energy. So we must choose a fast and
low-storage cryptosystem. The stream cipher is very fast and can lower power consumption.
Since the stream cipher encrypts each character under a time varying function of the key, it
prevents deletion, insertion or replay of ciphertext, as well as ciphertext searching. We will design
the stream cipher to resist all the attacks such as correlation attacks [8], the best affine
approximation attack [9], algebraic attacks [2] and so on. A stream cipher is to use the generator
to produce the pseudo-random keystream. The generator has the filter generator and combination
generator. We will discuss which generator is more suitable for Wireless Network Sensors. There
are two main components to construct the generator: one is LFSR and the other is a Boolean
function.
 Boolean functions must satisfy some conditions to resist all kinds of attacks. They must be
of high resilient, nonlinearity, algebraic degree, algebraic immunity and balancedness. We will
use the method of [1] to construct the Boolean function we want.
Using the method of [1] we can get
fn = xn (f’n-1 ⊕ f’’n-1) ⊕ f’n-1 , n ≡ 2 (mod 3) …………..…………………………. (1)
where f’n-1 = (xn-3 ⊕ 1)f’n-4 ⊕ xn-3f’’n-4 ⊕ xn-2 ⊕ xn-1
 f’’n-1 = (xn-2 ⊕ xn-1 ⊕ 1)f’n-4 ⊕ (xn-2 ⊕ xn-1) f’’n-4⊕ xn-3 ⊕ xn-2

and f’1 = 0, f’’1 = x1. By the theorem in [1] the function fn is (2n-7)/3-resilient function on Vn, n ≡
2 (mod 3), with the nonlinearity 2n-1 – 2(2n-4)/3 and an algebraic degree of each variable in fn is
(n+4)/3. The scheme of the function fn contains 2n – 4 XOR and (2n - 1)/3 AND. It is linear on n.
The number of XOR and AND in other functions constructed by usual methods, in general, is
exponential on n. It uses less storage and operations and is faster. The Boolean function
constructed by this method is (n, (2n-7)/3, (n+4)/3, 2n-1 – 2(2n-4)/3), that is (n, resilient, algebraic
degree, nonlinearity). If we choose n to be 11, it is (11, 5, 5, 960) and from [2] we know the
algebraic immunity of this Boolean function is 4. We expect these values are enough to be a
secure stream cipher.
 Then we talk about LFSR. On sensors, the key length is not too big, so we choose it to be
128. In the filter generator, we only need to find one primitive polynomial of degree 128. Its
period is 2128 – 1, and we believe it is long enough. But if we want to resist the inversion attack
and the conditional correlation attack, the LFSR tapset must be FPDS [4,5]. Therefore we choose
 179315999128 ++++++= xxxxxxc
T = {7, 9, 31, 59, 99, 128} is FPDS. And the filter generator tapset Γ also need to be FPDS.
Therefore, we choose Γ = {0 1 3 7 12 20 30 44 66 82 127}, and it is FPDS.
In the combination generator, we must choose 11 primitive polynomials and sum of their degree
is 128, e.g. {6, 8, 9, 11, 12, 13, 14, 14, 15, 16, 17}.

3.1 Implementing the stream cipher with software
 In this subsection, we will discuss how to implement the filter generator and the

combination generator and decide which one is better for Wireless Sensor Networks. The
hardware specification of the sensor we use is as follows:

CPU 8051, 8-bit, 12MHz

512 bytes RAM
16k bytes ROM

Storage

64k flash RAM
OS MicroC OSII
compiler Keil C

Table 1: Characteristics of prototype sensors
We first write c program and compile it with Keil C and load the hex file Keil C produces into
ROM of sensors. Because the memory of sensors is small, we expect the code size of our stream
cipher is smaller.
 We first choose the filter generator to implement. Let n be 11 and the Boolean function can
be got from (1). It is as follows:
f = x11{(x8+x9+x10) [(x5+x6+x7)(x1(x2+ x3+x4)+x2+x4)+x5+x7]+x8+x10}

+ x8 [(x5+x6+x7) (x1(x2+x3+x4)+x2+x4)+x5+x7] +x5(x1(x2+x3+x4) + x2+x4)
+x1x2+x3+x4+x6+x7+x9+x10 …………………………..……..(2)

The connection polynomial of LFSR is x128 + x99 + x59 + x31 + x9 + x7 + 1. And the filter
generator tapset is Γ = {0 1 3 7 12 20 30 44 66 82 127}. Let this stream cipher be StreamCipher1
as in Figure 2.
 Then we use “Pointer and circular buffer” to StreamCipher1 to become StreamCipher2.
“Pointer and circular buffer” [3] is as follows:
Pointer and circular buffer: is based on the idea of having a pointer pointing at the beginning of
the LFSR in memory. When we clock the LFSR once we do not shift all the values one step in
memory, but rather, we only move the pointer one position. This gives a compact code
description of the LFSR sequence generation, and is faster than StreamCipher1.
 Next we implement the combination generator. The Boolean function is the same as
StreamCipher1. And we need 11 connection polynomials of LFSR as follows:

X6 + X + 1 X6 + X + 1

X8 + X5 + X4 + X3 +1 X9 + X4 + 1

X10 + X3 + 1 X11 + X2 + 1

X12 + X7 + X4 + X3 +1 X13 + X4 + X3 + X1 +1

X14 + X12 + X11 + X +1 X14 + X5 + X3 + X +1

X15 + X + 1 X16 + X5 + X3 + X2 +1
We use these LFSRs and the Boolean function f to construct the StreamCipher3 as Figure 3.

In Table 2 it is obvious that StreamCipher2 is the smallest. Therefore, we choose the filter
generator as our generator in the stream cipher. At last we implement the filter generator with
8051 assembly code and optimize it to be the smallest by using reuse and loop and so on. It will
produce code size of 799 bytes. Key setup and running 128-bit keystream totally approximately
cost 0.031426 seconds. The data rate of producing the keystream is 128 / 0.031426 = 4073 bits/s.

We just xor the plaintext with the keystream to complete encrypting.

 StreamCipher1 StreamCipher2 StreamCipher3
Code Size 3.56k bytes 2.56k bytes 5.77k bytes
time 0.050614 s 0.050409 s 0.167840 s

 Table 2: Code size of three stream cipher

3.2 Implementing the stream cipher with hardware
 We devise these sensors to last as long as possible on Wireless Sensor Networks. We want to
lower power consumption when sensors encrypt with the stream cipher. In the same CPU clock
rate the algorithm of the faster encrypting consumes the lower power. Therefore, we want to
make our encryption algorithm faster to lower power consumption. Of course, we also want our
algorithm to use less memory. In order to save power consumption and memory we may change
the hardware specification to better fit our stream cipher.
 First we write the stream cipher algorithm with 8051 assembly code. We use the filter
generator as our stream cipher generator. This filter generator consists of one LFSR of length 128
and one 11-variable Boolean function. LFSR of length 128 needs 16 addresses to be stored (one
address is 8bits), that is from KEY0 to KEYF. The Boolean function needs 11 inputs from LFSR
and one input is one bit. Therefore we often extract one bit from some address and it needs to do
11 times. Doing one time needs many operations as follows.
 MOV A, 30H
 ANL A, #08H
 RR A
 RR A
 RR A
 MOV R2, A
Doing these is only to move fourth bit of the value in address 30H to register 2. The connection
polynomial of LFSR also needs to do these operations to compute the next state. So doing these
operations in the filter generator needs totally 17 times. If we can increase one new instruction to
replace these operations, the code size will reduce much and the speed of encryption will be
faster.

 After observing the stream cipher program with assembly code, we find that increasing this
instruction, MOV Rn, ADDRESS.m, is a good idea. This instruction means to move m-th bit of
the value in address ADDRESS to the register n; that is, this instruction can replace the above all
instructions.

01010101 30H

00H

1000 0101

dir(src) dir(dest) MOV

30H 31H

1000 0101

m Rn dir(dest) MOV

0001 0001 30H

 Figure 4: Memory Figure 5: New instruction

For example MOV R1, 30H.0 => R1 = 1, MOV R2, 30H.4 => R2 = 0 in Figure 4. By using this
instruction we will reduce code size and increase the speed of the stream cipher. How do we
increase this new instruction in 8051? We first find out the source code of 8051 and modify it to
increase this instruction. The source code of 8051 is VHDL or may be Verilog. But we only
simulate it and do not implement it in reality. So we find a simulation of 8051 written by C++ and
modify it to increase this instruction. How do we modify the simulation of 8051? If we can find
out opcode which is not used in 8051, then we use this opcode as the opcode of our new
instruction. The easier method is to modify the instruction which we do not use in the stream
cipher algorithm to become our new instruction. In this case, we modify MOV DIRECT,
DIRECT as Figure 5. In this Figure 5, the original instruction MOV dir, dir, is to move the value
in address 30H to the value in address 31H. The modified instruction, MOV m, Rn, dir, is to
move m-th bit of the value in address dir to register n, Rn. In Figure 5, MOV 11H, 30H is to
move second bit (begin from 0) of the value in address 30H to R1. We take Figure 5 as an
example, that is, R1 is equal to 0. By using this instruction we can largely decrease the code size
of the stream cipher and increase the speed of the stream cipher. Table 3 compares the stream
cipher not using the modified instruction and one using the modified instruction with regard to
the code size and execution time. This modification improves by 799 – 578 = 221 (bytes) and
0.031426 – 0.024642 = 0.006784 (s). The improved rate of code size is 221/799 = 27.7% and the
improved rate of execution time is 0.016784/0.031426 = 21.6%.

 original modified
code size (bytes) 799 578
execution time (s) 0.031426 0.024642

Table 3: Code size and execution time of the stream cipher
3.3 Analyzing security
 In the previous subsection, we obviously know the code size of the filter generator is smaller
than one of the combination generator. On sensors memory is very critical. Because the filter
generator is a special case of the combination generator and they share the same Boolean function
f in (2), that is, they have the same nonlinearity, resilient, algebraic immunity, so they have the
same power to resist some attacks, such as the BAA attack, the correlation attack, and the
algebraic attack. Therefore we will choose the filter generator as our cryptosystem on sensors.

The structure of the filter generator is shown in Figure 2. Because the connection
polynomial c is a primitive polynomial so the period of the sequence s and z are 2k – 1 if f is
balanced [6]. In the filter generator the period of the keystream is 2128 – 1. We believe it is long
enough.

test degree of
freedom

passing range other
paratmeter

results

frequency test 1 -3.84 ~ 3.83 no pass X1=1

serial test 2 -5.99 ~ 5.99 no pass X2=1

poker test 7 -14.067 ~ 14.067 m = 3 pass X3=4

runs test 14 -23.685 ~ 23.685 k = 8 pass X4=11.4

autocorrelation no -1.96 ~ 1.96 d = 500 pass X5=1

Table 4: Statistical tests table of the filter generator
We also hope the keystream the generator produces possesses the randomness. While it is

impossible to give a mathematical proof that a generator is indeed a random bit generator, the
statistical tests [7] help detect certain kinds of weakness the generator may have. Table 4 shows
that our choosing filter generator is very probable to random.

Then we hope our filter generator can resist all kinds of attacks. The Boolean function f in
the filter generator is (11, 5, 5, 960) and its AI is 4. We believe 5-resilient is big enough to resist
all correlation attacks. Nonlinearity is equal to 960 and in the BAA attack a = 0.0625 and the
sequence the BAA attack [9] generates is similar with the original keystream with probability of
0.53125. This value is low enough to resist the BAA attack. The generator filter tapset and the
LFSR tapset are FPDS to resist the inversion attack and the conditional correlation attack.

attack algebraic BDD Investion tradeoff
complexity O(265) O(2114) O(282) O(285)

 Table 5: Complexity of attacks

Table 5 shows the complexity of other attacks. Let CPU clock rate be 4G, and it computes at most
248 instructions in one day. Therefore if all complexity is larger than 264, we say the stream cipher
is secure. So our stream cipher is secure.
 Compared with RC5 in [10] the filter generator uses less code size and is faster. RC5 was
used as the cryptosystem on Wireless Sensor Network in [10]. The faster the operations of
encrypting are in the same clock rate, the less power consumption is. This is also very important
on sensors and this makes sensors survive longer. At last, we compare the filter generators, RC5
and A5. RC 5 and A5 are implemented by 8051 assembly code. The filter generator is
implemented by our modified 8051 assembly code. The result is as follows.

 filter generator RC5 A5
code size (bytes) 578 1789 1071
data rate (bits/s) 5194 600 3318

Table 6: Comparison among the filter generator, RC5, and A5

Obviously, our filter generator is faster than RC5 and A5 and uses less code size.

4. Conclusion

The stream cipher is divided into the combination generator and the filter generator. The
filter generator needs less code size than the combination generator. The filter generator is also
faster than the combination generator. Therefore, we choose the filter generator as our
cryptosystem on Wireless Sensor Networks. And our designing stream cipher can be loaded into
sensors and it is secure.

5. Reference
[1] Turiy Tarannikov, “On resilient Boolean functions with maximal possible,” Crypto ePrint

Archive, http://eprint.iacr.org, No. 2000/005.

[2] Anne Canteaut, Kapaleeswaran Viswanathan, “Results on Algebraic Immunity for

Cryptographically Significant Boolean Functions,” Progress in Cryptology - INDOCRYPT

http://eprint.iacr.org/

2004: 5th International Conference on Cryptology in India, Chennai, India, December 20-22,

2004. Proceedings.

[3] P. Ekdahl and T. Hohansson, “SNOW-a new stream cipher,” in Proceedings of First Open

NESSIE Workshop, KU-Leuven, 2000.

[4] Jovan Dj. Golic, ”On the security of nonlinear filter generators,” In Dieter Gollmann, editor,

Fast Software Encryption (FSE 1996), LNCS 1039, pages 173-187. Springer-Verlag, 1996.

[5] B. Löhlein, “Analysis of modifications of the conditional correlation attack,” 1999.

Accepted at 3rd IEEE/ITG Conference on Source and Channel Coding, 17-19 Jan. 2000,

Munich.

[6] Markus Schneider, “Methods of generating binary pseudo-random sequences for stream

cipher encryption (in German),” PhD thesis, Faculty of Electrical Engineering, University

of Hagen, Germany, September 1999. Berichte ausder Kommunikationstechnik, Band 4,

Shaker Verlag.

[7] A. J. Menezes, P. C. V. Oorschot, and S. A. Vanstone, Handbook of Applied Cryptography,

pp.169-190, 1996.

[8] T. Siegenthaler, “Decrypting a class of stream ciphers using ciphertext only,” IEEE

Transaction on Computers, 1985, C-34, pp. 81-85.

[9] R. A. Rueppel, “Analysis and design of stream cipher,” Springer-Verlag, Berlin etc., 1986.

[10] Perrig, R. Szewczyk, V. Wen, D. culler, and J. Tygar, “SPINS: Security Protocols for Sensor

Networks,” In Seventh Annual ACM International Conference on Mobile Computing and

Networks (Mobicom 2001), Rome Italy, July 2001.

6. 成果自評
 依前幾節所述之結果，我們達成了此計畫預期的目標。此計畫的研究結果不僅針對串

流密碼的核心技術提供理論上的安全檢測標準，更具體提出幾個建構的方向，並且提供在

軟體及硬體上的實作方式，可應用在記憶體及運算資源有限的感測器上。成果極具有學術

上的價值與貢獻，相當適合學術期刊上發表。

