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Muntz linear transforms of Brownian motion

Larbi Alili® Ching-Tang Wu"!

ABSTRACT

A class of Volterra kernels of Goursat type is considered. Calculations are
shown to be more explicit for the class of Miintz transforms such as the kernels,

the control of the order to be infinite and the ergodic properties.

Keywords: Brownian motion; canonical decomposition; enlargement of filtrations;
ergodicity; Goursat kernels; Gramian matrix; Miintz polynomials; harmonic func-
tions; self-reproducing kernels; strong mixing; reproducing Hilbert spaces; Volterra

transform.

AMS 2000 subject classification: 26C05; 60J65.

1. INTRODUCTION AND PRELIMINARIES

Let B be a standard Brownian motion defined on a complete probability space
(9, F,Py) and denote by {FZ ¢t > 0} the natural filtration it generates. Take
f=(f1,--, fa)*, where % stands for the transpose operator, to be a fixed vector
of L?

ie(R;) functions and n is some positive integer or +0o. We know that there

exists a unique Volterra transform

¥:C(R*R) — C(R",R

X—>X// (u, v) dX (v)

preserving the Wiener measure such that the orthogonal decomposition

) 7= oo ( [ fuan,)

holds for any ¢ > 0, where by F ® G we mean F V G with independence between F

and G. Because we are in the Gaussian setting we observe that if H;(X) stands for

ISupported by the National Science Council under Grant NSC 94-2115-M-009-019.
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the closed linear hull of {X; s < ¢} then the decomposition (1) is equivalent to

Hy(B) = H,(S(B)) @ span ( /0 ) dBu)

where @ stands for direct sum. It is known that the kernel k takes the form k(¢, s) =
¢*(t).f(s), where ¢(t) = «;.f(t) and oy stands for the inverse of the covariance
function M, of the Gaussian vector fot f(s)dBs.

In this paper we are interested in cases when the self-reproducing space is a
Miintz Gaussian Hilbert space. That corresponds to f;(z) = z%, i = 1, 2,..., n,
where A = {A1, Ag,- -, A\, } is a sequence of reals such that A\; # \; for ¢ # j and
i > —1/2, where n is a positive integer which may be +00. In this case the Gramian
matrix M; = fot f(s) - f*(s)ds has entries

t)\i-f—)\j-i-].

@ M =N n v
i J

27]:17 , 1.

We shall demonstrate in Theorem 2.1 that, for n < oo, the corresponding volterra
transform >,, has the Miintz kernel

n n

(3) kn(t, s) = % S @A+ D/ ]

m=1 j=1.j#m

Am + A +1
Am — A

Miintz kernels are homogeneous of degree —1 in the sense that for any sequence
A and a positive integer n, we have k,(at,as) = a='k,(t,s), for any a > 0. This
implies that the associated Volterra transforms have a close connection to stationary
processes. To explain the link let us introduce the isometry U : L*(R,,dx) —
L*(R,dz) defined by U(f)(t) = e ¥2f(e?), t > 0, and set © = U o X. Now, ¥
preserves the Wiener measure if and only if ¥(B) is a stationary Brownian motion
or Ornstein Uhlenbeck process. A necessary and sufficient condition for this to
happen is that the spectral measure of f](B) with respect to the Lebesgue measure
is (2/m)(1+422)"" on R, see Lemma 1 in Jeulin-Yor [21]. We shall show that %,,(B)
has the moving average representation

(1) S.8) = | it =) dB,

— 00

where (3 is a Brownian motion indexed by R, n,(t) = 1,50U o p,(t) and

pn(t) =1— /lt kn(r, 1) dr.

2



The Fourier transform of 7, is given by

) () = e [ s,

j=1
Thanks to the characterization given in the pioneering Karahunen [24], a glance
at eq. (17) allows to detect an inner factor which implies, as expected, that the
representation (16) is noncanonical with respect to 3.

A natural question is to know whether there exists Miintz transforms of infinite
orders. A partial answer is given by Hibin-Muraoka [13]. They established the
existence of infinite order kernels and showed that for a given infinite sequence A,
the condition sup \; < oo is a necessary condition for the existence of kernels with
infinite order. Furthermore, they proved that if 0 < A\; < Ay < ... then there exists no
corresponding Miintz transform of infinite order. We establish in Theorem 2.2 that
the condition ) 77, (24, +1) < oo is necessary and sufficient for the existence. Next,
we need to introduce iteration notations £ = Id, ¥ = ¥ and £ = X(m-Doy,
for m > 2, where o stands for the composition rule. Similarly we denote by k(™
the kernel corresponding to (™. In Theorem 2.4 we shall shaw that the orthogonal

decomposition
00 t
(6) FP=QQ)o </ w d2™(B),, 1< j < m)
m=0 0

holds for any t > 0. As a consequence, we conclude that Miintz transforms are
strongly mixing.
2. Miintz Gaussian Hilbert spaces and transforms

Let A = {A1, X2, -+ } be a sequence of reals such that \; # A; for i # j. Consider
the set of functions {z* 2?2 ...} defined on [0,1]. A Miintz polynomial is an
element of span{z*!,- -, 2*} for some n € N. The latter span the linear spaces

Mn(A) = span{x)‘l, e 7'1)\”; YIS [07 1]}

and

M(A) = U M, (A) = span{z™, 2?2 ... ;2 € [0,1]}

usually called Miintz spaces. For convenience, we assume that —1/2 < \;, i =

1,2, ..., so that the above polynomials lie in L*([0, 1]). Recall that M(A) is dense in
3



L?([0,1]) if and only if

o

(1) Z 2)\21 +1)

=1
This result is known as Miintz Theorem, see Borwein-Erdélyi [6]. Now, the procedure

of Gram-Schmidt allows to construct an orthogonal basis, denoted by {L,(CA)(x); 1<
k < n}, for the Hilbert space M,(A). That is specified by

T2 e+ A+ 1)
(8) L(A ch S kn = HJ 1]7%()% )

These generalized polynomials are usually called Miintz-Legendre polynomials. For

related topics we refer to Borwein-Erdelyi [6] and Borowein-Erdelyi-Zhang [7]. Next,
to the linear spaces M,,(A) and M (A) we associate, respectively, the Miintz Gaussian
spaces

e ={ [ pls)dBap e | wgw ={ [ p(s)dByp e M}

Introduce the first Wiener chaos of B on [0, 1] specified by

= {/Olf(w dB, : f € L*([0, 1])}-

The orthogonal spaces of MS(A) and MZ(A) in T are respectively given by

MEE(A {/f ydB, : f € L*([0,1]) /f dS—OpEM(A)}

and

wg ) = { [ s, g e o). [ sopds=ope u)}

By Miintz Theorem if the condition (7) holds then M%(A) is total in T’ which implies
that M%L(A) = {0}. Otherwise, M“1(A) is a nontrivial set. Now, it is natural to
give the following definition.

Definition 2.1. A Miintz transform is a Goursat-Volterra transform having a
Miintz-Gaussian space as a reproducing space. Its order is defined to be the di-
mension of the reproducing space. We call the associated Goursat-Volterra kernel a

Miuntz kernel.

We are now ready to state the following result.
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Theorem 2.1. Let A\i, Ay, -+ be a sequence of reals such that \; # \; for i # j and

Ai > —% fori = 1,2,---. For a fized n < oo, the kernel k,(t,s) = t™k,(1,s/t)
where

< KNOYED VS|
O k(L) =Y apet = BN Gy

Hi:l,i;«éj()\i - /\j) ’
is a Miintz kernel of order n. Its Gaussian self-reproducing space is MS(A).

Proof. We set k, = k and assert that k,(t,s) = t7' 37, a;jn(s/t)N for some se-
quence of reals ay,, a2y, ..., @, . The self-reproducing condition implies the linear
system

Qi n

10 S —
(10) —~ A+ A +1 ’

j=1,-,n.

To solve the latter let us consider the n-degree polynomial

(11) p(m):ﬁ(x+/\j+1 Zam H (+ X\ +1)

J=1,j#i

which has at most n roots. We observe the equivalence

n

Qi n
=0 — —_— =
p() ;$—l—)\i—|—1

which readily implies p(z) = [[;_,(z — A;). Next, choose m € {1,---,n} and
substitute p(z) in eq.(11). Dividing then both sides by [[...(z + A; + 1) and

rearranging terms we get

i#m

n

T+ Ay + 1 T — A\
T4+ Ay +1— ;ai,nm = (x — )\m)j_ll;{émm.
By letting z go to —(A,, + 1) we obtain eq. (9). It remains to determine the cor-
responding reproducing Gaussian Hilbert space associated to the transform > with
the kernel k,. But that is equivalent to solving f(¢) fo w) du, t > 0, that
is easily seen to be an ordinary linear differential equation of degree n. Because the
functions tY, j = 1,--- ,n, are n linearly independent solutions, we conclude that

['*n) coincides with M (A). This completes the proof. O

Going back to the Gramian matrix (my,¢ > 0), observe that, in this setting, it
has the entries (m;);; = (\i + A; + 1)~ 1A TN+ for 4,5 = 1,--- ,n. Thus, M, is a

Cauchy matrix and when \; = ci, for some constant ¢ # 0, and n = oo, M; is the
5



well-known Hilbert matrix. Note that because ||fi|| = +00, i = 1,--- ,n, we have

Qs = 0. The remaining ingredients ¢ and «. are given in the following result.

Corollary 2.1. We have ¢;(t) = a;t ™', i = 1,2,--- ,n. Furthermore, the

entries of ay are given by (ay)ij = @;najn(N + Xj + 1)1 Ai"—1
Proof. This follows from the expression of the kernel given in Theorem 2.1. O

Remark 2.1. Another way to solve (10) is to use the obvious decomposition

n

T+ A +1 —~ a;, :
||—:1 E — N.j=1.2,--- .
x_)\j +ll’—A7 x# ]7.] b 7n

j=1 j= J

Replacing x by —z + 1, the latter can be rewritten as

Tor— ) & Ajn .
I —1- —_n “Xi—1,7=1,2.---.m.
El’“ﬁl ;H&H’ PEAmLI=Ln

These are to distinguish from the decomposition

n n n
L 3 bin 1
P P , ]7”

N T A i=1,i%j

usually used to invert the moment generating function of the sum of n independent

7=1

exponentially distributed random variables with different means Ay, Ao, - -+, A,.

Remark 2.2. k,(.) is a generalized Miintz polynomilal. Its value at 0 is finite only
when A\ > 0 for k =1,--- ,n. In that case, if there exists ky such that Ay, = 0 then
k,(0) = ag,  if not then k£, (0) = 0.

The next result is devoted to some properties of the studied kernels. First, we shall
show that Miintz kernels can be expressed in terms of Miintz-Legendre polynomials
and then exploit these facts. We write k,(.) for k,(1,.).

Theorem 2.2. Hold the following assertions.
1) For any fized positive integer n, we have
a x
kn(1,2) = x”\"a— (2T LM (z))  or Li(z) = :cAnl/ sk, (1, 5) ds,
x 0
for x € R . Note that unlike Miintz-Legendre polynomials, the kernel k,, does
not depend of the order of A\, Ao, -+ , Ay
2) The sequence k. satisfies the differential-difference equations

(12) x (k) (@) — k,_1(2)) = M + Dk () + Ak ().
6



Proof. 1) For a fixed n > 1 observe that (\; + A, +1)¢;,, = a;,, for any j < n. gives
The first assertion follows by integration. 2) We know that
g tAn-1+1 (afA"Ln(x))/ _ (x,\n,lﬂLnil(x))’
= 2™k, i (2).
Now, we have

(7 Lo(2)) = 2K, (2) — (22X, + D)2 L, ()

= 7 M, (2) — 2\, + 1)1’2’\"2/ sk, (s) ds.
0

= 7 Uk (2).
We extract from the last equality
x’\"“kzn(m) — 2\, + 1) /x x’\"k:n(s) ds = 2™k, .
Differentiating and simplifying yields 0
—Mokn () + 2k () = (N + Dyt + 2k, 4.
OJ

The latter being well studied a number of their properties can be translated to
new properties for Miintz kernels. Next, we continue discussing a question tackled
by Hibino-Muraoka [13] consisting on determining the cases when k, converges as
n — oo to a Mintz kernel.

Theorem 2.3. The sequence k, converges, as n tend to +oo, to a Mintz kernel if
and only if 772 (2X; + 1) < 0.

Proof. Suppose that k is a self-reproducing kernel of the form k(t, s) = t71X°a;(s/t)"

for some sequence of reals a. Then it is necessary for a to satisfy the system

o0
a;

(13) 4
DD v

1, for all j with a; # 0.
First, assume that A is such that (t*),>; is total in L%([0,1]). Then
t t 1 o0
/ E(t, u)u™ du = / " Z a; (u/t)Y u du =tV

which implies that fot w dB, € T'¥ forall \; € Aand t € [0,1]. Thus, o (T®) = 7B
on [0,1] because of the totality property. Hence, ¥(B) = 0 which is an obvious
7



contradiction. Next, consider the case where (t*"),,>; is not total in L?([0, 1]) which

is equivalent to

o0

(14) Z (2X +1)

<
— 2N +1)2+1

For the above series to converge it is necessary to have either A, — oo or 2\,,+1 — 0

as n — oo. First, assume that A\, — oo and the system (13) has a solution a with

+

a; # 0 for infinitely many j’s. Splitting a; = a; — a; where a; := max{a;,0} and

a; = max{—a;,0} we can rewrite eq. (13) as

1 % Sy st oa 40
(15) Z)\—H\—H +ZA+)\+1—’ Jstoa;#0

Making use of eq. (14), given that a is bounded, we get

oo +
a;

3 WS W = (Cj« < oo, for some fixed j*.

Hence, for any given € > 0, there exists an integer m* large enough such that
S af (A + A +1)7" < & which implies that Y7 at (A + Aj- + 1)1 < Cje.

i=m*+1 z

Because lim,, .o, A, = 00, there exists an integer n* (larger than j*) such that

@ a; _Ame A+ a;
> >
N+ A 4 1 S Ao A 114 >\+A +1

Hence for j = n*, the left-hand side of (15) gives

m* [eS) 4

Z i < a; 4 a;
< (1—¢e)+e=

which contradicts the inequality of eq. (15). It remains to consider the case where
eq. (14) holds with 2),, +1 — 0. Note that the combination of the latter conditions
is equivalent to saying that Z;;(”‘j +1) < co. We need to recall and use the link

to stationary processes. The kernel k,,(.,.) is homogeneous of degree —1 in the sense
8



that k,(at,as) = a 'k,(t,s) for a > 0. Hence

t U
Yo(B) = B—// kn(u,v) dB, du
0o Jo
¢

_ /0 t (1_ / kn(u,v)du) dB,
_ /0 t (1— /1 v kn(vr,v)vdr> dB,

¢
= / pn(t/v)dB,, t>0,
0
where .
pn(z) =1 —/ ky(r,1)dr.
1

Thus, with 7,(t) = 1;~0U o p,(t), we have the moving average representation

(16) $,(B): = / m(t — 1) df,

—00
where 3 is a Brownian motion indexed by R. The Fourier transform of 7, is given
by

> presie)

(17) &) = 795 E+i(l+ )

j=1
and the above condition on A insures the convergence of 7,(£) to 7.(§) say. It

follows that k,, also converges as n — oo to a Miintz kernel.
OJ

We pursue our discussion by studying the ergodic properties of the above trans-
forms for which we need some preparatory lemma.

Lemma 2.1. We have

7 n

1 1
/ L u)dS™(B), = Z Cj7ia/§;r]? / uV (logu)*dB,, n>1,
0 0

j=1 k=0
(n)

where (a;.) is some matriz of reals, holds true. Furthermore, the collection {z* (log z)*;1 <

i<nk=0,1,---} is total in L*([0,1]).
Proof. By definition we have the system

t
A (B), = dB, —/ K (tu) dBy dt, m=1,2,-- .
0



Now, by using mathematical induction the iterated sequence of kernels k() satisfies
t

(18) k(L 5) = kD(t, 5) + KP9(t, 5) — / FO (£, )k (u, ) du

for 1 < ¢ < p. By using again induction and taking into account of the first step

kM = k,, we obtain

m—1 p

k™ (¢, ) Zt Xi= ( E (logt)" (log s)pk>

p=0 k=0

for some real-valued coefficients ( i p) Substituting this result into

1 i 1
/ LMu)dS"(B), = ¢ / w dX™(B),
0 =1 0

we obtain the first part of the Lemma. Now, let g be a square-integrable function on
0, 1] satisfying the system fol g(u)uti(logu)fdu =0, for 1 <i <mand k > 0. An

obvious change of variables yields that, for any positive integer k, we should have
[ee]
(—l)k/ (g(e™)e ") vPe " dv = 0.
0

Because {v*;k = 0,1,---} is total with respect to the measure e~“dv we deduce
that ¢ must be identical to 0. O

Finally, we are ready to state the following.

Theorem 2.4. Miintz transforms of finite order are strongly mixing and a fortiori

ergodic. Moreover, the orthogonal decomposition (6) holds true.

Proof. Let ¥ be a Miintz transform of order n for some natural number n. Con-
sider the associated sequence of Miintz polynomials f = {tAi; 1< < n} for some

sequence A = (Ay, -+, \,). For a fixed m > 1 we can write

FE=Fm®) (/f dB>®~-®a(/otf(u)d2(m)(3)u).

Applying Gram-Schmidt procedure yields

t
FtB — j:z<m+1>(B) R o (/ sz.‘(u) dB,;1 <i< m)

0

t
®---®0(/ L} (u)dE™(B),; 1 gz’gm).
0
10



Clearly the two families {z*(logz)¥ : 1 <i <n,k >0} and

i K
{Zch,iagg)xAj(logx)p; 1<i<n,m> O}

7j=1 p=0
span the same space. From Lemma 2.1 we know that the latter is total on L*([0, 1]).
By letting m tend to oo and applying Lemma 2.1 we obtain both eq. (6) and the
strongly mixing property of X. 0

Remark 2.3. The simplest known example of Mﬁntz kernels is ky(t,s) =t~L. For
this we have ¥(B,) = B. — [ Bu“ du. Furthermore, %" = J; Ln (log t) dB, where
L, is the sequence of Laguerre polynomials. This belng a bas1s of the Hilbert space

L? (R, e *dx) we get the orthogonal decomposition

see Jeulin-Yor [20].

Remark 2.4. As a by-product of the discussion for the order to be infinite we men-
tion the following result. Let ¢ be a C*°(]0, 1]) function satisfying |gz5 (k) \ < constant,
for all k. Then ¢ is a solution of the integral equation ¢(u fo v)dv, de-
fined on [0, 1], if and only if ¢(.) = K, (1,.) where \; = j for j >0 and n is some

finite positive integer.
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