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Müntz linear transforms of Brownian motion

Larbi Alilia Ching-Tang Wub,1

ABSTRACT

A class of Volterra kernels of Goursat type is considered. Calculations are

shown to be more explicit for the class of Müntz transforms such as the kernels,

the control of the order to be infinite and the ergodic properties.

Keywords: Brownian motion; canonical decomposition; enlargement of filtrations;

ergodicity; Goursat kernels; Gramian matrix; Müntz polynomials; harmonic func-

tions; self-reproducing kernels; strong mixing; reproducing Hilbert spaces; Volterra

transform.

AMS 2000 subject classification: 26C05; 60J65.

1. Introduction and preliminaries

Let B be a standard Brownian motion defined on a complete probability space

(Ω,F , P0) and denote by {FB
t , t ≥ 0} the natural filtration it generates. Take

f = (f1, · · · , fn)∗, where ∗ stands for the transpose operator, to be a fixed vector

of L2
loc(R+) functions and n is some positive integer or +∞. We know that there

exists a unique Volterra transform

Σ : C
(
R+, R

)
→ C

(
R+, R

)
X → X −

∫ ·

0

∫ u

0

k(u, v) dX(v)

preserving the Wiener measure such that the orthogonal decomposition

(1) FB
t = FΣ(B)

t ⊗ σ

(∫ t

0

f(u) dBu

)
holds for any t ≥ 0, where by F ⊗ G we mean F ∨ G with independence between F
and G. Because we are in the Gaussian setting we observe that if Ht(X) stands for

1Supported by the National Science Council under Grant NSC 94-2115-M-009-019.
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the closed linear hull of {Xs; s ≤ t} then the decomposition (1) is equivalent to

Ht(B) = Ht(Σ(B))⊕ span

(∫ t

0

f(u) dBu

)
where ⊕ stands for direct sum. It is known that the kernel k takes the form k(t, s) =

φ∗(t).f(s), where φ(t) = αt.f(t) and αt stands for the inverse of the covariance

function Mt of the Gaussian vector
∫ t

0
f(s)dBs.

In this paper we are interested in cases when the self-reproducing space is a

Müntz Gaussian Hilbert space. That corresponds to fi(x) = xλi , i = 1, 2,..., n,

where Λ = {λ1, λ2, · · · , λn} is a sequence of reals such that λi 6= λj for i 6= j and

λi > −1/2, where n is a positive integer which may be +∞. In this case the Gramian

matrix Mt =
∫ t

0
f(s) · f ∗(s) ds has entries

(2) (Mt)ij =
tλi+λj+1

λi + λj + 1
, i, j = 1, · · · , n.

We shall demonstrate in Theorem 2.1 that, for n < ∞, the corresponding volterra

transform Σn has the Müntz kernel

(3) kn(t, s) =
1

t

n∑
m=1

(2λm + 1)(s/t)λm

n∏
j=1,j 6=m

λm + λj + 1

λm − λj

.

Müntz kernels are homogeneous of degree −1 in the sense that for any sequence

Λ and a positive integer n, we have kn(αt, αs) = α−1kn(t, s), for any α > 0. This

implies that the associated Volterra transforms have a close connection to stationary

processes. To explain the link let us introduce the isometry U : L2(R+, dx) →
L2(R, dx) defined by U(f)(t) = e−t/2f(et), t ≥ 0, and set Σ̃ = U ◦ Σ. Now, Σ

preserves the Wiener measure if and only if Σ̃(B) is a stationary Brownian motion

or Ornstein Uhlenbeck process. A necessary and sufficient condition for this to

happen is that the spectral measure of Σ̃(B) with respect to the Lebesgue measure

is (2/π)(1+4x2)−1 on R, see Lemma 1 in Jeulin-Yor [21]. We shall show that Σ̃n(B)

has the moving average representation

(4) Σ̃n(B)t =

∫ t

−∞
ηn(t− r) dβr

where β is a Brownian motion indexed by R, ηn(t) = 1t>0U ◦ ρn(t) and

ρn(t) = 1−
∫ t

1

kn(r, 1) dr.
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The Fourier transform of ηn is given by

(5) η̂n(ξ) =
2

1− 2iξ

n∏
j=1

ξ − i(1
2

+ λj)

ξ + i(1
2

+ λj)
.

Thanks to the characterization given in the pioneering Karahunen [24], a glance

at eq. (17) allows to detect an inner factor which implies, as expected, that the

representation (16) is noncanonical with respect to β.

A natural question is to know whether there exists Müntz transforms of infinite

orders. A partial answer is given by Hibin-Muraoka [13]. They established the

existence of infinite order kernels and showed that for a given infinite sequence Λ,

the condition sup λj < ∞ is a necessary condition for the existence of kernels with

infinite order. Furthermore, they proved that if 0 < λ1 < λ2 < ... then there exists no

corresponding Müntz transform of infinite order. We establish in Theorem 2.2 that

the condition
∑∞

j=1(2λj +1) < ∞ is necessary and sufficient for the existence. Next,

we need to introduce iteration notations Σ(0) = Id, Σ(1) = Σ and Σ(m) = Σ(m−1) ◦Σ,

for m ≥ 2, where ◦ stands for the composition rule. Similarly we denote by k(m)

the kernel corresponding to Σ(m). In Theorem 2.4 we shall shaw that the orthogonal

decomposition

(6) FB
t =

∞⊗
m=0

σ

(∫ t

0

uλj dΣ(m)(B)u, 1 ≤ j ≤ m

)
holds for any t ≥ 0. As a consequence, we conclude that Müntz transforms are

strongly mixing.

2. Müntz Gaussian Hilbert spaces and transforms

Let Λ = {λ1, λ2, · · · } be a sequence of reals such that λi 6= λj for i 6= j. Consider

the set of functions {xλ1 , xλ2 , · · · } defined on [0, 1]. A Müntz polynomial is an

element of span{xλ1 , · · · , xλn} for some n ∈ N. The latter span the linear spaces

Mn(Λ) = span{xλ1 , · · · , xλn ; x ∈ [0, 1]}

and

M(Λ) =
∞⋃

n=1

Mn(Λ) = span{xλ1 , xλ2 , · · · ; x ∈ [0, 1]}

usually called Müntz spaces. For convenience, we assume that −1/2 < λi, i =

1, 2, ..., so that the above polynomials lie in L2([0, 1]). Recall that M(Λ) is dense in
3



L2([0, 1]) if and only if

(7)
∞∑
i=1

(2λi + 1)

(2λi + 1)2 + 1
= ∞

This result is known as Müntz Theorem, see Borwein-Erdélyi [6]. Now, the procedure

of Gram-Schmidt allows to construct an orthogonal basis, denoted by {L(Λ)
k (x); 1 ≤

k ≤ n}, for the Hilbert space Mn(Λ). That is specified by

(8) L(Λ)
n (s) =

n∑
k=1

ck,ns
λk , ck,n =

∏n−1
j=1 (λk + λj + 1)∏n
j=1,j 6=k(λk − λj)

.

These generalized polynomials are usually called Müntz-Legendre polynomials. For

related topics we refer to Borwein-Erdelyi [6] and Borowein-Erdelyi-Zhang [7]. Next,

to the linear spaces Mn(Λ) and M(Λ) we associate, respectively, the Müntz Gaussian

spaces

MG
n (Λ) =

{∫ 1

0

p(s) dBs, p ∈ Mn(Λ)

}
and MG

∞(Λ) =

{∫ 1

0

p(s)dBs, p ∈ M(Λ)

}
.

Introduce the first Wiener chaos of B on [0, 1] specified by

Γ =

{∫ 1

0

f(u) dBu : f ∈ L2([0, 1])

}
.

The orthogonal spaces of MG
n (Λ) and MG

∞(Λ) in Γ are respectively given by

MG,⊥
n (Λ) =

{∫ 1

0

f(u) dBu : f ∈ L2([0, 1]),

∫ 1

0

f(s)p(s) ds = 0, p ∈ Mn(Λ)

}
and

MG,⊥
∞ (Λ) =

{∫ 1

0

f(u) dBu : f ∈ L2([0, 1]),

∫ 1

0

f(s)p(s) ds = 0, p ∈ M(Λ)

}
.

By Müntz Theorem if the condition (7) holds then MG(Λ) is total in Γ which implies

that MG,⊥(Λ) = {0}. Otherwise, MG,⊥(Λ) is a nontrivial set. Now, it is natural to

give the following definition.

Definition 2.1. A Müntz transform is a Goursat-Volterra transform having a

Müntz-Gaussian space as a reproducing space. Its order is defined to be the di-

mension of the reproducing space. We call the associated Goursat-Volterra kernel a

Müntz kernel.

We are now ready to state the following result.
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Theorem 2.1. Let λ1, λ2, · · · be a sequence of reals such that λi 6= λj for i 6= j and

λi > −1
2

for i = 1, 2, · · · . For a fixed n < ∞, the kernel kn(t, s) = t−1kn(1, s/t)

where

(9) kn(1, s) =
n∑

j=1

aj,nsλj , aj,n =

∏n
i=1(λi + λj + 1)∏n
i=1,i6=j(λi − λj)

, j = 1, ..., n,

is a Müntz kernel of order n. Its Gaussian self-reproducing space is MG
n (Λ).

Proof. We set kn ≡ k and assert that kn(t, s) = t−1
∑n

j=1 aj,n(s/t)λj for some se-

quence of reals a1,n, a2,n, ..., an,n. The self-reproducing condition implies the linear

system

(10)
n∑

i=1

ai,n

λi + λj + 1
= 1, j = 1, · · · , n.

To solve the latter let us consider the n-degree polynomial

(11) p(x) =
n∏

j=1

(x + λj + 1)−
n∑

i=1

ai,n

n∏
j=1,j 6=i

(x + λj + 1)

which has at most n roots. We observe the equivalence

p(x) = 0 ⇐⇒
n∑

i=1

ai,n

x + λi + 1
= 1

which readily implies p(x) =
∏n

j=1(x − λj). Next, choose m ∈ {1, · · · , n} and

substitute p(x) in eq. (11). Dividing then both sides by
∏

j 6=m(x + λj + 1) and

rearranging terms we get

x + λm + 1−
n∑

i=1

ai,n
x + λm + 1

x + λi + 1
= (x− λm)

n∏
j=1,j 6=m

x− λj

x + λj + 1
.

By letting x go to −(λm + 1) we obtain eq. (9). It remains to determine the cor-

responding reproducing Gaussian Hilbert space associated to the transform Σ with

the kernel kn. But that is equivalent to solving f(t) =
∫ t

0
kn(t, u)f(u) du, t ≥ 0, that

is easily seen to be an ordinary linear differential equation of degree n. Because the

functions tλj , j = 1, · · · , n, are n linearly independent solutions, we conclude that

Γ(kn) coincides with MG
n (Λ). This completes the proof. �

Going back to the Gramian matrix (mt, t ≥ 0), observe that, in this setting, it

has the entries (mt)ij = (λi + λj + 1)−1tλi+λj+1, for i, j = 1, · · · , n. Thus, M1 is a

Cauchy matrix and when λi = ci, for some constant c 6= 0, and n = ∞, M1 is the
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well-known Hilbert matrix. Note that because ||fi|| = +∞, i = 1, · · · , n, we have

α∞ ≡ 0. The remaining ingredients φ and α· are given in the following result.

Corollary 2.1. We have φi(t) = ai,nt
−λi−1, i = 1, 2, · · · , n. Furthermore, the

entries of αt are given by (αt)i,j = ai,naj,n(λi + λj + 1)−1t−λi−λj−1.

Proof. This follows from the expression of the kernel given in Theorem 2.1. �

Remark 2.1. Another way to solve (10) is to use the obvious decomposition
n∏

j=1

x + λj + 1

x− λj

= 1 +
n∑

j=1

aj,n

x− λj

, x 6= λj, j = 1, 2, · · · , n.

Replacing x by −x + 1, the latter can be rewritten as
n∏

j=1

x− λj

x + λj + 1
= 1−

n∑
j=1

aj,n

x + λj + 1
, x 6= −λj − 1, j = 1, 2, · · · , n.

These are to distinguish from the decomposition
n∏

j=1

1

λj − x
=

n∑
j=1

bj,n

λj − x
, bj,n =

n∏
i=1,i6=j

1

λi − λj

, x 6= λj, j = 1, 2, · · · , n,

usually used to invert the moment generating function of the sum of n independent

exponentially distributed random variables with different means λ1, λ2, · · · , λn.

Remark 2.2. kn(.) is a generalized Müntz polynomilal. Its value at 0 is finite only

when λk ≥ 0 for k = 1, · · · , n. In that case, if there exists k0 such that λk0 = 0 then

kn(0) = ak0,n if not then kn(0) = 0.

The next result is devoted to some properties of the studied kernels. First, we shall

show that Müntz kernels can be expressed in terms of Müntz-Legendre polynomials

and then exploit these facts. We write kn(.) for kn(1, .).

Theorem 2.2. Hold the following assertions.

1) For any fixed positive integer n, we have

kn(1, x) = x−λn
∂

∂x

(
xλn+1LΛ

n(x)
)

or LΛ
n(x) = x−λn−1

∫ x

0

sλnkn(1, s) ds,

for x ∈ R . Note that unlike Müntz-Legendre polynomials, the kernel kn does

not depend of the order of λ1, λ2, · · · , λn.

2) The sequence k. satisfies the differential-difference equations

(12) x
(
k′n(x)− k′n−1(x)

)
= (λn + 1)kn−1(x) + λnkn(x).

6



Proof. 1) For a fixed n ≥ 1 observe that (λj +λn +1)cj,n = aj,n for any j ≤ n. gives

The first assertion follows by integration. 2) We know that

xλn+λn−1+1
(
x−λnLn(x)

)′
=

(
xλn−1+1Ln−1(x)

)′
= xλn−1kn−1(x).

Now, we have(
x−λnLn(x)

)′
= x−λn−1Kn(x)− (2λn + 1)x−λn−1Ln(x)

= x−λn−1kn(x)− (2λn + 1)x−2λn−2

∫ x

0

sλnkn(s) ds.

= x−λn−1kn−1(x).

We extract from the last equality

xλn+1kn(x)− (2λn + 1)

∫ x

0

xλnkn(s) ds = xλn+1kn−1.

Differentiating and simplifying yields

−λnkn(x) + xk′n(x) = (λn + 1)kn−1 + xk′n−1.

�

The latter being well studied a number of their properties can be translated to

new properties for Müntz kernels. Next, we continue discussing a question tackled

by Hibino-Muraoka [13] consisting on determining the cases when kn converges as

n →∞ to a Müntz kernel.

Theorem 2.3. The sequence kn converges, as n tend to +∞, to a Müntz kernel if

and only if
∑∞

j=1(2λj + 1) < ∞.

Proof. Suppose that k is a self-reproducing kernel of the form k(t, s) = t−1Σ∞
1 aj(s/t)

λj

for some sequence of reals a. Then it is necessary for a to satisfy the system

(13)
∞∑
i=1

ai

λi + λj + 1
= 1, for all j with aj 6= 0.

First, assume that Λ is such that (tλn)n≥1 is total in L2([0, 1]). Then∫ t

0

k(t, u)uλi du =

∫ t

0

1

t

∞∑
j=1

aj (u/t)λj uλi du = tλi

which implies that
∫ t

0
uλi dBu ∈ Γ

(k)
t for all λi ∈ Λ and t ∈ [0, 1]. Thus, σ

(
Γ(k)

.

)
= FB

.

on [0, 1] because of the totality property. Hence, Σ(B) = 0 which is an obvious
7



contradiction. Next, consider the case where (tλn)n≥1 is not total in L2([0, 1]) which

is equivalent to

(14)
∞∑
i=1

(2λi + 1)

(2λi + 1)2 + 1
< ∞.

For the above series to converge it is necessary to have either λn →∞ or 2λn+1 → 0

as n → ∞. First, assume that λn → ∞ and the system (13) has a solution a with

aj 6= 0 for infinitely many j’s. Splitting ai = a+
i − a−i where a+

i := max{ai, 0} and

a−i := max{−ai, 0} we can rewrite eq. (13) as

(15)
∞∑
i=1

a+
i

λi + λj + 1
= 1 +

∞∑
i=1

a−i
λi + λj + 1

≥ 1, j s.t. aj 6= 0.

Making use of eq. (14), given that a is bounded, we get

∞∑
i=1

a+
i

λi + λj∗ + 1
= Cj∗ < ∞, for some fixed j∗.

Hence, for any given ε > 0, there exists an integer m∗ large enough such that∑∞
i=m∗+1 a+

i (λi + λj∗ + 1)−1 < ε which implies that
∑m∗

i=1 a+
i (λi + λj∗ + 1)−1 < Cj∗ .

Because limn→∞ λn = ∞, there exists an integer n∗ (larger than j∗) such that

m∗∑
i=1

a+
i

λi + λn∗ + 1
<

λm∗ + λj∗ + 1

λm∗ + λn∗ + 1

m∗∑
i=1

a+
i

λi + λj∗ + 1
< 1− ε.

Hence for j = n∗, the left-hand side of (15) gives

∞∑
i=1

a+
i

λi + λn∗ + 1
≤

m∗∑
i=1

a+
i

λi + λn∗ + 1
+

∞∑
i=m∗+1

a+
i

λi + λj∗ + 1

< (1− ε) + ε = 1

which contradicts the inequality of eq. (15). It remains to consider the case where

eq. (14) holds with 2λn + 1 → 0. Note that the combination of the latter conditions

is equivalent to saying that
∑∞

j=1(2λj + 1) < ∞. We need to recall and use the link

to stationary processes. The kernel kn(., .) is homogeneous of degree −1 in the sense
8



that kn(αt, αs) = α−1kn(t, s) for α > 0. Hence

Σn(B)t = B −
∫ t

0

∫ u

0

kn(u, v) dBv du

=

∫ t

0

(
1−

∫ t

v

kn(u, v)du

)
dBv

=

∫ t

0

(
1−

∫ t/v

1

kn(vr, v)v dr

)
dBv

=

∫ t

0

ρn(t/v) dBv, t ≥ 0,

where

ρn(x) = 1−
∫ x

1

kn(r, 1) dr.

Thus, with ηn(t) = 1t>0U ◦ ρn(t), we have the moving average representation

(16) Σ̃n(B)t =

∫ t

−∞
ηn(t− r) dβr

where β is a Brownian motion indexed by R. The Fourier transform of ηn is given

by

(17) η̂n(ξ) =
2

1− 2iξ

n∏
j=1

ξ − i(1
2

+ λj)

ξ + i(1
2

+ λj)

and the above condition on Λ insures the convergence of η̂n(ξ) to η̂∞(ξ) say. It

follows that kn also converges as n →∞ to a Müntz kernel.

�

We pursue our discussion by studying the ergodic properties of the above trans-

forms for which we need some preparatory lemma.

Lemma 2.1. We have∫ 1

0

LΛ
i (u) dΣ(n)(B)u =

i∑
j=1

n∑
k=0

cj,ia
(n)
i,k

∫ 1

0

uλj(log u)k dBu, n ≥ 1,

where (a
(n)
j,k ) is some matrix of reals, holds true. Furthermore, the collection {xλi(log x)k; 1 ≤

i ≤ n, k = 0, 1, · · · } is total in L2([0, 1]).

Proof. By definition we have the system

dΣ(m)(B)t = dBt −
∫ t

0

k(m)(t, u) dBu dt, m = 1, 2, · · · .

9



Now, by using mathematical induction the iterated sequence of kernels k(.) satisfies

(18) k(p)(t, s) = k(q)(t, s) + k(p−q)(t, s)−
∫ t

s

k(q)(t, u)k(p−q)(u, s) du

for 1 ≤ q < p. By using again induction and taking into account of the first step

k(1) ≡ kn, we obtain

k(m)(t, s) =
n∑

i=1

t−λi−1sλi

(
m−1∑
p=0

p∑
k=0

a
(m)
i,k,p (log t)k (log s)p−k

)

for some real-valued coefficients (a
(m)
i,k,p). Substituting this result into∫ 1

0

LΛ
i (u) dΣ(m)(B)u =

i∑
j=1

cj,i

∫ 1

0

uλj dΣ(m)(B)u

we obtain the first part of the Lemma. Now, let g be a square-integrable function on

[0, 1] satisfying the system
∫ 1

0
g(u)uλi(log u)k du = 0, for 1 ≤ i ≤ n and k ≥ 0. An

obvious change of variables yields that, for any positive integer k, we should have

(−1)k

∫ ∞

0

(
g(e−v)e−vλi

)
vke−v dv = 0.

Because {vk; k = 0, 1, · · · } is total with respect to the measure e−vdv we deduce

that g must be identical to 0. �

Finally, we are ready to state the following.

Theorem 2.4. Müntz transforms of finite order are strongly mixing and a fortiori

ergodic. Moreover, the orthogonal decomposition (6) holds true.

Proof. Let Σ be a Müntz transform of order n for some natural number n. Con-

sider the associated sequence of Müntz polynomials f =
{
tλi ; 1 ≤ i ≤ n

}
for some

sequence Λ = (λ1, · · · , λn). For a fixed m > 1 we can write

FB
t = FΣ(m+1)(B)

t ⊗ σ

(∫ t

0

f(u) dBu

)
⊗ · · · ⊗ σ

(∫ t

0

f(u) dΣ(m)(B)u

)
.

Applying Gram-Schmidt procedure yields

FB
t = FΣ(m+1)(B)

t ⊗ σ

(∫ t

0

LΛ
i (u) dBu; 1 ≤ i ≤ m

)
⊗ · · · ⊗ σ

(∫ t

0

LΛ
i (u) dΣ(n)(B)u; 1 ≤ i ≤ m

)
.
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Clearly the two families
{
xλi(log x)k : 1 ≤ i ≤ n, k ≥ 0

}
and{

i∑
j=1

K∑
p=0

cj,ia
(m)
i,p xλj(log x)p; 1 ≤ i ≤ n,m ≥ 0

}
span the same space. From Lemma 2.1 we know that the latter is total on L2([0, 1]).

By letting m tend to ∞ and applying Lemma 2.1 we obtain both eq. (6) and the

strongly mixing property of Σ. �

Remark 2.3. The simplest known example of Müntz kernels is k1(t, s) = t−1. For

this we have Σ(B.) = B.−
∫ .

0
Bu

u
du. Furthermore, Σ(n)(B) =

∫ .

0
Ln(log t

s
) dBs where

Ln is the sequence of Laguerre polynomials. This being a basis of the Hilbert space

L2 (R+, e−xdx) we get the orthogonal decomposition

FB
t =

∞⊗
n=0

σ
(
Σ(n)(B)t

)
, t ≥ 0,

see Jeulin-Yor [20].

Remark 2.4. As a by-product of the discussion for the order to be infinite we men-

tion the following result. Let φ be a C∞([0, 1]) function satisfying |φ(k)| ≤ constant,

for all k. Then φ is a solution of the integral equation φ(u) =
∫ 1

0
φ(uv)φ(v)dv, de-

fined on [0, 1], if and only if φ(.) = Kn(1, .) where λj = j for j ≥ 0 and n is some

finite positive integer.
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