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摘要 
 

本年度的研究計劃之研究成果可分為兩大部份： 
 
一、在具有隨機群集及射線特性的高度頻率選擇性衰減通道下以脈波為基礎之超寬頻系統

效能分析 

  

在這一部份我們推導出在 IEEE 802.15.3a 通道下，二元信號的位元錯誤率。雖然 
IEEE 802.15.3a 通道已經被廣泛地採用，但是在這樣的通道下，超寬頻系統的效能評估大

多是以模擬代替分析的方式來達成。在這類的超寬頻通道中所具有的獨特的群集 (cluster) 
特性及高密度的多重路徑效應使得效能的分析變得有趣但也富有挑戰性。以數學的角度來

看，在這樣的通道下的信號可視為一個聯合對數常態 (lognormal) 和帕松的隨機信號。其

中信號振幅的衰減是以對數常態隨機變數來描述，而群集效應是以帕松隨機變數來描述。

我們發展了一套計算位元錯誤率的方法，把所有 IEEE 802.15.3a 通道的參數都考慮進

去，包括了群集/射線抵達率 (ray arrival rate)，群集/射線衰退因子 (decay factor)，每個群

集所包含的射線數目，對數常態衰減和對數常態遮蔽效應。此外，耙式接收器 (RAKE 
receiver) 的耙齒數目也列入考慮。 
 
二、在 IEEE 802.15.4a 通道下之耙式接受器之位元錯誤率分析 

 
 此一部分提供了在超寬頻通道下，應用耙式接收器接收反極 (antipodal) 和正交二元

信號之位元錯誤率分析。我們提供了一個位元錯誤率的分析數學式以及計算的公式。我們

考慮的通道模型是 IEEE 802.15.4a 通道。我們研究了所有參數所造成的影響，包括了群

集抵達率，群集衰退常數 (cluster decay constant)，射線間抵達率 (inter-ray arrival rate)，射

線衰退常數 (ray decay constant)，功率延遲模型 (power delay profile, PDP) 的參數，以及

中上 (Nakagami) 衰減信號的分佈。對於 IEEE 802.15.4a 超寬頻通道而言，群集效應是以

帕松隨機程序來描述，而射線間抵達時間是以超對數隨機變數來描述。我們提出了一個系

統化的分析方法來評估超寬頻信號在這樣的一個跟連續的中上以及離散的帕松隨機變數有

關的機率模型之下，它的數學統計特性。所以，我們所發展出來的分析模型可以有效率地

計算出一個超寬頻信號在 IEEE 802.15.4a 通道下的位元錯誤率，來取代耗時的電腦程式

模擬。 
 
關鍵字：超寬頻 (Ultra-Wideband, UWB)，IEEE 802.15.3a 通道模型，IEEE 802.15.4a 通
道模型，位元錯誤率 (bit error rate, BER)。 

 

研究成果 
 

第一部份的研究成果的一部份已發表至 IEEE Vehicular Technology Conference 2006 

Spring [1]，完整的版本已投稿至 IEEE Transactions on Vehicular Technology [2]。第二部份

的研究成果亦已被 IEEE Vehicular Technology Conference 2006 Fall [3] 所接受。詳見附

件。 
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Performance Analysis of Pulse Based
Ultra-Wideband Systems in the Highly Frequency
Selective Fading Channel with Cluster Property

Wei-Cheng Liu and Li-Chun Wang
Department of Communication Engineering

National Chiao Tung University, Hsinchu, Taiwan
lichun@cc.nctu.edu.tw, Tel: +886-3-5712121 ext 54511

Abstract— This paper presents an analytical expression for the
bit error rate (BER) of the antipodal and orthogonal binary sig-
nals in the ultra-wideband (UWB) channel, of which the unique
characteristics include the cluster property and highly dense
multipath effect. Specifically, we consider the IEEE 802.15.3a
UWB channel and take into account of the impact of all the
key parameters, consisting of the cluster arrival rate, cluster
decay factor, the number of rays per cluster, and the distribution
of a non-Rayleigh fading signal. For the IEEE 802.15.3a UWB
channel, the effects of clustering are characterized by a Poisson
discrete random variable, and the magnitude of the signal is
modelled by lognormal random variable. In this paper, we
develop an analytical model to compute the signal with such
joint continuous lognormal and discrete Poisson random variable.
Hence, the developed analytical model can be useful in evaluating
the performance of an UWB signal in the IEEE 802.15.3a channel
without time consuming simulations.

Index Terms— Ultra-wideband (UWB), IEEE 802.15.3a chan-
nel model, bit error rate (BER).

I. INTRODUCTION

W IRELESS systems continue pursuing even higher data
rates and better quality. The ultra-wideband (UWB) is

a promising technique to achieve this objective. Performance
analysis of the UWB communication system in a realistic
UWB channel is important but not an easy task.

In this work, we consider the IEEE 802.15.3a UWB channel
model [1]. Two important properties distinguish the UWB
channel from the conventional narrow band channel. First, the
bandwidth of the UWB signals is much wider than the co-
herence bandwidth of the channel. Thus, in the frequency do-
main the extremely highly frequency selective fading occurs.
Second, in the time domain the extremely large bandwidth
leads to high resolution arrival time for the UWB signal. Thus,
the reflected UWB waves by objects usually yield a number
of clusters of rays, which may contain some non-Rayleigh
multipath components.

A. Motivation

The challenges of analyzing UWB signals lie in three folds.
• First, unlike the narrow band channel model that usually

has only one cluster with a fixed-number of arrival rays,

1This work is supported by the National Science Council, Taiwan, under
the contract NSC94-2213-E-009-030.

the transmitted signal over the UWB channel may arrive
in many clusters, of which the number of arrival rays
is also random. Mathematically, the arrival process of
the UWB signal is modelled by a doubly stochastic
Poisson process. The collected signal energy at the RAKE
receiver in a channel with unknown number of rays is
difficult to be analyzed.

• The amplitude of the impulse response in the UWB chan-
nel is a joint two-dimension random variable, consisting
of the lognormally faded amplitude with a mean related to
two Erlang random variables. This is because the average
of the channel impulse is also a random variable due to
varying interarrival time of rays and clusters.

• Due to insufficient arrival rays in a very narrow time
bin, the central limit theorem is no longer true. Thus,
the multipath fading signal is not a traditional Rayleigh
random variable. In the IEEE 802.15.3a UWB channel,
the multipath fading signal is characterized by a lognor-
mal random variable according to measurement results.
Furthermore, shadowing is also considered in the IEEE
802.15.3a channel model. Thus, for a given number of
rays and the mean of the signal amplitude, a UWB signal
is a composite slowly varying lognormally shadowed/fast-
varying lognormally faded random variable. The analysis
of such a signal is rarely seen in current literature.

The IEEE 802.15.3a UWB channel model defines four
sets of parameters for different environments. Based on this
channel model, a UWB signal can be characterized by a
joint continuous lognormal and discrete doubly stochastic
Poisson random variable, of which key parameters include
the cluster/ray arrival rates, the cluster/ray decay factors, the
standard deviations of the lognormal fading.

To our knowledge, a complete analytical formula for the
bit error rate (BER) performance with RAKE receiver in
the IEEE 802.15.3a UWB channel considering all the three
aforementioned challenges and key parameters is not seen in
the literature.

B. Related Work

The published papers which are related to the performance
analysis of the UWB system under different channels are listed
as follows. In [2], the authors derived the theoretical BER



of binary and M-ary UWB systems with Walsh codes under
the AWGN channel with multiple access interference. In [3],
the authors studied the performances of UWB systems in the
AWGN channel in the presence of the interference from uni-
versal mobile telecommunications system (UMTS)/wideband
code division multiple access (WCDMA) band is present. The
BER performances of the UWB system were derived under
the flat and dispersive Rayleigh fading channels with timing
jitter in [4]. In [5], the authors analyzed the performance
of a transmit-reference (TR) UWB system with a simple
autocorrelation receiver under a slow fading channel of which
attenuations are characterized by an appropriate moment gen-
erating function.

In [6], the authors derived a BER formula for the IEEE
802.15.3a UWB channel model but only as a function of finite
window size rather than a function of the fingers number of
the RAKE receiver. In [7], they further obtained statistics of
the output SNR for the RAKE receiver in the IEEE 802.15.3a
UWB channel, but without providing explicit BER formula
and ignored the shadowing effect.

C. Objective and Outline of This Paper

The objective of this paper is to derive the analytical BER
expression for the UWB system using the coherent RAKE
receiver in a complete IEEE 802.15.3a UWB channel. The
difference between [6] and [7] and our work are two folds.
First, we consider the lognormal shadowing fading in the IEEE
802.15.3a channel model. Second, we derive the BER formula
as a function of the fingers number of the RAKE receiver in
the UWB channel. From the numerical results, we can see
that BER in the IEEE 802.15.3a channel can be analyzed and
approach the simulation results.

The rest of this paper is organized as follows. Section
II describes the IEEE 802.15.3a channel model. In Section
III, we derive the evaluation-form expression for BER of the
binary signals subject to the impact of the considered UWB
channel. Section IV shows our numerical results. Last, we give
our conclusions in Section V.

II. CHANNEL MODEL

We consider the UWB channel model in [1]. The impulse
response of the channel model is

hi(t) = Xi

Nc−1∑

l=0

Nr−1∑

k=0

αi
k,lδ(t− T i

l − τ i
k,l), (1)

where i refers to the i-th realization, {Xi} represents the
lognormal shadowing [i.e., 20 log(Xi) ∝ Normal(0, σ2

x)],
{αi

k,l} are the multipath gain coefficients, {T i
l } is the delay

of the l-th cluster, {τ i
k,l} is the delay of the k-th multipath

component relative to the l-th cluster arrival time (T i
l ), Nc is

the number of clusters, and Nr is the number of rays for each
cluster. By definition, we have τ0,l = 0.

The distribution of cluster arrival time and the ray arrival
time are given by

p(Tl|Tl−1) = Λ exp[−Λ(Tl − Tl−1)] (2)

and
p(τk,l|τ(k−1),l) = λ exp[−λ(τk,l − τ(k−1),l)] (3)

where Λ and λ are the cluster and ray arrival rate, respectively.
Note that T0 = 0 in the line-of-sight (LOS) channel, while in
the non-line-of-sight (NLOS) channel, T0 is an exponential
random variable. That is,

p(T0) = Λ exp(−ΛT0). (4)

The channel coefficients (αk,l) are defined as follows:

αk,l = pk,lξlβk,l, (5)

where pk,l is equiprobable ±1 to account for signal inversion
due to reflections, ξl reflects the fading associated with the
l-th cluster, and βk,l corresponds to the fading associated with
the k-th ray of the l-th cluster. The total energy contained in
the terms {αk,l} is normalized to unity for each realization.
The distribution of ξlβk,l is

20 log(ξlβk,l) ∝ Normal(µk,l, σ
2
1 + σ2

2) (6)

or
|ξlβk,l| = 10(µk,l+n1+n2)/20, (7)

where n1 ∝ Normal(0, σ2
1) and n2 ∝ Normal(0, σ2

2) are
independent and correspond to the fading on each cluster and
ray, respectively. Note that

µk,l =
10 ln(Ω0)− 10Tl/Γ− 10τk,l/γ

ln(10)
− (σ2

1 + σ2
2) ln(10)
20

(8)
and

E[|ξlβk,l|2] = Ω0e
−Tl/Γe−τk,l/γ , (9)

where Ω0 is the mean energy of the first path of the first cluster
and Tl is the excess delay of bin l. Γ is the cluster decay factor
and γ is the ray decay factor.

In [1], through measurements, some initial parameters are
given for four kinds of channel models, namely CM1, CM2,
CM3, and CM4, which are based on LOS (0-4 m), NLOS (0-
4 m), NLOS (4-10 m), and 25 nsec root-mean-square (RMS)
delay spread channel measurements, respectively.

III. BER ANALYSIS

A. Receiver Structure

We use a coherent RAKE receiver with L fingers. The
received SNR γb is

γb =
Eb

N0

L∑

k=1

a2
k =

L∑

k=1

γk, (10)

where Eb/N0 is the bit SNR, ak is the channel amplitude that
appears at the k-th finger of the RAKE receiver. From [8] we
know that the conditional error probability for binary signals
for the coherent RAKE receiver is

P2(γb) = Q
(√

γb(1− ρr)
)

(11)

where ρr = −1 for antipodal signals and ρr = 0 for
orthogonal signals. Next we will derive the characteristic
function of the received energy E ,

∑L
k=1 a2

k in the UWB
channel.



B. Characteristic Function of the Received Energy (E)

In the following theorem, we give the formula of the
characteristic function of E . We exploit the result in [9] to
further take the number of fingers of the RAKE receiver (L),
the chip duration between two fingers (Tc), and shadowing
into account. Importantly, instead of deriving the path gain of
the UWB channel, we obtain directly the square of a path gain
of a UWB channel, which can facilitate the BER calculation
of the RAKE receiver in the UWB channel.

Corollary 1: Let LT,t(ν) be the characteristic function of
the single path gain in the IEEE 802.15.3a UWB channel with
the cluster arrival time at T and the ray arrival time at t =
T + τ . Also, denote e−λψν(T ) and e−ΛJ(ν) the characteristic
function of a shot-noise random variable related to the ray
arrival process with parameter λ and that related to the cluster
arrival process with parameter Λ, respectively. Then, it can be
proved that the characteristic function of the received energy
(E) in the IEEE 802.15.3a UWB channel can be computed by

Ψ(ν) = L0,0(ν)e−λψν(0)−ΛJ(ν). (12)
Proof: See [9].

Theorem 1: Consider a RAKE receiver with L fingers in
the IEEE 802.15.3a UWB channel. The characteristic function
LT,t(ν) can be computed by

LT,t(ν) =
∫ ∞

0

ejνx
10 exp

[
− 1

8σ2
E

(20 log10 x− 2µT,t)
2
]

√
2πσEx ln 10

dx

≈
N (H)∑

l=1

w(H)
l

1√
π

exp
(

jν10
√

2σEx
(H)
l

+µT,t
10

)
(13)

where µT,t = 10
ln 10

[
lnΩ0 − T

Γ − t−T
γ − (

ln 10
10

)2 σ2
E
2

]
and

σE =
√

σ2
1 + σ2

2 + σ2
x. The parameters Ω0, Γ, and γ are

defined in (9). Note that σE consists of σ1, σ2, and σx, which
represent the standard deviation of cluster fading, ray fading,
and lognormal shadowing fading terms, respectively. {w(H)

l }
and {x(H)

l } are the weights and abscissas of the Gauss-Hermite
formula, respectively. N (H) is the number of points of the
Gauss-Hermite integration.

Proof: See Appendix I.
Theorem 2: For the RAKE receiver with L fingers, the

function ψν(T ) in (12) can be computed by

ψν(T )

=

{∫ (L−1)Tc

T
[1− LT,t(ν)]dt, T ≤ (L− 1)Tc,

0, T > (L− 1)Tc,

≈





(L−1)Tc−T
2∑N (L)

p=1 w(L)
p [1− LT,t(ν)]

∣∣
t=

(L−1)Tc−T
2 x(L)

p +
(L−1)Tc+T

2
, T ≤ (L− 1)Tc,

0, T > (L− 1)Tc,

(14)

where Tc is the chip duration between two fingers, {w(L)
p } and

{x(L)
p } are the weights and abscissas of the Gauss-Legendre

formula, respectively. N (L) is the number of points of the
Gauss-Legendre integration. Similarly, we can prove that J(ν)

is equal to

J(ν) =
∫ (L−1)Tc

0

[1− LT,T (ν)e−λψν(T )]dT

≈ (L− 1)Tc

2

N (L)∑

i=1

w(L)
i

[
1− LT,T (ν)e−λψν(T )

]∣∣∣

T=
(L−1)Tc

2 x(L)
i +

(L−1)Tc
2

. (15)
Proof: See Appendix II.

With characteristic function of E , i.e. Ψ(ν) in (12), the
PDF of E can be computed by the Gauss-Hermite formula
as follows:

fE(x) =
1
2π

∫ ∞

−∞
Ψ(ν)e−jxνdν

≈ 1
2π

N (H)∑

k=1

w(H)
k Ψ(ν)e−jxνeν2

∣∣∣
ν=x(H)

k

. (16)

Combining (13), (14), (15), and (16), the BER of the RAKE
receiver in the IEEE 802.15.3a UWB channel can be computed
as

P2 = EE

[
Q

(√
(1− ρr)

Eb

N0
E
)]

=
∫ ∞

0

Q

(√
(1− ρr)

Eb

N0
x

)
fE(x)dx

=
1

2π3/2

N (H)∑

k=1

N (H)∑

l=1

w(H)
k w(H)

l exp
(

jν10
√

2σEx
(H)
l

+µ0,0
10

)

exp


−1

2
λ(L− 1)Tc

N (L)∑
p=1

w(L)
p [1− L0,t(ν)]|

t= 1
2 (L−1)Tc(x

(L)
p +1)

)
exp


−1

2
Λ(L− 1)Tc

N (L)∑

i=1

w(L)
i

[
1− LT,T (ν)e−λψν(T )

]∣∣∣
T= 1

2 (L−1)Tc(x
(L)
i +1)

)

∫ ∞

0

Q

(√
(1− ρr)

Eb

N0
x

)

exp(−jxν)dx exp(ν2)
∣∣
ν=x(H)

k

. (17)

Compared to [9], we further consider the impact of parameters
L, Tc, σ2

x, and the characteristic function of the square of
the path gain into our formula. Also, an explicit computation
formula is provided.

IV. NUMERICAL RESULTS

A. Simulation Method

In order to check the correctness of the BER formula in
the last section, we perform simulation by using MATLAB.
We consider the orthogonal binary signal, i.e. the PPM signal.
When the information bit is 0, the transmitted signal is

s0(t) =

{
1, 0 ≤ t < Tc,

0, otherwise.
(18)



Here we set Tc = 1 nsec. When the information bit is 1,
the signal waveform is s1(t) = s0(t − δTc), where δ is a
positive integer. From the uwb sv model ct function in [1],
we can get the output vectors h and t. The vector t stores the
arrival time of every channel impulse response with increasing
chronological order. The vector h stores the corresponding
amplitude.

We define a template vector p0 with size 1×(L+δ), where
the m-th element of p0 (denote by p0[m]) is equal to

p0[m] =





∑
n:t[n]=0 h[n], m = 1,∑
n:(m−2)Tc<t[n]≤(m−1)Tc

h[n], 2 ≤ m ≤ L,

0, L < m ≤ L + δ.
(19)

The physical meaning of the vector p0 is the received signal
excluding the noise sampled at a rate of 1/Tc given the infor-
mation bit being 0. If the information bit is 1, then the template
vector can be expressed as p1[m] = [01×δ,p0[1], · · · ,p0[L]].

After adding noise n, the sampled received signal for
information bit 0 becomes r = p0 + [n,01×δ] and that for
information bit 1 is r = p1 + [01×δ,n]. Note that the noise
vector n contains L independent identically distributed normal
random variables, each of which has zero mean and variance
of N0/2.

The coherent RAKE receiver is applied to detect the signal
in the IEEE 802.15.3a UWB channel. Let the decision variable
U0 = r·p0 and U1 = r·p1, where the operator “·” is the inner
product of two vectors. If U0 ≥ U1, then the information bit
is 0, otherwise the information bit is 1.

B. Results
Figure 1 compares the BER performance based on (7) in

[6] and (17) in our paper. For the BER curve based on [6],
we reproduce the curve in [6, Fig. 1], where the received
waveform is observed only over a finite window [0, Tmax] and
Tmax = 33 nsec. The symbol η = Ew/(8σ2

n ), where Ew is the
signal energy of and σ2

n is the noise power spectral density. In
the figure, we observe that the BER based on (17) is slightly
higher than that based on (7) of [6]. This is because we take
the lognormal shadowing into account.

Figure 2 shows the BER v.s. Eb/N0 for CM1, CM2, CM3,
and CM4 by simulation and analysis. For the analytical curves,
We consider the orthogonal binary signal, i.e., ρr = 0. The
parameter δ of the PPM is set to be one. The number of the
fingers of the RAKE receiver is 10. The space of the fingers of
the RAKE receiver, Tc, is set to 1 nsec. For each given Eb/N0,
we simulate 100,000 bits to obtain the BER. As seen from the
figure, the analytical results match the simulation results quite
well. However, for CM3 and CM4, there are some differences
between the simulation and the analytical curves, which may
result from the following reasons:

1) The usage of Gauss-Hermite and Gauss-Legendre for-
mulae may cause some error in integrations.

2) We use the MATLAB programs provided in [1] to
generate the IEEE 802.15.3a channel. Theoretically the
Poisson process has infinite arrivals, but the computer
simulation can only generate finite arrivals. The MAT-
LAB program in [1] only produces the clusters with the

arrival time up to 10Γ. Meanwhile, each cluster only
contains the rays with the arrival time up to 10γ. Thus,
the RAKE receiver in the simulation may collect less
energy than that in the ideal case. Thus the simulation
BER values are slightly higher than the theoretical BER
values.

V. CONCLUSIONS

In this work, we have derived the BER analytical formula
for receiving the antipodal and orthogonal binary signals by
using a coherent RAKE receiver over the IEEE 802.15.3a
UWB channel model. Our numerical results show that the
simulation and the analytical values of the BER are very
close. Using our analytical BER formula can save computer
simulation time. Furthermore, the suggested analytical method
can be applied to other multipath channel models.

The possible future works that can be extended from this
work include the following. First, we plan to analyze the same
problem under the IEEE 802.15.4a UWB channel model [10].
Second, we are going to find the ergodic capacity of such a
UWB channel models.

APPENDIX I
PROOF OF THEOREM 1

Let fG|T,t(x) be the PDF of the path gain G , αk,l arriving
at time t that is part of a cluster that started at time T .
According to [9], fG|T,t(x) can be written as

fG|T,t(x) =
1
2
[f|G||T,t(x) + f|G||T,t(−x)], (20)

because the path gain has probability of 1/2 being positive and
probability of 1/2 being negative [Recall the definition of path
gain in (5) and the following context.] Note that f|G||T,t(x) is
lognormally distributed, i.e.,

f|G||T,t(x) =

{
20 exp[− 1

2σ2 (20 log10 x−µT,t)
2]√

2πσx ln 10
, x > 0,

0, otherwise.
(21)

where µT,t is given in (1) and σ =
√

σ2
1 + σ2

2 are the mean
and variance of the random variable 20 log10 |G|, respectively.
Note that (1) is the continuous-time representation of (8),
because we have changed the discrete indices k and l to
continuous arrival time t and T , respectively.

The complete form of the square path gain should be X2G2,
where X is the lognormal shadowing introduced in Section II.
Since 20 log10 X ∝ Normal(0, σ2

x), we have

20 log10 X2 = 2(20 log10 X) ∝ Normal(0, (2σx)2) (22)

and then

20 log10 X2G2

= 2(20 log10 X|G|)
= 2(20 log10 X) + 2(20 log10 |G|)
∝ Normal(0, (2σx)2) + Normal(2µT,t, (2σ)2)
∝ Normal(2µT,t, 4(σ2

1 + σ2
2 + σ2

x)). (23)



Define σE =
√

σ2
1 + σ2

2 + σ2
x. Then the PDF of the square of

the path gain arriving at time t that is part of a cluster that
started at time T can be written as

fT,t(x) =





10 exp

�
− 1

8σ2
E

(20 log10 x−2µT,t)
2
�

√
2πσEx ln 10

, x > 0,

0, otherwise.
(24)

Denote LT,t(ν) as the characteristic function of fT,t(x), i.e.,

LT,t(ν) = ET,t[ejνX2G2
] =

∫ ∞

−∞
ejνxfT,t(x)dx. (25)

Let y = 1
2
√

2σE
(20 log10 x− 2µT,t) and apply it to (13). Then

we can have

LT,t(ν)

=
∫ ∞

−∞
exp

(
jν10

2
√

2σEy+2µT,t
20

)
10e−y2

√
2πσEx ln 10

xσE ln 10
5
√

2
dy

=
∫ ∞

−∞

1√
π

exp
(

jν10
√

2σEy+µT,t
10

)
e−y2

dy

≈
N (H)∑

l=1

w(H)
l

1√
π

exp
(

jν10
√

2σEx
(H)
l

+µT,t
10

)
. (26)

APPENDIX II
PROOF OF THEOREM 2

In [9] the authors have obtained the characteristic function
of the sum of path gains in the time window [a, b] (denoted
by Φ), but the lognormal shadowing is not taken into account.
Similarly, we apply their results to determine the characteristic
function of E . Assume that the RAKE receiver with L fingers
is used to collect the channel energy in the time window
[0, (L− 1)Tc], where Tc is the chip duration between two
fingers.

In [9], the authors defined the following functions:

ψν(T ) =

{∫ b

max(a,T )
[1− LT,t(ν)]dt, T ≤ b,

0, T > b,
(27)

and

J(ν) =
∫ a

0

[1−e−λψν(T )]dT +
∫ b

0

[1−LT,T (ν)e−λψν(T )]dT.

(28)
We set a = 0, b = (L− 1)Tc, and use the Gauss-Legendre
formula [11]. Then we can transform the above equations to
(14) and (15), respectively.
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Abstract— In this paper, an analytical expression for the bit
error rate (BER) of binary signals in the IEEE 802.15.3a ultra-
wideband (UWB) channel is presented. Although the IEEE
802.15.3a channel model is widely adopted, the performance
of UWB system in such a channel are mainly evaluated by
simulations instead of analysis. The unique characteristics of
cluster property and highly dense multipath effect make per-
formance analysis in this kind of UWB channel interesting but
challenging. Mathematically, the signal in such a UWB channel
can be characterized by a joint lognormal and Poisson random
signal, where the lognormal random variable models the fading
amplitude and the Poisson random variable model the clustering
effect. We develop a BER computation method to take into
account of all the key parameters in the IEEE 802.15.3a UWB
channel, consisting of the cluster/ray arrival rate, cluster/ray
decay factor, the number of rays per cluster, lognormal fading
and lognormal shadowing. Furthermore, the effect of finger
numbers of the RAKE receiver is also considered.

Index Terms— Ultra-wideband (UWB), IEEE 802.15.3a chan-
nel model, bit error rate (BER).

I. INTRODUCTION

UULTRA-WIDEBAND (UWB) is a promising technique
for wireless communications due to its high speed

transmission. However, the UWB channel characteristics are
very different from the conventional narrowband channel.
Currently, most UWB systems are evaluated by simulations in
the complicated channel model or by analysis in a simplified
channel model.

Thus a fundamental question arises: Can a UWB system be
possibly analyzed in a more realistic UWB channel model?
The IEEE 802.15.3a UWB channel model [1] is widely
adopted for the product development in the industry, while the
analysis under such a channel is rarely seen in the literature.
This UWB channel has two important properties different from
the conventional narrowband channel. First, the extremely
highly frequency selective fading occurs in the frequency
domain because the UWB signal occurs is much wider than
the channel coherence bandwidth. Second, the UWB signals
reflected by objects usually yield a number of clusters of rays

1This work was supported by the National Science Council, Taiwan, under
the contract NSC94-2213-E-009-030.

and contain some non-Rayleigh multipath components because
the extremely large bandwidth in the time domain leads to the
high-resolution arrival time.

A. Problem Statement

The challenges of analyzing such UWB signals can be
explained in the following three folds.

• Unlike the narrowband channel model with only one
cluster of fixed-number arrival rays, the transmitted signal
over the UWB channel may arrive in many clusters with
a random number of arrival rays. Mathematically, the
arrival process of the UWB signal can be modeled by
a doubly stochastic Poisson process. For a channel with
an unknown number of rays, it is difficult to compute how
much signal energy is collected at the RAKE receiver.

• The UWB channel presents the characteristics of a log-
normally faded amplitude with a mean related to two Er-
lang random variables for varying arrival time of rays and
clusters. Signal analysis for such a joint two-dimension
random variable is not straightforward.

• Because insufficient arrival rays in a very narrow time bin
cannot justify the assumption of the central limit theorem,
the multipath fading signal is not a traditional Rayleigh
random variable in the UWB channel. According to
measurement results, the IEEE 802.15.3a UWB channel
adopts a lognormal multipath fading signal. In addition,
shadowing is also considered in the IEEE 802.15.3a chan-
nel model. Thus, a UWB signal is a composite slowly
varying lognormally shadowed/fast-varying lognormally
faded random variable conditioned on the given number
of rays and the given signal amplitude’s mean. Again,
the analysis of such a signal is rarely seen in the current
literature.

In short, a UWB signal in the IEEE 802.15.3a channel
model can be characterized by a joint lognormal and dou-
bly stochastic Poisson random variable with key parameters
including cluster/ray arrival rates, cluster/ray decay factors,
and the standard deviations of the lognormal fading and
shadowing. To our knowledge, a complete analytical bit error
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rate (BER) computation formula for the RAKE receiver in the
IEEE 802.15.3a UWB channel is not seen in the literature.

B. Related Work
In the following we briefly summarize some published

papers in the literature related to the performance analysis
of the UWB system under different channels. In [2], the
authors derived the theoretical BER of binary and M-ary UWB
systems with Walsh codes under the AWGN channel and
multiple access interference.

On the one hand, in [3]–[5], the UWB system was inves-
tigated in certain simplified UWB channel models. In [3],
the authors studied the performances of UWB systems in the
AWGN channel in the presence of the interference from the
wideband code division multiple access (WCDMA) of the
universal mobile telecommunications system (UMTS). The
BER performances of the UWB system under the flat and
dispersive Rayleigh fading channels with timing jitter were
derived in [4]. In [5], based on an approach of defining
channel amplitude by a moment generating function, the
authors analyze the performance of a transmit-reference (TR)
UWB system with a simple autocorrelation receiver under a
slow fading channel.

On the other hand, the following papers considered more
sophisticated UWB channels [6]–[9]. With respect to the IEEE
802.15.3a channel model, [6] derived a BER formula as a
function of the window size. In [7], they further investi-
gated the statistics of the output SNR at the RAKE receiver.
Reference [8] analyzed how multiple transmit and receive
antennas affect the SNR of the UWB signal under a channel
characterized by 1) a Gamma distributed path power; 2) a
modified Poisson process for modeling the number of the
simultaneously arriving paths; 3) an exponentially decayed
resolvable path power in the time domain. In [9], the analytical
error performance of a multi-antenna with a zero-forcing (ZF)
RAKE receiver system over the frequency-selective UWB
lognormal fading channels was analyzed.

However, to our knowledge, an explicit BER analytical
computation method incorporating the impact of the finger
number of the RAKE receiver as well as shadowing effect in
the IEEE 802.15.3a UWB channel has not been seen in the
literature.

C. Objective and Outline of This Paper
The objective of this paper is to develop an analytical

method to compute the BER for the UWB system with
a coherent RAKE receiver in a complete IEEE 802.15.3a
channel. The difference between [6] and [7] and our work
are two folds. First, we consider the lognormal shadowing
fading as specified in the IEEE 802.15.3a channel model.
Second, we derive an explicit BER formula as a function
of the fingers number of the RAKE receiver. The rest of
this paper is organized as follows. Section II introduces the
IEEE 802.15.3a channel model. In Section III, we derive the
expression for evaluating the BER of the binary signals subject
to the impact of the considered UWB channel. Section IV
shows our numerical results. Last, we give our conclusions in
Section V.

II. CHANNEL MODEL

In this section, we discuss the key attributes of the IEEE
802.15.3a UWB channel [1]. The impulse response of the
considered channel model is

hi(t) = Xi

Nc−1∑

l=0

Nr−1∑

k=0

αi
k,lδ(t− T i

l − τ i
k,l) , (1)

where i refers to the i-th realization, Xi represents the log-
normal shadowing (i.e., 20 log(Xi) ∝ Normal(0, σ2

x)), {αi
k,l}

are the multipath gain coefficients, T i
l is the delay of the l-

th cluster, τ i
k,l is the delay of the k-th multipath component

relative to the l-th cluster arrival time (T i
l ), Nc is the number

of clusters, and Nr is the number of rays for each cluster. By
definition, we have τ0,l = 0.

The distribution of the cluster arrival time and ray arrival
time are given by

p(Tl|Tl−1) =

{
Λ exp[−Λ(Tl − Tl−1)], Tl > Tl−1,

0, otherwise,
(2)

for l > 0, and

p(τk,l|τ(k−1),l)

=

{
λ exp[−λ(τk,l − τ(k−1),l)], τk,l > τ(k−1),l,

0, otherwise,
(3)

for k > 0, where Λ and λ are the cluster and ray arrival
rates, respectively. Note that T0 = 0 in the line-of-sight (LOS)
channel. T0 is an exponential random variable in the non-line-
of-sight (NLOS) channel, i.e.,

p(T0) =

{
Λ exp(−ΛT0), T0 > 0,

0, otherwise.
(4)

The channel coefficients (αk,l) are defined as follows:

αk,l = pk,lξlβk,l , (5)

where pk,l is equiprobable ±1 to account for signal inversion
due to reflections, ξl reflects the fading associated with the
l-th cluster, and βk,l corresponds to the fading associated with
the k-th ray of the l-th cluster. The total energy contained in
the terms {αk,l} is normalized to unity for each realization.
The distribution of ξlβk,l is

20 log(ξlβk,l) ∝ Normal(µk,l, σ
2
1 + σ2

2) (6)

or
|ξlβk,l| = 10(µk,l+n1+n2)/20 , (7)

where the two independent normal random variables n1 and
n2 with variance of σ2

1 and σ2
2 represent the fading on each

cluster and ray in the dB domain, respectively. Note that

µk,l =
10 ln(Ω0)− 10Tl/Γ− 10τk,l/γ

ln(10)
− (σ2

1 + σ2
2) ln(10)
20

(8)
and

E[|ξlβk,l|2] = Ω0e
−Tl/Γe−τk,l/γ , (9)

where Ω0 is the mean energy in the first path of the first cluster
and Tl is the excess delay of bin l, Γ is the cluster decay factor,
and γ is the ray decay factor.
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Through measurements in [1], some parameters in the IEEE
802.15.3a channel are specified for four different environ-
ments, i.e., CM1, CM2, CM3, and CM4 for LOS (0-4 m),
NLOS (0-4 m), NLOS (4-10 m), and extreme NLOS multipath
channel with 25 nsec rms delay spread, respectively.

III. BER ANALYSIS

A. Receiver Structure

For a coherent RAKE receiver with L fingers, the received
SNR γb is

γb =
Eb

N0

L∑

k=1

a2
k =

L∑

k=1

γk , (10)

where Eb/N0 is the bit SNR, ak is the channel amplitude at
the k-th finger of the RAKE receiver. From [10] we know
that the conditional error probability for binary signals for the
coherent RAKE receiver is

P2(γb) = Q
(√

γb(1− ρr)
)

, (11)

where ρr = −1 for antipodal signals and ρr = 0 for
orthogonal signals. Denote E ,

∑L
k=1 a2

k the received energy
in the UWB channel.

B. Characteristic Function of the Received Energy (E)

Here we derive the characteristic function of E . We extend
the results in [11] to further take into account of the finger
numbers of the RAKE receiver (L), the chip duration (Tc), and
shadowing. Instead of estimating the path gain, we directly
calculate the square of a path gain in the UWB channel to
facilitate the BER evaluation of the RAKE receiver in the
UWB channel.

Corollary 1: The received energy E has the following prop-
erties: E can be written as the sum of three statistically
independent terms

E = X2α2
0,0 + Φr0 + Φ⊗ , (12)

where X and α0,0 are defined in (1), Φr0 is the energy of the
first cluster excluding the first ray, Φ⊗ is the total energy of
the remaining clusters. Then, the characteristic function of the
received energy (E) in the IEEE 802.15.3a UWB channel is

Ψ(ν) = L0,0(ν)R(ν)S(ν), (13)

where LT,t(ν) is the characteristic function of the single path
squared gain in the IEEE 802.15.3a UWB channel with the
cluster arriving at time T and the ray arriving at T + τ , R(ν)
and S(ν) are the characteristic functions of Φr0 and Φ⊗,
respectively.

Proof: See [11].
Compared to [11], we further consider the impact of param-

eters L, Tc, σ2
x, and the characteristic function of the square

of the path gain into LT,t(ν), R(ν), and S(ν). Also, explicit
computation formulas are provided.

Theorem 1: Consider a RAKE receiver with L fingers in
the IEEE 802.15.3a UWB channel. The characteristic function
LT,t(ν) can be computed by

LT,t(ν) =
∫ ∞

0

ejνx
10 exp

[
− 1

8σ2
E

(20 log10 x− 2µT,t)
2
]

√
2πσEx ln 10

dx

≈
N (H)∑

l=1

w(H)
l

1√
π

exp
(

jν10
√

2σEx
(H)
l

+µT,t
10

)
(14)

where

µT,t =
10

ln 10

[
lnΩ0 − T

Γ
− t− T

γ
−

(
ln 10
10

)2
σ2
E
2

]
(15)

and

σE =
√

σ2
1 + σ2

2 + σ2
x . (16)

The parameters Ω0, Γ, and γ are defined in (9). Note that σE
consists of σ1, σ2, and σx, which represent the standard devi-
ation of cluster fading, ray fading, and lognormal shadowing
fading terms, respectively. {w(H)

l } and {x(H)
l } are the weights

and abscissas of the Gauss-Hermite formula [12], respectively.
N (H) is the number of points of the Gauss-Hermite integration.

Proof: See Appendix I.
Theorem 2: For the RAKE receiver with L fingers, the

function R(ν) in (13) can be written in the form of

R(ν) = e−λψν(0) , (17)

where the function ψν(T ) can be computed by

ψν(T )

=

{∫ (L−1)Tc

T
[1− LT,t(ν)]dt, T ≤ (L− 1)Tc,

0, T > (L− 1)Tc,

≈





(L−1)Tc−T
2∑N (L)

p=1 w(L)
p [1− LT,t(ν)]

|
t=

(L−1)Tc−T
2 x(L)

p +
(L−1)Tc+T

2
, T ≤ (L− 1)Tc,

0, T > (L− 1)Tc,

(18)

where Tc is the chip duration between two fingers, {w(L)
p } and

{x(L)
p } are the weights and abscissas of the Gauss-Legendre

formula [12], respectively. N (L) is the number of points of the
Gauss-Legendre integration. Similarly, we can prove that S(ν)
can be written in the form of

S(ν) = e−ΛJ(ν) , (19)

where the function J(ν) can be computed by

J(ν) =
∫ (L−1)Tc

0

[1− LT,T (ν)e−λψν(T )]dT

≈ (L− 1)Tc

2

N (L)∑

i=1

w(L)
i

[
1− LT,T (ν)e−λψν(T )

]

|
T=

(L−1)Tc
2 x(L)

i +
(L−1)Tc

2
. (20)

Proof: See Appendix II.
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With the characteristic function Ψ(ν) of E , the PDF of E
can be computed by the Gauss-Hermite formula as follows:

fE(x) =
1
2π

∫ ∞

−∞
Ψ(ν)e−jxνdν

≈ 1
2π

N (H)∑

k=1

w(H)
k Ψ(ν)e−jxνeν2

∣∣∣
ν=x(H)

k

. (21)

Combining (14), (18), (20), and (21), the BER of the RAKE
receiver in the IEEE 802.15.3a UWB channel can be computed
as

P2

= EE

[
Q

(√
(1− ρr)

Eb

N0
E
)]

=
∫ ∞

0

Q

(√
(1− ρr)

Eb

N0
x

)
fE(x)dx

=
1

2π3/2

N (H)∑

k=1

N (H)∑

l=1

w(H)
k w(H)

l exp
(

jν10
√

2σEx
(H)
l

+µ0,0
10

)

exp


−1

2
λ(L− 1)Tc

N (L)∑
p=1

w(L)
p [1− L0,t(ν)]

|t= 1
2 (L−1)Tc(x

(L)
p +1)

)

exp


−1

2
Λ(L− 1)Tc

N (L)∑

i=1

w(L)
i

[
1− LT,T (ν)e−λψν(T )

]∣∣∣
T= 1

2 (L−1)Tc(x
(L)
i +1)

)

∫ ∞

0

Q

(√
(1− ρr)

Eb

N0
x

)
exp(−jxν)dx

exp(ν2)
∣∣
ν=x(H)

k

. (22)

IV. NUMERICAL RESULTS

A. Simulation Method

In order to check the correctness of the BER formula in
the last section, we perform simulation by MATLAB. We
consider the orthogonal binary signal, i.e., the pulse position
modulation (PPM) signal. When the information bit is 0, the
transmitted signal is

s0(t) =

{
1, 0 ≤ t < Tc,

0, otherwise.
(23)

Here we set Tc = 1 nsec. When the information bit is 1, the
signal waveform is s1(t) = s0(t− δTc), where δ is a positive
integer. From the uwb sv model ct function in [1], we can
get the output vectors h and t. The vector t stores the arrival
time of every channel impulse response with increasingly
chronological order. The vector h stores the corresponding
amplitude.

We define a template vector p0 with size 1×(L+δ), where
the m-th element of p0 (denoted by p0[m]) is equal to

p0[m] =





∑
n:t[n]=0 h[n], m = 1,∑
n:(m−2)Tc<t[n]≤(m−1)Tc

h[n], 2 ≤ m ≤ L,

0, L < m ≤ L + δ.
(24)

The physical meaning of vector p0 is the received signal ex-
cluding the noise sampled at a rate of 1/Tc for the information
bit 0. If the information bit is 1, then the template vector can
be expressed as

p1 = [01×δ,p0[1], · · · ,p0[L]] (25)

After adding noise n, the sampled received signal for
information bit 0 becomes

r = p0 + [n,01×δ], (26)

and that for information bit 1 is

r = p1 + [01×δ,n]. (27)

Note that the noise vector n contains L independent identically
distributed normal random variables, each of which has zero
mean and variance of N0/2.

The coherent RAKE receiver is applied to detect the signal
in the IEEE 802.15.3a UWB channel. Let the decision variable
U0 = r·p0 and U1 = r·p1, where the operator “·” is the inner
product of two vectors. If U0 ≥ U1, then the information bit
is 0; otherwise, the information bit is 1.

B. Results

Figure 1 shows the PDF fE(x) for CM1, CM2, CM3, and
CM4 according to (21). The number of fingers of the RAKE
receiver is 10. CM1 has most probability mass in the high
energy range; CM2 ranks second; CM3 ranks third; and CM4
has least probability mass in the range of higher energy range.
This phenomenon can explain why CM1 has the best BER
performance compared to CM2, CM3, and CM4.

Figure 2 shows the PDF fE(x) for various numbers of
RAKE fingers L = 20, 30, 40, and 50 in the channel model
CM1. The PDFs of L = 30, 40, and 50 are about the same,
while the probability mass of L = 20 is in the lower energy
range.

Figure 3 compares the BER performance based on (7) in
[6] and (22) in our paper. For the BER curve based on [6],
we reproduce the curve in [6, Fig. 1], where the received
waveform is observed only over a finite window [0, Tmax] with
Tmax = 33 nsec. The symbol η = Ew/(8σ2

n ), where Ew is the
signal energy and σ2

n is the noise power spectral density. In
the figure, we observe that the BER obtained from (22) is
slightly higher than that obtained from (7) of [6] because of
the lognormal shadowing.

Figure 4 shows the BER v.s. Eb/N0 for CM1, CM2, CM3,
and CM4 by simulation and analysis for ρr = 0, i.e., the
orthogonal binary signal. The parameter δ of the PPM is set
to one, the number of the fingers of the RAKE receiver is 10,
and Tc is 1 nsec. For a given Eb/N0, we simulate 100,000
bits to obtain the BER. As seen from the figure, the analytical
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results match the simulation results quite well. However, there
are some differences between the simulation and the analytical
curves for CM3 and CM4. We explain reasons as follows:

1) The usage of Gauss-Hermite and Gauss-Legendre for-
mulas may cause some error in integrations.

2) We use the MATLAB programs provided in [1] to
generate the IEEE 802.15.3a channel. Theoretically, the
Poisson process has infinite arrivals, but the computer
simulation can only generate finite arrivals. The MAT-
LAB program in [1] only produces the clusters with the
arrival time up to 10Γ. Meanwhile, each cluster only
contains the rays with the arrival time up to 10γ. Thus,
the RAKE receiver in the simulation may collect less
energy than that in the ideal case. Thus the simulation
BER values are slightly higher than the theoretical BER
values.

Figure 5 shows the BER v.s. the number of fingers of the
RAKE receiver for CM1, CM2, CM3, and CM4 at Eb/N0 =
5 dB. The other parameters are the same as those of the
simulation in Fig. 4. As L increases, the BER decreases
because of collecting more energy. For a large value of L, the
BER curves become flat because the RAKE receiver almost
captures all the channel energy. In the figure we can see that
the BERs of CM1, CM2, and CM3 converge to a common
value when L = 50 except for CM4. Note that CM4 has the
largest delay spread. Thus, a portion of the energy in the region
of L > 50 is not received, thereby resulting in higher BER
than CM1, CM2, and CM3.

V. CONCLUSIONS

In this work, we have derived the BER analytical formula
for the antipodal and orthogonal binary signals with a co-
herent RAKE receiver in the IEEE 802.15.3a UWB channel
model. Our numerical results show that the simulation and
the analytical values of the BER are very close. The analytical
BER formula can significantly save computer simulation time.
Furthermore, the suggested analytical method can be applied
to other multipath channel models with random numbers of
clusters and rays.

The possible future works that can be extended from this
work include the following. First, we plan to analyze the same
problem under the IEEE 802.15.4a UWB channel model [13].
Second, we are going to find the ergodic capacity of such a
UWB channel models.

APPENDIX I
PROOF OF THEOREM 1

Let fG|T,t(x) be the PDF of the path gain G , αk,l arriving
at time t that is part of a cluster that started at time T .
According to [11], fG|T,t(x) can be written as

fG|T,t(x) =
1
2
[f|G||T,t(x) + f|G||T,t(−x)], (28)

because the path gain is positive or negative with equal
probability of 0.5. [Recall the definition of path gain in (5)

and the following context.] Note that f|G||T,t(x) is lognormally
distributed, i.e.,

f|G||T,t(x) =

{
20 exp[− 1

2σ2 (20 log10 x−µT,t)
2]√

2πσx ln 10
, x > 0,

0, otherwise.
(29)

where µT,t is given in (15) and

σ =
√

σ2
1 + σ2

2 (30)

are the mean and variance of the random variable 20 log10 |G|,
respectively. Note that (15) is the continuous-time representa-
tion of (8) because the discrete indices k and l are changed to
continuous arrival time t and T , respectively.

The complete form of the square path gain should be X2G2,
where X is the lognormal shadowing introduced in Section II.
Since 20 log10 X ∝ Normal(0, σ2

x), we have

20 log10 X2 = 2(20 log10 X) ∝ Normal(0, (2σx)2) . (31)

Then, it follows that

20 log10 X2G2 = 2(20 log10 X|G|)
= 2(20 log10 X) + 2(20 log10 |G|)
∝ Normal(0, (2σx)2) + Normal(2µT,t, (2σ)2)
∝ Normal(2µT,t, 4(σ2

1 + σ2
2 + σ2

x)) . (32)

Define σE =
√

σ2
1 + σ2

2 + σ2
x. Then the PDF of the square of

the path gain arriving at time t in a cluster starting at time T
can be written as

fT,t(x) =





10 exp

�
− 1

8σ2
E

(20 log10 x−2µT,t)
2
�

√
2πσEx ln 10

, x > 0,

0, otherwise.
(33)

Denote LT,t(ν) as the characteristic function of fT,t(x), i.e.,

LT,t(ν) = ET,t[ejνX2G2
] =

∫ ∞

−∞
ejνxfT,t(x)dx. (34)

Let y = 1
2
√

2σE
(20 log10 x− 2µT,t) in (14). Then we can have

LT,t(ν)

=
∫ ∞

−∞
exp

(
jν10

2
√

2σEy+2µT,t
20

)
10e−y2

√
2πσEx ln 10

xσE ln 10
5
√

2
dy

=
∫ ∞

−∞

1√
π

exp
(

jν10
√

2σEy+µT,t
10

)
e−y2

dy

≈
N (H)∑

l=1

w(H)
l

1√
π

exp
(

jν10
√

2σEx
(H)
l

+µT,t
10

)
. (35)

APPENDIX II
PROOF OF THEOREM 2

In [11] the authors have obtained the characteristic function
of the sum of path gains in the time window [a, b] (denoted
by Φ), but the lognormal shadowing is not taken into account.
Similarly, we apply their results to determine the characteristic
function of E . Assume that the RAKE receiver with L fingers
is used to collect the channel energy in the time window
[0, (L− 1)Tc], where Tc is the chip duration between two
fingers.
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In [11], the authors defined the following functions:

ψν(T ) =

{∫ b

max(a,T )
[1− LT,t(ν)]dt, T ≤ b,

0, T > b,
(36)

and

J(ν) =
∫ a

0

[1−e−λψν(T )]dT +
∫ b

a

[1−LT,T (ν)e−λψν(T )]dT.

(37)
We set a = 0, b = (L− 1)Tc and use the Gauss-Legendre
formula. Then we can transform the above equations to (18)
and (20), respectively.
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Fig. 1. The PDF fE(x) for a RAKE receiver with 10 fingers in the IEEE
802.15.3a UWB channels CM1, CM2, CM3, and CM4.

Fig. 2. The PDF fE(x) of a RAKE receiver with finger number L =
20, 30, 40, and 50 in the IEEE 802.15.3a UWB channel CM1.

Fig. 3. BER comparison of the proposed analytical formulas with that in
[6], where Tmax = 33 nsec.
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Fig. 4. The BER v.s. Eb/N0 for the RAKE receiver with 10 fingers in the
IEEE 802.15.3a UWB channels CM1, CM2, CM3, and CM4.

Fig. 5. The BER v.s. the number of fingers of the RAKE receiver (L) for
CM1, CM2, CM3, and CM4, where Eb/N0 = 5 dB.
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Abstract— This paper provides the bit error rate (BER) anal-
ysis of the antipodal and orthogonal binary signals under the
ultra-wideband (UWB) channel. We offer an analytical expression
and its evaluation formula for the BER. The channel model
we consider is the IEEE 802.15.4a UWB channel. We take into
account of the impact of all the key parameters, including inter-
cluster arrival rate, cluster decay constant, the inter-ray arrival
rate, ray decay constant, parameters of the power delay profile
(PDP), and the distribution of a Nakagami fading signal. For
the IEEE 802.15.4a UWB channel, the effects of clustering are
characterized by a Poisson process, and the inter-ray arrival
time is modeled as the hyperexponential random variable. We
propose a systematic analytical method to evaluate the BER
performance of the UWB signal associated with such joint
continuous Nakagami and discrete Poisson random variable.
Thus, the developed analytical model is useful in evaluating the
performance of an UWB signal in the IEEE 802.15.4a channel
without time consuming simulations.

Index Terms— Ultra-wideband (UWB), IEEE 802.15.4a chan-
nel model, bit error rate (BER).

I. I NTRODUCTION

T HE trend of the modern wireless systems is to achieve
higher data rates and better quality. The ultra-wideband

(UWB) communications is a possible technique to achieve this
objective, due to its extremely large bandwidth. Performance
analysis, such as bit error rate (BER) analysis, of the UWB
communication system in arealistic UWB channel is impor-
tant but a difficult task.

In this work, we use the IEEE 802.15.4a UWB channel
model [1] as our channel model, which is based on the recent
measurements and close to the realistic UWB channel. The
UWB channel has two important properties that is different
from the traditional narrow band channel: 1) The bandwidth
of the UWB signals is much larger than the coherence
bandwidth of the channel. Thus, in the frequency domain,
the severely highly frequency selective fading occurs. 2) The
large bandwidth results in high resolution arrival time for
the UWB signal. Thus, the reflected UWB waves by objects
arrive in many clusters, which may contain some non-Rayleigh
multipath components.

A. Motivation

The difficulties of analyzing UWB signals can be discussed
in three aspects.

1This work is supported by the National Science Council, Taiwan, under
the contract NSC94-2213-E-009-030.

• First, the narrow band channel model does not have the
concept of cluster. The number of the channel impulse
response is a fixed constant. On the contrary, the trans-
mitted signal over the UWB channel may arrive in many
clusters, of which the number of arrival rays is random.
The number of the clusters is also random, which is
modeled as the Poisson random variable. Mathematically,
the interarrival time of the rays within a cluster is the
hyperexponential random variable. The collected signal
energy at the RAKE receiver in a channel with random
number of clusters and rays is difficult to analyze.

• The amplitude of the impulse response in the UWB chan-
nel is a multidimensional random variable, consisting of
the Nakagamim faded amplitude with a mean related to
an exponential and a hyperexponential random variable.
This is because the average of the channel impulse is also
a random variable due to varying interarrival time of rays
and clusters. The parameterm of the Nakagami random
variable is a lognormal random variable, of which the
mean and the standard deviation are both dependent on
the arrival time of the rays.

• The number of arrival rays in a very narrow time bin (or
chip duration) is not very large, so the central limit the-
orem is no longer applicable here. Thus, the distribution
of fading is not a traditional Rayleigh random variable
as in the narrow band case. In the IEEE 802.15.4a UWB
channel, the multipath fading signal is characterized by a
Nakagamim random variable according to measurement
results. Thus, for a given number of rays and the mean
of the signal amplitude, a UWB signal is a fast-varying
Nakagamim faded random variable. The analysis of such
a signal is rarely seen in current literature.

The IEEE 802.15.4a UWB channel model defines nine
sets of parameters for different environments. Based on this
channel model, a UWB signal can be characterized by a joint
continuous Nakagamim, a discrete Poisson random variable
for clusters, and a discrete counting random variable with
interarrival time being hyperexponential distributed, of which
key parameters include the inter-cluster arrival rate, ray arrival
rates (mixed Poisson model parameters), inter-cluster decay
constant, intra-cluster decay time constant parameters, Nak-
agamim factor mean, Nakagamim factor variance, Nakagami
m factor for strong components, and parameters for alternative
power delay profile (PDP) shape.
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To our best knowledge, a complete analytical formula for
the bit error rate (BER) performance with RAKE receiver in
the IEEE 802.15.4a UWB channel considering all the three
aforementioned challenges and key parameters is not seen in
the literature. Even only the analysis of the IEEE 802.15.4a
UWB channel model is an open issue.

B. Related Work

In this subsection, we introduce some related works which
has the correlation to the performance analysis of the UWB
system under different channels. In [2], the authors derived
the analytical BER of binary and M-ary UWB systems with
Walsh codes under the AWGN channel with multiple access
interference (MAI). In [3], the authors studied the perfor-
mances of UWB systems in the AWGN channel with inter-
ference in the universal mobile telecommunications system
(UMTS)/wideband code division multiple access (WCDMA)
band. In [4], the authors derived the BER formula of the
UWB system under the flat and dispersive Rayleigh fading
channels with timing jitter. In [5], the authors analyzed the
performance of a transmit-reference (TR) UWB system with
an autocorrelation receiver under a slow fading channel of
which fading amplitude is characterized by an appropriate
moment generating function.

In [6], the authors derived a exact BER formula for the IEEE
802.15.3a UWB channel model [7] but only as a function of
finite window size rather than a function of the fingers number
of the RAKE receiver. In [8], they further obtained statistics of
the output signal-to-noise ratio (SNR) for the RAKE receiver
in the IEEE 802.15.3a UWB channel, but without providing
explicit BER formula and ignored the shadowing effect. In
[9], the authors have derived the BER analytical formula for
receiving the antipodal and orthogonal binary signals by using
a coherent RAKE receiver over thecompleteIEEE 802.15.3a
UWB channel model.

Reference [10] presented an analytical expression for the
SNR of the pulse position modulated (PPM) signal in a multi
input multi output (MIMO) UWB channel. The considered
UWB channel has the following three major properties: 1)
Gamma distribution to describe each resolvable path power;
2) a modified Poisson process to characterize the clustering
property of the UWB channel and the number of the si-
multaneous arrival paths; 3) exponential decay to model the
average resolvable path power in the time domain. In [11], the
theoretical error performance of a zero-forcing (ZF) RAKE
receiver system over the frequency-selective UWB lognormal
fading channels with MIMO was analyzed.

C. Objective and Outline of This Paper

The objective of this paper is to derive the analytical
BER expression for the UWB system using the coherent
RAKE receiver in a complete IEEE 802.15.4a UWB channel.
Furthermore, we obtain a practical evaluation equation to com-
pute the BER much more quickly, compared to do computer
simulation. The rest of this paper is organized as follows. In
Section II, we describe the IEEE 802.15.4a channel model.
In Section III, we derive the evaluation form expression for

BER of the antipodal and orthogonal binary signals under the
IEEE 802.15.4a UWB channel. In Section IV, we show our
numerical results. Last, we give our conclusions in Section V.

II. CHANNEL MODEL

A. Power delay profile

We consider the UWB channel model in [1]. The impulse
response (in complex baseband) of the Saleh-Valenzuela (SV)
model is given in general as

hdiscr(t) =
L∑

l=0

K∑

k=0

ak,l exp(jφk,l)δ(t− Tl − τk,l) (1)

where ak,l is the tap weight of thekth component in the
lth cluster, Tl is the delay of thelth cluster, τk,l is the
delay of thekth multipath component (MPC) relative to the
l-th cluster arrival timeTl. The phasesφk,l are uniformly
distributed, i.e., for a bandpass system, the phase is taken as a
uniformly distributed random variable from the range[0, 2π].
The number of clustersL is an important parameter of the
model. It is assumed to be Poisson-distributed

fL(L) =
(L)L exp(−L)

L!
(2)

so that the meanL completely characterizes the distribution.
By definition, we haveτ0,l = 0. The distributions of the

cluster arrival times are given by a Poisson processes

p(Tl|Tl−1) =

{
Λl exp[−Λ(Tl − Tl−1)], Tl > Tl−1

0, otherwise
, l > 0

(3)
whereΛl is the cluster arrival rate (assumed to be independent
of l). The classical SV model also uses a Poisson process
for the ray arrival times. Due to the discrepancy in the
fitting for the indoor residential, and indoor and outdoor office
environments, the authors of [1] propose to model ray arrival
times with mixtures of two Poisson processes as follows

p(τk,l|τ(k−1),l)

=





βλ1 exp[−λ1(τk,l − τ(k−1),l)]+
(1− β)λ2 exp[−λ2(τk,l − τ(k−1),l)], τk,l > τ(k−1),l

0, otherwise

,

k > 0, (4)

whereβ is the mixture probability, whileλ1 and λ2 are the
ray arrival rates.

The next step is the determination of the cluster powers and
cluster shapes. The power delay profile (mean power of the
different paths) is exponential within each cluster

E{|ak,l|2} =
Ωl

γl
exp(−τk,l/γl) (5)

where Ωl is the integrated energy of thelth cluster, and
γl is the intra-cluster decay time constant. Note that the
normalization is an approximate one, but works for typical
values ofλ andγ.

The cluster decay rates are found to depend linearly on the
arrival time of the cluster,

γl ∝ kγTl + γ0 (6)
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where kγ describes the increase of the decay constant with
delay.

The mean (over the cluster shadowing) mean (over the
small-scale fading) energy (normalized toγl), of thelth cluster
follows in general an exponential decay

10 log(Ωl) = 10 log(exp(−Tl/Γ)) + Mcluster (7)

whereMcluster is a normally distributed variable with standard
deviationσcluster around it.

For the non-line-of-sight (NLOS) case of some environ-
ments (office and industrial), the shape of the power delay
profile can be different, namely (on a log-linear scale)

E{|ak,1|2} = (1− χ exp(−τk,l/γrise)) exp(−τk,l/γ1)
γ1 + γrise

γ1

Ω1

γ1 + γrise(1− χ)
. (8)

Here, the parameterχ describes the attenuation of the first
component, the parameterγrise determines how fast the PDP
increases to its local maximum, andγ1 determines the decay
at late times.

B. Small-scale fading

The distribution of the small-scale amplitudes is Nakagami

fa(x) =
2

Γ(m)

(m

Ω

)m

x2m−1 exp
(
−m

Ω
x2

)
, (9)

wherem ≥ 1/2 is the Nakagamim-factor,Γ(m) is the gamma
function, andΩ is the mean-square value of the amplitude.
A conversion to a Rice distribution is approximately possible
with the conversion equations

m =
(Kr + 1)2

(2Kr + 1)
(10)

and

Kr =
√

m2 −m

m−√m2 −m
. (11)

whereKr andm are the Rice factor and Nakagami-m factor
respectively.

The parameterΩ corresponds to the mean power, and its
delay dependence is thus given by the power delay profile
above. Them–parameter is modeled as a lognormally dis-
tributed random variable, whose logarithm has a meanµm

and standard deviationσm. Both of these can have a delay
dependence

µm(τ) = m0 − kmτ (12)

σm(τ) = m̂0 − k̂mτ (13)

For the first component of each cluster, the Nakagami factor
is modeled differently. It is assumed to be deterministic and
independent of delaym = m̃0.

III. BER A NALYSIS

A. Receiver Structure

We use a coherent RAKE receiver withLRAKE fingers. The
received SNRγb is

γb =
Eb

N0

L∑

k=1

c2
k, (14)

whereEb/N0 is the bit SNR,ck is the channel amplitude that
appears at thek-th finger of the RAKE receiver. From [12] we
know that the conditional error probability for binary signals
for the coherent RAKE receiver is

P2(γb) = Q
(√

γb(1− ρr)
)

(15)

where ρr = −1 for antipodal signals andρr = 0 for
orthogonal signals. Next we will derive the characteristic
function of the received energyE ,

∑L
k=1 c2

k in the IEEE
802.15.4a UWB channel.

B. Characteristic Function of the Received Energy (E)

In the following theorem, we give the formula of the
characteristic function ofE . We exploit the result in [9] and
modify it to fit in the case of the IEEE 802.15.4a UWB
channel.

Lemma 1:Let LT,t(ν) be the characteristic function of the
squared single path gain in the IEEE 802.15.4a UWB channel
with the cluster arrival time atT and the ray arrival time att =
T + τ . Also, denotee−λψν(T ) and e−ΛJ(ν) the characteristic
function of a shot-noise random variable related to the ray
arrival process with parameterλ and that related to the cluster
arrival process with parameterΛ, respectively. Then, it can be
proved that the characteristic function of the received energy
(E) in the IEEE 802.15.4a UWB channel can be computed by

Ψ(ν) = L0,0(ν)e−λψν(0)−ΛJ(ν). (16)
Proof: See [9].

Theorem 1:Consider a RAKE receiver withLRAKE fingers
in the IEEE 802.15.4a UWB channel. The characteristic func-
tion LT,t(ν) can be computed by

LT,t(ν) = (1− jνΩ/m)−m (17)

where

Ω =
1
γl

exp
(
−T

Γ
− t− T

γl

)
(18)

and
m = exp

(
m0 + m̂2

0/2
)
. (19)

The parameterγl is defined in (6).
Proof: See Appendix I.

Theorem 2:The parameterλ in Lemma 1 can be calculated
as

λ =
λ1λ2

(1− β)λ1 + βλ2
. (20)

Proof: See Appendix II.
The equations for calculatingψν(T ) andJ(ν) can be found

in Theorem 2 in [9].
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With characteristic function ofE , i.e. Ψ(ν) in (16), the
probability density function (PDF) ofE can be computed by
the Gauss-Hermite formula as follows:

fE(x) =
1
2π

∫ ∞

−∞
Ψ(ν)e−jxνdν

≈ 1
2π

N (H)∑

k=1

w(H)
k Ψ(ν)e−jxνeν2

∣∣∣
ν=x(H)

k

. (21)

Combining (17), (21), and (16) and (17) in [9], the BER of
the RAKE receiver in the IEEE 802.15.4a UWB channel can
be computed as

P2 = EE

[
Q

(√
(1− ρr)

Eb

N0
E
)]

=
∫ ∞

0

Q

(√
(1− ρr)

Eb

N0
x

)
fE(x)dx

=
1
2π

(
1− j

ν

γ0 exp (m0 + m̂2
0/2)

)− exp(m0+m̂2
0/2)

N (H)∑

k=1

w(H)
k exp


−1

2
λ(L− 1)Tc

N (L)∑
p=1

w(L)
p

[1− L0,t(ν)]|t= 1
2 (L−1)Tc(x

(L)
p +1)

)

exp


−1

2
Λ(L− 1)Tc

N (L)∑

i=1

w(L)
i

[
1− LT,T (ν)e−λψν(T )

]∣∣∣
T= 1

2 (L−1)Tc(x
(L)
i +1)

)

∫ ∞

0

Q

(√
(1− ρr)

Eb

N0
x

)
exp(−jxν)dx

exp(ν2)
∣∣
ν=x(H)

k

. (22)

IV. N UMERICAL RESULTS

A. Simulation Method

In order to check the correctness of the BER formula in
the last section, we perform simulation by usingMATLAB .
We consider the orthogonal binary signal, i.e. the PPM signal.
When the information bit is 0, the transmitted signal is

s0(t) =

{
1, 0 ≤ t < Tc,

0, otherwise.
(23)

Here we setTc = 1 nsec. When the information bit is 1, the
signal waveform iss1(t) = s0(t− δTc), whereδ is a positive
integer. From theuwb sv model ct 15 4a.m function in
[1], we can get the output vectorsh and t. The vectort
stores the arrival time of every channel impulse response
with increasing chronological order. The vectorh stores the
corresponding amplitude.

We define a template vectorp0 with size1× (LRAKE + δ),

where them-th element ofp0 (denote byp0[m]) is equal to

p0[m] =





∑
n:t[n]=0 h[n], m = 1,∑
n:(m−2)Tc<t[n]≤(m−1)Tc

h[n], 2 ≤ m ≤ LRAKE,

0, LRAKE < m ≤
LRAKE + δ.

(24)
The physical meaning of the vectorp0 is the received signal
excluding the noise sampled at a rate of1/Tc given the
information bit being 0. If the information bit is 1, then the
template vector can be expressed as

p1[m] = [01×δ,p0[1], · · · ,p0[LRAKE]] (25)

After adding noisen, the sampled received signal for
information bit 0 becomes

r = p0 + [n,01×δ], (26)

and that for information bit 1 is

r = p1 + [01×δ,n]. (27)

Note that the noise vectorn contains LRAKE independent
identically distributed complex normal random variables, each
of which has zero mean and variance ofN0.

The coherent RAKE receiver is applied to detect the signal
in the IEEE 802.15.4a UWB channel. Let the decision variable
U0 = <(r·p0) andU1 = <(r·p1), where<(z) is the real part
of a complex numberz and “·” is the inner product of two
vectors. IfU0 ≥ U1, then the information bit is 0, otherwise
the information bit is 1.

B. Results

Figure 1 shows the BER v.s.Eb/N0 for CM1 by simulation
and analysis. The term CM1 denotes the residential line-of-
sight (LOS) environment. The parameters of CM1 can be
found in the Table in [1, Sec. III.A]. For the analytical curves,
We consider the orthogonal binary signal, i.e.,ρr = 0. The
parameterδ of the PPM is set to be one. The number of the
fingers of the RAKE receiver is 10. The space of the fingers of
the RAKE receiver,Tc, is set to 1 nsec. For each givenEb/N0,
we simulate 100,000 bits to obtain the BER. As seen from the
figure, the analytical results match the simulation results quite
well.

V. CONCLUSIONS

In this paper, we have derived the BER analytical formula as
well as a computable equation for the antipodal and orthogonal
binary signals with a coherent RAKE receiver under the IEEE
802.15.4a UWB channel model. Our numerical results show
that the simulation and the analytical values of the BER are
extremely close. Our proposed analytical BER formula can
obtain the BER values much more quickly, compared to to the
computer simulation. Furthermore, we would like to emphasis
that the suggested analytical method can be applied to other
multipath channel models with any fading distribution.

The possible future works that can be extended from this
work include the following. First, we plan to analyze the
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same problem under the IEEE 802.15.4a UWB channel model
plus MIMO system. Second, we are going to find the ergodic
capacity of such a UWB channel models. Third, we want to
design the whole transmitter and receiver of the UWB MIMO
wireless communication systems.

APPENDIX I
PROOF OFTHEOREM 1

From (9), we can easily find the PDF ofx = a2 by
exploiting the resulting of Example 7b in [13]. That is,

fx(x) =
1

2
√

x

[
fa(
√

x) + fa(−√x)
]

=

{
exp(−mx

Ω )(mx
Ω )m

xΓ(m) , x ≥ 0,

0, x < 0.
(28)

The characteristic function ofx is

LT,t(ν) =
∫ ∞

∞
fx(x)ejνxdx

= (1− jνΩ/m)−m. (29)

The termΩ = E{x} is defined in (5). To fit it into our
formula, we substituteTl by T and Mcluster by its mean,
zero, in (7) andτk,l by (t− T ) in (5). Then we can get (18).

Finally, we setm to its mean and get (19). The mean is
given by (4) in [14].

APPENDIX II
PROOF OFTHEOREM 2

To find the average arrival rateλ, we lend a concept from
the queueing theory [15] that

λ = 1/E[average interarrival time]

=
{∫ ∞

0

x
[
βλ1e

−λ1x + (1− β)λ2e
−λ2x

]
dx

}−1

=
λ1λ2

(1− β)λ1 + βλ2
. (30)
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