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The hypothesis testing and confidence region are considered for the common
mean vector of several multivariate normal populations when the covariance matrices
are unknown and possibly unequal. A generalized confidence region is derived using
the concepts of generalized method based on the generalized p-value. The generalized
confidence region is illustrated with two numerical examples. The merits of the
proposed method are numerically compared with those of existing methods with
respect to their expected area or expected d-dimensional volumes and coverage
probabilities under different scenarios.

(Z)FLP %

Estimating the common mean vector of several multivariate normal populations
with unknown and possibly unequal covariance matrices is one of the oldest and
interesting problems in statistical literature. This problem arises, for example, when
two or more independent measuring instruments or agencies are involved to measure
like products, effects, or substances which are produced by the same production



process to estimate the average quality in terms of several characteristics. If the
samples collected by independent studies are assumed to come from multivariate
normal populations with a common mean vector and unknown covariance matrices,
then the problem of interest may be to estimate or construct a confidence region for
the common mean vector p of these populations. If the unknown covariance
matrices are assumed to be identical, then there are optimal methods available to
make inferences on p. However, when the covariance matrices are unknown and
unequal, it is clear that the distribution of any combined estimators of p will
involve nuisance parameters, and then the standard method has serious limitations
for the purpose of finding an exact test and confidence region of p. Therefore,
constructing a generalized confidence region of p for models involving variance
components deserves further attention.

Suppose there are (I >2) d-variate normal populations with common mean

vector p and unknown covariance matrices X,,... X, . Let X,.. X, be

in;
independent d-variate vector observations from the ith population,i=1,...,1, and

X; ~Ng(n, Z), j=1..,n.For the ith population, let

Xiziixij and sizii(xu—ii)(x”—ii)' (L1)
L n 195

be the sample mean vector and sample covariance matrix. We are interested in
estimating the common mean vector p, based on the minimal sufficient

statistics (X, ..., X,,S,,--,S,) -

In the univariate case, the common mean problem has received considerable
attention in the statistical literature; we refer the reader to Meier (1953), Maric and
Graybill (1979), Pagurova and Gurskii (1979), Sinha (1985), Eberhardt et al. (1989),
Fairweather (1972), Jordan and Krishnamoorthy (1996), Krishnamoorthy and Lu

(2003), Lin and Lee (2005) and the references therein.
In the multivariate case, Chiou and Cohen (1985) showed that pp, ,

A [ kel 1
[Zelot :(Zizlnisil) Zj:lnisilxj ' (1.2)
dominates neither X, nor X,, when 1=2 and d>2, with respect to the

covariance criterion, although Graybill and Deal (1959) got the opposite result in
univariate two-sample case. Loh (1991) estimated the common mean vector from a
symmetric loss function point of view as alternatives to pgp, . Zhou and Mathew

(1994) proposed several combined tests for testing the common mean vector, but the

2



problem of multiple comparisons had not been discussed when the null hypothesis
was rejected. Jordan and Krishnamoorthy (1995) provided a confidence region of p
centered at a weighted Graybill and Deal estimator p,, ,

-1
ﬁJK =( ::1Cinisi_l) zlj:lcjnjsglii ' (1.3)

which does not always produce non-empty regions. Moreover, determination of the
percentile points that are needed to construct the confidence region of p is quite
difficult in practice, and thus approximation is necessary.

In this paper, we intend to provide a method that is readily applicable for both
hypothesis testing and confidence region construction of the common mean vector p.
Our approach is based on the concepts of generalized p-values and generalized
confidence intervals, introduced by Tsui and Weerahandi (1989) and Weerahandi
(1993), respectively. These ideas have turned out to be very satisfactory for obtaining
tests and confidence intervals for many complex problems; see Lin and Lee (2003),
Lee and Lin (2004) and many others. Gamage et al. (2004) provided a generalized
p-value and a generalized confidence region for the multivariate Behrens-Fisher
problem and MANOVA. For a discussion of several applications, the readers are
referred to the book by Weerahandi (1995). In terms of the expected area or
d-dimensional volumes and coverage probability, our method is compared with the
methods derived by the classical approach, Graybill and Deal (1959) and Jordan and
Krishnamoorthy (1995), respectively. The numerical results in sections 4 and 5 also
show that our method performs better than these methods.
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We discuss a robust extension of linear mixed models based on the multivariate t
distribution. Since longitudinal data are successively collected over time and typically
tend to be autocorrelated, we employ a parsimonious first-order autoregressive
dependence structure for the within-subject errors. A score test statistic for testing the
existence of autocorrelation among the within-subject errors is derived. Moreover, we
develop an explicit scoring procedure for the maximum likelihood estimation with
standard errors as a by-product. The technique for predicting future responses of a
subject given past measurements is also investigated. Results are illustrated with real
data from a multiple sclerosis clinical trial.

(M) FLPF
Multiple sclerosis (MS), one of the most common chronic diseases of the
central nervous system in young adults, occurs when the myelin around the nerve
bres in the brain becomes damaged. As yet, the precise causes of MS remain
unknown, though abundant research suggests MS may be an autoimmune disease in
which the immune system attacks its own myelin, causing disruptions to the nerve



transmissions. There are no drugs to cure MS, but some treatments are available to
ease the symptom. For example, interferon beta-1b (INFB) was approved by the US
Food and Drug Administration in mid-1993 for use in early stage relapsing-remitting
MS (RRMS) patients. For diagnosis, cranial magnetic resonance imaging (MRI) is
the most preferred tool for monitoring MS evolution in both natural history studies
and treatment trials.

Gill [1] presents a robust approach based on Huber’s p function to a linear
mixed model for the analysis of a data set, called the MS data throughout this paper,
from a cohort study of 52 patients with RRMS. The study was a placebo-controlled
trial of interferon beta-1b (INFB) in which patients were randomized to either a
placebo (PL), a low-dose (LD), or a highdose (HD) treatment. The LD and HD
treatments correspond to doses of 1.6 and 8 million international units (MIU) of IFNB
every other day, respectively. Each patient had a baseline cranial MRI and subsequent
MRIs once every 6 weeks over two years. The 6-weekly serial MRI data were
collected from June 1988 to May 1990 at the University of British Columbia site.

The use of the t distribution in place of the normal for robust regression has been
investigated by a number of authors, including West [2], Lange et al. [3] and James et
al. [4]. The linear mixed model with multivariate t distributed responses, called the t
linear mixed model hereafter, was considered by Welsh and Richardson [5], however,
they do not explicitly discuss or derive the distributions of the random eqects as well
as the error terms. More recently, Pinheiro et al. [6] incorporated multivariate t
distributed random effects and error terms to formulate a normal-normal-gamma
hierarchy for the t linear mixed model. They provide several efficient EM-type
algorithms for maximum likelihood (ML) estimation and illustrate the robustness with
respect to outlying observations using a real example and some simulation results.

In this paper, we develop additional tools for a simplified version of the Pinheiro
et al. [6] model and use these tools to analyse the MS data. The model considered here
is

‘Yl' = XII} + Zl'b.l' + E.l". IJ." | Ty~ ‘N"rm: (0- :i r)
o2 ) (1)
€|t~ Np, (O,T_(I,-), 7~ Ga(v/2,v/2), (i=1,...,N)

where i is the subject index, Y; is a pi-dimensional observed response vector, N is the
number of subjects, Xj and Z; are, respectively, known p; xm; and p; xm, design
matrices, £ is an myx1 vector of fixed effects, b; is an myx1 vector of unobservable
random effects, z, is an unknown scale assumed to be distributed as gamma with

mean 1 and variance 2/v, and b, |ri and ¢ |ri are assumed to be independent.



Furthermore, T"is an myxm, matrix, which may be unstructured or structured, and C;
is a pi Xp; correlation matrix.

Pinheiro et al. [6] consider a general model where C; is allowed to depend upon a
vector of parameters and the parameter v is allowed to vary across subgroups of
subjects. In this paper, we exploit the widely used autoregressive structure to model
the dependence for the within-subject errors. As an illustration, we concentrate on the
simple case where C; has an AR(1) dependence structure that is common to all
subjects, i.e.

C,=Cip)=[p"1, rs=12.....p (2)

The dependence structure of C; can be extended to a high order autoregressive
moving average (ARMA) dependence as provided by Rochon [7], Lin and Lee [8]
and Lee etal. [9].

In model (1), the marginal distribution of the response Y,, after integrating over b, and 1,
can be expressed as

Y ~ 1 (XiB.o* AL v) (3)

where A, =A(I.p)=ZTZ]+ C(p) and ,(p.E,v) denotes the p-dimensional multivariate ¢
distribution with location vector p, scale matrix X and degrees-of-freedom (d.f.) v.
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