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本報告含二篇完成之研究成果。 
 
ㄧ、Generalized Inferences on the Common Mean Vector of Several 
    Multivariate Normal Populations 
    此乃與林淑惠教授及博士生王仁聖合作之文章。本文將登於 Journal of 
Statistical Planning and Inference (an SCI journal)。其中、英文摘要如下。 
 
(一) 中文摘要 

本文考慮數個多變量常態分佈其變異矩陣未知且不等的共同平均向量的推

論問題。利用廣義推論我們提出共同平均向量的正確信賴區間的新方法。我們用

兩個實例來當此方法的應用例子。我們以期望區域及覆蓋率來展現本方法優於其

他方法。 
 

(二) 英文摘要 
The hypothesis testing and confidence region are considered for the common 

mean vector of several multivariate normal populations when the covariance matrices 
are unknown and possibly unequal. A generalized confidence region is derived using 
the concepts of generalized method based on the generalized p-value. The generalized 
confidence region is illustrated with two numerical examples. The merits of the 
proposed method are numerically compared with those of existing methods with 
respect to their expected area or expected d-dimensional volumes and coverage 
probabilities under different scenarios. 
 
(三) 報告內容 
    Estimating the common mean vector of several multivariate normal populations 
with unknown and possibly unequal covariance matrices is one of the oldest and 
interesting problems in statistical literature. This problem arises, for example, when 
two or more independent measuring instruments or agencies are involved to measure 
like products, effects, or substances which are produced by the same production 
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process to estimate the average quality in terms of several characteristics. If the 
samples collected by independent studies are assumed to come from multivariate 
normal populations with a common mean vector and unknown covariance matrices, 
then the problem of interest may be to estimate or construct a confidence region for 
the common mean vector µ  of these populations. If the unknown covariance 
matrices are assumed to be identical, then there are optimal methods available to 
make inferences on µ . However, when the covariance matrices are unknown and 
unequal, it is clear that the distribution of any combined estimators of µ  will 
involve nuisance parameters, and then the standard method has serious limitations 
for the purpose of finding an exact test and confidence region of µ . Therefore, 
constructing a generalized confidence region of µ  for models involving variance 
components deserves further attention.  

 Suppose there are ( 2)I I ≥ d-variate normal populations with common mean 

vector µ  and unknown covariance matrices 1,..., IΣ Σ . Let 1,..., ii inX X  be 

independent d-variate vector observations from the ith population, 1,...,i I= , and 

i~ ( ,  )ij dNX µ Σ , 1,..., ij n= . For the ith population, let 

    
1

1 in

i ij
jin =

= ∑X X  and 
1

1 ( )( )
1

in

i ij i ij i
jin =

′= − −
− ∑S X X X X             (1.1) 

be the sample mean vector and sample covariance matrix. We are interested in 
estimating the common mean vector µ , based on the minimal sufficient 

statistics 1 1( ,..., , ,..., ) I IX X S S .  

In the univariate case, the common mean problem has received considerable 
attention in the statistical literature; we refer the reader to Meier (1953), Maric and 
Graybill (1979), Pagurova and Gurskii (1979), Sinha (1985), Eberhardt et al. (1989), 
Fairweather (1972), Jordan and Krishnamoorthy (1996), Krishnamoorthy and Lu 
(2003), Lin and Lee (2005) and the references therein. 

In the multivariate case, Chiou and Cohen (1985) showed that ˆ GDdµ , 

   ( ) 1
1 1

1 1
ˆ I I

GDd i i j j ji j
n n

−
− −

= =
= ∑ ∑µ S S x ,                            (1.2) 

dominates neither 1X  nor 2X , when 2I =  and 2d ≥ , with respect to the 

covariance criterion, although Graybill and Deal (1959) got the opposite result in 
univariate two-sample case. Loh (1991) estimated the common mean vector from a 
symmetric loss function point of view as alternatives to ˆ GDdµ . Zhou and Mathew 
(1994) proposed several combined tests for testing the common mean vector, but the 
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problem of multiple comparisons had not been discussed when the null hypothesis 
was rejected. Jordan and Krishnamoorthy (1995) provided a confidence region of µ  
centered at a weighted Graybill and Deal estimator ˆ JKµ ,  

( ) 1
1 1

1 1
ˆ I I

JK i i i j j j ji j
c n c n

−
− −

= =
= ∑ ∑µ S S x ,                          (1.3)  

which does not always produce non-empty regions. Moreover, determination of the 
percentile points that are needed to construct the confidence region of µ  is quite 
difficult in practice, and thus approximation is necessary.  

In this paper, we intend to provide a method that is readily applicable for both 
hypothesis testing and confidence region construction of the common mean vector µ .  
Our approach is based on the concepts of generalized p-values and generalized 
confidence intervals, introduced by Tsui and Weerahandi (1989) and Weerahandi 
(1993), respectively. These ideas have turned out to be very satisfactory for obtaining 
tests and confidence intervals for many complex problems; see Lin and Lee (2003), 
Lee and Lin (2004) and many others. Gamage et al. (2004) provided a generalized 
p-value and a generalized confidence region for the multivariate Behrens-Fisher 
problem and MANOVA. For a discussion of several applications, the readers are 
referred to the book by Weerahandi (1995). In terms of the expected area or 
d-dimensional volumes and coverage probability, our method is compared with the 
methods derived by the classical approach, Graybill and Deal (1959) and Jordan and 
Krishnamoorthy (1995), respectively. The numerical results in sections 4 and 5 also 
show that our method performs better than these methods. 
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models. Journal of Multivariate Analysis 51, 265-276.  
 
(五) 計畫成果自評 

本研究成果乃計畫所提的一部份，將登於 JSPI，此期刊是 SCI 統計期刊當

中不錯的雜誌，值得肯定。 
 
 
 
二、A Robust Approach to t Linear Mixed Models Applied to Multiple  

Sclerosis Data 
 
    此乃與林宗儀教授合作之文章。本文已登於 Statistics in Medicine, 2006, 
1397-1412. (an SCI journal)。其中、英文摘要如下。 
 
(六) 中文摘要 

我們經由多變量 t 分佈考慮強韌性的線性混合模型。因為長期追蹤資料係順

時間收取且一般均呈自相關，故我們考慮每個個體具一階自相關。我們導出自相

關是否存在的分數檢定統計量，我們也得到最大概似估計量的明確分數程序，並

得到統計量的標準差。我們也討論根據過去值的未來觀察值的預測。這些結果我

們以多重硬化症臨床試驗的實際資料來當實例。 
 

(七) 英文摘要 
We discuss a robust extension of linear mixed models based on the multivariate t 

distribution. Since longitudinal data are successively collected over time and typically 
�tend to be autocorrelated, we employ a parsimonious first-order autoregressive 

dependence structure for the within-subject errors. A score test statistic for testing the 
existence of autocorrelation among the within-subject errors is derived. Moreover, we 
develop an explicit scoring procedure for the maximum likelihood estimation with 
standard errors as a by-product. The technique for predicting future responses of a 
subject given past measurements is also investigated. Results are illustrated with real 
data from a multiple sclerosis clinical trial. 
 
(八) 報告內容 

    Multiple sclerosis (MS), one of the most common chronic diseases of the 
central nervous system in young adults, occurs when the myelin around the nerve 
�bres in the brain becomes damaged. As yet, the precise causes of MS remain 
unknown, though abundant research suggests MS may be an autoimmune disease in 
which the immune system attacks its own myelin, causing disruptions to the nerve 
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transmissions. There are no drugs to cure MS, but some treatments are available to 
ease the symptom. For example, interferon beta-1b (INFB) was approved by the US 
Food and Drug Administration in mid-1993 for use in early stage relapsing-remitting 
MS (RRMS) patients. For diagnosis, cranial magnetic resonance imaging (MRI) is 
the most preferred tool for monitoring MS evolution in both natural history studies 
and treatment trials. 

Gill [1] presents a robust approach based on Huber’s ρ �function to a linear 
mixed model for the analysis of a data set, called the MS data throughout this paper, 
from a cohort study of 52 patients with RRMS. The study was a placebo-controlled 
trial of interferon beta-1b (INFB) in which patients were randomized to either a 
placebo (PL), a low-dose (LD), or a highdose (HD) treatment. The LD and HD 
treatments correspond to doses of 1.6 and 8 million international units (MIU) of IFNB 
every other day, respectively. Each patient had a baseline cranial MRI and subsequent 
MRIs once every 6 weeks over two years. The 6-weekly serial MRI data were 
collected from June 1988 to May 1990 at the University of British Columbia site. 

The use of the t distribution in place of the normal for robust regression has been 
investigated by a number of authors, including West [2], Lange et al. [3] and James et 
al. [4]. The linear mixed model with multivariate t distributed responses, called the t 
linear mixed model hereafter, was considered by Welsh and Richardson [5], however, 
they do not explic �itly discuss or derive the distributions of the random e ects as well 
as the error terms. More recently, Pinheiro et al. [6] incorporated multivariate t 
distributed random effects and error terms to formulate a normal–normal–gamma 
hierarchy for the t linear mixed model. They provide several efficient EM-type 
algorithms for maximum likelihood (ML) estimation and illustrate the robustness with 
respect to outlying observations using a real example and some simulation results. 

In this paper, we develop additional tools for a simplified version of the Pinheiro 
et al. [6] model and use these tools to analyse the MS data. The model considered here 
is 

 
where i is the subject index, Yi is a pi-dimensional observed response vector, N is the 
number of subjects, Xi and Zi are, respectively, known pi ×m1 and pi ×m2 design 
matrices, β  is an m1×1 vector of fixed effects, bi is an m2×1 vector of unobservable 
random effects, iτ  is an unknown scale assumed to be distributed as gamma with 

mean 1 and variance 2 v , and i iτb and i iε τ are assumed to be independent. 
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Furthermore, Γ is an m2×m2 matrix, which may be unstructured or structured, and Ci 
is a pi ×pi correlation matrix. 

Pinheiro et al. [6] consider a general model where Ci is allowed to depend upon a 
vector of parameters and the parameter v is allowed to vary across subgroups of 
subjects. In this paper, we exploit the widely used autoregressive structure to model 
the dependence for the within-subject errors. As an illustration, we concentrate on the 
simple case where Ci has an AR(1) dependence structure that is common to all 
subjects, i.e. 

 
The dependence structure of Ci can be extended to a high order autoregressive 
moving average (ARMA) dependence as provided by Rochon [7], Lin and Lee [8] 
and Lee et al. [9]. 
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(十) 計畫成果自評 

本文發表於 Statistics in Medicine，這是個相當好的期刊，Impact Factor 很
高，值得肯定。 
 
 
 


