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Abstract. The processes to derive the associated phase of an interfer-
ence signal from the data of a series of recorded frames are performed,
and we find that the sampling frequency being lower than the Nyquist
sampling rate can also be applied to the full-field heterodyne interferom-
etry. Two optimal sampling conditions for a commonly used CCD camera
are proposed based on the relation between the heterodyne frequency
and the contrast of the interference signal under the condition that the
phase error is set to be 0.05 deg. C© 2011 Society of Photo-Optical Instrumentation
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1 Introduction
In our previous work,1 we proposed an optimal sampling
condition for the full-field heterodyne interferometry2, 3 ac-
cording to the sampling theorem.4 Originally, the sampling
theorem is suitable for a complicated multi-frequency signal
and its sampling rate should not be lower than the Nyquist
sampling rate to avoid aliasing. However, the signal to be
processed in the heterodyne interferometry is a simple single
frequency cosine signal whose spectrum includes three delta
functions, which come from the dc term and the cosine term.
Because its spectrum is so simple, the sampling frequency
might have a loose condition.5, 6 The processes to derive the
associated phase of an interference signal from the data of
a series of recorded frames are performed anew; we find
that the sampling frequency being lower than the Nyquist
sampling rate can also be applied to the full-field heterodyne
interferometry. Based on the relation between the heterodyne
frequency and the contrast of the interference signal, two op-
timal sampling conditions for a commonly used CCD camera
are proposed under the condition that the phase error is set to
be 0.05 deg. Although it needs more sampled points to ob-
tain the high resolution results, a current personal computer
is qualified enough to perform the processes quickly.

2 Principle
The interference signal of a general heterodyne interfero-
meter is

I (t) = I0[1 + r cos(2π ft + φ0)], (1)

where f is the heterodyne frequency; I0, r , and φ0 are the
average intensity, the contrast, and the phase of the interfer-
ence signal, respectively. A camera with frame frequency fs
and frame exposure time a is used to sample the interference
signal. In the recording time T, the camera records N frames
which are numbered from 0 to N − 1. To extend the sampling
frequency to a wider range, a can be written as
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a = m + a′

f
, (2)

where m is a non-negative integral number and a′ is a proper
fraction. Under the condition m = 0, the sampling frequency
is higher than the Nyquist sampling rate as that in our pre-
vious work. The associated interference signal is sampled as
shown in Fig. 1(a), in which ts = 1/ fs is the frame period.
Consequently, the condition m = 0 will not be discussed in
this paper. As to the condition m > 0, the sampling frequency
is lower than the Nyquist sampling rate. Here, (m + a′) peri-
ods of the interference signal are integrated in one exposure
time a, and the associated interference signal is sampled as
shown in Fig. 1(b). Hence, the interference intensity mea-
sured at any pixel on the k′th frame becomes

Ick = 1

(m + a′)/ f

∫ kts+(m+a′)/ f

kts

I0[1 + r cos(2π ft + φ0)]dt

= I0[1 + r ′ cos(2π f kts + ψ)]. (3)

The contrast becomes

r ′ = r sin(πa′)
mπ + πa′ , (4)

and the phase ψ can be written as

ψ = φ0 + πa′. (5)

Let Ick be quantized in gray-level units, then it can be
expressed as

Id = Round

(
Ick

2I0
×2n

)
. (6)

where n is the number of gray-level and Round(x) is a math-
ematical operator to round the number x to an integer. Next,
the three-parameter sine fitting algorithm7–9 is used to pro-
cess a series of data Id and obtain an optimal fitted cosine
wave curve. It can be represented by

I f (t) = A0 cos(2π f t) + B0 sin(2π f t) + C0

=
√

A2
0 + B2

0 cos(2π f t + ψ ′) + C0, (7)
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Fig. 1 The interference signals are sampled as (a) a < 1/ f and (b) a > 1/ f.

where ψ ′ is the phase of the fitted wave; A0, B0, and C0 are
real numbers, and they can be obtained with the Fourier sine
and cosine transforms under the condition If (t) is specified.
Thus, we have

A0 = 2 f
∫ 1/ f

0
I f (t) cos(2π f t)dt, (8a)

B0 = 2 f
∫ 1/ f

0
I f (t) sin(2π f t)dt, (8b)

and

ψ ′ = tan−1

(
− A0

B0

)
. (9)

According to Eq. (5), it can be seen that ψ ′ includes a
phase drift term πa′. This term can be obtained under the ex-
perimental condition in which a′ is specified. Consequently,

the measured phase and its sampling error can be expressed
as

φs = ψ ′ − πa′, (10)

and

�φ = φs − φ0, (11)

respectively. If we apply the measurement processes repeat-
edly to every pixel, then its associated phase and sampling
error can be obtained.

3 Numerical Calculations
From Eq. (4), we know that the contrast of the interference
signal decreases after sampling. Although the low contrast
interference signal can also be processed to obtain its asso-
ciated phase, its resolution becomes worse because only the
limited number of the gray-level is effective. To obtain the
high contrast interference signal, the relation curves between
r ′/r and a′ at different m can be calculated and depicted in

Optical Engineering April 2011/Vol. 50(4)045601-2

Downloaded From: http://opticalengineering.spiedigitallibrary.org/ on 04/24/2014 Terms of Use: http://spiedl.org/terms



Hsieh et al.: Optimal sampling conditions for a commonly used charge-coupled device camera. . .

Fig. 2 The relation curves between r ′/r and a′ at different m.

Fig. 2. It can be seen that r ′/r becomes maximum under
the conditions m = 1 and a′ ∼= 0.43. Consequently, we have
fs

∼= 5 f/14. On the other hand, the phase error �φ can be
reduced by increasing the number N of sampled points. We
define u = fsa, which means the ratio of the frame exposure
time to the frame period. The relation curves between �φ and
N for a commonly used CCD digital camera with u = 0.5 and
n = 8 bit are calculated under the condition fs

∼= 5 f/14 at
φ0 = 0 deg, 20 deg, 40 deg, 60 deg, and 80 deg, respectively,
and depicted in Fig. 3. It can be seen that �φ is reduced to
0.05 deg when N ≥ 120. Therefore, we can conclude that a
commonly used CCD camera can be applied to the full-field
heterodyne interferometry with good results under these two
conditions⎧⎨
⎩

fs = 5

14
f ;

N ≥ 120.

(12)

4 Discussions
To avoid the affection of the environmental vibration on the
interference signal, the heterodyne frequency should not be

Fig. 3 The relation curves between �φ and N at different φ0.

too low and it is better to be larger than 50 Hz.10, 11 For a
commonly used CCD digital camera with fs = 30 Hz, we
have f = 84 Hz from Eq. (12). Consequently, the environ-
mental vibration has almost a negligible effect on interfer-
ence signals. On the other hand, we also derive the condition
fs = 15 f = 1260 Hz as f = 84 Hz according to our previ-
ous work.1 Hence, it needs an expensive high speed camera.
According to our knowledge, its cost is over 10 times that of a
commonly used CCD digital camera.12 Besides, they need at
least 15 and 120 frames in our previous work and in this case,
respectively, to obtain the results with the same resolution. If
each frame is recorded with 8 bit gray-levels and 800×600
pixels, then they need about 3 and 26 Mb memory capacities;
0.5 and 6 s processing times for one full-process operation
by using a current personal computer with a 1 Tb hard disk
and a 3 GHz CPU. So it is qualified enough to operate the
increment of data without any additional cost in this case.

5 Conclusion
The processes to derive the associated phase of an inter-
ference signal from the data of a series of recorded frames
have been performed anew. We have found that the sampling
frequency being lower than the Nyquist sampling rate can
also be applied to the full-field heterodyne interferometry.
Based on the relation between the heterodyne frequency and
the contrast of the interference signal, two optimal sampling
conditions written in Eq. (12) for a commonly used CCD
camera with u = 0.5 and n = 8 bit have been proposed un-
der the condition that the phase error is set to be 0.05 deg.
Although it needs more sampled points to obtain the high
resolution results, a current personal computer with a 1 Tb
hard disk and a 3 GHz CPU is qualified enough to perform
the processes quickly.
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