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In a public-key cryptosystem, each user U
has a pair of public key PKy and private key
SKy. Aslong as one possesses the private key
SKy, he/she owns the identity of U and can do
every cryptographic work associated with
SKy. Therefore, it is very important to protect
SKy from leakage. One way of protection of
SKy isto share SKy to n participants such that
anumber of them over a threshold can recover
SKy. Distributed key generation is that all
participants generate their own secret shares
by exchanging messages via open network. In
the previously proposed schemes, due to
real-world limitation and practical
consideration, the number n of participants

cannot be very large. In this project we shall
study the problem of distributed key
generation for the case of large n. Canny and
Sorkin has proposed a DL-based distributed
key generation method for large-scale n. Their
method is quite ingenious and elegant. They
use the random walk technique to analyze the
threshold of the proposed scheme.
Nevertheless, there ae  dill some
disadvantages in their protocol. We hope to
improve the protocol for more flexibility and
better efficiency. Furthermore, we shall study
RSA-based distributed key generation for
large n and implement our proposed protocols.
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Efficient Large-Scale Distributed Key Generation Against
Burst Interruption

Abstract

A distributed key generation system allows the key servers to share a secret key
and then compute the corresponding public key. Canny and Sorkin [CS04] proposed a
probabilistic threshold distributed key generation scheme that is suitable for the case
that the number of key servers is large. The communication cost of their scheme is
much less than that of previous schemes. Nevertheless, it is possible to improve their
scheme in some aspects. In this paper we employ the randomness technique to cope
with the problems encountered by their scheme. Our contribution is twofold.Firstly,
our scheme is secure against a large cluster of dishonest key servers and the DoS attack.
Secondly, its performance is better than theirs in many situations. We support this
point by a series of simulation experiments.

Keywords: security protocols, applied cryptography, distributed key generation, key server.

1 Introduction

The security of a cryptographic scheme usually lies on protecting a secret key. One way
to protect such a key is to distribute it to a set of key servers (players) such that each key
server holds a share of the key. Key sharing not only enhances key protection, but also
provides a robustness property for use of the key. For example, in a threshold key sharing
system, a set of key servers over a threshold number can recover the secret.

A distributed key generation system allows the key servers to share a secret key and
then compute the corresponding public key. In this paper we focus on discrete-logarithm-
based threshold distributed key generation schemes, in which the secret key is « and the
public key is y = ¢* mod p. Almost all threshold distributed key generation schemes use
secret sharing schemes as building blocks. Shamir [Sha79] proposed the first threshold se-
cret sharing scheme based on polynomial interpolation. Feldmen [Fel87] added verification
of secret shares (verifiable secret sharing, VSS) to Shamir’s scheme. Pedersen [Ped91a]
further improved the scheme by making the secret shares unconditional secure.

Based on his verifiable secret sharing scheme, Pedersen [Ped91b] proposed a threshold
distributed key generation scheme, which has most important properties that a threshold
distributed key generation scheme should have. Gennaro et. al. [GJKR99] found that an
adversary can bias the distribution of the secret key by a subtle maneuvering in previ-
ously proposed threshold distributed key generation schemes. They then gave a formal
definition and proposed a secure scheme. Chu and Tzeng [CT02] further pointed out that
dishonest key servers should not obtain valid key shares to avoid abused use. Canny and
Sorkin [CS04] proposed a probabilistic threshold distributed key generation scheme that is



suitable for the case that the number n of involved key servers is large, say, in the level
of hundreds or thousands. The main merit of their scheme is that the total number of
communications between key servers is greatly reduced from O(n?) to O(nl/e?), where I
and e are security and robustness parameters, respectively.

Canny and Sorkin’s method is quite clever. Nevertheless, it is possible to improve their
scheme in some aspects. Firstly, since the arrangement of key servers is very regular, the
scheme is vulnerable to a large cluster of dishonest key servers!. Inferring from this, if the
DoS attack occurs to block a cluster of honest key servers from connecting to Internet,
the execution of the scheme would fail. Secondly, it needs a dealer not only to generate
the evaluation matrix, but also to assign labels to the key servers.

In this paper we employ the randomness technique to cope with the problems encoun-
tered by Canny and Sorkin’s scheme. We assign non-zero values to random entries, while
Canny and Sorkin’s scheme assigns non-zero values to fixed entries. Our contribution is
twofold. Firstly, our scheme is secure against a large cluster of dishonest key servers and
the DoS attack. Secondly, its performance is better than Canny and Sorkin’s method in
many situations. We support this point by a series of simulation experiments.

2 Preliminary

Let p = 2q + 1 be a large prime, say, of 2048-bit length, where ¢ is also prime. Let G, be
the subgroup of quadratic residues in Z; and g and h be generators of G,. Hereafter, the
operations used in exponents of g and h are over Z,. Assume that there are n key servers
and the threshold is ¢. A bold character is either a matrix, like E, or a vector, like aj,

A probabilistic threshold distribution key generation (PTDKG) scheme consists of
three stages: setup, key share establishment and secret key recovery. A PTDKG scheme
should satisfy the following conditions.

Definition 1. An («, 3,0)-PTDKG scheme should satisfy the following conditions:
C1. The shares of any subset of key servers define the same secret key x, or not at all.

C2. Any subset of Bn key servers can recover the secret key x with probability 1 — 6 at
least.

C3. The secret key x is uniformly distributed in Z,.

S1. Any adversary who controls probabilistically up to an key servers cannot get any
information about the secret key x except the information computed from the public
key y directly.

In condition S1, we assume that the adversary probabilistically selects a fraction «
of key servers to control. Otherwise, it is not possible to reduce the communication cost
under suitable parameters. To see this, if each key server U; communicates with r key
servers, o must be less than r/n, which is very small for » = O(logn). Otherwise, the
adversary who controls those r key servers can get the information of the key server Uj.
Note that although in Canny and Sorkin definition, the adversary is defined as to control

1Stated in the paper, ”any large cluster of dishonest players leaves part of the private key vulnerable.”



an arbitrary fraction « of all key servers, it is indeed required to control a probabilistic
fraction of all key servers. Otherwise, the a of their scheme should be = = O(logn/n),
not 1+ —e.

The flaw of Canny and Sorkin’s analysis is that « is set as the fraction of r/|Q;|.
However, it should be the fraction of r/n. For details, please see Section 4.4 of [CS04].

2.1 Previous approaches

In a distributed key generation scheme based on Shamir’s secret sharing scheme, each key
server U; runs a key sharing scheme to share its chosen secret a; to others key servers. We
shall use the matrix representation to show the key sharing method. The operations are
over Z,. Let the evaluation matriz be

1 2 - n
E=
T B

Each key server U; chooses a random ¢-dimensional vector
ai=[apn a2 - aig .

Let
aiE =s; = [ Si1 Si2 ttt Sin ]

The key server U; sends s; ; to the key server Uj, 1 < j <n. Let H C {1,2,...,n} be the
set of honest key servers after the key share establishment stage. The established secret

key is © = 3,y ai 0. We have
(Z ai)E = Z Si.
i€H i€eH
Each key server U; in H gets its key share x; = Y,y si; of the secret © =Y, a; 0.
For A C {1,2,...,n}, let E# be the matrix with columns restricted to A. In the key
recovery stage, a set T of key servers from H can recover the secret z if and only if ET

has the full rank, i.e., rank(E”) = t. We can solve x by selecting ¢ independent columns
E” from ET, T C T, and compute

Yoa=0 s E) (1)
icH icH

Since any t rows of E form a Vandermonde matrix, these rows are independent. There-
fore, any t key servers can recover the secret x, which is the first entry of >, ;; a;. Any
set of less than ¢ key servers cannot compute the secret key x. Thus, the above defines a
(&1, L 0)-PTDKG scheme.

One disadvantage of the above method is that each key server U; has to communicate
with each other key server. The total number of communications between the key servers
is O(n?), which shall entail heavy network overhead when n is large.

Distributed key generation schemes based on Feldman’s and Pedersen’s verifiable se-
cret sharing schemes are similar except that the received shares of each key server are
verifiable [Fel87, Ped91b].



2.2 Canny and Sorkin’s approach

The idea of Canny and Sorkin to reduce the communication cost is to make s; very sparse.
For a zero entry s; ;, the key server U; need not send s;; to the key server U;. By this,
the communication cost from U; to Uj is saved. If s; is very sparse, the communication
cost from Uj; to other key servers U; is much reduced.

Let E be a t x n-dimensional evaluation matrix with a band of non-zero entries as
follows, where x means a random number in Z,, which is non-zero with probability almost
1:

*x x  »~ 000 --- 0 0O
0 0 x x x %« 0 -+ 000
0 00 0 « « % - 000
E= Doonon : oo
0o oo0o00O0OO0O:-- 000
O 00O0O0O0OO0O:- % 00
|00 00O 0O -+ % % % |

Let [ be the width of the band and f be the offset of the band between two consecutive
rows. For example, the above band matrix has [ = 4 and f = 2. In the scheme, a dealer
chooses E and publishes it. Each key sever U; chooses a t-dimensional block vector

ai:[o o 0 @ aijy1 v Gijyk—1 0 e ()}

where j is a pre-determined index and k is the block width. The vector s; = a;E has only
(k —1)f + [ non-zero entries. The key server U; need send non-zero share s; ; to the key
servers U;. With fixed ¢ and n, we can make (k — 1) f + [ small by tuning parameters k,
and f.

Canny and Sorkin’s PTDKG (called CS-PTDKG hereafter) scheme is (% —€, % +¢€,0),
for some small € and §, 0 < €, < 1. Overall, their method needs n((k — 1)f + 1))
node-to-node communications, while most previous methods need n(n — 1) node-to-node
communications. They suggest that [ = O(logn) and k = [/(2¢?). This saves quite a lot
of communications between key servers overall when n is large.

Though the idea of saving communication costs is quite clever, their method has some
disadvantages:

1. The arrangement of the evaluation matrix and key servers is very regular. It is
vulnerable to a large cluster of dishonest key servers and to the DoS attack, which
can attack routers and cause a larger cluster of key servers out of connecting to the
Internet.

2. The dealer not only generates the evaluation matrix, but also assigns labels to the key
servers. Since the number of key severs is large and the key servers are distributed,
the task of assigning labels to key server is not practical in some situations.

3 Our construction

In Canny and Sorkin’s method, E and a; is very regular and this regularity makes the
system vulnerable to burst interruption. We employ the randomness technique to cope



with the problems. We choose E and a; randomly such that it is more robust against
burst interruption.

For each row of E, we randomly choose [ entries and assign random values in Z; to
them. Each key server U; randomly chooses k entries of a; and assigns random values in
Z, to them. We see that s; = a;E has about kl non-zero entries. Although the number of
non-zero entries is more than (k — 1)f +{ in Canny and Sorkin’s method if k£ and [ are
the same. We show that our system needs smaller k& and [ to achieve the same level of
robustness in simulation.

Before presenting our method, we need to discuss some theoretical problems concern-
ing the feasibility of our construction. We consider E as the matrix representation of a
bipartite graph G = (U, V, E), where U denotes the set of the vertices in rows and V
denotes the set of the vertices in columns. Thus, |[U| =t and |V'| = n. The bipartite graph
G = (U,V, E) is left [-regular since every vertex u € U has degree . We consider simple
bipartite graphs (no self-loops and multi-edges).

The property of the full rank of E is related to perfect matching from U to V of G,
|U| < |V|. Assume that M C E is a perfect matching from U to V, that is, |[M| =t and
all vertices of the edges in M are distinct. We can use the matching edge (u,v) € M as
the pivot entry (u,v) of E to eliminate non-zero entries in column v. Furthermore, since
the values in non-zero entries are randomly selected from a very large set Z,, it is very
unlikely that the elimination process by a pivot would cause another pivot to be zero.
Therefore, the ¢ columns v’s of E are independent, (u,v) € M. We would say that E has
the full rank t if and only if G has a perfect matching from U to V. The criteria for a
bipartite graph to have a perfect matching is known as Hall’s lemma.

Lemma 1 (Hall). A bipartite graph G = (U,V, E) has a perfect matching from U to V
if and only if for every subset S C U, |T'(S)| > |S|, where I'(S) is the set of S’s neighbor
vertices i V.

We show that the probability that a random left [-regular bipartite graph has a perfect
matching is close to 1.

Theorem 1. For appropriate positive integers j,t,l and n such that, for 3 < j <t,

i =1
t—j+1)(n—-7+2)

j—2

G- " NS
) 2

The probability that a random left l-reqular bipartite graph G = (U,V,E) has a perfect

matching is 1 — %(%)21_1 at least , where [U| =t, |V| =n and t < n.

Proof. We compute the probability that the condition in Hall’s lemma is not satisfied. For
a subset S C U of j vertices and a subset T' C V of j — 1 vertices, the probability that all
edges from S hit into the set T' is .

J 7 2yt

(= =)
The probability that there is a subset S C U of j vertices whose edges hit within a subset
of fewer than j vertices of V is at most

pj:(§><j21><j;1)jl'




Since, for 3 < j <,

Pj-1 JjG—1) (j - 2)(]’—1)1(L

l>1
PR (R ) )

jtil i

the probability that a left [-regular random bipartite graph does not satisfy Hall’s lemma
is at most .
tt—172% 1.5, 3 1.4
Sop - Up = (P < D)2,
j=2

n 2°'n
Thus, the theorem holds. ]

We notice that the probability can be made arbitrarily small even with rather small [
since [ is in the exponent of % and n is large.

Now, we consider the recoverability of the secret key after the key share establishment
stage. After dishonest and unavailable key servers are discarded, a set H of honest key
servers is formed. The secret key is computed from the contribution of the key servers in
H. The key servers in H can recover the secret key if and only if Ef has the full rank
t, as explained in Equation (1). Assume that H is randomly selected from {1,2,...,n}.
The probability that E¥ has the full rank depends on the size of H. We show that as
long as H is not too small, the probability is close to 1. Let V’ (that is, the set H of
honest key servers) be a subset of V' by randomly deleting m vertices from V. Then,
(U, V', E|yuy’) has a perfect matching from U to V' with an overwhelming probability
with proper parameters, where E|yyy is the set of edges incident to vertices in U U V.

Theorem 2. For appropriate positive intgers j,t,l and n such that, for 3 < j <t,

iG-1)
t—j+1)(n—m—j+2)

j—24m
j—14+m

L)d>1'
j—14+m" =

( )=

Let G = (U,V, E) be a left l-reqular random bipartitate graph. After deteting random m
vertices from V', the probability that the remainded bipartite graph has a perfect matching
is1l—(n— m)@(%ﬂ)% at least , where |U| =t, |V|=n and t < n.

Proof. Let V' be the subset of V after deleting m vertices, where |V/| = n’ = n —m.
An edge from a vertex in U that hits a vertex in V' — V'’ makes no contribution to Hall’s
lemma. For a subset S C U of j vertices and T'C V' of j — 1 vertices, the probability that
Hall’'s lemma does not hold on S to T is

( )

Thus, the probability that there is a subset of S C U of j vertices whose edges hit a subset
of fewer than j — 1 vertices in V' or V — V' is at most

n= ()G

Pj-1 Jj(G—1) (j*2+m)(jfl)l( n )l

D) :(t—j+1(n—m—j+2)j—1+m j—1+m

J—1+m
n

Since

> 1,



we have

t
t(t —1)? m+1
ij < (t_l)p2:(2)(”—m)( )%,
, n
7j=2
which is an upper bound for the proability that Hall’s lemma fails. O

3.1 Our distributed key generation scheme

The structure of our scheme is based on Gennaro et. al.’s study on secure distributed
key generation [GJKR99]. It is secure against skewing the secret key distribution by a
malicious key server.

At beginning, a dealer chooses a t X n-dimensional evaluation matrix E and publishes
it in a public bulletin board. Then, each key server randomly chooses a random number
in Z,; and broadcasts it to the other key servers. By the order of these numbers, each
key server gets its label € {1,2,...,n}. Since Z, is a very large set, it is unlikely that a
collision occurs.?

Our distributed key generation scheme is as follows:

Setup:
1. A dealer does:

(a) Select a large prime p = 2q + 1, where ¢ is also prime.

(b) Compute generators g and h of Gy, where G, = {a?|a € Zy} is the subgroup of
quadratic residues of Z;.

(¢) Choose a t x n-dimensional evaluation matrix E, as described in Section 3.

2. All key servers label themselves into {1,2,...,n} by the method described above.
Then, we call these key servers as Uy, Us, ..., U,.

Key share establishment:

1. Each key server U; does the following:

(a) Select two t-dimensional vectors a; and a] which each consists of k non-zero
random entries. The non-zero entries are in the same indexes of a; and ag.

(b) Compute s; = a;E, s! = a{E and the set of his communication key servers Q; =
{flsig # 0V 5L, # 0},
(c) Send s;; and 5;7 ; to key server U; via a secure channel, j € Q.
(d) Broadcast C;; = g% h%. mod p, 1 < j <t, to all the key servers in Q;.
2. Each key server U; does the following:
(a) Check validity of the received shares, for each i, j € Q;,

¢
goin = H Ci}::;’j (mod p). (2)
k=1

2By the birthday paradigm, the probability that an collision occurs is at most (Z) /q. Since n is much
much smaller than g, the probability is almost 0.



If the check fails for ¢, U; broadcasts a complaint against U; to the key servers
in Qj-
(b) If Uj is complained by Uj, it sends s;; and s;Z to the key servers in Q;.
The other key servers in @); check validity of s;; and s;Z by Equation (2).
If U; fails the test, it is marked as "dishonest” by the key servers in Q).

3. Each key server U; builds a set H of honest key servers and sets his key share as

Tj = D icmjeq, Siy mod ¢, which is the jth entry of (3., ai)E. Note that the
secret key is @ = (Y,cpyai) - 1, where T =[11 --- 1].

4. Compute the public key y = ¢* mod p.
(a) Each key server U; € H broadcasts A; = g** mod p, 1 < k < t, to the key
servers in H.
(b) Each key server U; in Q; checks validity of A; j, by verifying whether

t

s i E
g = [[ A% (mod p). (3)
k=1

If the check fails, U; broadcasts a compliant against U; and sends s; ; and Sg,j
to the key servers in Q;.

(c) If U; is ever complained, all the key servers in @); reconstruct a; by solving
si = a;E and compute correct A;, 1 <k <t.

(d) Then, each key server in H computes the public key as
t -
Y= H H A; jmod p = giec @) mod p.
icH j=1

Secret key recovery: Note that in some situations, we don’t need to recover the secret key
x to finish a task. Only each U; computes a partial result from its key share x;.

1. Let T be the set of shown-up key servers in H. If ET is full-ranked, solve Y icH Qi

by the system of equations
SE - Y
i€H i€H

2. The secret key is . = >,y a; - 1.

3.2 Analysis

The correctness and security of our scheme is shown in the following theorem.

Theorem 3. Assume that n,t,j,l, and m satisfy the condition in Theorem 2. The scheme
2

in Section 3.1 is a secure (3 —e,1 — 2, (n — m)@(mT‘H)QZ)—PTDKG scheme for some

small e, 0 < e < 1.



Proof. (Sketch) Correctness follows from the results of Gennaro et. al [GJKR99] almost
in the same way.

The bounds f =1— " and § = (n — m)@(mT‘H)QZ are from Theorem 2 directly.
For a = % — ¢, each ); contains kl key servers at most. Any adversary who controls up
to a fraction « of them contains less than k dishonest key servers in ;. Since there are
k unknown entries in each a;, the adversary who controls less than k key servers in Q;
cannot know the information about a;j.

For the uniform distribution of x over Z;, we construct a simulator for the scheme.

The details are deferred to the full paper. O

4 Experiments and comparison

We first analyze the probability that the full rank is achieved after deleting about a half
of key servers. Recall that [ is the band of E, f is the offset, and ¢ is the number of rows.

For the CS-PTDKG scheme, due to the arrangement of E, the number of rows is fixed
tot=(n—1)/f. On allowing n(1/2 — ¢€) dishonest key servers (say, ¢ = 1/10), Canny and
Sorkin suggests f =2, = 17logn and t = (n — 17logn)/2. Theoretically, the probability
of achieving the full rank is O(n=2).

For our PTDKG scheme, we shall do some simulation experiments to obtain appropri-
ate I’ on the condition that the probability of achieving the full rank is the same as that
of the CS-PTDKG scheme.

We take n = 1000 and delete about m = 500 dishonest key servers randomly. We
consider different offsets (f = 2, f = 3, and f = 4) for the CS-PTDKG scheme. The
results are shown in Figures 1-3. In each figure, the x-axis indicates the probability of
achieving the full rank and the y-axis indicates the number [ of non-zero entries in each row
of E. The probability is computed by randomly sampling 500 key servers as ”dishonest”
many times. We summarize the comparison results in Table 1 on 90% of achieving the
full rank. From the table, we can see that the number I’ of non-zero entries in each row
of our E is much smaller than that (/) of the CS-PTDKG scheme.

Table 1: Comparison of [ with 90% of achieving the full rank. There are n = 1000 key
servers and m=500 of them are dishonest.

t=408 (f=2) |t =318 (f =3) | t = 242 (f = 4)
CS-PTDKG [ =185 | =45 =33
Ours =14 '=11 =38

5 Discussion

Our scheme and the CS-PTDKG scheme have different security parameters. For ours,
o= ll, —ecand 8 =1—". For the CS-PTDKG scheme o = % —cand 8 = % + €. These
two set of parameters can be used for different situations. For example, if the number of
dishonest key server is relatively small (about one in I’ key servers), our scheme is suitable.
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Figure 1: Probability of achieving the full rank for different [, when f = 2

Since we are talking about a large number of key servers, a small percent of dishonest key
servers is very likely. Our (3 is adjustable under some constraints. If larger g is desirable,
our scheme provides such choice.

The communication cost of our scheme is k'l and that of the CS-TPDKG scheme is
(k—1)f + 1. If we want our scheme to have the same communication cost as that of the
CS-PTDKG scheme, we set k' = W, the number of non-zero entries in each a; of
our scheme. Note that &' (and k = # for f=2 in the CS-PTDKG scheme) affects only
the communication cost, not security of the scheme.
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