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Abstract 

In this report, we employed the rigorous mode-matching method to carry out the 

calculation for the scattering characteristics of a two-dimensionally periodic structure 

made up of metallic rectangular cylinders.  From the scattering characteristics, the 

interesting phenomenon of an anomalous dispersion was observed to possess negative 

group velocities.  In order to understand the underlying physics involved, we begin 

with the investigation of the band structure associated with the corresponding 

structure of infinite extent; thereby, the band structures are classified into two types: 

vertical stop-band that is due to mainly the effect of periodicity in a single direction 

and slanted stop-band that is due to the combined effect of periodicities in two 

directions.  Notably, the negative group velocity (delay) within the slanted stop-band 

of a 2-D periodic structure was directly related to the experimentally measurable 

scattering characteristics of the finite structure.  
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1. Introduction 

The class of periodic structures has been a subject of continuing interest in the 

literature.  The main effort in the past had been on the scattering and guiding of 

waves by one-dimensionally periodic structures [Rotman, 1951; Elliott, 1954].  

Recently, considerable attention has been focused on the study of wave phenomena 

associated with two-dimensional (2-D) ones, particularly in conjunction with the 

properties of photonic band gap.  Since the wave propagation is forbidden in the 

stop-band, this allows us to mold the power flow or to inhibit spontaneous emission.  

Consequently, many novel dielectric (optical) waveguides or cavities were developed 

by using the photonic band-gap material.  For example, the waveguide with 2-D 

periodic structures as its walls was designed to make the waves bounce back and forth 

around the channel [Mekis, Fan, and Joannopoulos, 1999; Hwang and Peng, 2003]. 

In addition to the properties of strong reflection in the stop-band, the anomalous 

refraction, such as ultra-refraction (or negative refraction) was found to exist in such a 

class of 2-D periodic structures; especially in the vicinity of the band-edge [Enoch, 

Tayeb and Gralak, 2003; Boris, Enoch, and Tayeb, 2000; Notomi, 2000].  Many 

researchers took advantages of these properties to design lenses with a very short 

focal length or to confine emission in a narrow lobe [Boris, Enoch, and Tayeb, 2000].  

It is noted that the previous research works were made under the condition that the 

spatial periods of the photonic band-gap materials are of the order of operation 

wavelength. 

In addition to the behavior of wave reflection in stop band associated with a photonic 

band-gap structure, the negative and infinite group velocities were experimentally 

observed in bulk hexagonal two-dimensional photonic band-gap crystals within 

band-gap in the microwave region [Solli, McCormick, Chiao, and Hickmann, 2003].  

Based on their experimental studies, they found that the crystal exhibits anomalous 

dispersion within the band-gap, passing through zero dispersion at the band edges.  

Besides, the negative phase and group velocities, along with positive group and 

negative phase velocities (i.e. backward waves), were theoretically investigated by 

using a simple model to characterize the property of negative refractive index (NRI) 

of a meta-material [Mojahedi, Malloy, Eleftheriades, Woodley, and Chiao, 2003].  

Recently, the same group had extended the work to design a medium; which not only 

possesses NRI properties, but also exhibits the NGV (negative group velocities).  In 
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their invention, a resonant circuit is embedded within each loaded transmission line 

unit cell, resulting in a region of anomalous dispersion for which the group delay is 

negative [ Siddiqui, Mojahedi, and Eleftheriades, 2003].   

In our recent publication [Hwang, 2004], we have investigated the relationship 

between the scattering characteristic and the band structure of a two-dimensionally 

electromagnetic crystal containing metal and dielectric medium.  Therein, we have 

demonstrated the relationship between the transmission spectrum and the band 

structure of a 2-D periodic structure.  Specifically, two types of stop-band were 

clearly identified: one is referred to as the vertical type and the other as the slanted 

type.  The former consists of the commonly known stop-bands that are due to the 

effect of one dimensional periodicity; thus, each vertical stop-band has a constant 

phase over the entire stop-band.  On the other hand, the later consists of the 

stop-bands that are slanted at an angle on the ko-β diagram (a part of the standard 

Brillouin diagram) and that are attributed to the combined effect of the periodicities in 

two dimensions.  Notably, the 1-D periodic structure can also support the slanted 

stop-band.  The dispersion analysis of the shielded Sievenpiper structure [Elek, and 

Eleftheriades, 2004] has been proved to support the slanted stop-band, caused by the 

contra-directional coupling between the fundamental backward-wave harmonic and 

an underlying forward parallel-plate mode.  

In this report, we present a thorough investigation on a 2-D periodic structure that is 

composed of rectangular metallic cylinders immersed in a uniform medium.  Since 

the shape of the metallic cylinders considered here is rectangular and the material is 

assumed to be perfect electric conductor, the electric fields inside the metal cylinder 

are zero and those outside the metal region are expressed in terms of the superposition 

of waveguide modes (parallel-plate waveguide modes).  These waveguide modes 

inherently satisfy the electromagnetic boundary condition; therefore, this could speed 

up the numerical convergence for the tangential electric and magnetic fields.  

Besides, in the numerical computation, all the mathematical procedures resort to the 

matrix operation; the dimensions of these matrices are proportional to the number of 

space harmonics (waveguide modes) truncated.  Thus, the speed of computation and 

required memory space directly relate to the number of space harmonics.  To ensure 

the accuracy of numerical results, we have carried out convergence test for both the 

scattering and dispersion analyses against the number of space harmonics (or 
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waveguide modes).  We found that a small number of space harmonics are needed to 

achieve the power conservation criterion. 

The mode-matching method utilized in this report could have the advantages as 

described previously.  However, for the metallic cylinders with curved profile, such 

as circular ones, the present method remains to be improved.  Although the staircase 

approximation could be used to partition the curved profile into a stack of rectangular 

layers, this would make the mathematical formulation complicated, and the artificial 

edges caused by the piecewise approximation shall result in extra edge diffraction 

(especially in higher frequency operation).  The method of Green’s function based 

on lattice sums is more suitable for such a kind of problems [Botten, Nicorovici, 

Asatryan, McPhedran, de Sterke, and Robinson, 2000]. 

Concerning the mathematical procedures for this research work, firstly, the scattering 

of a plane wave by a structure of finite thickness was analyzed with a particular 

attention directed to the variation of the group velocity (index) in terms of the phase 

angle of the transmittance spectrum.  Then, we calculated the dispersion 

characteristics of the same structure of infinite in extent, including the phase-constant 

(real part) and attenuation-constant (imaginary part), as plotted in the form of the ko-β 

diagram.  By comparison between the scattering and dispersion characteristics, we 

have observed the negative group delay to exist in the region of slanted stop-bands, 

but not in the vertical ones. 

This report is organized as follows.  In the following section, we first introduce the 

structure configuration and incident conditions for the 2-D periodic structure under 

consideration.  In the ensuing section, we outline the mathematical formulations to 

resolve such a 2-D boundary-value problem.  The method of mode-matching and the 

Floquet solutions were employed to transform the electromagnetic field problem into 

a representation of transmission line network.  Moreover, the generalized scattering 

matrix representation and the Bloch condition were utilized to obtain a generalized 

eigen-value problem for determining the dispersion relation of waves propagating in 

such an infinite 2-D periodic medium.  On the other hand, the scattering 

characteristic, including the reflectance and transmittance of each space harmonic, 

were also calculated.  In the fourth section, we carried out numerous numerical 

calculations on the group delay via the transmittance of plane wave at an oblique 
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incidence.  Moreover, the dispersion relation of a 2-D periodic medium was 

calculated and demonstrated to verify the negative group velocity in the slanted 

stop-band region.  In the final section, we conclude this report by making some 

remarks. 

 

 

Figure 1: Structure configuration of a 2-D periodic structure made up of a stack of 

1-D periodic layers; (a) 2-D periodic structure and (b) 1-D periodic layer 

2. Description of this problem 

The structure under consideration is a 2-D periodic structure with finite thickness.  

As shown in figure 1(a), the rectangular metal rods are immersed in a dielectric host 

medium.  The array of rods repeats themselves infinitely in the x-direction but is 
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finite in the y-direction.  Such a structure is assumed to be uniform along the 

z-direction, and can be regarded as a finite stack of 1-D metallic periodic layer, each 

consisting of metallic rods placed periodically along the x-direction.  The metal rods 

are taken as perfect electric conductors (PEC).  We highlight the unit cell of the 

structure and specified its geometrical parameters, as shown in figure 1(b).  The 

width and thickness of the metal rods are w and h, while the periods along x and y 

directions are a and b, respectively.  The relative dielectric constant of the host 

medium is rε .  Assuming that a plane wave is obliquely incident from the air region 

and has no field variation along the z direction; we have a scalar boundary-value 

problem that can always be formulated in terms of the TE or TM waves, separately. 

3. Method of Analysis 

The mathematical analysis for such a kind of problems was developed by many 

researchers; for example, the numerical method containing the finite-difference 

method [Maystre, 1994], the finite-difference time-domain method [Mekis, Fan and 

Joannopoulos, 1999], and the eigen-mode method [Noponen and Turunen, 1994], 

were employed to carry out the calculation for the scattering or guiding characteristics 

of the photonic crystals (or 2-D periodic structures) of finite thickness.  As to the 

analytical formulation, the Green’s function based on lattice sums was employed to 

calculate the scattering characteristics of 2-D photonic crystals, consisting of an array 

of circular metallic cylinders of infinite extent [Botten, Nicorovici, Asatryan, 

McPhedran, de Sterke, and Robinson, 2000].  In this report, we utilized the rigorous 

mode-matching method and the Floquet solutions to formulate such a 2-D 

boundary-value problem [Elliott, 1954 and Hwang, 2004].  The outline for the 

analysis procedure will be illustrated in the next paragraph.  

Since the metal cylinders arrays are taken as PECs, the electromagnetic fields exist 

only in the regions between two neighboring rods and can be expanded in terms of the 

parallel-plate waveguide (ppwg) modes, which explicitly satisfy the boundary 

conditions on its surfaces.  On the other hand, those in the uniform region are 

expanded in terms of space harmonics, each propagating as a plane wave.  After 

imposing the continuity condition on the tangential field components across the 

interface between 1-D periodic and uniform layers, we can obtain an input-output 

relation in the form of the scattering matrix for the 1-D grating.  The result so 
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obtained for a single layer can then be cascaded for the analysis of both the scattering 

characteristics of the finite stack of 1D metal gratings and the band structure of 2-D 

periodic medium.  For instance, the scattering characteristics of the finite stack of 

1-D metal periodic layers can be determined by successively using the well-known 

combination rule for each scattering matrix.  For the band structure calculations, one 

can apply the Bloch condition (periodic boundary condition) along the y-direction to 

establish the relationship of the wave amplitudes at the two (input and output) 

interfaces of the unit cell to form a generalized eigenvalue problem.  Each 

eigen-value, in general, represents a complex propagation constant of the wave 

propagating in the medium, with the real and imaginary parts standing for the phase 

and attenuation constants along the y-direction.  Upon determining the eigen-values, 

the corresponding eigen-vector can be obtained; and thus the field profile in the 

structure was totally resolved.  Since the detail mathematical formulation was well 

developed in the literature, in the next section, we only listed some important 

equations for easy reference. 

A. Scattering Matrix for a 1-D Metal Periodic Layer 

Referring to figure 1(b), a 1-D metal grating of finite thickness is connected to 

uniform medium with the relative dielectric constant rε .  The region between two 

metal rods can be regarded as a ppwg.  The tangential electric and magnetic fields 

inside this region can be expressed in terms of the superposition of the ppwg modes, 

defined below: 
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In the expressions above, the functions )(yv n  and )( yi n  are the modal voltage and 

current of the nth ppwg mode and they satisfy the transmission-line equations: 
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where Zn (Y n )  is the characteristic impedance (admittance) of the nth waveguide 

mode propagating along the y-direction in the ppwg region. 

On the other hand, the field in the uniform region (between two adjacent 1-D metal 

periodic layers) can be expressed as the superposition of the complete set of space 

harmonics, each appearing as a plane wave, given by: 
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Likewise, the functions  and  are the modal voltage and current of the 

nth space harmonic, and they satisfy the transmission line equations: 
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where Zn(Yn) is the characteristic impedance (admittance) of the nth space harmonic 

propagating along the y-direction in uniform region. 

Based on the electromagnetic boundary conditions, the tangential electric and 

magnetic field must be continuous across the step discontinuities.  After matching 

the tangential field components at the interface by using the overlap integral between 

the eigen-functions in the uniform and ppwg regions, we obtain a coupling matrix 

which defines the relationship between the eigen modes in respective regions, and 

what follow is the scattering matrix defined at that interface.  As shown in figure 

1(b), we take nth 1-D periodic layer as an example to illustrate.  Since each 1-D 

periodic layer contains two step discontinuities and a finite length uniform 

transmission line in the parallel-plate region, the scattering matrix of the 1-D periodic 

layer is obtained by cascading these three scattering matrices, yielding: 

 ⎟⎟
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Where scattering matrix S(n) is a full matrix whose elements are dependent on the 

structure parameters as well as the incident conditions.  u(i) and d(i) denote the 

upward and downward propagating waves, respectively. 

B. Scattering Characteristics of a Finite 2-D Periodic Structure 

As described above, the 2-D periodic structure is considered as the finite stack of 1-D 

periodic layers.  Namely, if the input-output relation of the 1-D periodic layer is 

determined, the scattering characteristic of the 2-D periodic structure is the cascade of 

those 1-D ones.  This is the so-called building block approach, which was commonly 
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used in microwave engineering.  This approach possesses the advantage that we can 

merely replace the input-output relation the 1-D periodic layer without reformulating 

the whole problem when one of the 1-D periodic layer changes its structure 

parameters.  Thus, we can synthesize an arbitrary composite structure, containing 

various lattice patterns but with the same period along the x-direction, without any 

difficulty.   

We assume that the 2-D periodic structure contains N 1-D periodic layers.  The 

scattering matrix for each 1-D periodic layer is denoted as , where the index k is 

running from 1 to N.  The dimension of each matrix is M by M, where M is the 

number of truncated space harmonics (or number of parallel-plate waveguide modes).  

Notice that the 1-D periodic structures under consideration here may have different 

configurations and structural parameters, but they must have the same period in the 

x-direction.  In any case, the whole scattering matrix of a structure can be obtained 

by using the combination rule of scattering matrices (defined as 

kS

⊗ ), which is well 

known in microwave engineering [Hall, Mittra and Mitzner, 1988]. 

 Nk SSSSSS ⊗⊗⊗⊗= ......321  (6) 

The scattering matrix defined above relates the upward and downward propagating 

waves at the input surface  and output surface iyy = oyy = , given below: 
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Assuming that a plane wave is incident onto the input surface and no plane wave 

incoming from the output region, we have: d(yo) = 0, and then the transmission and 

reflection responses are given by: 

 u(yo) = S12u(yi)  (8) 

 d(yi) = S22u(yi)  (9) 

where u(yi)  is the voltage vector of incident plane wave, d(yi) and u(yo) are the 

reflected and transmitted voltage vectors, respectively. 
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C. Dispersion Relation of Wave Propagating in the 2-D Periodic Medium 

In addition to the scattering characteristics for a finite thickness 2-D periodic structure, 

in this section, we would like to investigate the dispersion relation of the waves 

propagating in a 2-D periodic medium.  According to Bloch’s condition, a wave 

traveling through a period b, as shown in figure 1(b), experiences a phase difference 

( λ ), that is: 

 )()1( nn uu λ=+  (10a) 

 )()1( nn dd λ=+  (10b) 

By substituting (10a and 10b) into (7), we obtain the following matrix equation:  
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Equation (11) is a generalized eigenvalue problem with the form xBxA λ= , which 

can be solved immediately by conventional numerical packages.  Such an eigenvalue 

problem may be cast into a system of linear homogeneous equations, and the 

condition for the existence of non-trivial solution requires the vanishing in the 

determinant of the coefficient matrix.  This yields the dispersion relation: 

  (12) 0det
2122

1112 =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−

−
SIS

SIS
λ

λλ

Here, the eigenvalue λ represents the phase delay of a wave traveling through a period 

along the y-direction.  It depends on the propagation constant (ky) and the period b as 

well, and can be written as: 

 )exp( bjk y−=λ  (13) 

So far, we have derived the dispersion relation of the waves propagating in such a 

class of 2D periodic medium.  We have the relationship among the three parameters: 

kx, ky and ko, of which any desired parameter may be determined for a given set of the 

other two parameters.  For example, if the incident condition is specified for the 

component of kx under a certain frequency of operation ko, we can determine the value 

of ky by solving the eigenvalue in (11).  With ko fixed, the relationship between kx 
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and ky is referred to as the phase relation; on the other hand, with kx fixed, relationship 

between ko and ky defines as the dispersion relation.  In general, ky is a complex 

number; its real and imaginary parts represent the phase and attenuation constants of 

the wave propagating along the y-direction, respectively.  Similarily, we can also 

have the value of kx for a given incident condition ky, by exchanging the variable x 

with y.  Through the rigorous analysis presented so far, we have derived the phase 

relation as well as dispersion relation of the waves in such a class of 2D periodic PEC 

rods array.  Furthermore, the field distribution can be derived from the eigenvector in 

(11), which defines the mode amplitudes for the upward and downward propagation 

waves.  Moreover, from (11), we can obtain the field distribution inside the uniform 

transmission lines and then the field distribution in each region can be completely 

determined.  

4. Numerical results and discussions 

To prove the accuracy of the present method, we compared our numerical results 

(using Green’s function and lattice sums) with those in literature [Botten, Nicorovici, 

Asatryan, McPhedran, de Sterke and Robinson, 2000], as shown in figure 2.  The 

structure under consideration is a square array consisting of 7 metal gratings; the array 

constant is 6 mm and the radius of circular cylinder is 0.75mm.  Since the metallic 

rods are in the shape of circular cylinder in that report and our method is based on the 

rectangular shape of the metal rods, we take a square rod with the same area with that 

of the circular one that is, w = h = πr , where r is the radius of the circular cylinder.  

We found that the results agree well even for the ripples of the curve.  Note that in 

the stop band regions, the results differ a little.  This may be due to the edge effect of 

the rectangular rod in the high frequency range and then the stop band behavior is 

more significant than that of the circular one. 
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Figure 2: Comparison of the transmittance efficiency of a 2-D periodic structure 

containing metal rods array among the experimental and numerical results [after L. C. 

Bottom and et al.], and our numerical results using mode-matching method 

In the following numerical examples, we calculate the scattering of plane waves by a 

two-dimensionally metallic cylinder arrays.  Hereafter, we have normalized all the 

dimensions to the period a along the x-direction.  The width of the square cylinder is 

assumed to be 0.25a.  The number of periods along the y-direction is 10.   

Figure 3(a) depicted the convergence test for the transmitted- and 

reflected-efficiencies against the number of space harmonics employed in the 

numerical analysis.  We changed the number of space harmonics progressively from 

3 to 101 to inspect the variation of transmitted- and reflected-efficiencies (powers).  

The incident angle was assumed to be θinc = 20o.   The operation normalized 

frequency was a/λ=0.9.  In this calculation, the incident power was normalized to 

unity for easily checking the power conservation criterion.  The incident power must 

be equal to the sum of the transmitted- and reflected-powers (power conservation), 

since the metal cylinders were assumed to be lossless (perfect electric conductor).  

From this figure, we could observe that the total power (transmitted- plus 

reflected-powers) actually is equal to unity (the error percentage is less than 10-6 %).  

Besides, both the transmitted- and reflected- power converges to certain values as the 
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number of space harmonics is greater 25.   
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Figure 3(a): convergence test for the transmitted- and reflected- efficiencies versus 

number of space harmonics 

Figure 3(b) shows the convergence test for the dispersion relation of the 2-D periodic 

medium against the number of space harmonics (modes in parallel-plate region) 

employed in the numerical calculation.  The incident angle was assumed to be θinc = 

20o.  To demonstrate the flexibility of the dispersion-roots searching, the normalized 

frequency was designated as a/λ=0.75, which corresponds to the complex roots in the 

stop band region.  We changed the number of space harmonics progressively from 3 

to 101 to inspect the variation of the dispersion roots (ky = βy-αy).  From this figure, 

it is obviously to observe that the dispersion roots converge to certain values as the 

number of space harmonics is greater than 40. 
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Figure 3(b): convergence test for the dispersion roots of the wave propagations in a 

2-D periodic medium versus number of space harmonics 

Prior to demonstrate the numerical results concerning negative group velocity, we 

define some parameters frequently used in the ensuing numerical examples as follows.  

When we neglect the end effect due to the two interfaces at the input and output ports, 

the phase constant of the wave propagating in a 2-D periodic structure is 

approximated by φ = -βL, where φ is the phase angle in radians, β is the phase 

constant and L is the total length where the wave propagates through.  Thus, the 

phase velocity could be written as: vp = ω/β = -Lω/φ.  On the other hand, the group 

index ng is defined as the ratio of C to group velocity vg, where C is the speed of light 

propagating in vacuum.  Moreover, the relation between the group index and phase 

angle is written as:
o

g dk
d

L
n φ1

−= . 
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Figure 4: Variation of the transmittance and the group index for the finite 2-D periodic 

structure; TM polarization and θinc = 20o. 

Figure 4 shows the transmittance spectra of the tangential electric field component of 

the fundamental space harmonic n = 0.  The amplitude and group index are shown 

with respect to the vertical axes in the right-hand and left-hand sides, respectively.  

From this figure, we found that there are two strong reflections, denoted by A and B, 

which are due to the stop bands in the two-dimensionally periodic structure.  In the 

second stop band, apparently, there is a stronger reflection than that of the first one.  

Therefore, we know that the second stop band has a stronger attenuation constant than 

the former one.  It is interesting to note that the two stop bands have similar 

responses in amplitude distribution; nevertheless, they have the distinct responses in 

the group index.  For instance, in the first stop-band region, the group index is 

smaller than unity.  It means that the group velocity is superluminal.  Besides, in the 

second stop-band, the group index is negative, which contradicts the first one.  

Therefore, we may conjecture that there definitely exist some unique physical insights 

behind the second stop-band.  In order to explore the basic physical mechanism for 

such an anomalous phenomenon, in the next section, we will employ the dispersion 

relation of wave propagation in a two-dimensionally periodic medium to interpret the 

underlying physics.   

Based on the previous studies [Hwang, 2004], the scattering characteristics of a 
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two-dimensionally periodic structure with finite thickness can be predicted by the 

dispersion relation of the same structure but with infinite extent (2-D periodic 

medium).  Before calculating the rigorous dispersion curves of the 2-D periodic 

medium, we first consider a small perturbation problem; that is, the periodic 

variations along the x- and y-directions tend to zero.  Under this assumption, we can 

have a simple equation to approximate the dispersion relation of the space harmonics 

in the x-and y-directions, which is given as: 

 effoyx k
a

nk
a

mk εππ 222 )2()2( ≈+++  (14) 

Where kx and ky are the propagation constants along the x- and y-directions, 

respectively.  The index m and n, ranging from negative to positive infinity, are the 

space harmonic along the x- and y-directions.  The parameter effε  is the effective 

dielectric constant of the medium.  Figure 5 depicts the dispersion curves for the 

small perturbation approximation obtained by (14).  In this example, the propagation 

constant along the x-direction is set to be kx=kosin20o.  The horizontal axis represents 

the phase (right-hand side) and attenuation (left-hand side) constants along the 

y-direction, respectively, while the vertical axis denotes the normalized frequency a/λ.  

The index pair attached to each curve shows the order of space harmonic; the first one 

is for the x-direction, and the second one is for the y-direction, respectively.  For 

example, the two straight lines denoted by (m = 0, n = 0) and (m = 0, n = -1) represent 

the curves contributed by the 1-D periodic structure along the y-direction only.  On 

the contrary, the other two hyperbolic curves denoted by (m = -1, n = 0) and (m = -1, n 

= -1) attribute to the periods in both the x- and y-directions.  On the basis of 

coupled-mode theory, the intersection of two dispersion curves stands for the phase 

matching between two waves.  The contra-flow or co-flow coupling occurs in the 

vicinity of intersection points.  In this example, the intersection points marked by 

circles and arranged in alphabetical order are mainly due to the contra-flow coupling 

between two space harmonics.  Through such a small perturbation analysis, it could 

provide us a basic understanding for the possible physical consequence involved in a 

2-D periodic structure. 
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Figure 5: unperturbed dispersion curves for the 2-D periodic medium 

Through the numerical computation, we could obtain the exact dispersion relation of 

wave propagation in a 2-D periodic medium.  The distribution for the propagation 

constant, including the phase (β) and attenuation (α) constants, against frequency is 

plotted in figure 4.  Besides, the transmittance spectra for the tangential electric field 

component of the fundamental space harmonic (n = 0) is also plotted for easily 

identifying the locations of stop bands.  Recalling the dispersion curves and 

intersection points in figure 5, one could clearly recognize the stop bands due to the 

contra-flow coupling between space harmonics.  The stop bands, denoted by “A” and 

“C”, are caused by the contra-flow interaction between the space harmonics in the 

y-direction, which are similar to those in a 1-D periodic structure.  On the contrary, 

the stop bands, denoted by “B” and “B′”, are due to the combined effect of the 

periodicities in both the x- and y-directions.  In addition, by tracing the transmission 

spectra, we know that the corresponding dispersion curve, highlighted by the heavy 

line, follows the fundamental space harmonic, (m = 0, n = 0).  Along this dispersion 

curve, it is interesting to note that the stop band, denoted by “B”, is slanted at an angle 

on the ko-β diagram.  Still referring to Fig. 6 we compare the transmission spectrum 

to the dispersion curve and observe that the regions of strong reflection in the 

scattering of plane do coincide with the stop bands of the wave propagation in an 

infinite medium, and the negative group index occurs in the slanted stop band region 
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in which the phase curve has a negative slope.  Consequently, it is evident to 

recognize that in the slanted stop-band region the wave possesses a negative group 

velocity.  In short, through the calculation on the dispersion relation of the waves 

propagating in a 2-D periodic medium, we could prove that the negative group index 

is contributed by the slanted stop-band, which is due to the contra-flow interaction 

between the fundamental space harmonic and the higher-order space harmonic 

contributed by the combined effect in both periodicities.   
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Figure 6: Exact dispersion curves for the 2-D periodic medium and the strength of 

transmittance for the 2-D periodic structure with finite thickness 

On the other hand, we calculated the normalized phase constant by using the phase 

delay angle of the transmittance spectra and presented in figure 7.  The real part of 

the dispersion roots was attached in this figure for easy reference.  The normalized 

phase-constant curve obtained by the scattering analysis follows that one obtained by 

the dispersion analysis of the 2-D periodic medium.  Besides, the group index of the 

transmittance, as shown in dashed line, has also been calculated and plotted in this 

figure.  One can clearly observe that the NGV indeed occurs in the slanted stop-band 

region.  At band edges, the group velocity is zero, so that the group index must be 

infinite.  Since the group index is positive outside the slanted stop band, it must 

undergo a zero or a pole to become negative inside.  While the negative group index 
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does not change sign in the vicinity of vertical stop band, it is therefore expected to be 

positive infinite at the band edges.  On the other hand, observe that the zero group 

velocity occur exactly at the band edges.  Thus, we have provided a verification of 

the negative group velocity by analysis of both the scattering and dispersion 

characteristics of wave propagating in the 2-D periodic medium.  This demonstrates 

what could occur in the case of 2-D periodic structures, but not in the 1-D cases. 
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Figure 7: distribution of the normalized phase constant versus normalized frequency; 

the line in black is obtained from the exact dispersion relation, and gray line is 

obtained from the phase of transmittance spectra. 

Figure 8 depicts the variation of unwrapped phase angle versus normalized frequency 

for various numbers of periods along y direction.  From this figure, it is clearly to 

point out that when the thickness of the 2-D periodic structure increases, the phase 

delay angle (absolute value) increases accordingly.  Based on the approximation in 

phase constant (φ = -βL) as already mentioned, it is easy to recognize that the phase 

constant (and velocity) must be positive (β≈-∆φ⁄∆L).  Returning to figure 7, we may 

conclude that the wave, transmitting through the 2-D periodic structure, has positive 

phase and negative group velocities (anomalous dispersion) within the slanted 

stop-band region, while it has positive phase and group velocities outside the slanted 

stop-band region (forward wave). 
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Figure 8: Unwrapped phase angle versus frequency for various thicknesses of 2-D 

periodic structures 

Figure 9 shows the distribution of the group index against the normalized frequency 

for three different thicknesses of the 2-D periodic structure: the numbers of 1-D 

periodic layers along the y-direction are N=10, 15 and 20, respectively.  We could 

observe, from this figure, that the group delay (in absolute value) increases in 

accordance with the increase in the thickness of the 2-D periodic structure.  

Furthermore, the increase in the number of 1-D periodic layer only strengthens the 

attenuation of the wave in the stop-band region.  It affects insignificantly on the 

bandwidth of the stop-band.  It is the reason why the region with negative group 

delay retains their bandwidth for these three cases. 
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Figure 9: distribution of group index against normalized frequency for various 

thicknesses for the 2-D Periodic structure 

Since the negative group velocity occurs in the vicinity of the slanted stop band, we 

could expect it from the intersection of a straight line and a hyperbolic curve, as 

shown in the unperturbed dispersion curves in figure 5.  In the following figures, the 

unperturbed dispersion curves with various incident angles were calculated to see 

their variations.  We chose 6 cases (incident angle =10o, 15o, 17.5o, 20o, 22.5o and 

25o) to plot their unperturbed dispersion curves, as shown in figure 10(a-f).  From 

these figures, we may conjecture that the slanted stop-band (the frequency range with 

negative group velocity) region moves toward low normalized-frequency as the 

increasing in the incident angle. 
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Figure 10(a)                       Figure 10(b) 

      

          Figure 10(c)                          Figure 10(d) 

      

           Figure 10(e)                        Figure 10(f) 

In addition to the case shown in figure 4, we have also calculated some examples with 

different incident angles to see the variation on the frequency range of negative group 
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velocity.  For easy comparison, the frequency range of negative group velocity 

corresponds to each incident angle was listed in the Table 1.  From this table, we 

could observe that the frequency range with negative group velocity moves toward 

low frequency range as the increasing in the incident angle of plane wave. 

Incident Angle 
(degree) 

Normalized frequency (a/λ)
start 

Normalized frequency (a/λ) 
stop 

0.0 1.1930 1.3340 
10.0 0.8537 0.8612 
15.0 0.7943 0.8270 
17.5 0.7685 0.8124 
20.0 0.7473 0.7989 
22.5 0.7255 0.7877 
25.0 0.7043 0.7756 
35.0 0.6613 0.7348 
45.0 0.6411 0.6786 
55.0 0.6480 0.7545 
65.0 0.6509 0.7950 
75.0 0.6752 0.8410 
85.0 0.6996 0.8671 

 

4. Conclusions 

In this report, we employed the mode-matching method to carry out the scattering 

analysis for a finite 2-D periodic structure, containing metallic cylinders array.  We 

have found that the negative group delay occurs in the slanted stop-band rather than 

the vertical stop-band.  Furthermore, the dispersion relation of waves propagating in 

a 2-D periodic medium was calculated by using the generalized eigen-value method.  

By using the coupled-mode theory, we have established a close correlation between 

the NGV and the slanted stop-band resulted from the combined effect of the 

periodicities both in the x- and y- directions.  Since the NGV occurs in the slanted 

stop-band region, the incident plane wave should experience a strong reflection.  In 

order to have a practical application for the NGV property, a 2-D periodic structure 

may be built within a gain medium to compensate the reflection losses. 
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