
行政院國家科學委員會專題研究計畫  成果報告 

 

 

子計畫四：基於計算智慧之基因網路模型與穩定度之研究

(II) 

 

 
計畫類別：整合型計畫 

計畫編號： NSC94-2213-E-009-124- 

執行期間： 94 年 08 月 01 日至 95 年 07 月 31 日 

執行單位：國立交通大學電機與控制工程學系(所) 

 

 

 

 

計畫主持人：李祖添 

共同主持人：吳幸珍 

計畫參與人員：蔣欣翰, 周家賢 

 

 

 

 

報告類型：精簡報告 

報告附件：出席國際會議研究心得報告及發表論文 

處理方式：本計畫可公開查詢 

 

 
 

 

中 華 民 國 95 年 9月 28 日

 



行政院國家科學委員會補助專題研究計畫
■ 成 果 報 告   
□期中進度報告 

 

智慧型系統在卵巢癌晶片之分子演化與控制-子計畫四：基於

計算智慧之基因網路模型與穩定度之研究(II) 

 

計畫類別：□ 個別型計畫  ■ 整合型計畫 

計畫編號：NSC94－2213－E－009－124 

執行期間：  2005 年 8 月 1 日至 2006 年 7 月 31 日 

 

計畫主持人：李祖添 國家講座 

共同主持人：吳幸珍 助理教授 

計畫參與人員： 蔣欣翰, 周家賢 

 

成果報告類型(依經費核定清單規定繳交)：■精簡報告  □完整報告 

 

本成果報告包括以下應繳交之附件： 

□赴國外出差或研習心得報告一份 

□赴大陸地區出差或研習心得報告一份 

□出席國際學術會議心得報告及發表之論文各一份 

□國際合作研究計畫國外研究報告書一份 

 

 

處理方式：除產學合作研究計畫、提升產業技術及人才培育研究計畫、

列管計畫及下列情形者外，得立即公開查詢 

          □涉及專利或其他智慧財產權，□一年■二年後可公開查詢 

          

執行單位：交通大學電機與控制學系 

 

中   華   民   國   95 年  7  月   31 日 



智慧型系統在卵巢癌晶片之分子演化與控制 

子計畫四：基於計算智慧之基因網路模型與穩定度之研究(II) 
計畫編號: NSC 94-2213-E-009-126 

執行期限:94/08/01 - 95/07/31 
主持人：李祖添 講座教授           共同主持人：吳幸珍 助理教授 

參與人員：蔣欣翰, 周家賢 
執行單位：國立交通大學電機與控制系 

中文摘要 
    本年度計畫旨在以計算智慧方法來實現基因網路(pathway)之建模。一方面，由非線性微分方程式的基因
網路建模，根據其生成項與消耗項之意義，來建立基因網路之 pathway；另一方面，利用 Bayesian Network，
分別對卵巢癌基因和 Sacharomyces cerevisiae cell-cycle基因時間點資料，做基因調控網路的建模。  
關鍵詞：Bayesian Network，基因調控網路 
英文摘要 

In this project, several computational intelligent approaches are developed for constructing the gene-pathway 
to realize the interactions between genes. In other words, we shall achieve modeling and analysis of a gene network. 
First, the pathway is generated on the basis of nonlinear differential equations, which include mathematical 
descriptions of activatory terms and inhibitory terms. On the other hand, the gene regulatory networks are 
constructed by Bayesian Network technique. We have finish the pathways for two biology dataset (varian-cancer 
genes and Sacharomyces cerevisiae cell-cycle genes),  
Keywords: Bayesian Network, Gene Regulatory Network 
（一）目的與文獻 
In this project, the gene-relationship pathways are proposed, respectively, by HDE/IGA-technology-based nonlinear 
differential equations and a Bayesian network. 

The gene-relationship pathway for ovarian cancer can’t be constructed by 
nonlinear-differential-equations-based approaches since we have only 3 time-courses data. In other words, the gene 
network for our ovarian-cancer dataset can’t be obtained via identification of S-system [1] and lumped power-law 
system, modified by [2]. The research in cell cycle is important and the related dataset is available in the website. 
Therefore, we use yeast dataset to realize cell reproduction and further to predict cancer’s development. In our work, 
HDE and IGA techniques are used to construct, respectively, S-system and lumped power-low system for 
Sacharomyces cerevisiae cell-cycle genes dataset, which is operated in cdc25 experiment. As we know, these two 
mathematical models are highly nonlinear. Therefore, the identification for both structure and parameters is tough 
work even for a system with low numbers of genes. However, the generated two systems are useful in realizing 
gene-genes relationship. 

A genetic algorithm is an optimal searching method proposed by Holland in 1975 [3-9]. It is different from 
other optimal methods. No complexity calculation is needed in a genetic algorithm. However, the performance, at 
first, is not so good. Recently, researchers proposed various methods to increase the performance [10-14]. Chiang 
proposed a genetic algorithm with an improved-evolution-direction operator (IEDO) [15]. The IEDO is further 
evolved by evolution direction operator (Yamamoto [14]). More and more researches focused on the so-called 
improved genetic algorithm (IGA), where an IEDO, an elitism [5, 6], an acceleration operator [16-18] and a 
migration [19-21] are integrated into a genetic algorithm. 

Evolution algorithms have been applied widely in parameter estimation. Storn and Price proposed a differential 
evolution (DE) method [22, 23]. In this method, population-differences are calculated during an evolution process, 
but the solution space frequently bog down into local minima. Chiou and Wang proposed a hybrid differential 
evolution (HDE) method to overcome this drawback [24]. A HDE can find the global optimal solution for a highly 
nonlinear differential system and can escape from bogging down into local optimal solution. Voit adopted this 
method, and further added the deviation for the slope of the estimated system from a true system to accelerate the 
searching speed and to adjust the parameters of estimated system [25-27]. Tominaga adopted a genetic algorithm 
with a structure skeletalizing algorithm to achieve the parameter estimation for a power-law differential equations 
[28, 29]. Kikuchi modified the crossover process and added the pruning terms into a fitness function [30]. In our 
project, we adopt both HDE and IGA algorithms to identify both S-system and lumped power-low system and to 
construct the corresponding gene network. 

In other hand, we use a Bayesian Network to construct a gene network directly from the gene time-courses data. 
Bayesian Network is a graphical model, based on the joint probability distribution of random variables. Many 
research methods are based on this technology [31-36]. We here use this graphical technique to generate the gene 
networks for both ovarian-cancer and Sacharomyces cerevisiae cell-cycle genes dataset. 

 
（二）研究方法與結果討論 
2.1 Nonlinear D.E.-based Pathway 



2.1.1 HDE-base S-system Gene Network 
S-system use power-law flux to describe the synergism and saturation of the biological system [1], 
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where iV +  represents activatory term and iV −  represents inhibitory term. Xi is the state variable or reactant; n is the 

number of Xi. αi is the production rate-constant and βi is the degradation rate-constant; both can be positive or zero. 
gij and hij, are kinetic orders; their values can be positive to indicate activating influences or negative to denote 

inhibition. The genes in iV +  affect activatory reaction of Xi. The genes in iV +  affect inhibitory reaction of Xi. We 

adopt HDE with modified collocation method and slope approximation method to obtain gene network in S-system 
form. The parameter estimation results are shown in Table 1. 
Table 1. HDE-base S-system Gene Network 
HDE 

  X� 1 X� 2 X� 3 X� 4 X� 5 X� 6 X� 7 X� 8 
α  9.68 3.09 1.48 1.09 12.13 20.94 23.06 0.11

β  0.01 9.30 2.71 0.87 18.34 25.00 19.70 3.45
gi1 -3.00  1 -3.00 -1.88 0.67 -1.44  

gi2 1.02 2.73 -1.18 -3.00 0.45 -3.50 -3.45  

gi3 -3.00  -2.00 -1.10 2.30 -2.56 -2.18 -3.28
gi4 1.53 -1.85 -2.45  1.43  -3.91  

gi5 -3.00 3.00 -3.73 0.80   -3.99 -3.08
gi6 -2.08 0.58 -3.66  0.67 -2.15 -3.99  

gi7  -3.00 -3.07   -3.50   

gi8  -2.83 -1.08  0.53 -2.37   

gi9  -1.08 3.11 3.00 1.34 3.15 -4.00  

gi10   -1.10  0.48 -3.50  -2.25

gi11  2.57 -3.51 0.77 -1.51 -2.58  -2.96
gi12  2.46 -3.98 2.99 0.64 -3.50 3.32 -2.45
gi13 0.56  -2.14 2.89 -2.40 -3.50 -2.89 -1.36
gi14  2.57    -3.48  -2.34
gi15  -2.50 -3.63  -0.59 -2.30 1.70 -0.74
gi16 -2.99  -3.18  -1.22 -3.50 -3.84  

hi1  1.38  1.71 0.60 2.96 -3.43  

hi2 3.00  -0.52 -2.63 2.54 3.50 -0.92 -1.98
hi3   -3.22 -1.32 -0.80 -3.50 2.12 -0.82
hi4 -3.00  -2.59 3.00   1.41 1.78
hi5 1.48 0.51 3.57     -1.21
hi6 2.56  1.14 1.75 -1.48   4.00
hi7        1.90
hi8     -1.22   3.79
hi9    -2.62 0.77 3.50  3.38
hi10 3.00  3.82 2.44   1.33 -3.40
hi11  -2.08  1.73 -1.93  1.57 -1.42
hi12  2.09 -2.24 -2.60 0.86  3.54 -0.84
hi13 -1.12  1.59  2.98 -3.08  -4.00
hi14 2.99   -3.00 0.64   1.32
hi15 3.00  2.78 -2.95 -2.92 -1.04   

hi16    -3.00   -2.57 -3.55
  

  X� 9 X� 10 X� 11 X� 12 X� 13 X� 14 X� 15 X� 16 
α  8.86 4.66 9.87 0.09 1.31 5.65 10.58 17.04

β  10.39 2.22 0.76 6.94 5.56 3.91 10.83 18.24
gi1  -1.66  -3.97 -2.88 -2.46 -0.55 -3.96
gi2 1.93 -0.91 -1.41   -3.99 -3.00  



gi3 0.94 -1.90 -2.45 -4.00 2.05 -4.00 -2.98 -3.99
gi4  -0.83 2.16 -3.81 -3.00 1.86 1.06 -2.89
gi5 -1.53 -1.50 -2.58  -3.00 -2.38  -4.00
gi6 2.71  -2.19  -3.00 0.88 -2.90 -4.00
gi7  2.28  1.61 -2.67    

gi8 -0.63  -2.40  -2.26    

gi9  0.55  -2.86  -2.97  2.80
gi10  -1.56 -2.91  -0.86 1.94   

gi11 -0.97  -2.96 3.88 -3.00 -4.00  -3.99
gi12 1.59 1.73 -1.95  -1.54   -3.93
gi13  1.35 -2.99 -1.32    -1.74
gi14 -0.68 1.94 1.38 0.67 -1.62 -3.55   

gi15 -1.53 2.93 -1.68    -1.50 -0.85
gi16 -0.73 -1.49 -1.05 0.61 1.95   -4.00
hi1  -0.83 -1.08   1.23 1.32  

hi2 -2.28 1.61  -2.65 1.94 2.65 -2.46  

hi3 1.65 1.26  -3.16 1.27   1.86
hi4 1.10 2.07 1.75 -2.11 1.44 2.80  -0.81
hi5  -1.93   1.75  0.89  

hi6  2.20 -2.13 3.56 -2.97 -4.00 -2.71  

hi7  1.56 -1.97  -2.99  -1.40  

hi8 -1.05  0.78 3.98   3.00  

hi9 1.09  3.00  1.92  2.13 4.00
hi10 1.78 -2.85  2.48 -2.33  3.00  

hi11  1.46  -2.99 0.52    

hi12 -0.51  1.48 4.00 1.91  1.44  

hi13 -1.80 1.26 -0.69 -3.99 3.00    

hi14   -3.00 2.37   -2.91 2.90
hi15    3.51   -3.00  

hi16 0.76 -2.51  -0.92 0.58  2.70 -3.97
Five sets of time-course data are generated from different initial values.  Variable X1 denotes CDC28, X2 for 

CLN3, X3 for SWI4, X4 for SWI6, X5 for MBP1, X6 for FUS3, X7 for FAR1, X8 for CLN1, X9 for CLN2, X10 for SIC1, 
X11 for CLB5, X12 for CLB6, X13 for CDC6, X14 for CDC20, X15 for GRR1 and X 6 for CDC4. After training, we 
obtain the S-system structure. Based on this structure, we can create the gene regulatory network in Fig. 1. Black 
bold lines, growing themselves, represent synthetic influence; black bold lines, growing outside, represent degraded 
influence. Black lines represent activation reaction and red lines represent inhibition reaction. The start point of the 
lines is the reactant and the end point is the product. Biochemical reactions can be described by the reconstructed 
model. We now can realize the interaction between various genes from the gene regulatory network. The increasing 
in concentrations of CLN3, MBP1, FUS3, CLB5, CLB6 and CDC20 will bring increasing synthetic influence in 
concentration of CLN3. However, the increasing in concentrations of SIW6, FAR1, CLN1 and CLN2 will bring 
decreasing synthetic influence in concentration of CLN3. 

 
Figure 1. S-system Gene Network (JD pathway) 



 
2.1.2 IGA-based lumped power-law gene network 
The second mathematical model is approximated from the model adopted in [6, 7].  
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where Gi(t) is the transcription rate, λi is the self-degradation rate and n is the number of the variable, Xi(t) is the 
concentration of the i-th gene at time t. Gi(t) is a nonlinear function,  
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We use a power-law function Vi(t) to approximate the nonlinear function Gi(t) in Eq. (3) to denote the synthesis rate. 
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where  λi is the rate constant and fij is kinetic order. Further, the degradation term in Eq. (2) is replaced by γi
( )ik

iX t  
to emphasize how a gene reacts itself. The kinetic orders, fij and γi, can be positive or negative; positive kinetic orders 
indicate activating influences, but negative kinetic orders mean inhibition. In other words, the following lumped 
power-law system is proposed. 
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where n is the number of the variables; the vector X in Eq. (6) indicates all genes in the yeast cell cycle; the vector P 
in Eq. (6) consists the rate constants, λi and γi, and kinetic orders, fij and ki. We adopt HDE with modified collocation 
method and slope approximation method to obtain gene network in lumped power-law form. The parameter 
estimation results are shown in Table 2.  
Table 2. IGA-based lumped power-law gene network 
IGA 

  X� 1 X� 2 X� 3 X� 4 X� 5 X� 6 X� 7 X� 8 
γ  13.46 13.27 8.07 11.06 0.41 0.01 6.23 11.35

λ  14.40 14.44 2.54 4.29 18.33 8.25 11.07 4.98

fi1 3.74 -4.00 1.41 -1.38 0.87 3.10 0.92
fi2 -0.49 2.78 2.68 -2.24 0.56 1.82 0.82
fi3 -4.00 1.03 -2.51 0.77 2.27 -4.00 -1.66
fi4  4.00 -1.93 -4.00
fi5 4.00 -3.13 -2.54 2.36 3.97 1.21 -0.54
fi6 -4.00 -2.20 -1.13 2.47 1.08
fi7 -3.85 -3.53 -1.83 1.43 0.07
fi8 4.00 -3.99 -2.33 1.14 3.49 1.30 -1.91
fi9  -4.00 -3.75 -1.75 -2.27 -1.46
fi10  2.23 -0.67 -4.00
fi11 -3.50 1.60 -1.52 -1.59 0.93
fi12 -2.04 0.60 2.01 2.97 2.54 3.69
fi13 3.33 2.83 -1.59 3.06 -3.97 -2.45 3.49
fi14 1.26 2.36 1.38 -3.96 -3.84 1.68 3.24 -0.91
fi15 4.00 3.85 0.83 -2.98 -0.92 0.78



fi16 -4.00 1.35 -1.94 2.40 3.80 -0.64
ki -3.90 -3.86 -1.35 -2.73 -3.80 -0.34 -1.93 -3.34

 
  X� 9 X� 10 X� 11 X� 12 X� 13 X� 14 X� 15 X� 16 

γ  20.00 2.48 7.42 6.37 8.26 0.27 14.94 11.41

λ  5.06 13.53 2.56 9.92 2.99 0.24 12.15 17.42

fi1 -0.62 -2.68 1.39 2.19 -1.15 -2.46
fi2 -1.36 4.00 3.85 0.50 0.60 -1.92 2.67
fi3 1.66 -2.30 3.93 3.34 -1.95 -2.21 -1.92 -2.78
fi4  -2.94 -2.58 1.32 1.76 0.90
fi5 2.12 -2.21 -3.80 -2.23 1.61 1.16 0.68 1.90
fi6  -3.19 -0.84 1.14 2.68 1.91 -3.72
fi7 1.76 3.63 -2.39 -1.43 -0.59 -1.22
fi8 -3.75 -4.00 -2.44 -0.88 1.92 2.23 -0.57
fi9 -2.91 -1.36 1.46 -0.94 1.30
fi10  3.41 -0.68
fi11 0.72 -3.80 -2.88 2.23 -2.81 -0.92 1.75
fi12 0.62 2.63 -1.82 -1.43 -0.63
fi13 0.51 4.00 4.00 0.78 3.36
fi14 -1.08 1.26 0.78 0.96 0.78 -4.00 -1.92
fi15 4.00 2.11 0.58 -0.72 -3.75 -1.57 -3.96
fi16 -1.20 4.00 0.86 2.94 0.82
ki -0.49 -1.68 -1.49 -3.54 0.52 -3.90 -0.51

 
Fig. 2 is the pathway for the modified power-low model. Black lines represent activation reaction and red lines 
represent inhibition reaction. The start point of the lines is the reactant and the end point is the product. For instance, 
the concentration of CDC28 increases rapidly as the concentrations of MBP1, CLN1,  CDC6, CDC20 and GRR1 
increase; however, the concentration of CDC28 decreases rapidly as the concentrations of CLN3, SWI4, FUS3, 
FAR1, CDC4, CLB6 andCLB6 increase. 

 
 

Figure 2. Lumped Power-law Gene Network (JC pathway) 
2.2 Bayesian-method-based Gene Network 
 
2.2.1 Bayesian Network 



A Bayesian Network is a graphical model that encodes the joint probability distribution for a set of random variables. 
Assume ( , )D V E=  be Directed Acyclic Graph (DAG), where V represents nodes and E represents directed edges 

(arrows) between the nodes. The DAG is the structure of the Bayesian Network. Every node v V∈ has a 

corresponding random variable vX . The set of random variables defines  

( )v v V
X X

∈
= . Each node with its parents denoted ( )pa v  has a local probability distribution ( )( | )v pa vp x x . 

T h e  s t a r t  p o i n t  o f  d i r e c t e d  e d g e  E  d e n o t e s  ( )pa v  a n d  

end point denotes node v . The Bayesian Network for a set of random variable X  defines the pair ( , )D P , 

where P  is a set of local probability distributions for all random variables.  
Assume conditional independencies between the random variables X are established, the directed edges in D 

can represent relationship for the random variables X through the factorization of the joint probability distribution, 
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The flowchart for Bayesian Network is shown Figure 3. After gene time-courses data import, master prior 

procedure is proceeded. First, the local probability distributions ( )( | )v pa vp x x  for all random variables are 

calculated. Assume all local probability distributions are Gaussian linear regressions, We parameterize this as 

( )2, ,v v v vmθ β σ=  so that 

( ) ( )2
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where vm  is regression intercept, vβ  is regression coefficients, 2
vσ  is conditional variance. Thus for each 

configuration of v , the distribution of vX  is Gaussian with mean and variance given as in equation (2). Then, the 

joint probability distribution for X  is a conditional Gaussian distribution with density of the form 
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where vM  is unconditional mean and vΣ  is covariance matrix. From the joint probability distribution, the 

marginal distribution of all parameters can be determined. Therefore, we define this the master prior procedure. 
Next step is parameter learning. To estimate the parameters in the network, we use the Bayesian approach. We use 
our uncertainty about parameters θ  in a prior distribution ( )p θ , use data d to update this distribution, and hereby 

obtain the posterior distribution ( | )p dθ  by using Bayes' Theorem, 
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Here ( | )p d θ  is the joint probability distribution of d, and called the likelihood of θ . d is a random sample from 

the probability distribution ( | )p x θ . Θ  is parameter space. For fixed d, ( )p d  can be considered as a 

normalizing constant. Therefore, equation (4) can be expressed as 
( | ) ( | ) ( ).                                                       (6)p d p d pθ θ θ∝  

The purpose of parameter learning is to expect to find posterior parameter. Assume there is independence between 
θ , then 
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v V
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That is，posterior parameter is independent. 

Posterior parameter θ  with independence is obtained by parameter learning. Then, we can have the initial 
network and presume it is optimal temporarily. We refer to network score as following form, 

( , ) ( | ) ( ),                                                      (8)p D d p d D p D=  

where ( | )p d D  is the likelihood of D and ( )p D  is prior probability. We choose to let all DAGs be equally 

likely, then 
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Figure 3. Bayesian Network Flow Chart 
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Then, the network score can be obtained simply. The final step is optimization of network. A strategy for searching 
for DAGs with high score is needed. We adopt the search strategy greedy search with random restarts. In greedy 

search, we create model *D  from model D  that differ only by a single arrow, either added, removed or reversed 
and then calculate the network score. We compare two different models by posterior odds, 

* * * *

( | ) ( , ) ( ) ( | )
,                                (11)

( | ) ( , ) ( ) ( | )

p D d p D d p D p d D

p D d p D d p D p d D
= = ×  



where *( ) / ( )p D p D  is prior odds and *( | ) / ( | )p d D p d D  is Bayes Factor. Because D  and *D  are 

different by a direction point, the prior odds approximate to 1. Therefore, if Bayes Factor is greater than 1, D  is 

better than *D . In contrast, if Bayes Factor is smaller than 1, *D  is better than D . After the procedure, the 
optimal network is obtained until we can’t find any network is better than it. 
 
2.2.2 Ovarian Cancer data set 
Ovarian cancer data set which includes 64 genes is supported form subproject I. The gene regulatory obtained by 
Bayesian Network is shown in figure 4. 

 
2.2.3 Sacharomyces cerevisiae cell-cycle data set 
The gene time-courses data of Sacharomyces cerevisiae obtained by world wide web is used to construct gene 
regulatory network by Bayesian Network, which includes 16 genes. Here, we concern two kinds of data set, one is 
raw data and the other is smooth data generated by Matlab. The network score of raw data is -1708.558 as shown in 
figure 5. 
 

 
Figure 5. Gene regulatory network of raw data 



The relationship of each node and its parents: 
� [CDC28|CLN2:CLB5:CLB6] 
� [CLN3|SWI4:FUS3:FAR1:CLN2:GRR1] 
� [SWI4|CDC28:FAR1:CLN2:CLB5:CLB6:GRR1] 
� [SWI6|SWI4:MBP1:CLN1:CDC6:GRR1] 
� [MBP1|CLN3:SWI4:FAR1:CLN2:SIC1:CLB5:CLB6:CDC6:CDC4] 
� [FUS3] 
� [FAR1|GRR1] 
� [CLN1|CDC28:SWI4:CLN2:CLB5:CLB6:GRR1:CDC4] 
� [CLN2|FUS3:FAR1:CLB5:CLB6] 
� [SIC1|CLN3:SWI4:FAR1:CLB5:CLB6:GRR1:CDC4] 
� [CLB5|CLB6] 
� [CLB6] 
� [CDC6|CLN3:SWI4:FAR1:SIC1] 
� [CDC20|FAR1:CLN1:CLN2:CLB5:CLB6] 
� [GRR1] 
� [CDC4|CDC28:FUS3:FAR1:CLB5:CLB6] 

 
The network score of smooth data is -28978.00 as shown in figure 6. 

 
Figure 6. Gene regulatory network of smooth data 

The relationship of each node and its parents: 
� [CDC28|CLN3:SWI4:MBP1:FUS3:FAR1:CLN1:CLN2:SIC1:CLB5:CLB6: CDC6:CDC20:GRR1] 
� [CLN3|FAR1:SIC1] 
� [SWI4] 
� [SWI6|CDC28:CLN3:SWI4:MBP1:FUS3:FAR1:CLN1:CLN2:SIC1:CLB5: CLB6:CDC6:CDC20:GRR1] 
� [MBP1|CLN3:SWI4:FAR1:SIC1:CDC6:GRR1] 
� [FUS3|CLN3:SWI4:CDC6:GRR1] 
� [FAR1|SWI4] 
� [CLN1|CLN3:SWI4:MBP1:FAR1:CLN2:SIC1:CLB5:CLB6:CDC6:CDC20: GRR1] 
� [CLN2|CLN3:SWI4:MBP1:FUS3:FAR1:SIC1:CLB5:CLB6:CDC6:GRR1] 
� [SIC1|SWI4:FAR1] 
� [CLB5|CLN3:SWI4:MBP1:FUS3:FAR1:SIC1:CDC6:GRR1] 
� [CLB6|CLN3:SWI4:MBP1:FUS3:FAR1:SIC1:CLB5:CDC6:GRR1] 
� [CDC6|CLN3:SWI4:FAR1:SIC1] 
� [CDC20|CLN3:SWI4:MBP1:FUS3:FAR1:CLN2:SIC1:CLB5:CLB6:CDC6: GRR1] 
� [GRR1|CLN3:FAR1:SIC1:CDC6] 
� [CDC4|CDC28:CLN3:SWI4:SWI6:MBP1:FUS3:FAR1:CLN1:CLN2:SIC1: 

CLB5:CLB6:CDC6:CDC20:GRR1] 
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(四)計畫成果自評 
The gene regulatory networks/pathways are constructed, respectively, by nonlinear–mathematical-system-based 
methods and a Bayesian Network. We adopt two computational intelligent approaches (IGA and HDE methods). Two 
kinds of gene network are constructed via proposed S-system and lumped power-law systems, respectively. On the 
other hand, we use a stochastic and graphical approach, a Bayesian network, to construct the regulatory networks of 
ovarian-cancer and Sacharomyces-cerevisiae genes, respectively. The results has been accepted for publication in 
IEEE-SMC’06 and IEEE-EMBC’06 conference. 
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