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In this project, several computational intelligent approaches are developed for constructing the gene-pathway
to realize the interactions between genes. In other words, we shall achieve modeling and analysis of a gene network.
First, the pathway is generated on the basis of nonlinear differential equations, which include mathematical
descriptions of activatory terms and inhibitory terms. On the other hand, the gene regulatory networks are
constructed by Bayesian Network technique. We have finish the pathways for two biology dataset (varian-cancer
genes and Sacharomyces cerevisiae cell-cycle genes),

Keywords: Bayesian Network, Gene Regulatory Network
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In this project, the gene-relationship pathways are proposed, respectively, by HDE/IGA-technology-based nonlinear
differential equations and a Bayesian network.

The gene-relationship pathway for ovarian cancer can’t be constructed by
nonlinear-differential-equations-based approaches since we have only 3 time-courses data. In other words, the gene
network for our ovarian-cancer dataset can’t be obtained via identification of S-system [1] and lumped power-law
system, modified by [2]. The research in cell cycle is important and the related dataset is available in the website.
Therefore, we use yeast dataset to realize cell reproduction and further to predict cancer’s development. In our work,
HDE and IGA techniques are used to construct, respectively, S-system and lumped power-low system for
Sacharomyces cerevisiae cell-cycle genes dataset, which is operated in cdc25 experiment. As we know, these two
mathematical models are highly nonlinear. Therefore, the identification for both structure and parameters is tough
work even for a system with low numbers of genes. However, the generated two systems are useful in realizing
gene-genes relationship.

A genetic algorithm is an optimal searching method proposed by Holland in 1975 [3-9]. It is different from
other optimal methods. No complexity calculation is needed in a genetic algorithm. However, the performance, at
first, is not so good. Recently, researchers proposed various methods to increase the performance [10-14]. Chiang
proposed a genetic algorithm with an improved-evolution-direction operator (IEDO) [15]. The IEDO is further
evolved by evolution direction operator (Yamamoto [14]). More and more researches focused on the so-called
improved genetic algorithm (IGA), where an IEDO, an elitism [5, 6], an acceleration operator [16-18] and a
migration [19-21] are integrated into a genetic algorithm.

Evolution algorithms have been applied widely in parameter estimation. Storn and Price proposed a differential
evolution (DE) method [22, 23]. In this method, population-differences are calculated during an evolution process,
but the solution space frequently bog down into local minima. Chiou and Wang proposed a hybrid differential
evolution (HDE) method to overcome this drawback [24]. A HDE can find the global optimal solution for a highly
nonlinear differential system and can escape from bogging down into local optimal solution. Voit adopted this
method, and further added the deviation for the slope of the estimated system from a true system to accelerate the
searching speed and to adjust the parameters of estimated system [25-27]. Tominaga adopted a genetic algorithm
with a structure skeletalizing algorithm to achieve the parameter estimation for a power-law differential equations
[28, 29]. Kikuchi modified the crossover process and added the pruning terms into a fitness function [30]. In our
project, we adopt both HDE and IGA algorithms to identify both S-system and lumped power-low system and to
construct the corresponding gene network.

In other hand, we use a Bayesian Network to construct a gene network directly from the gene time-courses data.
Bayesian Network is a graphical model, based on the joint probability distribution of random variables. Many
research methods are based on this technology [31-36]. We here use this graphical technique to generate the gene
networks for both ovarian-cancer and Sacharomyces cerevisiae cell-cycle genes dataset.
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2.1 Nonlinear D.E.-based Pathway



2.1.1 HDE-base S-system Gene Network
S-system use power-law flux to describe the synergism and saturation of the biological system [1],

X; =Vt =V,
:a.ﬁxgif_ﬁ.ﬁxhﬁ fori=1,2,...n, (1)
i J ] J ’ T Ly Lgeeeglly
j=1 j=1

where Vf represents activatory term and V. represents inhibitory term. X; is the state variable or reactant; n is the

number of X;. @; is the production rate-constant and f; is the degradation rate-constant; both can be positive or zero.
gij and hy, are kinetic orders; their values can be positive to indicate activating influences or negative to denote
inhibition. The genes in ViJr affect activatory reaction of X;. The genes in ViJr affect inhibitory reaction of X;. We
adopt HDE with modified collocation method and slope approximation method to obtain gene network in S-system

form. The parameter estimation results are shown in Table 1.
Table 1. HDE-base S-system Gene Network

HDE
X, X, X; X, X X X, X

o 9.68 3.09 1.48 1.09 12.13 2094  23.06 0.11
B 0.01 9.30 2.71 0.87 18.34]  25.00 19.70 3.45
o 3.00 1 3.00 “1.88 0.67 144

2 1.02 2.73 -1.18 -3.00 0.45 -3.50 -3.45

2 3.00 2.00 1,10 2.30 2.56 2.18 3.28
% 1.53 -1.85 245 1.43 391

s -3.00 3.00 3.73 0.80 -3.99 -3.08
26 2.08 0.58 -3.66 0.67 2.15 -3.99

2 -3.00 3.07 3.50

o 2.83 -1.08 0.53 237

% “1.08 311 3.00 1.34 3.15 ~4.00

%o “1.10 0.48 3.50 225
o 2.57 351 0.77 -1.51 2.58 2.96
o 2.46 -3.98 2.99 0.64 3.50 3.32 245
o 0.56 2.14 2.89 2.40 -3.50 2.89 -1.36
S 2.57 3.48 234
9 -2.50 -3.63 -0.59 2.30 1.70 0.74
Zite 2.99 3.18 122 3.50 3.84

hy, 1.38 1.71 0.60 2.96 3.43

hp 3.00 0.52 2.63 2.54 3.50 0.92 “1.98
his 322 132 -0.80 3.50 2.12 0.82
his 3.00 2.59 3.00 1.41 1.78
his 1.48 0.51 3.57 121
hi 2.56 1.14 1.75 “1.48 4.00
hyy 1.90
hig 122 3.79
hio 2.62 0.77 3.50 3.38
hio 3.00 3.82 2.44 1.33 3.40
huy 2.08 1.73 1.93 1.57 142
i 2.09 224 2.60 0.86 3.54 0.84
his 112 1.59 2.98 -3.08 -4.00
hig 2.99 3.00 0.64 1.32
huss 3.00 2.78 2.95 2.92 -1.04

hie 3.00 2.57 3.55

X 9 X 10 X 11 X 12 X 13 X 14 X 15 X 16

a 8.86 4.66 9.87 0.09 1.31 5.65 10.58 17.04
b 10.39 2.22 0.76 6.94 5.56 3.91 10.83 18.24
o “1.66 3.97 2.88 2.46 0.55 3.96
20 1.93 091 141 3.99 3.00




o5 0.94 -1.90 245 -4.00 2.05 -4.00 2.98 -3.99
2 -0.83 2.16 381 -3.00 1.86 1.06 2.89
s -1.53 -1.50 .58 -3.00 .38 -4.00
o 271 219 -3.00 0.88 2.90 -4.00
o 2.28 1.61 2.67

s 0.63 2.40 226

2o 0.55 2.86 297 2.80
%o 156 291 20.86 1.94

it 0.97 .96 3.88 -3.00 -4.00 -3.99
g 1.59 1.73 1.95 “1.54 3.93
o5 1.35 2.99 132 174
Sia 0.68 1.94 1.38 0.67 1.62 355

8its -1.53 2.93 1.68 150 -0.85
Zit6 -0.73 149 “1.05 0.61 1.95 ~4.00
h;, 0.83 1.08 123 1.32

hiy 228 1.61 2.65 1.94 2.65 246

his 1.65 1.26 3.16 127 1.86
his 1.10 2.07 1.75 211 1.44 2.80 0.81
his 193 1.75 0.89

hig 2.20 213 3.56 297 4.00 271

hi7 1.56 197 2.99 1.40

his 1.05 0.78 3.98 3.00

hio 1.09 3.00 1.92 2.13 4.00
hio 1.78 285 248 .33 3.00

hiy 1.46 2.99 0.52

his 0.51 1.48 4.00 1.91 1.44

his -1.80 1.26 -0.69 3.99 3.00

hia -3.00 237 291 2.90
hus 351 -3.00

hie 0.76 251 0.92 0.58 2.70 3.97

Five sets of time-course data are generated from different initial values. Variable X; denotes CDC28, X, for
CLN3, X; for SWI4, X, for SWI6, X5 for MBP1, X4 for FUS3, X; for FAR1, Xy for CLN1, X, for CLN2, X, for SIC1,
X;; for CLBS5, X;, for CLB6, X;; for CDC6, X,, for CDC20, X;5 for GRR1 and X 4 for CDC4. After training, we
obtain the S-system structure. Based on this structure, we can create the gene regulatory network in Fig. 1. Black
bold lines, growing themselves, represent synthetic influence; black bold lines, growing outside, represent degraded
influence. Black lines represent activation reaction and red lines represent inhibition reaction. The start point of the
lines is the reactant and the end point is the product. Biochemical reactions can be described by the reconstructed
model. We now can realize the interaction between various genes from the gene regulatory network. The increasing
in concentrations of CLN3, MBP1, FUS3, CLB5, CLB6 and CDC20 will bring increasing synthetic influence in
concentration of CLN3. However, the increasing in concentrations of SIW6, FAR1, CLN1 and CLN2 will bring
decreasing synthetic influence in concentration of CLN3.
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Figure 1. S-system Gene Network (JD pathway)



2.1.2 IGA-based lumped power-law gene network
The second mathematical model is approximated from the model adopted in [6, 7].
Xi() =G0~ AX; 1), i=1,2,,n, 2)

where G,(f) is the transcription rate, 4; is the self-degradation rate and n is the number of the variable, X(¢) is the
concentration of the i-th gene at time ¢. G,(¢) is a nonlinear function,

o 1
G (=Y a; . 0
= 1+exp{—0{[u(t,ﬂ,5)—}/}}
0 t<p;-96
t—(p. -0
,05,.0) % frosi=h 4)
u(lt,p;.,0)= .
! (B, +0)~t o 5
—5  Asshy
0 tZp,+0
We use a power-law function V(f) to approximate the nonlinear function G,(¢) in Eq. (3) to denote the synthesis rate.
vin=AlTx) o, (5)
j=1

k;
where 4, is the rate constant and f} is kinetic order. Further, the degradation term in Eq. (2) is replaced by y; X' (@)
to emphasize how a gene reacts itself. The kinetic orders, f;; and y;, can be positive or negative; positive kinetic orders
indicate activating influences, but negative kinetic orders mean inhibition. In other words, the following lumped
power-law system is proposed.

Xi(n) = fi(X.P) =V,(0) = ,X (1)

n
=4l x/o-vxt@. i=1.2..n ©)

j=1
where n is the number of the variables; the vector X in Eq. (6) indicates all genes in the yeast cell cycle; the vector P
in Eq. (6) consists the rate constants, 4; and y;, and kinetic orders, f;; and k;. We adopt HDE with modified collocation
method and slope approximation method to obtain gene network in lumped power-law form. The parameter
estimation results are shown in Table 2.
Table 2. IGA-based lumped power-law gene network

IGA
X, X, X, X, X X, X, X

/4 13.46 13.27 8.07 11.06 0.41 0.01 6.23 11.35
A 14.40 14.44 2.54 4.29 18.33 8.25 11.07 4.98
fi 3.74 -4.00 1.41 -1.38 0.87 3.10 0.92

J -0.49 2.78 2.68 -2.24 0.56 1.82 0.82
fis -4.00 1.03 -2.51 0.77 2.27 -4.00 -1.66
Nz 4.00 -1.93 -4.00
fis 4.00 -3.13 -2.54 2.36 3.97 1.21 -0.54
fis -4.00 -2.20 -1.13 2.47 1.08
fi7 -3.85 -3.53 -1.83 1.43 0.07
fis 4.00 -3.99 -2.33 1.14 3.49 1.30 -1.91
fio -4.00 -3.75 -1.75 -2.27 -1.46
firo 2.23 -0.67 -4.00

S -3.50 1.60 -1.52 -1.59 0.93
fiz -2.04 0.60 2.01 2.97 2.54 3.69
fis 3.33 2.83 -1.59 3.06 -3.97 -2.45 3.49
fi1a 1.26 2.36 1.38 -3.96 -3.84 1.68 3.24 -0.91
fis 4.00 3.85 0.83 -2.98 -0.92 0.78




fs -4.00 1.35 -1.94 2.40 3.80 0.64
k; -3.90 -3.86 -1.35 2.73 -3.80 0.34 -1.93 3.34
X, X 1 X i X X X X s X 16

Y 20.00 2.48 742 6.37 8.26 027 1494 1141
A 506  13.53 2.56 9.92 2.99 024 1215 17.42
£ 0.62 2.68 1.39 2.19 -1.15 2.46

2 136 4.00 3.85 0.50 0.60 1.92 2.67
fs 1.66 2.30 3.93 3.34 -1.95 221 192 2.78
fu 2.94 2.58 1.32 1.76 0.90
fs 2.12 221 -3.80 223 1.61 1.16 0.68 1.90
fs 3.19 0.84 1.14 2.68 1.91 3.72
fr 1.76 3.63 2.39 -1.43 0.59 122

fs -3.75 -4.00 244 -0.88 1.92 2.23 -0.57
fo 291 -1.36 1.46 0.94 1.30

firo 3.41 -0.68

fr 0.72 -3.80 2.88 2.23 281 0.92 1.75
firz 0.62 2.63 1.82 143 0.63
firs 0.51 4.00 4.00 0.78 3.36
firs -1.08 1.26 0.78 0.96 0.78 4.00 1.92
fs 4.00 2.11 0.58 0.72 3.75 157 3.96
firs 120 4.00 0.86 2.94 0.82
k; -0.49 -1.68 -1.49 354 0.52 -3.90 -0.51

Fig. 2 is the pathway for the modified power-low model. Black lines represent activation reaction and red lines
represent inhibition reaction. The start point of the lines is the reactant and the end point is the product. For instance,
the concentration of CDC28 increases rapidly as the concentrations of MBP1, CLN1, CDC6, CDC20 and GRR1
increase; however, the concentration of CDC28 decreases rapidly as the concentrations of CLN3, SWI4, FUS3,
FAR1, CDC4, CLB6 andCLB6 increase.
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Figure 2. Lumped Power-law Gene Network (JC pathway)
2.2 Bayesian-method-based Gene Network

2.2.1 Bayesian Network



A Bayesian Network is a graphical model that encodes the joint probability distribution for a set of random variables.
Assume D = (V,E) be Directed Acyclic Graph (DAG), where V represents nodes and E represents directed edges

(arrows) between the nodes. The DAG is the structure of the Bayesian Network. Every node VE V has a

corresponding random variable X . The set of random variables defines
X = (X ) )vev‘ Each node with its parents denoted pa(v) has a local probability distribution p(x, |xlm(v>).
The start point of directed edge E denotes pa(v) and

end point denotes node V. The Bayesian Network for a set of random variable X defines the pair (D, P),

where P is a set of local probability distributions for all random variables.
Assume conditional independencies between the random variables X are established, the directed edges in D
can represent relationship for the random variables X through the factorization of the joint probability distribution,

P =T P& | %,u0) - (1)

The flowchart for Bayesian Network is shown Figure 3. After gene time-courses data import, master prior

procedure is proceeded. First, the local probability distributions p(x, |x ) for all random variables are

pa(v)
calculated. Assume all local probability distributions are Gaussian linear regressions, We parameterize this as

o :(mw V,O'vz) so that

(X, 120020, )~ N(m, + B.x,,,.07) )

where m, is regression intercept, ,BV is regression coefficients, O, is conditional variance. Thus for each

configuration of v, the distribution of X is Gaussian with mean and variance given as in equation (2). Then, the

joint probability distribution for X is a conditional Gaussian distribution with density of the form
A 1
p(x|0)=[272, 2exp{—5(x—Mv)’ 2;‘(x—MV)}, (3)

where M is unconditional mean and X is covariance matrix. From the joint probability distribution, the

marginal distribution of all parameters can be determined. Therefore, we define this the master prior procedure.
Next step is parameter learning. To estimate the parameters in the network, we use the Bayesian approach. We use

our uncertainty about parameters & in a prior distribution p(@), use data d to update this distribution, and hereby

obtain the posterior distribution p(@|d) by using Bayes' Theorem,

T (C (2):/C) SRS @

p(d)

where

p|0)=]]..,px10). (5)
Here p(d | 6) is the joint probability distribution of d, and called the likelihood of €. d is a random sample from
the probability distribution p(x|@). O is parameter space. For fixed d, p(d) can be considered as a

normalizing constant. Therefore, equation (4) can be expressed as
p@|d)e< p(d|8)p(0). (6)

The purpose of parameter learning is to expect to find posterior parameter. Assume there is independence between
@, then

p(@|d) =1€1p(6v|xw, | d). @)
That is > posterior parameter is independent.

Posterior parameter @ with independence is obtained by parameter learning. Then, we can have the initial
network and presume it is optimal temporarily. We refer to network score as following form,

p(D.d)= p(d|D)p(D), (®)
where p(d | D) is the likelihood of D and p(D) is prior probability. We choose to let all DAGs be equally

likely, then
p(D,d) < p(d|D). €))
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Figure 3. Bayesian Network Flow Chart
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Then, the network score can be obtained simply. The final step is optimization of network. A strategy for searching
for DAGs with high score is needed. We adopt the search strategy greedy search with random restarts. In greedy

search, we create model D" from model D that differ only by a single arrow, either added, removed or reversed
and then calculate the network score. We compare two different models by posterior odds,

p(D|d) _ p(D,d) _ p(D)  p(d|D)
p(D'|d) p(D',d) pD) pd|D)’

a1



where p(D)/ p(D") is prior odds and p(d|D)/p(d|D") is Bayes Factor. Because D and D’ are
different by a direction point, the prior odds approximate to 1. Therefore, if Bayes Factor is greater than 1, D is

better than D’ . In contrast, if Bayes Factor is smaller than 1, D" is better than D . After the procedure, the
optimal network is obtained until we can’t find any network is better than it.

2.2.2 Ovarian Cancer data set
Ovarian cancer data set which includes 64 genes is supported form subproject I. The gene regulatory obtained by
Bayesian Network is shown in figure 4.

HNRPR

Interaction Type:

—* Hetero_Regulation

Self-Regulation

2.2.3 Sacharomyces cerevisiae cell-cycle data set

The gene time-courses data of Sacharomyces cerevisiae obtained by world wide web is used to construct gene
regulatory network by Bayesian Network, which includes 16 genes. Here, we concern two kinds of data set, one is
raw data and the other is smooth data generated by Matlab. The network score of raw data is -1708.558 as shown in
figure 5.

Figure 5. Gene regulatory network of raw data



The relationship of each node and its parents:
¢ [CDC28|CLN2:CLB5:CLB6]

€ [CLN3|SWI4:FUS3:FARI:CLN2:GRR1]

¢ [SWI4|CDC28:FAR1:CLN2:CLB5:CLB6:GRR1]

¢ [SWI6|SWI4:MBP1:CLN1:CDC6:GRR1]

¢ [MBPI|CLN3:SWI4:FAR1:CLN2:SIC1:CLB5:CLB6:CDC6:CDC4]
¢ [FUS3]

¢ [FARI|GRRI1]

4 [CLN1|CDC28:SWI4:CLN2:CLB5:CLB6:GRR1:CDC4]

4 [CLN2|FUS3:FAR1:CLB5:CLB6]

4 [SICI|CLN3:SWI4:FAR1:CLB5:CLB6:GRR1:CDC4]

4 [CLB5|CLB6]

¢ [CLBo]

¢ [CDC6|CLN3:SWI4:FAR1:SIC1]

4 [CDC20|FARI1:CLN1:CLN2:CLB5:CLB6]

4 [GRRI]

¢ [CDC4/CDC28:FUS3:FAR1:CLB5:CLB6]

The network score of smooth data is -28978.00 as shown in figure 6.

Figure 6. Gene regulatory network of smooth data
The relationship of each node and its parents:
[CDC28|CLN3:SWI4:MBP1:FUS3:FAR1:CLN1:CLN2:SIC1:CLB5:CLB6: CDC6:CDC20:GRR1]
[CLN3|FAR1:SIC1]
[SWI4]
[SWI6|CDC28:CLN3:SWI4:MBP1:FUS3:FAR1:CLN1:CLN2:SIC1:CLB5: CLB6:CDC6:CDC20:GRR1]
[MBP1|CLN3:SWI4:FAR1:SIC1:CDC6:GRR1]
[FUS3|CLN3:SWI4:CDC6:GRR1]
[FAR1|SWI4]
[CLN1|CLN3:SWI4:MBP1:FAR1:CLN2:SIC1:CLB5:CLB6:CDC6:CDC20: GRR1]
[CLN2|CLN3:SWI4:MBP1:FUS3:FAR1:SIC1:CLB5:CLB6:CDC6:GRR1]
[SIC1|SWI4:FARI]
[CLB5|CLN3:SWI4:MBP1:FUS3:FAR1:SIC1:CDC6:GRR1]
[CLB6|CLN3:SWI4:MBP1:FUS3:FAR1:SIC1:CLB5:CDC6:GRR1]
[CDC6|CLN3:SWI4:FAR1:SICI1]
[CDC20|CLN3:SWI4:MBP1:FUS3:FAR1:CLN2:SIC1:CLB5:CLB6:CDC6: GRR1]
[GRR1|CLN3:FAR1:SIC1:CDC6]
[CDC4|CDC28:CLN3:SWI4:SWI6:MBP1:FUS3:FAR1:CLN1:CLN2:SICI:
CLB5:CLB6:CDC6:CDC20:GRR1]

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
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(m)tERRAF

The gene regulatory networks/pathways are constructed, respectively, by nonlinear—mathematical-system-based

methods and a Bayesian Network. We adopt two computational intelligent approaches (IGA and HDE methods). Two

kinds of gene network are constructed via proposed S-system and lumped power-law systems, respectively. On the
other hand, we use a stochastic and graphical approach, a Bayesian network, to construct the regulatory networks of
ovarian-cancer and Sacharomyces-cerevisiae genes, respectively. The results has been accepted for publication in

IEEE-SMC’06 and IEEE-EMBC’06 conference.
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