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Electromigration in Sputtered Copper Interconnection with Polyimide as
Interlevel Dielectric or Passivation

Bi-Shiou Chiou, Jiann-Shan Jiang, Hsueh-Wen Wang, and Han-Yi Hung
Department of Electronics Engineering and institute of Electronics,
National Chiao-Tung university, 1001 Ta Hsueh Road, Hsinchu, Taiwan
E-mail bschiou@cc.nctu.edu.tw

Abstract

Electromigration damage (EMD) is one of the major
causes for the failures of interconnection. The use of copper
and low dielectric constant dielectric has been proposed to
reduce the RC time delay and to improve EMD. In this study,
the Electromigration of Cu with polyimide is investigated
with an empirical formula

R arep—Ly
@R AR
Secondary ion mass spectrometry (SIMS) reveals the

interdiffusion between Cu and polyimide during curing of the
polyimide and/or annealing of Cu metallization. Thin layers
of TiW is deposited between polyimide and Cu as a barrier to
reduce the interdiffusion. The activation energy Q for the
electromigration of Cu on polyimide is 0.77¢V from 120°C to
230°C, while activation energies for samples with titanium
tungsten as an interlayer are 0.79¢V (140°C to 190°C) and
1.73eV (190°C to 230°C).  The presence of TiW barrier
enhances the high temperature electromigration resistance and
promotes the adhesion between Cu and polyimide interface.
However, films with TiW are found to be more sensitive to
current stressing than those without.

Polyimide is also employed as a passivated layer on top of
Cu metallization. Resistance of the passivated samples
decrease in the initial stage of the electromigration
experiment. Possible causes are discussed on the decrease in
R. :

The geometry of the metallization also affects the
electromigration, the current exponent (n), calculated from
EMD data, are different for interconnection with different

geometries.

Introduction

Copper, with its low resistivity, high melting point, and
high mechanical strength, has been considered as a substitute
for Al interconnection in 'VLSI devices. Eléctro migration
damage (EMD) in Al or Al alloy has been known to be a
primary reason for circuit failure [1]. Although Cu has higher
resistance to EMD than Al, the deficiencies of copper, such
as: poor adhesion to the dielectric layers, uncontrollable dry
etching, lack of self-passivation oxide and environmental
reactivity limit the application of copper in IC fabrications.
The poor adhesion can be improved by adding diffusion
barrier as an underlying layer.

Scaling of ultra large-scale integrated (ULSI) circuits to
dimensions under 0.5 xm has placed a considerable burden
on the thin film interconnections. One of the most important
phenomena affecting the reliability of fine-line metal
interconnection is electromigration, which occurs when high
electron currents (10°-10° A/cm?) drive atoms from the
cathode end of the metallization toward the anode end and
results in structural damage such as voids and hillocks. Hence,

0-7803-5908-9/00/$10.00 ©2000 IEEE

thin film metallizations are usually coated with passivation
layer which refrain the atom diffusion by restricting the
accumulation of mass and thereby diminishing the mass flow.
It has been shown that the presence of a dielectric overcoat
can significantly affect the extent of electromigration damage
in Al and Al(Cu) conductors[2-6].

In this research, the electromigration in DC sputtered
copper interconnect with polyimide as interlevel dielectric or
passivation layer is investigated. The high thermal stability,
ease of planarization, low processing temperature and low
dielectric constant render polyimide a good candidate as
dielectric material for multilayer-structure devices. The barrier
effect of TiW on electromigration in sputtered Cu film on
polyimide is also studied. The kinetics of electromigration
damage are studied by an isothermal resistance change
analysis method utilizing an empirical formula,

R arexp--2
@R PR M
The activation energy Q for EMD and the exponent (n) of the

current density are calculated and discussed.
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Fig. 1 Flow Chart of Experimental Procedures.
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Experimental Procedures

Fig.] gives flow chart of the experimental sequence.
Copper film was sputtered onto polyimide coated Si substrate.
P-type (100) oriented Si wafers with nominal resistivity of 1
to 10 Q-cm (Topsil Inc.. USA) were employed. The Si wafers
were cleaned with standard RCA cleaning process.

Polyimide 2540 (Pyralin , Du pont, USA), polyamic
acid, was statically dispensed and spun on Si wafers with a
conventional spin coater (Spinner, Synrex, Taiwan). The
spinning process consisted of two steps. The first step, known
as dispense-and-spread cycle, is 20 sec. at 1000rpm. The
second step which determines polyimide films thickness is 30
sec. at 4500 rpm. .

Curing (completely imidized) of polyimide was carried
out in a quartz tube with nitrogen ambient to prevent the
polyimide from degradation. The nitrogen flow rate was 1416
standard centimeter cubic per minute (sccm, i.e., 3 cubic
ftzhr). the curing conditions are: 2°C/min from 25°C to 110°C,
30 min at 110°C, 2°C/min from 110°C to 230°C, 60 min at
230°C, 5°C/min from 230°C to 420°C, and 420°C for 60 min.
The film thickness of the cured polyimide is ~3 z m.

The polyimide coated Si substrate was processed using

conventional photolithography to obtain the test pattern.
Samples with positive photoresist patterns were transferred to
a vacuum chamber for the sputtering of Cu and TiW films.
High purity Ar gas was introduced through a mass flow
controller after the vacuum was evacuated to about 10’ torr.
The flow rate of Argon was 24 sccm. The sputtering targets
were a 99.995% Cu disc (diameter: 15.24cm?, thickness:
0.3cm, Plasmaterials Inc., USA) and Ti: W = 10: 90 wt% or a
Tip3Wo7 disc of 99.9% purity (diameter: 15.24cm?, thickness:
0.3cm, Cerac Inc., USA). Before deposition, the target was
pre-sputtered for 1 min. to remove any contaminate. The gas
pressure was kept at 2x10? torr and the sputtering power
employed during deposition was between 60W to 300W. The
distance between sample and target ranged from 9.5cm to
30cm. Copper was sputtered after TiW deposition without
breaking the vacuum. A Lift-off process was carried out after
the sputtering of TiW and Cu to leave a pattern for EMD tests.
After the lift-off process, samples were annealed at 250°C,
400°C, or 420°C for 30 minutes.

The film thickness was measured with a stylus surface
profiler. The sheet resistance of the samples was measured
with a four-point probe. An X-ray diffractometer was used to
identify the crystalline phase of the films. The microstructure
of the sample was examined with a field emission scanning
microscope (FESEM, S-4000, Hitachi, Japan) and a
transmission electron microscope. An optical microscope was
employed to examine samples after development and lift-off.
Auger electron spectroscopy (PERKIN PHI-590AM,
Massachusetts, USA)was used to analyze the concentration
profile of the films. The electromigration tests were carried
out in a quartz tube at temperatures ranging from 110°C to
230°C in a N> atmosphere. The four /O pads of the samples
were connected to a constant current source (Model 220,
Keithley, USA) and a micro-voltage meter (Model 197,
Keithley, USA).

The leads between the samples and measurement system
were covered with aluminum foil to avoid external electro-

magnetic interference. The voltage was acquired once per
minute or per 10 minutes automatically. The resistance was
obtained by dividing the voltage by the current.

Thermal analyses including thermogravimetry analysis
(TGA), differential thermal analysis (DTA), differential
scanning calorimetry (DSC) and differential of differential
scanning calorimetry (DDSC) were also carried out to analyze
the curing process of polyimide.

Results and Discussion

Figures 2 and 3 show the DSC and DDSC curves of
polyimide in air ambient. The DDSC curve suggests that
curing of PI starts at ~169°C and completed at ~202°C . This is
consistent with the infrared spectrum of polyimide[7].
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Fig. 2 DSC curve of polyimide in air ambient.
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Fig. 3 DDSC curve of polyimide in air ambient.

Copper films prepared in the study have a TCR ranging
from 2750 ppm/K to 3500 ppm/K and a resistivity between
1.8 2 Q-cm to 2.38 2 Q-cm, depending on the sputtering
conditions. X-ray diffraction results indicate that both the as-
deposited and the annealed Cu films are crystalline phases.

The kinetics of electromigration damage is studied with an
isothermal resistance change analysis method. Fig.4 exhibits
the relative resistance R/RO of Cu film on polyimide with or
without TiW barrier layer as a function of time at various
temperatures. The resistance increases more rapidly at higher
soaking temperatures. By defining a resistance change of
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Fig. 4 Relative resistance R/R as a function of time
for copper on polyimide (a) without and (b)
with TiW barrier layer. J=1. 31MA/cm®.

Fig. 5 SIMS depth profile of Cu film on polyimide (a)
without and (b) with TiW barrier layer. Films

annealed at 400°C for 30 min.

4.5% as the criterion of early stage failure, i.e. assuming the
dimensions of the maximum voids are much less than the line
width, the time rate change of electrical resistance dR/dt due
to the electromigration damage is thermally activated and the
activated energy can be calculated with Eq. (1). The activation
energy for Cu film on polyimide is 0.77eV (110°C to 220°C),

1688

while two activation energies, 1.73eV (190°C to 230°C)

0.79eV (140°C to 190°C), are obtained for Cu film with Tiw %
barrier layer. The presence of two activation energies suggests) =

a surface electromigration mechanism at low temperatures ! -
and a combined migration mechanism at high temperatures, .
SIMS depth profiles, shown in Fig.5, indicate that TiW filpy. -
blocks the interdiffusion between Cu and polyimide. Thig
could be one of the reasons that the presence of TiW barrier. -

layer improves the high temperature electromxgrauo,,
resistance. g
The adhesion strength of Cu on polyimide js.

0.8210.19kg/mm®. Addition of TiW barrier layer between
copper and polyimide enhances the adhesion strength to.
1.0140.19kg/mm?.

The current exponent n in Eq. (1), calculated from the.

EDM data is 5.41 for CwTiW as compared to 3.58 for Cu,,

indicating that Cu/TiW is more sensitive to current stressing:

than Cu. Values of n greater than 2 can probably be attributed . £

to Joule heating effects which result in a temperature gradient-'
induced flux divergence. Some models predicted values of 1-
to 15 depending on Joule heating. The thermal conductlvntws.
of both Ti (22W/m-K) and W (167W/m-K) are much smaller

than that of Cu (395W/m-K). Besides, the resistivity of TiW, ; %

film (~104 £ QQ-cm) is much larger than that of Cu. One: :

would expect that the introduction of the TiW barrier layer; . &
degrades the power dissipation ability of Cu films and results;
in a larger n. However, there are many factors, such as:;™

electric field, temperature gradient, residual stress, etc., which- -
would influence the migration of Cu. The root causes for the
increase of n are yet to be revealed. w

The effect of polyimide passivation on the
electromigration of Cu is studies. Fig.6 exhibits the typical
relative resistance change as a function of current stressed
time for copper on polyimide passivated with polyimide (i.e.,
PI/Cu/PI/Si). An initial decrease followed by an increase of
the resistance is observed. There are many possibilities which
would cause the drop in R, such as: Joule heating, solute
segregation--etc.. The TCR of Cu film in this study ranges
from 2750ppm/K to 3500ppm/K. For a TCR of 3500ppm/K,
the temperature on the test line raises ~125°C at a current
density of 3.42MA/cm’. As the film was annealed at 420°C
before electromigration test, 125°C is not high enough to
cause the resistance drop. Hence, Joule heating is not the
major cause for decrease in R. SIMS depth profile, shown in
Fig.5, reveals the interdiffusion between polyimide and
copper interface. The depletion of the impurities (C, N) in Cu
grain is one possibility that causes the decrease in resistance.
A polyimide passivation on the test line provides an ample
source of impurity so the R-decrease of the passivated sample
is observed.

The geometry of the metallization also affects the
electromigration. Cu metallizations with zigzag patterns were
fabricated and the EMD tested. The activation energy of a
zigzag Cu film (0.5eV) is smaller than that of a straight one
(0.77eV). Electromigration occurs at high currents, a bend in
metallization results in current crowding and, consequently,
reduces the activation energy of the zigzag film. The current
exponent for the zigzag film is 3.35, which is comparable to
that of straight Cu film (3.58).
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Fig. 6 Relative resistance R/Ry as a function of time

for copper passivated with polyimide.

Conclusions

L.

The electromigration resistance of Cu on polyimide can be
enhanced with the addition of TiW barrier layer. The
presence of TiW retards the interdiffusion between Cu and
polyimide, raises the activation energy for the
electromigration of Cu, and, enhances the adhesion strength
between Cu and polyimide.

Passivation of Cu film with polyimide causes a drop in
resistance in the early stage of electromigration test.
Interdiffusion between Cu and polyimide during annealing
results in the resistance drop.

. Current crowding affect Cu migration and should be

avoided in the design of a reliable interconnect.
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Abstract

As device scaling down to sub-micron, the RC time
delays become the limitation to circuit speed. The solution
is the use of low dielectric materials (such as HSQ) and low
resistivity materials (such as copper). In this work, the
influence of underlying barrier Ta on Cu electromigration
(EM) performance for HSQ and SiO, substrate was
investigated. The properties of Cu/Ta on HSQ coated Si
substrate and the thermal properties of HSQ were also
studied. From TG/DTA , FTIR, and refractive index
analysis, curing at around 400°C is desired to obtain lower
dielectric constant property. The presence of a Ta barrier
not only improves the adhesion between Cu and dielectrics,
but also blocks the Cu diffusion into dielectrics. And the
presence of a Ta barrier can enhance the microstructure and
improve the Cu electromigraton at high temperatures. The
hydrogen from HSQ may affect the resistivity of metal films

and electromigration performance. The roughness of HSQ

may influence the resistivity of metal films for as-deposited
condition. = The poor thermal conductivity of HSQ
substrate enhances Joule heating effects and then degrades
the EM performance.
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