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Bioelectric Source Modeling, Estimation, and Analysis of Brain Activities
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Abstract

EEG has been widely applied in functional brain studies due to its high temporal resolution and
low cost. In this work, we focus on the development of an accurate and efficient EEG forward model as
well as the inverse solution for neuronal source estimation from the EEG measurements. Our forward
model gains its accuracy by fitting an overlapping sphere for each EEG sensor. The computation of the
overlapping sphere requires only the multi-shell geometry, instead of boundary element method, thus
the proposed forward model is easy to compute. Based on the proposed forward model, the
beamforming technique is applied to calculate the distributed sources in the brain space. Hierarchical

search in the solution space is applied to save the amount of computation. According to our



experiments using phantom data and visual-evoked potential data, the proposed forward model and

inverse solution can efficiently and accurately estimate the source of brain activation.

A. Previous works
Inverse solution can be separated as fitting method and scanning method. Fitting method

including focal source and distributed source solves inverse problem by fitting the measured surface
potential to the predicted surface potential from the EEG forward model. Scanning method is to scan
the whole brain space and reveal locations having significant neuronal activation.
1) Fitting method:
a) Focal source: Assume brain source consists of only a single dipole. Least-square estimation can
be used to solve the inverse problem. If there are multiple dipoles, we can first use the independent
component analysis to decompose the EEG measured data into several components induced by
different dipoles, then apply least-square estimation for each component to solve the inverse
problem.
b) Distributed source: If we have no prior knowledge of how many sources in the brain, distributed
source estimation method can be used. LORETA (LOw REsolution brain electromagnetic
TomogrAphy) [1] is a widely-used method to solve the distributed source inverse problem. It find a
smooth area of possible brain activation because the neighboring grid points have similar activation.
2) Scanning method: Now we introduce a inverse method, called beamforming, which scans the whole
brain space to reveal possible source locations. The main idea of beamforming is to design a special
kind of spatial filter that can linearly combine the recorded EEG data from every sensor to reconstruct

the source activation:

y=w(ro;qo)x,

@
where y is the reconstructed moment of the dipole with location roand orientation _% _and w(ro; qq) is
llao Il
an N x 1 vector denoting the spatial filter. In [2], Van Veen et al. proposed a linearly constraint
minimum variance spatial filter and the solution of w(ro; qo) is:
(C+al)~ 1l
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where | is the leadfield, « represent the regularization parameter, and C is the covariance matrix of
measured data. We drop (ro; qo) for w and | for simplicity and clarity. Notice that the induced surface
potential is inversely cubic-proportional to the source depth [3]. Therefore, if the spatial filter is
computed for a deeper position, the reconstructed neural activation will be larger. Therefore, we
calculate the f statistic of the activation power:
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where Caand Cc denote the covariance matrices estimated from the measured data in the active and

control states respectively.

B. Proposed inverse solution

In Equation (2), we need to know the source orientation _% _hefore we calculate the spatial filter
G0 1l

w. Here we adopt the method proposed in [4] to analytically calculate the optimal source orientation in

a closed-form manner. In the following we describe the proposed inverse solution.

1) Maximum contrast beamforming: Substitute | _ g D . Gj into Equation (2) to obtain:
Il g

w (C+al)'Gj . Aj
CJTGT(C+ol)"1Gj  TBj’

(4)

where we define matrices A= (C + ¢ 1)*G and B = G (C+ « 1)G. Consequently, we can determine the

optimalsource orientation [5], [6], [4] by maximizing the power contrast between the active and control

states:
R wl Caw JTATCaAj
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where we define matrices P = A'CaA and Q = A"CcA. The solution of Equation (5) is the eigenvector
with respect to the maximum eigenvalue of matrix QP [7]. In short, maximum contrast beamforming
can determine the optimal source orientation, based on the maximum contrast criterion, and the
resulted spatial filter w for each source location ro. Then Equation (3) can be used to measure the f
statistic for the location r.
2) Hierarchical-search beamforming: To compromise between the computational cost and spatial
resolution of the probed search space in the brain, we adopt a hierarchical framework to search for the
activation region in a coarse-to-fine manner. In the following we list the algorithm of
hierarchical-search beamforming:

1) Initialize the ROI (Region of Interest) manually.

2) Spatially sample the ROI with low resolution.

3) Estimate the power statistics of the sampled points using the beamforming technique.

4) Select the points with large power statistics as the new ROI.

5) Resample the new ROI with higher spatial resolution.

6) Repeat Steps 3-5 until the spatial resolution is high enough.

By specifying a proper ROl we can avoid the estimated source to be outside the human head area.
However, we still need to further consider the source located inside the head but outside the sphere
model because the spherical forward model assumes that the dipole source is located inside the sphere.

For a dipole outside the sphere, we use a “similar” dipole that falls within the boundaries of the sphere



[8], [9], [10] as the representative of the original dipole. Thus, we can calculate for all the dipole

sources inside the whole ROI, no matter inside or outside the sphere model.

C. Experiment of visual-evoked potential
We also apply our method to estimate the neuronal activity from the EEG data during a visual

task. The subject is a 24-year-old female. During the experiment, a white square appeared on the center
of LCD (liquid crystal display) screen once per 0.3 second as the visual stimulus. From the visual ERP
obtained by averaging 513 trials, as shown in the right-bottom part of Figure 4, we found a positive
peak at 109 ms and two negative peaks at 153 ms and 238 ms respectively, where stimulus on-set time
is 0 ms. Functional mapping by using the proposed method (Sun with OS and hierarchicalsearch
beamforming), as well as the dipole-fitting results, for each of the three peaks are illustrated in Figure 4.
It is obvious that our method successfully reveal the region in the occipital area with strong

significance of neuronal activity.
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