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中文摘要 

這是一個二年期的計劃。我們建議探討在破裂介質中的二相流的宏觀模式。

一個已知的事實是二相流在獨立的區塊中的流動雖然很緩慢，但它對流體在整體

上的表現卻佔了十分重要的角色，它具有所謂的調節功能。表現在外的一種形式

是在不同區塊會有不同的 time scale 的現象。此現象在宏觀模式下的單孔模式

(single-porosity model)中無法看出，但期望在宏觀模式下的雙孔模式

(dual-porosity model)可看出來。在之前的研究中，我們考慮了區塊為小尺寸及

中尺寸的情形，並證明了它們會收歛到某種的雙孔介質模式。且這些模式在區塊

與整體之間確有不同的 time scale 的現象。我們希望繼續先前的工作討論柱形區

塊及混和型區塊所構成的破裂介質的情形。目的就是想找出各種不同區塊的微觀

模式所對應的宏觀模式。 

關鍵詞：單孔模式、雙孔模式。 

 

英文摘要 

This is a two-year project. We propose to investigate macroscopic model 

for two-phase flows in fractured media. It is known that although flow moves 

slow in matrix blocks, it has profound influence on global flow behaviors. 

Usually, different time scales in different regions can be observed. This 

phenomenon does not show in single-porosity models, but it is expected to 

be captured in dual-porosity models. In previous study, we consider 

small-sized block case and medium-sized block case, and prove they converge 

to some dual-porosity models. They do show different time-scales in matrix 

blocks and fracture system. We plan to continue this effort to study 

column-block type fracture media and mixed-block fracture media. The purpose 

is to find the relations between microscopic models and macroscopic models 

for two-phase flows in fractured media. 

Key words：single-porosity model、dual-porosity model. 

 

背景及目的 

在很多的應用問題上須要了解流體在破裂介質中的運動。譬如地下污染源

(污水或核廢料)的問題及多孔介質中多相流的問題。事實上，組成半導體晶片

的 transistor(如 MOSFET [37])本身也是一種破裂介質，因此電子流在

transistor 中的運動也對應到微觀下的流體在破裂介質中的運動。不過我們有

興趣的是多孔介質中二相流的問題。流體在破裂介質中的運動有一特殊的現
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象，就是在不同的區塊中流體的變化會有不同的 time-scale 的特性

[30,31,33]。由於二相流在破裂介質中的運動和介質的 porosity、

permeability、geometry、及流體的性質等有關。因此描述破裂介質中二相流

變化的微觀模式十分複雜且很難做分析。即使想用計算的方式去找出微觀模式

的近似解也因為計算量太過龐大而不可行。目前對二相流在破裂介質中的問題

的研究都是研究它所對應的較簡化的宏觀模式。在一般不均勻的介質中(非破裂

介質)，流體的運動的宏觀模式可用 single-porosity model 描述。在已知的文

獻中，大部份的地下污染源的問題及多孔介質中多相流的問題都是屬於這類模

式。然而 single-porosity model 並不適用於破裂介質中。一種粗淺的說法是

在微觀下描述二相流在破裂介質中運動的一些係數，會有急劇振動的情形，此

急劇的變化在 single-porosity model 是無法看出。因此，就有工程的學者提

出 dual-porosity model 的概念。經過多次實驗測試的結果，dual-porosity 

model 較 single-porosity model 更能準確描述流體在破裂介質中的變化。不過

相對付出的是前者比後者的方程式更複雜。目前並沒有太多探討這類問題的數

學結果。此外在 dual-porosity model 中正確的 interface condition 也是一

個問題。目前常用的 interface condition 是由物理直覺得到的並無理論基礎。

我們則希望借由數學工具建立起一套有系統的二相流在微觀與在宏觀下的模式

之間的對應關係及其理論基礎。 

          二相流在破裂介質中的微觀數學模式是由不連續係數的退化型拋物線與橢

圓方程式所組成[46,48]。此問題在工程上有很多的文獻討論，但他們著重在

modelling，數值計算，或資料統計的部份，而沒有數學理論。在數學界，不連

續係數的方程早在 60 年代已有人開始討論，不過他們只著重在輕微的不連續的

問題上[35]。若有急劇變化的情形則會忽略係數較小的部份不計，因此可以大

大的簡化問題的困難度。在我們的情形以上兩種假設都不可行。所以產生微觀

模式下二相流問題的解的存在性、穩定性等的証明的困難。這方面的參考資料

目前並不多。Poisson equation 及 heat equation 的情形可參考[32,36]。在

一般不均勻介質下的宏觀模式(即 single-porosity model)的部份，已知的結果

較多。解的存在性、唯一性、穩定性、數值計算方法、及物理性質可參考

[6,7,10,12,20,21,25,26,27,39,40]及其內的參考資料。解的 regularity 的部

份可參考[4,5,13,28,34]。至於破裂介質的宏觀模式大多是由物理性質及不嚴

謹的方式推導出一些 dual-porosity model [8,9,17,18,30,31,33]，但並無數

學的證明。少數一些 dual-porosity model 的數學結果(但屬於較簡單的例子)

可參考[11,15]。 

          在過去的研究中，我們討論了二相流在小尺寸與中尺寸的破裂介質中微觀

模式與宏觀模式的關聯[46,48]。我們希望在接下來的三年計劃中能沿續先前的

工作，討論在不同尺寸及混合尺寸下二相流的微觀模式及其對應的宏觀模式。

除了希望建立起一套有系統的二相流在微觀與在宏觀下的模式之間的對應關係

及其理論基礎外，也希望能將此結果應用到晶片中的 transistor 的電子流的問
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題上。研究的方向是先考慮柱形區塊所構成的破裂介質的微觀模式的解的

well-posedness 問題，再考慮其對應的宏觀模式，接著再結合之前的結果(即小

尺寸及中尺寸的模式)討論混合尺寸下的問題。Triple-porosity model(即含有

三種不同 porosity 尺寸的模式)也是我們討論的範圍。底下我們列出想考慮的

一個 model problem。 

We consider a porous medium 3ℜ∈Ω , which is a two-connected domain with a 

periodic structure. Let 3]1,0[:=Y  be a cell consisting of a matrix block domain mY  

completely surrounded by a connected fracture domain fY , and we denote by Γ  the 

matrix-fracture interface in the cell Y . Let )(yχ  be the characteristic function of 

mY  extended Y -periodically to all of 2ℜ . The medium Ω  contains two 

subdomains, f
εΩ  and m

εΩ , representing the system of fracture plans and matrix 
blocks respectively, and satisfying 

        .\},1)/(|{ mfm xx εεε εχ ΩΩ=Ω=Ω∈⊂Ω  

Let II ΩΩ∂Ω∂=Γ mf
εεε :  be that part of the interface of m

εΩ∂  with f
εΩ∂  

that is interior to Ω . 
For the fracture subdomain f

εΩ , we denote porosity by εΦ , absolute 
permeability by εK , saturation of oil phase by ]1,0[∈εS , capillary pressure by 

)( εγ S , the relative permeability by )(
ε

α SΛ , phase pressure by ε
αP , and a function 

depending on gravity by ε
αG  for ow,=α . We use ε

α
ε

α
ε

α
εεεε λνκφ gpsss ,),(),(,,,  

for ow,=α , in subdomain m
εΩ  to represent same quantities as those denoted by 

upper case symbol in fracture subdomain. Let )0(>ϖ  be a constant. The 
conservation of mass in each phase, with the Darcy’s law, can be written as, in f

εΩ , 
0>t , 

    0))()()(()( =−∇Λ⋅∇−∂Φ− εεεεεε
wwwt GPSxKSx ,             

    0))()()(()( =−∇Λ⋅∇−∂Φ εεεεεε
ooot GPSxKSx ,                 

     εεεγ wPPS −= 0)( ,                                          

in m
εΩ , 0>t , 

    0))()()(())()(()( ,,
2 =−∇⋅∇−∇⋅∇−∂− εεεεεεεϖεε λκλκεφ wwzwzwyxwyxt gpsxpsxsx  
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    0))()()(())()(()( ,,
2 =−∇⋅∇−∇⋅∇−∂ εεεεεεεϖεε λκλκεφ oozozoyxoyxt gpsxpsxsx ,                  

     εεεν wpps −= 0)( ,                                          

Phase fluxes and pressures are required to be continuous on interface εΓ , 0>t , 
ow,=α , 

        νλεν ε
α

ε
α

εϖε
α

ε
α

ε vv psxkPSxK yxyx ,
2

, )()()()( ∇=∇Λ ,        

        ε
α

ε
α pP = ,                                                  

where νv  is the unit vector outer normal to εΓ . Boundary Ω∂  of Ω  includes 1Γ , 

2Γ , which satisfying φ=ΓΓI 21 , U 21 ΓΓ=Ω∂ . Boundary conditions are given by, 

for ow,=α , 

        0)()()( =−∇Λ nGPSxK vε
α

ε
α

ε
α

ε ,   on 1Γ ,                       

        α
ε
α ,bPP = ,                     on 2Γ ,                      

where nv  is the unit vector outer normal to 1Γ . Initial conditions are 

        )()0,( 0 xSxS εε = ,   in ε
fΩ ,                                  

        )()0,( 0 xsxs εε = ,   in ε
mΩ ,                                  

 

     我們想問當ε 很小時，以上的微觀模式所對應的宏觀模式為何? 

 

研究方法、進行步驟及執行進度 

          第一步是討論微觀模式的解的 well-posedness 的問題。在這部份，須要仔

細研究不連續係數的退化型拋物線與橢圓方程式[16,29]。古典的拋物線與橢圓

方程式理論不適用於這問題。為了估計不連續截面的變化，也須要用到

psudodifferential operator [41]及 boundary integral method[14]。在函數

空間方面 Holder space 或 Sobolev space 並不是正確的空間，要嘗試 Besov 

space 或其他函數空間才可[2,38,42]。第二步則是找出二相流的微觀模式與宏

觀模式的關係，這將要借助 homogenization 或 multiple-scale convergence

的技巧[1,3]。 
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結果與討論 

        這兩年我們完成了以下的工作:第一年找出了二相流在柱形區塊所構成的

破裂介質的微觀模式與宏觀模式的關係。此宏觀模式基本上是由退化型拋物線

與橢圓方程式所組成。它和二相流在小尺寸與中尺寸的破裂介質中的運動模式

最大的不同是重力在此方程式中所佔的比重。由於二相流是在柱形區塊所構成

的破裂介質中運動重力成了引導流體運動的重要因子。很自然的，方程式也變

得十分複雜。第二年我們找出了兩種可混合流體在中尺寸區塊所構成的破裂介

質的宏觀模式。此模式是由均勻拋物線與橢圓方程所組成。不過此拋物線方程

需用到橢圓方程式的解的導數，是個高度非線性的拋物線與橢圓方程組。底下

附上的兩篇論文就是我們這兩年的硏究結果。  
 

計畫成果自評部份 

         這次的研究內容與原計畫相符合程、也達成預期目標情況、研究成果將發表

於國際學術期刊上。 
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Two-phase, incompressible, immiscible flow in fractured media with tall matrix blocks
is concerned. Suppose ε denotes horizontal size ratio of matrix blocks to whole medium,
and suppose the horizontal widths of the fracture planes and matrix blocks are in same
order. As ε goes to 0, microscopic model for the two-phase flow problem converges to
1) a dual-porosity model if permeability ratio of matrix blocks to fracture planes is of
order ε2; 2) a single-porosity model for fracture flow if the ratio is smaller than order ε2;
3) another type of single-porosity model if the ratio is greater than order ε2.

Keywords: dual-porosity model, fractured media

1. Introduction

Homogenization for two-phase, incompressible, immiscible flow in fractured media

with tall matrix blocks is concerned. Within a fractured medium there is an in-

terconnected system of fracture planes dividing the porous rock into a collection

of matrix blocks. The fracture planes, while very thin, form paths of high perme-

ability. Most of the fluids reside in matrix blocks, where they move very slow. Let

ε be the horizontal size ratio of tall matrix blocks to the whole medium, and let

the horizontal widths of the fracture planes and matrix blocks be in same order.

In case permeability ratio of matrix blocks to fracture planes is of order ε2, micro-

scopic models for the two-phase flow problem converge to a dual-porosity model

as ε tends to 0. For the macroscopic model, a fractured medium is regarded as a

porous medium consisting of two superimposed continua, a continuous fracture sys-

tem and a discontinuous system of matrix blocks. Matrix blocks play the role of a

global source distributed over the entire medium. The immiscible two-phase flow is

formulated by conservation of mass principles for each continum plus sources from

tall matrix blocks. This problem was also considered by formal asymptotic expan-

sion in [8]. If the ratio is smaller than order ε2, the microscopic models approach

a single-porosity model for fracture flow. If the ratio is greater than order ε2, then

microscopic models tend to another type of single-porosity model. Our intention is

to prove the convergence of the microscopic models.

1
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Rest of the paper is organized as follows: In next section §2, we state microscopic

model for two-phase flow in fractured media. Notation and assumption will be given

in §3. Then in §4, we present our main results. Some known results needed for our

main results will be recalled in §5. Proof of main result is in §6. In §6, we need

to use the convergence of oil saturation in matrix blocks. The proof is lengthy and

tedious, so we present it in last section §7.

2. Microscopic Model for Tall Matrix Blocks

Let Y ≡ [0, 1]2 be a cell consisting of a matrix block domain Ym completely

surrounded by a connected fracture domain Yf . Xm(y) is the characteristic function

of Ym, extended Y -periodically to all of <2. Ω̃ ⊂ <2 contains two subdomains, Ω̃εf
and Ω̃εm. Ω̃εm ⊂ {x̃ ∈ Ω̃|Xm(x̃/ε) = 1}, Ω̃εf = Ω̃ \ Ω̃εm. Let Γ̃ε ≡ ∂Ω̃εf ∩ ∂Ω̃εm ∩ Ω̃.

Boundary of Ω̃ includes two parts Γ̃1 and Γ̃2 satisfying Γ̃1∪Γ̃2 = ∂Ω̃ and Γ̃◦1∩Γ̃◦2 = ∅.
Porous medium considered is a cylindrical aquifer Ω ≡ Ω̃ × [0, H] ⊂ <3 and is

assumed to be a two-connected domain with a periodic structure. It contains two

subdomains, Ωε
f ≡ Ω̃εf × [0, H] and Ωεm ≡ Ω̃εm × [0, H], representing the system of

fracture planes and matrix blocks respectively. Let Γε ≡ Γ̃ε × [0, H] be that part

of the interface of Ωε
m with Ωεf that is interior to Ω. Both Γ1 ≡ Γ̃1 × [0, H] and

Γ2 ≡ Γ̃2 × [0, H] are part of lateral boundary of Ω.

In fracture subdomain Ωε
f , porosity is denoted by Φε, absolute permeability by

Kε, saturation of oil phase by Sε, capillary pressure by Υ(Sε), relative permeability

by Λα(Sε), phase pressure by P εα, and a density-gravity term by Gεα for α = w, o.

φε, kε, sε, υ(sε), λα(sε), pεα, g
ε
α for α = w, o, in subdomain Ωε

m represent same quan-

tities as those denoted by upper case symbol in fracture subdomain. Conservation

of mass in each phase are written as, in Ωε
f , t > 0,

−Φε∂tS
ε −∇ · (KεΛw(Sε)∇(P εw −Gεw)) = 0, (2.1)

Φε∂tS
ε −∇ · (KεΛo(S

ε)∇(P εo −Gεo)) = 0, (2.2)

Υ(Sε) = P εo − P εw, (2.3)

in Ωεm, t > 0,

−φε∂tsε −∇ ·
(
kεI2$

ε λw(sε)∇(pεw −Gεw)
)

= 0, (2.4)

φε∂ts
ε −∇ ·

(
kεI2$

ε λo(s
ε)∇(pεo −Gεo)

)
= 0, (2.5)

υ(sε) = pεo − pεw, (2.6)

where Id
ε is a diagonal matrix defined by Id

ε ≡




εd 0 0
0 εd 0
0 0 1


. Phase fluxes and

pressures are required to be continuous on interface Γε, t > 0, α = w, o,

KεΛα(Sε)∇(P εα −Gεα) · ~νε = kεI2$
ε λα(sε)∇(pεα −Gεα) · ~νε, (2.7)

P εα = pεα, (2.8)
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where ~νε is the unit vector normal to Γε. Boundary conditions are, for α = w, o,

KεΛα(Sε)∇(P εα −Gεα) · ~n = 0 on Γ1, (2.9)

KεΛα(Sε)∂x3
(P εα −Gεα)|x3=0,H = kελα(sε)∂x3

(pεα −Gεα)|x3=0,H = 0, (2.10)

P εα = Pb,α on Γ2, (2.11)

where ~n is the unit vector outer normal to Γ1. Initial conditions are

Sε(0, x) = Sε0(x) in Ωεf , (2.12)

sε(0, x) = sε0(x) in Ωεm. (2.13)

3. Notation and Assumption

For any x ∈ <3, x = (x̃, x3) where x̃ ∈ <2. Ω̃(2ε) ≡ {x̃ ∈ Ω̃ : dist(x̃, ∂Ω̃) > 2ε},
Ω̃εm ≡ {x̃ : x̃ ∈ ε(Ym + j) ⊂ Ω̃(2ε) for j ∈ Z2}, Ω̃εf ≡ Ω̃ \ Ω̃εm, and Ω̃ε ≡ {z :

z ∈ ε(Y + j), ε(Ym + j) ⊂ Ω̃(2ε) for j ∈ Z2}. Ωε ≡ Ω̃ε × [0, H], Ωεi ≡ Ω̃εi × [0, H],

Y Hm ≡ Ym× [0, H], Q ≡ Ω×Y , Qεm ≡ Ωε×Ym, Qi ≡ Ω×Yi, i = f,m. Bt ≡ (0, t)×B
for B = Y Hm ,Γε,Q,Qεm,Ω,Ωεi ,Qi i = f,m.

<+
0 ≡ <+ ∪ {0}. Time difference is defined to be ∂hψ(t) ≡ ψ(t+h)−ψ(t)

h . For a

set B, XB is a characteristic function of B. ψ(t, x, y) ∈ Lr(ΩT ;Lrper(Y )), 1 < r <∞,

coincides with a function in Lr(QT ) extended by Y -periodicity in y to the whole

of <2. For B = Yf , Ym, we define Lr(ΩT ;Lrper(B)) ≡ {ψ ∈ Lr(ΩT ;Lrper(Y )) :

ψ(t, x, y) = 0 if y ∈ Y \ B}. W i,r
0 (Ω) ≡ {ψ ∈ W i,r(Ω) : ψ|Γ2

= 0} if i ∈ N and

r > 1, U ≡ W1,2
0 (Ω), U2 ≡ U × U , dual X ≡ dual space of X, sl (resp. 1 − sr) is

residual matrix oil (resp. water) saturation. Lq,r(ΩT ) ≡ Lr(0, T ;Lq(Ω)).

If Υ : [0, 1) → <+
0 (resp. υ : [sl, sr) → <+

0 ) is onto and strictly increasing,

Υ−1 (resp. υ−1) denotes the inverse function of Υ (resp. υ). Then we define

J : [sl, sr)→ [0, 1) by J (z) ≡ Υ−1(υ(z)), and denote by J −1 the inverse function

of J .

Pb,c ≡ Pb,o − Pb,w, Sb ≡ Υ−1(Pb,c), Λ ≡ Λw + Λo, λ ≡ λw + λo,





R(z) ≡
∫ z

0
ΛwΛo

Λ
dΥ
dS (ξ)dξ for z ∈ [0, 1),

A(z) ≡
∫ z

0

√
ΛwΛo

Λ (Υ−1(ξ))dξ for z ∈ [0,∞),

M(z) ≡
∫ z
sl
λwλo
λ

dυ
ds (ξ)dξ for z ∈ [sl, sr).

(3.1)

ϑ ∈ (0, 1/8) is a number such that R′ is increasing (resp. decreasing) in (0, ϑ) (resp.

(1− ϑ, 1)).

Next let us assume the following conditions: For α = w, o,

A1. Γ2 6= ∅, Ym ⊂ <2 is a bounded smooth domain, and Ω ⊂ <3 is open, bounded,

and connected with Lipschitz boundary,

A2. Kε, Gεα(x3) ∈ W 1,∞(Ω), ∂tPb,α ∈ L2(0, T ;H1(Ω)), Pb,α ∈ C(0, T ;C1,d1(Ω)),

Sε0, s
ε
0 ∈ H1(Ω) ∩ C0,d2(Ω) for d1,d2 ∈ (0, 1),
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A3. Kε, kε,Λ, λ ∈ [d3,d4], Sb, S
ε
0,J (sε0) ∈ (d5, 1− d5) and d5 ∈ (0, 1),

A4. φε = φ(xε ), kε = k(xε ), where φ, k are smooth Y -periodic functions,

A5. Λw, λw (resp. Λo, λo) : [0, 1] → [0, 1] are continuous and decreasing (resp.

increasing), Λw(1− z) ∝ zd6 ,Λo(z) ∝ zd7 for z ∈ (0, ϑ), Λα
Λ (J (z)) = λα

λ (z),

A6. Υ : [0, 1)→ <+
0 (υ : [sl, sr)→ <+

0 ) is onto, increasing, and a locally Lipschitz

continuous function, and inf
z∈[0,1)

dΥ
dS (z) > 0,

dΥ
dS (J (z))
dυ
ds (z)

,Φε, φε ∈ [d8,d9] for z ∈
[sl, sr],

d9

d8
∼ 1,

A7. Λ
3/2
o (z) ≤

∫ 2z

z
(A(Υ(2z))−A(Υ(ξ)))dξ for z ∈ (0, ϑ) and

Λ
3/2
w (1− z) ≤

∫ 1−z
1−2z

(A(Υ(ξ))−A(Υ(1− 2z)))dξ for z ∈ (0, ϑ),

A8. |Λα(z1)− Λα(z2)| ≤ d10

√
(R(z1)−R(z2))(z1 − z2) for any z1, z2 ∈ [0, 1],

A9. max
z∈[0,1]

|Λ(z)− 1|+ max
z∈[sl,sr ]

|λ(z)− 1| ≤ d11 (d11 only depends on Ω,Kε, kε),

A10. ΛoΛw(z) ≤ d12z|1− z|
√
R′(z), R′(z) ∝ zm|1− z|m1 for z ∈ (0, ϑ)∪ (1− ϑ, 1)

and m,m1 > 1,

where m,m1, di, i = 1, · · · , 12 are positive constants.

Remark 3.1 From A1, Ωεf is an open, bounded, and connected domain with Lip-

schitz boundary. In A2, the density-gravity terms Gεw, G
ε
o are functions depending

on x3 variable. Initial and boundary saturations are away from two end points 0

and 1 (see A3). A5 implies that relative permeability Λw (resp. λw) in the neigh-

bor of end point 1 has similar properties as Λo (resp. λo) in the neighbor of end

point 0. Relative phase mobilities in fractures and matrix blocks behave similar.

A6 requires that fracture capillary pressure increases as fast as capillary pressure of

matrix blocks. Usually, derivative of capillary pressure Υ′(z) (resp. υ′(z)) tends to

infinity as z → 0 or 1 (resp. sl or sr). A10 allows parabolic equations considered

are degenerate at end points 0 and 1, a characteristic of a porous medium equation.

Indeed, it also implies R′ ∈ L∞(0, 1). A7-8,10 are the restrictions on relative per-

meability and capillary pressure in fractures. Indeed, if d6,d7 (see A5) are large

enough (depending on capillary pressure), A7-8,10 hold. One may also note that

because of A5-10, Λo and R′ at the end point 0 have similar properties as Λw and

R′ at the end point 1.

4. Main Result

In this section, we present the limit models of (2.1–2.13) as ε → 0. Roughly

speaking, the limit models are fracture flow equations plus interior sources from

matrix blocks. The source terms depend on how fast the matrix permeability tends

to 0 as ε → 0. For 0 < $ < 1 case, matrix permeability tends to 0 very slow and

saturation variation in fracture system and in matrix blocks is almost simultaneous.
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So the limit model is a single-porosity model with sources from matrix blocks. For

$ = 1 case, saturation variation in fracture system and in matrix blocks is not

simultaneous and the limit model is a dual-porosity model. In this case, domain

acts as a porous medium consisting of two superimposed continua, a continuous

fracture system Ω and a discontinuous system of matrix blocks Qm. Primary flow

occurs in fracture system Ω, and each point x ∈ Ω is associated with a matrix

block Ym. Flow in matrix blocks plays the role of a global source in the whole

fracture system. The model includes two systems of equations, one for flow in

fracture system and the other for flow in matrix block system. The two systems

are coupled through nonlinear sources. For 1 < $ case, matrix permeability tends

to 0 so fast that matrix blocks play no roles in the limit model. The limit model

is a single-porosity model containing only fracture flow equations without matrix

sources.

4.1. For $ = 1 case

Let Ω ⊂ <3 be a fractured medium. Equations for fracture flow are, for x ∈
Ω, t > 0,

−Φ∂tS −∇ · (KΛw(S)∇(Pw −Gw)) = qw, (4.1)

Φ∂tS −∇ · (KΛo(S)∇(Po −Go)) = qo, (4.2)

Υ(S) = Po − Pw. (4.3)

Φ is porosity, K is permeability field, S is oil saturation, Υ(S) is capillary pressure

curve, Λα (α = w, o) is relative permeability curve of α-phase, Pα denotes phase

pressure, Gα is a function depending on density, gravity, and position, and qα is the

matrix-fracture source.

Above each point x ∈ Ω is suspended topologically a matrix block Ym ⊂ <2.

Equations for flow in a matrix block are, for x ∈ Ω, y ∈ Ym, t > 0,

−φ∂ts− ∂y,x3
· (kλw(s)∂y,x3

(pw −Gw)) = 0, (4.4)

φ∂ts− ∂y,x3
· (kλo(s)∂y,x3

(po −Go)) = 0, (4.5)

υ(s) = po − pw. (4.6)

Here functions s, pw, p0 are defined in space domain Qm and ∂y,x3
= (∂y1

, ∂y2
, ∂x3

).

Each lower case symbol denotes the quantity on Ym corresponding to that denoted

by an upper case symbol in the fracture system equations.

The matrix-fracture sources are given by, for x ∈ Ω, t > 0,

qα =
−1

|Ym|

∫

Ym

(σαφ∂ts− ∂x3
(kλα(s)∂x3

(pα −Gα))) dy, (4.7)

where σw = −1, σo = 1, and |Ym| is the volume of Ym. Boundary conditions are,

for t > 0, α = w, o,

KΛα(S)∇(Pα −Gα) · ~n = 0 for x ∈ Γ1, (4.8)
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KΛα(S)∂x3
(Pα −Gα)|x3=0,H = kλα(s)∂x3

(pα −Gα)|x3=0,H = 0, (4.9)

Pα = Pb,α for x ∈ Γ2, (4.10)

where ~n is the unit vector outward normal to Γ1. On interface, pressures are

continuous, that is, for t > 0, x ∈ Ω, y ∈ ∂Ym, α = w, o,

pα(t, x, y) = Pα(t, x). (4.11)

Initial conditions are

S(0, x) = S0(x) for x ∈ Ω, (4.12)

s(0, x, y) = s0(x) for x ∈ Ω, y ∈ Ym. (4.13)

Theorem 4.1 Under A1−10, a subsequence of solutions of the microscopic models

(2.1–2.13) converges in two-scale sense to a solution of (4.1–4.13) (see next section

for the definition of convergence in two-scale sense).

4.2. For 0 < $ < 1 case

Equations are, for x ∈ Ω, t > 0,

−Φ∂tS −∇ · (KΛw(S)∇(Pw −Gw)) = qw, (4.14)

Φ∂tS −∇ · (KΛo(S)∇(Po −Go)) = qo, (4.15)

Υ(S) = Po − Pw = υ(s). (4.16)

Φ, K, S, Υ(S), υ(s), Λα, Pα, Gα, and qα (α = w, o) are the same quantities as

those in $ = 1. The matrix-fracture sources are given by, for x ∈ Ω, t > 0,

qα =
−1

|Ym|

∫

Ym

(σαφ∂ts− ∂x3
(kλα(s)∂x3

(Pα −Gα))) dy, (4.17)

where σw = −1, σo = 1, and |Ym| is the volume of Ym. Boundary conditions are,

for t > 0, α = w, o,

KΛα(S)∇(Pα −Gα) · ~n = 0 for x ∈ Γ1, (4.18)

KΛα(S)∂x3
(Pα −Gα)|x3=0,H = 0, (4.19)

Pα = Pb,α for x ∈ Γ2, (4.20)

where ~n is the unit vector outward normal to Γ1. Initial condition is

S(0, x) = S0(x) for x ∈ Ω. (4.21)

Theorem 4.2 Under A1−10, a subsequence of solutions of the microscopic models

(2.1–2.13) converges in two-scale sense to a solution of (4.14–4.21) (see next section

for the definition of convergence in two-scale sense).
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4.3. For $ > 1 case

Equations are, for x ∈ Ω, t > 0,

−Φ∂tS −∇ · (KΛw(S)∇(Pw −Gw)) = 0, (4.22)

Φ∂tS −∇ · (KΛo(S)∇(Po −Go)) = 0, (4.23)

Υ(S) = Po − Pw. (4.24)

Φ, K, S, Υ(S), υ(s), Λα, Pα, Gα, and qα (α = w, o) are the same quantities as

those in $ = 1. Boundary conditions are, for t > 0, α = w, o,

KΛα(S)∇(Pα −Gα) · ~n = 0 for x ∈ Γ1, (4.25)

KΛα(S)∂x3
(Pα −Gα)|x3=0,H = 0, (4.26)

Pα = Pb,α for x ∈ Γ2, (4.27)

where ~n is the unit vector outward normal to Γ1. Initial condition is

S(0, x) = S0(x) for x ∈ Ω. (4.28)

Theorem 4.3 Under A1−10, a subsequence of solutions of the microscopic models

(2.1–2.13) converges in two-scale sense to a solution of (4.22–4.28) (see next section

for the definition of convergence in two-scale sense).

5. Some Known Results

Lemma 5.1 [1] Let 1 ≤ r <∞ and A1 hold. There is a constant d13(Yf , r) and a

linear continuous extension operator Πε : W 1,r(Ωεf )∩L∞(Ωεf )→W 1,r(Ω)∩L∞(Ω)

such that if ϕ ∈W 1,r(Ωεf ) ∩ L∞(Ωεf ) and d14 ≤ ϕ ≤ d15, then





Πεϕ = ϕ in Ωεf almost everywhere,
‖Πεϕ‖W 1,r(Ω) ≤ d13‖ϕ‖W 1,r(Ωε

f
),

d14 ≤ Πεϕ ≤ d15.

Definition 5.1 For a given ε > 0 and 1 ≤ r <∞, we define a dilation operator “ ”

mapping a measurable function ϕ ∈ Lr(Ωε,Tm ) to a measurable function ϕ ∈ Lr(QTm)

by, for (t, x̃, x3, y) ∈ QTm,

ϕ(t, x̃, x3, y) ≡
{
ϕ(t, `ε(x̃) + εy, x3) if (`ε(x̃) + εy, x3) ∈ Ωεm,
0 elsewhere,

where `ε(x̃) ≡ εj if x̃ ∈ ε(Y + j), j ∈ Z2, denoting the lattice translation point of

ε-cell domain containing x̃.

Definition 5.2 A sequence of functions ϕε in Lr(ΩT ), 1 < r < ∞, is said to two-

scale converge to ϕ in Lr(ΩT ;Lrper(Y )) if, for any function ψ ∈ C∞0 (ΩT ;C∞per(Y )),

we have

lim
ε→0

∫

ΩT
ϕε(t, x)ψ(t, x, x̃/ε)dxdt =

∫

QT
ϕ(t, x, y)ψ(t, x, y)dydxdt,
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denoted by ϕε
2
⇀ ϕ ∈ Lr(ΩT ;Lrper(Y )). Besides limε→0 ‖ϕε‖Lr(ΩT ) = ‖ϕ‖Lr(QT ),

ϕε is said to two-scale converge to ϕ in Lr(ΩT ;Lrper(Y )) strongly, and denoted by

ϕε
2→ ϕ ∈ Lr(ΩT ;Lrper(Y )) strongly.

6. Proof of Main Result

A1-10 are assumed from now on. Let us derive a weak formulation of (2.1–2.6).

Multiplying (2.1) and (2.4) by η as well as (2.2) and (2.5) by ζ, integrating over

ΩT , and employing boundary conditions (2.7) and (2.9), we obtain

−
∫

Ωε,T
f

Φε∂tS
εη +

∫

Ωε,T
f

KεΛw(Sε)∇(P εw −Gεw)∇η

−
∫

Ωε,Tm

φε∂ts
εη +

∫

Ωε,Tm

kεI2$
ε λw(sε)∇(pεw −Gεw)∇η = 0, (6.1)

∫

Ωε,T
f

Φε∂tS
εζ +

∫

Ωε,T
f

KεΛo(S
ε)∇(P εo −Gεo)∇ζ

+

∫

Ωε,Tm

φε∂ts
εζ +

∫

Ωε,Tm

kεI2$
ε λo(s

ε)∇(pεo −Gεo)∇ζ = 0, (6.2)

for smooth functions η, ζ ∈ L2(0, T ;U). Next we define global pressure [11] as




P ε ≡ 1

2

(
P εo + P εw +

∫ Υ(Sε)

0

(
Λo
Λ (Υ−1(ξ))− Λw

Λ (Υ−1(ξ))
)
dξ
)
,

pε ≡ 1
2

(
pεo + pεw +

∫ υ(sε)

0

(
λo
λ (υ−1(ξ))− λw

λ (υ−1(ξ))
)
dξ
)
,

(6.3)

Pb is defined as P ε in (6.3)1 except replacing P εo , P
ε
w,Υ(Sε) by P εb,o, P

ε
b,w, Pb,c respec-

tively. Then ∇P ε = Λw
Λ (Sε)∇P εw + Λo

Λ (Sε)∇P εo and ∇pε = λw
λ (sε)∇pεw + λo

λ (sε)∇pεo
by (2.3) and (2.6). (6.2) can be rewritten as

∫

Ωε,T
f

Φε∂tS
εζ +

∫

Ωε,T
f

Kε
(
Λo(S

ε)∇(P ε −Gεo) +∇R(Sε)
)
∇ζ

+

∫

Ωε,Tm

φε∂ts
εζ +

∫

Ωε,Tm

kεI2$
ε

(
λo(s

ε)∇(pε −Gεo) +∇M(sε)
)
∇ζ = 0. (6.4)

See §3 for R,M. Summing (6.1) and (6.2), we obtain, for η ∈ L2(0, T ;U),

∫

Ωε,T
f

Kε
(
Λ(Sε)∇(P ε −Gεo)− Λw(Sε)∇(Gεw −Gεo)

)
∇η

+

∫

Ωε,Tm

kεI2$
ε

(
λ(sε)∇(pε −Gεo)− λw(sε)∇(Gεw −Gεo)

)
∇η = 0. (6.5)

For ζ ∈ L2(0, T ;U) ∩H1(ΩT ), ζ(T ) = 0,

∫

Ωε,T
f

Φε∂tS
εζ + Φε(Sε − Sε0)∂tζ = −

∫

Ωε,Tm

φε∂ts
εζ + φε(sε − sε0)∂tζ. (6.6)
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(6.1–6.6), (2.3), (2.6), (2.8), (2.11) form a weak formulation of (2.1–2.13).

Next we consider a regularized problem. Let v be a small number satisfying

0 < v < d5

4 . Extend Λα (α = w, o) constantly and continuously to < and define

Λα,v,Λv, λα,v, λv as

{
Λα,v(z) ≡ Λα

(
0.5( z−v

0.5−v )
)
, Λv ≡ Λw,v + Λo,v,

λv(z) ≡ Λv(J (z)), λα,v(z) = Λα,v(J (z)).
(6.7)

By A2-3, there exist smooth functions Sε0,v, Sb,v, s
ε
0,v such that

Sε0,v, Sb,v,J (sε0,v) ∈ (d5/2, 1− d5/2), Sε0,v|Γ2
= Sb,v|Γ2

(t = 0), (6.8)
{
Sε0,v, Sb,v, s

ε
0,v → Sε0, Sb, s

ε
0 in L2(0, T ;H1(Ω)),

∂tΥ(Sb,v)→ ∂t(Pb,o − Pb,w) in L1(ΩT ),
as v→ 0. (6.9)

The regularized problem is: Find {SεvXΩε
f

+ sεvXΩεm , P
ε
vXΩε

f
+ pεvXΩεm} satisfying

Φε∂tS
ε
vXΩε

f
+ φε∂ts

ε
vXΩεm ∈ dual L2(0, T ;U), (6.10)

v ≤ SεvXΩε
f

+ J (sεv)XΩεm ≤ 1− v, (6.11)

R(SεvXΩε
f

+ J (sεv)XΩεm)−R(Sεb), P
ε
vXΩε

f
+ pεvXΩεm − Pb ∈ L2(0, T ;U), (6.12)

∫

Ωε,T
f

Φε∂tS
ε
vζ +

∫

Ωε,T
f

Kε
(
Λo,v(Sεv)∇(P εv −Gεo) +∇R(Sεv)

)
∇ζ

+

∫

Ωε,Tm

φε∂ts
ε
vζ +

∫

Ωε,Tm

kεI2$
ε

(
λo,v(sεv)∇(pεv −Gεo) +∇M(sεv)

)
∇ζ = 0, (6.13)

∫

Ωε,T
f

Kε
(
Λv(Sεv)∇(P εv −Gεo)− Λw,v(Sεv)∇(Gεw −Gεo)

)
∇η

+

∫

Ωε,Tm

kεI2$
ε

(
λv(sεv)∇(pεv −Gεo)− λw,v(sεv)∇(Gεw −Gεo)

)
∇η = 0, (6.14)

SεvXΩε
f
(0, x) + sεvXΩεm(0, x) = Sε0,vXΩε

f
+ sε0,vXΩεm , (6.15)

for any ζ, η ∈ L2(0, T ;U). It is easy to see that (6.13) is a nondegenerate (depending

on v) parabolic equation, and (6.13–6.14) imply, if Sεw,v ≡ 1− Sεv,

0 =

∫

Ωε,T
f

Φε∂tS
ε
w,vζ +Kε

(
Λw,v(1− Sεw,v)∇(P εv −Gεw)−∇R(1− Sεw,v)

)
∇ζ

+

∫

Ωε,Tm

φε∂ts
ε
w,vζ + kεI2$

ε

(
λw,v(1− sεw,v)∇(pεv −Gεw)−∇M(1− sεw,v)

)
∇ζ.(6.16)

By [4, 5, 6, 9, 12, 20, 22, 29], it is known

Lemma 6.1 Under (6.8–6.9), there exist functions Sεv, P
ε
v in Ωεf and sεv, p

ε
v in Ωεm

satisfying (6.10–6.15) for each v, ε as well as there exist functions Sε, P ε, P εα in

Ωεf and sε, pε, pεα in Ωεm for α = w, o satisfying (6.1–6.6), (2.3), and (2.6–2.11).

Šεv ≡ SεvXΩε
f

+ J (sεv)XΩεm is in L2(0, T ;H1(Ω)) and is Hölder continuous in Ω
T

,
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and, as v→ 0,

{
Šεv → Šε ≡ SεXΩε

f
+ J (sε)XΩεm pointwise,

R(Šεv), P εvXΩε
f

+ pεvXΩεm → R(Šε), P εXΩε
f

+ pεXΩεm in L2(0, T ;H1(Ω)).

Moreover, 0 < Sε < 1, sl < sε < sr, and

∑

α=w,o

(
‖
√

Λα(Sε)∇P εα‖L2(Ωε,T
f

) + ‖I$ε
√
λα(sε)∇pεα‖L2(Ωε,Tm )

)

+‖ |∇P ε|+ |∇R(Sε)|+ |∇Aε| ‖L2(Ωε,T
f

)

+‖ |I$ε ∇pε|+ |I$ε ∇M(sε)|+ |I$ε ∇Aε| ‖L2(Ωε,Tm ) ≤ c,

where Aε ≡
{
A(Υ(Sε)) if x ∈ Ωεf ,
A(υ(sε)) if x ∈ Ωεm.

and c is a constant independent of ε.

Lemma 6.2 For any β, τ satisfying 2 ≤ β0 ≤ β − 2 ∈ N, d5

β0
≤ ϑ, and τ ≤ T , the

following inequality holds:

sup
t≤τ

∣∣{x ∈ Ω : Šε(t) ≤ µ or 1− µ ≤ Šε(t)}
∣∣ ≤ c0|c0τ |β−β0

(β − β0)(β−β0)fβ
, (6.17)

where µ ≡ d5

2β
, lim
β→∞

fβ = 1, and c0 is a constant independent of τ, β, ε, µ.

Proof: Let us define Lµ,Kµ, K̂µ as





Lµ(z) ≡
{

1 if µ ≤ z ≤ 2µ,
0 elsewhere,

Kµ(z) ≡
∫ z
A(Υ(2µ))

Lµ(Υ−1(A−1(ξ)))dξ for z ∈ [0,A(∞)),

K̂µ(z) ≡
∫ z
A(Υ(2µ))

(Lµ Λo
Λ ) ◦ (Υ−1(A−1(ξ)))dξ for z ∈ [0,A(∞)).

By 2µ ≤ d5

2 and A2-3,5, we take ζ = Kµ(Aε) ∈ L2(0, T ;U) in (6.4) and η =

K̂µ(Aε) ∈ L2(0, T ;U) in (6.5) to obtain

∫

Ωε,τ
f

ΦεKµ(Aε)∂tSε +

∫

Ωε,τ
f

KεΛo(S
ε)Lµ(Sε)∇Υ(Sε)∇Aε

+

∫

Ωε,τm

φεKµ(Aε)∂tsε +

∫

Ωε,τm

kεI2$
ε Λo(u

ε)Lµ(uε)∇υ(sε)∇Aε

≤ c1
(∫

Ωε,τ
f

KεΛo(S
ε)Lµ(Sε)|∂x3

Aε|+
∫

Ωε,τm

kεΛo(u
ε)Lµ(uε)|∂x3

Aε|
)
, (6.18)

where uε ≡ J (sε) and constant c1 is independent of ε, µ. Suppose

∫
Kµ(Aε)

(
Φε∂tS

εXΩε,τ
f

+ φε∂ts
εXΩε,τm

)
≥ 0, (6.19)
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(6.18–6.19) imply

∫

Ωε,τ
f

KεΛo(S
ε)Lµ(Sε)|∂x3

Aε|+
∫

Ωε,τm

kεΛo(u
ε)Lµ(uε)|∂x3

Aε|

≤ c2
(∫

Ωε,τ
f

KεΛ3/2
o Lµ(Sε)

) 1
2
(∫

Ωε,τ
f

KεΛo(S
ε)Lµ(Sε)∂x3

Υ(Sε)∂x3
Aε
) 1

2

+c2

(∫

Ωε,τm

kεΛ3/2
o Lµ(uε)

) 1
2
(∫

Ωε,τm

kεΛo(u
ε)Lµ(uε)∂x3

υ(sε)∂x3
Aε
) 1

2

, (6.20)

where constant c2 is independent of ε, µ. A3 and (6.18–6.20) imply

∫
Kµ(Aε)

(
Φε∂tS

εXΩε,τ
f

+ φε∂ts
εXΩε,τm

)
≤ c3

∫

Ωτ
Λ3/2
o Lµ(Šε). (6.21)

Let us define

Z(Sε, sε, µ) ≡
{

Φε
∫ Sε

2µ
Kµ(A(Υ(ξ)))dξ in Ωε

f ,

φε
∫ sε
J−1(2µ)

Kµ(A(υ(ξ)))dξ in Ωε
m.

(6.21) implies ∫

Ωτ
∂tZ(Sε, sε, µ) ≤ c4

∫

Ωτ
Λ3/2
o Lµ(Šε). (6.22)

(6.22) and A6-7 yield that, if 0 ≤ t1 ≤ t2 ≤ T ,

∫ t2

t1

∫

Ω

∂tZ(Sε, sε, µ) ≤ c4
∫ t2

t1

∫

Ω

Z(Sε, sε, 2µ), (6.23)

where c4 is independent of t1, t2, µ, ε. Define

F ε(τ, µ) ≡ 1

Λo(µ)3/2
sup
t≤τ

∫

Ω

Z(Sε, sε, µ).

A5 and (6.23) imply that, for 0 ≤ t1 ≤ t2 ≤ T ,

F ε(t2, µ)−F ε(t1, µ) ≤ c5(t2 − t1)F ε(t2, 2µ),

where c5 is independent of t1, t2, µ, ε. By induction and A3, one obtains, for j ∈
N, jh ≤ T ,

F ε(jh, d5

2β
) ≤ (β − β0 + 1)j−1|c5h|β−β0F ε(jh, d5

2β0
). (6.24)

If j = β−β0

log(β−β0) and τ = jh in (6.24), then

F ε(τ, d5

2β
) ≤ |c5τ |β−β0

(β − β0)(β−β0)fβ
F ε(τ, d5

2β0
), (6.25)
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where fβ → 1 as β →∞. Define B(t) ≡ {x ∈ Ω : Šε(t, x) ≤ d5

2β
}. (6.25) implies

sup
t≤τ

∫
XB(t) ≤ c6F ε(τ,

d5

2β
) ≤ c6|c5τ |β−β0

(β − β0)(β−β0)fβ
F ε(τ, d5

2β0
),

where constant c6 is independent of τ, β, ε, µ. So proof of first part of (6.17) is

completed. The other part can be proved in a similar way, so we skip it.

Lemma 6.3 If r ∈ (1, 2), ‖P εα‖Lr(0,T ;W 1,r(Ωε
f
)) + ‖I$ε ∇pεα‖Lr(Ωε,Tm ) ≤ c, where α =

w, o and c is a constant independent of ε. Moreover, if $ ≤ 1, then ‖pεα‖Lr(Ωε,Tm ) ≤ c.
Proof: We define, for 2 ≤ β0 ∈ N,

{
B1+β0

≡ {(t, x) ∈ Ωε,Tf : d5

22+β0
≤ Sε},

Bβ ≡ {(t, x) ∈ Ωε,Tf : d5

2β+1 ≤ Sε < d5

2β
} if 2 + β0 ≤ β ∈ N.

A5, Lemmas 6.1-6.2, and Hölder inequality imply

‖∇P εo‖rLr(Ωε,T
f

)
≤ ‖
√

Λo(Sε) ∇P εo‖rL2(Ωε,T
f

)
‖Λ−1

o (Sε)‖r/2
Lr/(2−r)(Ωε,T

f
)

≤ c1
(∫

Ωε,T
f

|Λo(Sε)|
−r
2−r

∞∑

β=1+β0

XBβ
) 2−r

2

≤ c2 (indep. of ε). (6.26)

Similar argument will give ‖∇P εw‖Lr(Ωε,T
f

) +
∑
α=w,o ‖I$ε ∇pεα‖Lr(Ωε,Tm ) ≤ c. By

boundary condition A2, ‖P εα‖Lr(Ωε,T
f

) ≤ c, α = w, o. By Lemma 5.1, (2.8), and

$ ≤ 1, ‖pεα − ΠεP
ε
α‖Lr(Ωε,Tm ) ≤ ‖ε∂x1

(pεα − ΠεP
ε
α)‖Lr(Ωε,Tm ) ≤ c. So ‖pεα‖Lr(Ωε,Tm ) is

bounded.

Lemma 6.4 For r ∈ [1,∞) and sufficiently small δ,

‖δ2∂−δSε ∂−δAε‖Lr((δ,T )×Ωε
f
) + ‖δ2∂−δsε ∂−δAε‖Lr((δ,T )×Ωεm) ≤ cδ1/r, (6.27)

where c is independent of ε, δ. See §4 for notation ∂−δ.

Proof: Note ζ(t, x) ≡
∫min(t+δ,T )

max(t,δ)
δ ∂−δ

(
Aε − A(Pb,c)

)
(τ, x)dτ ∈ L2(0, T ;U) by

A2-3 and Lemma 6.1. Take ζ above in (6.2) to get, by Fubini’s theorem, A2, and

Lemma 6.1,

∫ T

δ

∫

Ωε
f

Φεδ2∂−δSε ∂−δAε(τ, x) +

∫ T

δ

∫

Ωεm

φεδ2∂−δsε∂−δAε(τ, x)

=

∫

Ωε,T
f

Φε∂tS
ε(t, x)ζ +

∫

Ωε,Tm

φε∂ts
ε(t, x)ζ

+

∫ T

δ

∫

Ωε
f

Φεδ2∂−δSε ∂−δA(Pb,c) +

∫ T

δ

∫

Ωεm

φεδ2∂−δsε∂−δA(Pb,c) ≤ cδ,

where c is independent of ε, δ. So we prove (6.27) for r = 1 case. (6.27) for r > 1

case follows directly because Aε, Šε are bounded and (6.27) for r = 1 holds.
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Lemma 6.5 A subsequence of Πε(Aε|Ωε
f
) converges to A∗ in L2(ΩT ) and pointwise.

Proof: This is due to A6,10, Lemmas 5.1, 6.1-6.4, and compactness principle.

Lemma 6.6 sε, pε, pεα (α = w, o) satisfy, for almost all x ∈ Ω̃ε,

φ∂tsε − ∂y,x3
·
(
kI2$−2

ε

(
∂y,x3

M(sε) + λo(sε)∂y,x3
(pε −Gεo)

))
= 0, (6.28)

∂y,x3
·
(
kI2$−2

ε

(
λ(sε)∂y,x3

pε −
∑

λα(sε)∂y,x3
Gεα
))

= 0, (6.29)

−φ∂tsε − ∂y,x3
·
(
kI2$−2

ε λw(sε)∂y,x3
(pεw −Gεw)

)
= 0, (6.30)

φ∂tsε − ∂y,x3
·
(
kI2$−2

ε λo(sε)∂y,x3
(pεo −Gεo)

)
= 0, (6.31)

in L2(0, T ;H−1(Y Hm )).

Proof: Let ζ̂ ∈ L2(0, T ;C∞0 (Y Hm )). For x ∈ Ω, y ∈ <2, we define

ζ̌(t, x, y) ≡
{
ζ̂(t, y−`

ε(x̃)
ε , x3) for y ∈ εYm + `ε(x̃),

0 elsewhere.

Then we plug ζ(t, x) ≡ Xε(Ym+j)(x̃)ζ̌(t, x, x̃) for j ∈ Z2 into (6.4). Since supp ζ ⊂
(0, T )× ε(Ym + j)× [0, H],

∫ T

0

∫ H

0

∫

ε(Ym+j)

φε∂ts
εζ + kεI2$

ε

(
λo(s

ε)∇(pε −Gεo) +∇M(sε)
)
∇ζ = 0.

Since x̃ ∈ ε(Ym + j), `ε(x̃) = εj. Changing variable y = x̃−`ε(x̃)
ε gives

∫ T

0

∫

Y Hm

φ∂tsεζ̂ + kI2$−2
ε

(
∂y,x3

M(sε) + λo(sε)∂y,x3
(pε −Gεo)

)
∂y,x3

ζ̂ = 0, (6.32)

for almost all x̃ ∈ ε(Ym + j), j ∈ Z2. Actually, by Definition 5.1, (6.32) holds for

x̃ ∈ Ω̃ε, i.e., (6.28). (6.29–6.31) can be proved in a similar way.

Remark 6.2 By Lemmas 5.1, 6.5, if we define Sε ≡ Υ−1(A−1(Πε(Aε|Ωε
f
))) and

S ≡
{

Υ−1(A−1(A∗)) if A∗ < A(∞),
1 if A∗ = A(∞),

then 0 ≤ Sε, S ≤ 1.

Lemma 6.7 There is a r ∈ (1, 2) and a subsequence of {Sε, sε, Sε0, sε0, φε, kε, P εα,

pεα, α = w, o} such that, as ε→ 0,





XΩε
f
P εα

2
⇀ XYf (y)Pα(t, x) where Pα ∈ Lr(0, T ;W 1,r(Ω)), Pα = Pb,α in Γ2,

XΩε
f
∇P εα

2
⇀ XYf (y)(∇Pα + ∂yPα,1(t, x, y)) where Pα,1 ∈ Lr(ΩT ;Lrper(Yf )),

XΩε
f
Sε0

2
⇀ S0 ∈ L2(Ω;L2

per(Yf )),

Sε → S strongly in L2(ΩT ) and pointwise,

XΩε
f
Sε

2→ XYf (y)S(t, x) strongly,

XΩεms
ε
0

2→ s0 ∈ L2(Ω;L2
per(Ym)) strongly,

pεα ⇀ pα weakly in Lr(ΩT ;W 1,r(Ym)).
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Proof: By Lemma 5.1 and Lemma 6.3, ΠεP
ε
α is bounded in Lr(0, T ;W 1,r(Ω)). So

a subsequence of ΠεP
ε
α converges weakly to limit Pα ∈ Lr(0, T ;W 1,r(Ω)). Since

ΠεP
ε
α = Pb,α in Γ2, Pα = Pb,α in Γ2. Rest of proof are due to A2-4,6,10, Lemmas

6.1, 6.3, 6.5, and [3].

Lemma 6.8 sε converges to s in L2(QTm) if 0 < $ ≤ 1.

Proof of this lemma is lengthy, and will be postponed untill the last five sections.

Lemma 6.9 If $ = 1, then po − pw = υ(s), Po − Pw = Υ(S), and pα(t, x, y) =

Pα(t, x) for x ∈ Ω, y ∈ ∂Ym, α = w, o. If $ < 1, then υ(s) = Po − Pw = Υ(S) and

pα(t, x, y) = Pα(t, x) for x ∈ Ω, y ∈ Ym, α = w, o.

Proof: First we consider $ = 1 case. Note 0 ≤ S < 1, sl ≤ s < sr by Egoroff’s

theorem [25] and Lemmas 6.1-6.2, 6.7-6.8. Since pεo − pεw = υ(sε), we get po − pw =

υ(s) by Lemmas 6.7-6.8. Similarly, one can derive Po−Pw = Υ(S). By Lemmas 5.1,

6.3 and (2.8), (ΠεP εα)|Ωεm−pεα ∈ Lr(ΩT ;W 1,r
0 (Ym)) for 1 < r < 2. So, a subsequence

of (ΠεP εα)|Ωεm − pεα converges weakly to XYm(y)Pα(t, x) − pα ∈ Lr(ΩT ;W 1,r
0 (Ym))

by Lemma 6.7. So, pα(t, x, y) = Pα(t, x) for y ∈ ∂Ym. Results for $ < 1 case can

be obtained by similar argument as above, so we skip it.

Now we consider the limit model of (2.1–2.13) as ε→ 0. Plug into (6.1) and (6.6)

a test function η = ζ̂(t, x) + εη̂(t, x, x̃ε ) where ζ̂ ∈ C∞0 (ΩT ), η̂ ∈ C∞0 (ΩT ;C∞per(Y ))

to obtain

0 =

∫

Ωε,T
f

ΦεSε(∂tζ̂ + ε∂tη̂) +KεΛw(Sε)∇(P εw −Gεw)(∇ζ̂ + ε∂xη̂ + ∂yη̂)

+

∫

Ωε,Tm

φεsε(∂tζ̂ + ε∂tη̂) + kεI2$
ε λw(sε)∇(pεw −Gεw)(∇ζ̂ + ε∂xη̂ + ∂yη̂)

+

∫

Ωε
f

ΦεSε0(ζ̂ + εη̂)(0) +

∫

Ωεm

φεsε0(ζ̂ + εη̂)(0).

By A2 and Lemma 6.7, KεΛw(Sε) converges toK∗Λw(S) in Lr(ΩT ), r <∞ strongly.

Passing to two-scale limit, we get, by A2-4, Lemmas 6.3-6.9, Theorem 2.28 of [2],

Theorem 1.8 of [3], and [8, 10],
∫

QT
f

Φ∗S∂tζ̂ +K∗Λw(S)(∇Pw + ∂yPw,1 −∇Gw)(∇ζ̂ + ∂yη̂)

= −
∫

QTm
φs∂tζ̂ + F∗w∂x3

ζ̂ −
∫

Qf
Φ∗S0ζ̂(0)−

∫

Qm
φs0ζ̂(0),

where

F∗w ≡
{
kλw(s)∂x3

(Pw −Gw) if 0 < $ < 1,
kλw(s)∂x3

(pw −Gw) if $ = 1,
An L2 function if $ > 1.

(6.33)

Apply Green’s theorem in t variable to get

−
∫

QT
f

Φ∗∂tS ζ̂ −K∗Λw(S)(∇Pw + ∂yPw,1 −∇Gw)(∇ζ̂ + ∂yη̂)
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=

∫

QTm
φ∂ts ζ̂ − F∗w∂x3

ζ̂ +

∫

Qf
Φ∗(S(0)− S0)ζ̂(0) +

∫

Qm
φ(s(0)− s0)ζ̂(0).

So we have, in ΩT ,

(S(0)− S0)

∫

Yf

Φ∗dy +

∫

Ym

φ(s(0)− s0)dy = 0, (6.34)

and the choice of η̂ = 0 gives, in ΩT ,

∫

Yf

Φ∗dy∂tS +∇
∫

Yf

K∗Λw(S)(∇Pw + ∂yPw,1 −∇Gw)

= −
∫

Ym

(φ∂ts+ ∂x3
F∗w) dy. (6.35)

The choice of ζ̂ = 0 gives, by A2-3 and Lemma 6.7,

{
∂2
yPw,1 = 0 in Qf ,

(∂x̃Pw + ∂yPw,1) · ~νy = 0 on ∂Ym,
(6.36)

where ~νy is the unit vector outward normal to ∂Ym. Let ~ej be the unit vector in

jth direction. We denote by Ξ the tensor whose (i, j) component is ∂ϕj/∂yi, where

ϕj is a periodic solution in Y of the auxiliary problem

{
∆yϕj = 0 in Yf ,
∂yϕj · ~νy = −~ej · ~νy on ∂Ym.

Pw,1 of (6.36) is given by the product Pw,1 =
∑
j ϕj(y)∂xjPw. So (6.35) becomes

Φ∂tS +∇ · (KΛw(S)∇(Pw −Gw)) =
−1

|Ym|

∫

Ym

(φ∂ts+ ∂x3
F∗w)dy, (6.37)

where Φ ≡ 1
|Ym|

∫
Yf

Φ∗dy and K is a diagonal matrix satisfying

K11 = K22 =
K∗

|Ym|

∫

Yf

(I + Ξ(y))dy, K33 =
|Yf |K∗
|Ym|

.

Proceeding as the proof of (6.37), we obtain, by (6.2),

−Φ∂tS +∇ · (KΛo(S)∇(Po −Go)) =
1

|Ym|

∫

Ym

(φ∂ts− ∂x3
F∗o )dy, (6.38)

where

F∗o ≡
{
kλo(s)∂x3

(Po −Go) if 0 < $ < 1,
kλo(s)∂x3

(po −Go) if $ = 1,
An L2 function if $ > 1.

(6.39)

Matrix sources for 0 < $ < 1 case is clear from (6.33), (6.39), and Lemma 6.9.

Next we consider the matrix source terms for $ ≥ 1 cases.
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6.1. For $ = 1 case

By (6.30) of Lemma 6.6, we have, for any η ∈ L2(ΩT ;H1
0 (Ym)),

∫

Qε,Tm
φ∂tsεη +

∫

Qε,Tm
kλo(sε)∂y,x3

(pεo −Gεo)∂y,x3
η = 0.

As ε→ 0, by Lemmas 6.7-6.8, one obtains
∫

QTm
φ∂ts η +

∫

QTm
kλo(s)∂y,x3

(po −Go)∂y,x3
η = 0. (6.40)

In a similar way, we obtain, by (6.31),

∫

QTm
φ∂ts η −

∫

QTm
kλw(s)∂y,x3

(pw −Gw)∂y,x3
η = 0. (6.41)

By (6.37–6.41) and Lemmas 6.7-6.9, it is easy to show Theorem 4.1.

6.2. For $ > 1 case

By (6.30) of Lemma 6.6, we have, for any η ∈ L2(ΩT ;H1
0 (Ym)),

∫

Qε,Tm
φ∂tsεη +

∫

Qε,Tm
kI2$−2

ε λo(sε)∂y,x3
(pεo −Gεo)∂y,x3

η = 0.

As ε→ 0, by Lemmas 6.7-6.8, one obtains
∫

QTm
φ∂ts η +

∫

QTm
F∗o ∂x3

η = 0.

So we get φ∂ts − ∂x3
F∗o = 0. In a similar way, we obtain φ∂ts + ∂x3

F∗w = 0.

Therefore we prove Theorem 4.3.

Rest of this work is to prove Lemma 6.8.

7. Convergence of sε

Remark 7.3 Define





Gε ≡
{
υ−1(A−1(Πε(Aε|Ωε

f
))) if ΠεAε < A(∞),

sr if ΠεAε = A(∞),

G ≡
{
υ−1(A−1(A∗)) if A∗ < A(∞),
sr if A∗ = A(∞).

See Lemma 6.5 for A∗. By Lemma 6.7, A1,3, Theorem 2.28 of [2], and [3, 8, 10],

it is easy to see that





‖M(Gε)‖L2(0,T ;H1(Ω)) are bounded independently of ε,

M(Gε|Ωεm)→M(G) strongly in L2(QTm),

M(Gε|Ωεm)−M(sε) ∈ L2(ΩT ;H1
0 (Ym)).

(7.1)
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Assume that sεi , pεi , i = 1, 2 are two solutions of (6.28–6.29), and ζ, η are smooth

functions satisfying

ζ(T ) = 0, ζ|∂Ym×[0,H] = η|∂Ym×[0,H] = ∂x3
ζ|x3∈{0,H} = ∂x3

η|x3∈{0,H} = 0. (7.2)

Let x ∈ Ωε1 ∩ Ωε2 . By subtracting one solution from the other and integration by

parts, we obtain
∫

Y H,Tm

(sε1 − sε2)
(
φ∂tζ + F1∂y,x3

(kI2$−2
ε ∂y,x3

ζ)−F2∂y,x3
ζ −F3∂y,x3

η
)

+

∫

Y H,Tm

(pε1 − pε2)
(
∂y,x3

kI2$−2
ε (λ(sε1)∂y,x3

η + λo(sε1)∂y,x3
ζ)
)

= F4 + F5, (7.3)

where

F1 ≡ µ+

{ M(sε1 )−M(sε2 )

sε1−sε2 if sε1 6= sε2 ,

0 otherwise,
(7.4)

F2 ≡
{

k(λo(sε1 )−λo(sε2 ))I2$−2
ε ∂y,x3

(pε2−Gε2o )

sε1−sε2 if sε1 6= sε2 ,

0 otherwise,
(7.5)

F3 ≡
{∑

α
k(λα(sε1 )−λα(sε2 ))I2$−2

ε ∂y,x3
(pε2−Gε2α )

sε1−sε2 if sε1 6= sε2 ,

0 otherwise,
(7.6)

F4 ≡ µ
∫

Y H,Tm

(sε1 − sε2)∂y,x3
(kI2$−2

ε ∂y,x3
ζ), (7.7)

F5 ≡
∫

Y H,Tm

ε2$−2∂y

((
M(Gε1 |Ωε1m )−M(Gε2 |Ωε2m )

)
k∂yζ

)

+

∫

Y H,Tm

ε2$−2∂y

(
(Πε1P

ε1 |Ωε1m −Πε2P
ε2 |Ωε2m )

(
kλ(sε1)∂yη + kλo(sε1)∂yζ

))

−
∑

α∈{w,o}

∫

Y H,Tm

kλα(sε1)∂x3
(Gε1α −Gε2α )∂x3

η

−
∫

Y H,Tm

kλo(sε1)∂x3
(Gε1o −Gε2o )∂x3

ζ −
∫

Y Hm

(sε10 − sε20 )φζ(0). (7.8)

Define Ũ1 ≡ {ζ : ζ ∈ H1(Y H,Tm ) ∩ L∞(0, T ;H1(Y Hm )), ζ|∂Ym×[0,H] = ∂x3
ζ|x3=0,H =

ζ(0) = 0}. We consider the following auxiliary problem for fixed µ:

Lemma 7.1 Let F2,F3 ∈ L∞(Y H,Tm ) and 0 < d18 < F1 < d19 <∞. For (f1, f2) ∈
L2(Y H,Tm )× L2(Y H,Tm ), there is a unique (ζ, η) ∈ Ũ1 × L2(0, T ;H1(Y Hm )) such that

−φ∂tζ + F1∂y,x3
(kI2$−2

ε ∂y,x3
ζ)−F2∂y,x3

ζ −F3∂y,x3
η = f1, (7.9)

∂y,x3

(
kI2$−2

ε (λ∂y,x3
η + λo∂y,x3

ζ)
)

= f2. (7.10)

Moreover,

sup
τ≤T
‖I$−1
ε ∂y,x3

ζ(τ)‖L2(Y Hm ) + ‖|I$−1
ε ∂y,x3

η|+ d
1/2
18 |∂y,x3

(kI2$−2
ε ∂y,x3

ζ)|‖L2(Y H,Tm )

≤ c
(
d19, ‖(|F2|+ |F3|)/F1/2

1 ‖L∞(Y H,Tm )

)
‖ |f1|/F1/2

1 + |f2| ‖L2(Y H,Tm ). (7.11)
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Proof: This is proved by following the argument of Lemma 5.1 [29].

Finally we give the proof of Lemma 6.8.

Proof: For x ∈ Ωε1 ∩Ωε2 , we take f1 =M(sε1)−M(sε2) in (7.9) and f2 = pε1−pε2
in (7.10) to obtain solution (ζµ, ηµ) for each µ by (7.4–7.6), Remark 7.3, and Lemma

7.1. After substitution t → T − t for the solution (ζµ, ηµ), we plug it into (7.3) to

obtain
∫

Y H,Tm

(sε1 − sε2)(M(sε1)−M(sε2)) +

∫

Y H,Tm

|pε1 − pε2 |2 = F4 + F5. (7.12)

By Lemmas 6.1, 7.1 and [13, 15, 26, 27], we see 1) F4 is bounded by c
√
µ, where

c is a constant independent of µ, ε1, ε2; and 2) For fixed µ, F5 converges to 0 as

ε1, ε2 tend to 0. So it is not difficult to show that M(sε2) is a Cauchy sequence in

L2(QTm), which implies sε2 is a Cauchy sequence in L2(QTm) as well.
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Two-Component Miscible Displacement in Fractured Media

Li-Ming Yeh ∗

A Peaceman model, which describes the effects of turbulent mechanical mixing of non-
stationary, incompressible, two-component, miscible displacement in fractured media is
studied. In a fractured medium, there is an interconnected system of fracture planes
dividing the porous rock into a collection of matrix blocks. The fracture planes, while
very thin, form paths of high permeability. Most of the fluids reside in matrix blocks,
where they move very slow. Let ε denote the size ratio of the matrix blocks to the whole
medium and let permeability, gravity, and width ratios of matrix blocks to fracture planes
be of the orders ε2, ε, and ε0 respectively. Microscopic models for the two-component,
miscible displacement in fractured media converge to a dual-porosity model as ε tends
to 0.

Keywords: dual-porosity model, fractured media, miscible displacement

1. Introduction

Homogenization of non-stationary, incompressible, two-component, miscible dis-
placement in a fractured medium with moderate-sized matrix blocks is concerned.
Within a fractured medium there is an interconnected system of fracture planes
dividing the porous rock into a collection of matrix blocks. The system of fracture
planes is on a much finer scale than the whole reservoir; hence, it can be viewed as
a porous structure. The fractures form the void space while the matrix blocks play
the role of the solid rock. Certainly, the solid part itself is permeable. The fracture
planes, while very thin, form paths of high permeability. Most of the fluids reside in
matrix blocks, where they move very slow. No flow is allowed between blocks, and
fluids that reside in matrix blocks must enter the fracture planes to move great dis-
tance. The two-component, miscible displacement in the system of fracture planes
and the system of matrix blocks can be described by Peaceman model [6, 23, 25]. On
the interface of the two systems, fluxes, pressure, and concentration are continuous.

Let ε denote the size ratio of the matrix blocks to the whole medium and let
permeability, gravity, and width ratios of matrix blocks to fracture planes be of the
orders ε2, ε, and ε0 respectively. As ε tends to 0, microscopic models for the two-
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2 Miscible displacement

component, miscible displacement in fractured media converge to a dual-porosity
model. In the macroscopic model, domain is regarded as a porous medium consisting
of two superimposed continua, a continuous fracture system and a discontinuous
system of matrix blocks. The two-component, miscible displacement is formulated
by conservation of mass principle for each continuum. Matrix blocks play the role
of a global source distributed over the entire medium. A source term is included
in flow equations in the fracture system, which representing the exchange of fluid
between matrix blocks and the fractures. Similar works were also studied by some
other authors. For miscible displacement in non-fractured media case, the existence
and uniqueness of the solution are well-known, see [14, 21] and references therein.
For fractured media case, if dispersion tensors in fracture planes and matrix blocks
are uniformly elliptic, then macroscopic equations are derived and its convergence
proofs for some special cases are given in [4, 5, 22]. The problem considered here
is for non-uniformly elliptic dispersion tensor case and our intention is to study the
convergence of the microscopic models. To this end, we derive some kind of uniform
estimates for elliptic equations and for parabolic equations in fractured media, and
then use two-scale technique to show the convergence. The definition of two-scale
method and its applications to a diffusion process in highly heterogeneous media
can be found in [3, 8, 9, 11].

Rest of the paper is organized as follows: In §2, we state a microscopic model for
two-component, miscible flows in fractured media. Notation and assumption will
be given in §3. Then in §4, we present the main result. We shall recall some known
results related to this problem in §5. Proof of the main result is given in §6. The
proof in §6 requires the existence of smooth solutions, which is proved in §7.

2. A Microscopic Model with Moderate-Sized Matrix Blocks

We consider a porous medium Ω, which is a two-connected domain with a pe-
riodic structure. Let Y ≡ [0, 1]3 be a cell consisting of a matrix block domain Ym

completely surrounded by a connected fracture domain Yf , and denote by Γ the
matrix-fracture interface in the cell Y . Let X (y) be the characteristic function of
Ym, extended Y -periodically to <3. The medium Ω contains two subdomains, Ωε

f

and Ωε
m, representing the system of fracture planes and matrix blocks respectively,

and Ωε
m ⊂ {x ∈ Ω|X (x

ε ) = 1}, Ωε
f = Ω \Ωε

m. Let Γε ≡ ∂Ωε
f ∩ ∂Ωε

m ∩Ω be that part
of the interface of Ωε

m with Ωε
f that is interior to Ω.

The effects of turbulent mechanical mixing of non-stationary, incompressible,
two-component, miscible displacement in fracture subdomain Ωε

f can be described
as [6, 23, 25, 26], in Ωε

f , t > 0,

∂tΘε −∇ · (D(Θε,Vε)∇Θε −VεΘε
)−QεΘε = 0, (2.1)

Vε =
−Kε

µ(Θε)
(∇P ε − ρ(Θε, x)), (2.2)

∇ ·Vε = Qε. (2.3)
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Θε ∈ [0, 1] stands for invading fluid concentration, Vε for the net fluid velocity, Kε

for absolute permeability, µ(Θε) for the fluid viscosity, P ε for the pressure, ρ(Θε, x)
for a function depending on concentration, density, gravity, and position, D(Θε,Vε)
for dispersion tensor, and Qε for the external source. Porosity in (2.1) is neglected
for simplicity of presentation. In this work,

D(Θ,V) ≡ Λ(Θ)I + d`|V|T̃ (V) + dt|V|(I − T̃ (V)),

where Λ is a strictly positive continuous function, I is the identity matrix, T̃ is
a tensor with (i, j) component T̃i,j(V) ≡ ViVj

|V|2 , and d`, dt are positive constants
[6, 14, 21, 23, 25]. In Ωε

m, t > 0, the governing equations are

∂tθ
ε − ε∇ · (D(θε,vε)ε∇θε − vεθε

)− qεθε = 0, (2.4)

vε =
−kε

µ(θε)
(ε∇pε − ρ(θε, x)), (2.5)

ε∇ · vε = qε. (2.6)

θε, vε, kε, µ(θε), pε, ρ(θε, x), D(θε,vε), qε in the matrix subdomain Ωε
m are used

to represent the same quantities as those denoted by upper case symbols in the
fracture subdomain. Fluxes, pressure, and concentration are continuous on interface
Γε, t > 0,





D(Θε,Vε)∇Θε · ~νε = ε2D(θε,vε)∇θε · ~νε,
Vε · ~νε = εvε · ~νε,
Θε = θε,
P ε = pε,

(2.7)

where ~νε is the unit vector outward normal to Γε. Boundary conditions are
{

D(Θε,Vε)∇Θε · ~n|∂Ω = 0,
Vε · ~n|∂Ω = 0,

(2.8)

where ~n is the unit vector outward normal to ∂Ω. Initial conditions are
{

Θε(x, 0) = Θε
0(x) in Ωε

f ,
θε(x, 0) = θε

0(x) in Ωε
m. (2.9)

3. Notation and Assumption

Ω(2ε) ≡ {x ∈ Ω : dist(x, ∂Ω) > 2ε}, Ωε
m ≡ {z : z ∈ ε(Ym + j) ⊂ Ω(2ε) for j ∈ Z3},

Ωε
f ≡ Ω \ Ωε

m, and Ωε ≡ {z : z ∈ ε(Y + j), ε(Ym + j) ⊂ Ω(2ε) for some j ∈ Z3}.
Qε

m ≡ Ωε × Ym, Q ≡ Ω × Y , Qi ≡ Ω × Yi, i = f, m. Bt ≡ B × (0, t) if B =
∂Ω,Γε, Ω, Ωε

i ,Qε
m,Q,Qi, i = m, f .

We shall use the notations in Chapter I [17] for Hölder spaces and Sobolev
spaces. Let B be a space domain in <3. C(B) (resp. C(BT )) is the set of continuous
functions in B (resp. BT ). C∞(B) (resp. C∞(BT )) contains infinitely differentiable
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functions in B (resp. BT ). C∞0 (B) (resp. C∞0 (BT )) is the subset of C∞(B) (resp.
C∞(BT )) with compact support in B (resp. BT ). For j ∈ N and r ∈ [1,∞],
Lr(B) (resp. Lr(BT ), W j

r (B)) denotes a Sobolev space with norm ‖ψ‖r,B (resp.
‖ψ‖r,BT , ‖ψ‖(j)r,B). W j

r,0(B) is the closure of C∞0 (B) in space W j
r (B). W−j

r (B) is
the dual space of W j

r,0(B). W j,0
r (ΩT ) (resp. W 1,1

2 (ΩT )) is the Hilbert space with
norm ‖ψ‖W j,0

r (ΩT ) =
∑j

i=0 ‖Di
xψ‖r,ΩT (resp. ‖ψ‖W 1,1

2 (ΩT ) =
∑1

i=0 ‖Di
xψ‖2,ΩT +

‖Dtψ‖2,ΩT ). For a nonintegral positive number α, Hα(B) (resp. H2α,α(BT )) is a
Hölder space with norm ‖ψ‖(α)

B (resp. ‖ψ‖(2α)

BT ). Hα
0 (B) (resp. H

α,α/2
0 (BT )) is the

closure of C∞0 (B) (resp. C∞0 (BT )) in space Hα(B) (resp. Hα,α/2(BT )).
ψ(y) ∈ Lr,per(Y ) coincides with a function in Lr(Y ) extended by Y -periodicity

to <3. For B = Yf , Ym, we define Lr,per(B) ≡ {ψ ∈ Lr,per(Y ) : ψ(y) = 0 if y ∈
Y \ B}. C∞per(Y ) is the subset of C∞(<3) of Y -periodic functions. W j

r,per(Y ) is the
closure of C∞per(Y ) under W j

r norm. W j
r,per(Yf ) = W j

r,per(Y ) ∩ Lr,per(Yf ). If B̂ is a
Banach space with norm ‖ · ‖B̂ , Lr(B; B̂) for r ∈ [1,∞] is the space of measurable
functions ψ : B → B̂ such that ‖ψ(·)‖B̂ belongs to Lr(B;<). C∞(B; B̂) ⊂ L1(B; B̂)
contains infinitely differentiable functions in B. C∞0 (B; B̂) ⊂ C∞(B; B̂) contains
functions with compact support in B. W 1

r (B; B̂) is the closure of C∞(B; B̂) under
W 1

r norm.
Time difference is defined to be ∂−δψ(t) ≡ ψ(t)−ψ(t−δ)

δ . XB(x) is a characteristic
function of B. For α ∈ (0, 1) and j ∈ {0, 1, 2},




|||g|||j+α,∗

B ≡ ‖g(εx)‖(j+α)
1
εB

,

|||g|||j+α,∗
BT ≡ ‖g(εx, t)‖(j+α)

1
εB×(0,T )

.
(3.1)

Next let us make the following assumptions:

A1. Ω, Ym ⊂ <3 are bounded, smooth, and connected domains,

A2. |||Kε|||α,∗
Ω is bounded independently of ε and Kε is convergent in L2(Ω),

A3. k is a smooth Y -periodic function, kε = k(x
ε ), k ∈ [γ1, γ2],

A4. ‖Qε‖2,Ωε,T
f

, ‖qε‖2,Ωε,T
m

are Cauchy sequences, |||Qε|||α,∗
Ωε,T

f

+ |||qε|||α,∗
Ωε,T

m

is bounded

independently of ε, and
∫
Ωε,T

f
Qε +

∫
Ωε,T

m
qε = 0,

A5. Θε
0, θ

ε
0 ∈ [0, 1], Θε

0XΩε
f

+ θε
0XΩε

m
∈ C1(Ω), |||Θε

0|||2+α,∗
Ωε

f
+ |||θε

0|||2+α,∗
Ωε

m
is bounded

independently of ε, ‖θε
0‖2,Ωε

m
is a convergent sequence, and compatibility con-

dition of order 0 holds (see p. 319 [17]),

A6. max
z∈[0,1]

| Kε

µ(z) − K̂| ≤ γ3K̂, max
z∈[sl,sr ]

| kε

µ(z) − k̂| ≤ γ3k̂,

A7. µ, Λ ≥ γ1, |∂ρ
∂θ |+ |µ′|+ |Λ′| ≤ γ4, D−ΛI is a nonnegative symmetric matrix,

and ‖ρ(θ, ·)‖(α)
Ω + ‖ρ(θ, ·)‖(1)2,Ω is bounded for any fixed θ ∈ [0, 1],
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where α ∈ (0, 1), K̂, k̂, γi, i = 1, 2, 3, 4 are positive constants and γ3, γ4 are small
numbers depending on given data.
Remark 3.1 By A2,6, we know Kε are bounded below and above by two positive
constants independent of ε. γ3, γ4 in A6,7 are small numbers, and the explicit
restriction for γ3 can be found in p.224 Theorem 4.2 [7] and the restriction for γ4 is
in the proof below. In [21], it was shown that there exists a unique smooth solution
for miscible displacement in single porosity case provided that µ′ is not too large
and data are small. Here we also require that µ′ is not too large (see A7) in order
to show the smoothness of solutions in fractured media. By A7, it is easy to see
D ∈ W 1,∞

loc (<4).

4. The Main Result

We claim as ε goes to 0, the equations (2.1–2.9) for the microscopic model con-
verge to a dual-porosity model. As mentioned in §1, in this macroscopic model
domain acts as a porous medium consisting of two superimposed continua, a con-
tinuous fracture system Ω and a discontinuous system of matrix blocks Qm. The
macroscopic model includes two systems of equations; one is for flow in fracture sys-
tem and the other is for flow in matrix block system. The two systems are coupled
through a nonlinear source.

Let Ω ⊂ <3 be a fractured medium. Equations for the fracture system are, for
x ∈ Ω, y ∈ Yf , t > 0,

∂tΘ−∇ ·
∫

Yf

D(Θ,V)(∇Θ + ∂yΘ1)−ΘV
|Yf | dy −Θ

∫

Yf

Q
|Yf |dy = J , (4.1)

V =
−K

µ(Θ)
(∇P − ρ(Θ, x)), (4.2)

∇ ·
∫

Yf

Vdy =
∫

Yf

Q dy +
∫

Ym

q dy, (4.3)

where Θ, P,J are functions in ΩT , functions Θ1,V,K,Q are in QT
f , and q are in

QT
m. Θ is fluid concentration and Θ1 is a Y -periodic function satisfying

{
∂y · (D(Θ,V)∂yΘ1) = −∂y · (D(Θ,V)∇Θ−ΘV) in Yf ,
D(Θ,V)∂yΘ1 · ~νy = −(D(Θ,V)∇Θ−ΘV) · ~νy on ∂Ym, (4.4)

where ~νy is the unit vector outward normal to ∂Ym. V is fluid velocity, K is absolute
permeability field, µ(Θ) is viscosity, P denotes pressure, ρ(Θ, x) is a function de-
pending on concentration, density, gravity, and position, D is the dispersion tensor,
Q is the external source in fractured system, q is the external source in matrix block
system, and J is the matrix-fracture source due to matrix blocks. |Yf | denotes the
volume of Yf .

Above each point x ∈ Ω is suspended topologically a matrix block Ym ⊂ <3.
Equations for flow in each matrix block are, for x ∈ Ω, y ∈ Ym, t > 0,

∂tθ − ∂y · (D(θ,v)∂yθ − vθ)− qθ = 0, (4.5)
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v =
−k

µ(θ)
(∂yp− ρ(θ, x)), (4.6)

∂y · v = q. (4.7)

Lower case symbols denote the same quantities on Ym corresponding to those de-
noted by upper case symbols in the fracture system equations.

The matrix-fracture source is given by, for x ∈ Ω, t > 0,

J (x, t) =
−1
|Yf |

∫

Ym

(∂tθ − θq)(x, y, t)dy. (4.8)

The boundary conditions for the fracture system are, for t > 0,
{ ( ∫

Yf
D(Θ,V)

(∇Θ + ∂yΘ1

)
dy

) · ~n = 0 on ∂Ω,
(
∫

Yf
Vdy) · ~n = 0 on ∂Ω,

(4.9)

where ~n is the unit vector outward normal to ∂Ω. On interface, concentration and
pressure are continuous, that is, for x ∈ Ω, y ∈ ∂Ym, t > 0,

{
θ(x, y, t) = Θ(x, t),
p(x, y, t) = P (x, t). (4.10)

Initial conditions are
{

Θ(x, 0) = Θ0(x) for x ∈ Ω,
θ(x, y, 0) = θ0(x, y) for x ∈ Ω, y ∈ Ym. (4.11)

Theorem 4.1 Under A1− 7, a subsequence of solutions of the microscopic models
(2.1–2.9) converges in two-scale sense to a solution of (4.1–4.11).
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