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Abstract

In a recent paper, Deligero and Nakada devised a new approach to investigate the num-
ber of coprime solutions of the diophantine approximation problem for formal Laurent series
over a finite base field. In this project, we further developed their method and proved almost
sure and distributional type invariance principles. One of the consequences of our results is a
generalization of the analogue of a famous theorem of Khintchine. Despite a lot of previous
research efforts, the corresponding result in the classical case has not been established yet.

1 General

This is the final report on the National Science Council project “Metric Diophantine Approxi-
mation for Formal Laurent Series” with grant number NSC-94-2115-M-009-011 and term from
August 1st, 2005 to July 31st, 2006.

Before going into details, we shortly summarize the main achievements.

e The paper [1] contains the main findings of this project. It was submitted and will be pub-
lished in one of the forthcoming issueskhite Fields and Their Applications

e A three week research visit at the Vienna University of Technology from July 7, 2006 to
July 29, 2006 was partially financed by the project. A report on this research visit will be
handled in separately.

2 Results

Subsequently, we shortly describe some of our main results and their significance. For details, we
refer the reader to [1].

LetF,((T')) denote the field of formal Laurent series over a finite figJdvith ¢ elements
equipped with the usual standard evaluation. Fix anF,((7')) with | f| < 1. We are interested
in the number of solution®, ) € F,[T], Q # 0 of the diophantine approximation problem

P 1
'f_é‘<ma degQ:na <P7Q):17 (1)

where (/,,) is a sequence of positive integers. Subsequently, we denote: lije unique,
translation-invariant probability measure on the measure space consisting of

{f eF((T IS <1}

and its set of Borel sets.
The following result was proved by deMathan in [3] (see [4] for a different method of proof)
and is the analogue of a famous theorem of Khintchine.
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Theorem 1 (deMathan 1970; Fuchs 2002)Assume thatl,,) is non-decreasing. Then, (1) has
either a finite or an infinite number of solutions almost surely; the latter holds if and only if

Steo
n=1
In order to refine the above result, the following sequence of random variables was introduced

Zn(f) :=#{P/Q : (P,Q)is asolution of (1) deg@ < N}.

Then, the following extension of the above theorem was implicitly proved by Inoue and Nakada
in[7].

Theorem 2. Assume thatl,,) is non-decreasing. Then, for almost #ll

Zn(f) = (=)D a7 + O (F(N)(log F(N))*/2)

n<N
wheree > 0 is arbitrary and (V) is a suitable defined sequence.

A similar result (with a slightly weaker error term) was long known to hold for the classical
case (=metric diophantine approximation over the real number field). However, despite a lot of re-
search efforts, the question of the optimal error term remained open (only under further restrictions
on(l,), it was possibly to prove more; see [5] and references therein).

One of the consequences of our present study is now the following result that gives a definite
answer to the question of the optimal error term for diophantine approximation in the field of
formal Laurent series.

Theorem 3 (Deligero, Fuchs, and Nakada 2006)Assume thatl,,) is non-decreasing. Then, for
almost all f,
. Zn(f) = Q=g )Y enva ™
lim sup =1
n—oo V2F(N)loglog F(N)

This result follows from the invariance principles we proved in [1]. More generally, the results
in [1] yield as consequences a functional law of the iterated logarithm and a functional central
limit theorem for the number of solutions of (1) for non-decreasing sequeiiceéthe latter
improves upon the main result in Deligero and Nakada [2]). For the detailed results, we direct
the interested reader to [1]. We just want to make a few comments on their significance. The
invariance principles in [1] improve upon our previous results in [6]. The substantial improvement
is achieved via a new approach that has its origin in [2]. All previous approaches relied on metric
results for the continued fraction expansion of formal Laurent series which made necessary some
technical restrictions on the set of sequen@gs In [2], a new approach not relying on continued
fraction expansion was devised. Moreover, its power was demonstrated by proving a central limit
theorem for the number of solutions of the diophantine approximation problem in the setting of
Khintchine’s theorem. In our paper, this approach is now further developed by improving all the
results in [2] as well as most of the results in [6].

Another natural and interesting question is whether or not one can even go one step further by
getting rid of the the monotonicity assumption@g). In fact, Inoue and Nakade proved in [2] that
Theorem 1 and Theorem 2 still hold without the assumption of monotonicity. As to our Theorem
3, a proof without this assumption seems to be complicated. However, we managed to prove that
the result still holds for (more or less) all convergent sequences (either with finite or infinite limit).
This set of sequences clearly contains the set of sequences that is considered in Theorem 3. More
generally, all results in [1] are proved for this larger set of sequences, too. Again, we do not want
to go into too much details and instead refer the reader to [1].
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3 Summary

In this project we further developed the method introduced in [2] and proved invariance principles
for the number of coprime solutions of the diophantine approximation problem for formal Laurent
series over a finite base field. Our results improve upon most of the previous results in this field.
Moreover, as one of the consequences of our main findings, a long sought goal that is still an open
guestion in the classical case was finally achieved for diophantine approximation in the field of
formal Laurent series. This once more demonstrates that metric diophantine approximation over
the field of formal Laurent series is easier than its counterpart over the real number field.

Many questions remain open. For instance do our results still hold when no conditions on
the sequencél,,) are imposed? How about the situation where all solutions of the diophantine
approximation problem are counted (compared with the above restriction to counting coprime
solutions)? How about the situation where the set of solutions is further restricted to e.g. solutions
with denominator and/or enumerator belonging to a fixed arithmetic progression, etc.? All those
guestions are interesting and might constitute the topic of a forthcoming project.
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The last few years have witnessed an increasing interest in the metric theory of diophantine approximatior
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Abstract

In a recent paper, the first and third author proved a central limit theorem for the number of coprime
solutions of the diophantine approximation problem for formal Laurent series in the setting of the
classical theorem of Khintchine. In this note, we consider a more general setting and show that even an
invariance principle holds, thereby improving upon earlier work of the second author. Our result yields
two consequences: (i) the functional central limit theorem and (ii) the functional law of the iterated
logarithm. The latter is a refinement of Khintchine’s theorem for formal Laurent series. Despite a lot
of research efforts, the corresponding results for diophantine approximation of real numbers have not
been established yet.

Introduction

for formal Laurent series; for recent results concerning limit laws see Deligero and NaKa&aghs

[3], [5], Inoue and Nakad&d]; for recent results concerning Hausdorff dimensions of exceptional sets see

Kristensen T], Niederreiter and Vielhaber.p], Wu [15].

In this short note, we are studying invariance principles for the number of coprime solutions of the
diophantine approximation problem. In the classical case, invariance principles were obtained by Fuchs ir
[4]; see Fuchst] for corresponding results for formal Laurent series. The main difference to the previous

*On study-leave from the University of Southeastern Philippines, Davao City, 8000 PHILIPPINES.
fPartially supported by National Science Council under the grant NSC-94-2115-M-009-011.
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line of research is a new approach that does not involve continued fraction expansion. Continued fractior
expansion made necessary several restrictions on earlier results which will be shown to be superfluous i
this paper. This new approach was devised by Deligero and Nakada amd it is the paper’s aim to
further demonstrate its usefulness.

We give a short outline of the paper: in this section, we briefly recall metric diophantine approximation
for formal Laurent series, state our new result and discuss some consequences. The proof of the mal
result which rests on blocking techniques and a general invariance principle obtained by Huetis [
then be given in the final two sections.

Formal Laurent Series. Denote byF, the finite field withg elements, whergis a power ofy, p a prime.
We consider the field of formal Laurent series

F,(T7)) = {f = i a T "a, € Fy,ng € Z,an, # O} u{0}

n=no

together with the valuatiofy| = ¢~ "°, f # 0 and|0| = 0. Itis easy to see that| is non-Archimedean and
that the polynomial rind,[T] and the field of rational functiori,(7') are both contained ifi,((7!)),
where we have the chain of inclusiofig 7] C F,(T) C F,((T~")), a situation that closely resembles the
corresponding chaid C Q C R.

In order to consider metric diophantine approximation, we restrict to the set

L={f eF,((TMIIfl <1}

as we restrict to the unit interval in the classical case. Itis straightforward to prove tbgéther with the
restriction of the valuation is a compact metric space. Hence, there exists a unique, translation-invarian
probability measure ofiL, £) (£ denoting the set of all Borel sets) that we are going to denote.by

Diophantine Approximation Problem and Three Sets. For f a formal Laurent series withf| < 1,
consider the diophantine approximation problem in unknoRr@ € F,[T], @ # 0,

P
‘f_§‘<(]2n;+ln’ degQ:nv (PvQ):L (1)

where(l,,) is a sequence of positive integers.
We are interested in studying the solution set. Results of different strengths made necessary differen
restrictions on the set of sequencés. The sets which will be considered in this paper are as follows:

A ={(l,)n>0 | I, > 0 and non-decreasing

B= {(zn)nzo |, > 0 and either (C1)lim 1, = I < oo, 0r (C2) lim l, = co, lim Y ¢ exists};
n—oo n—oo 1—00 it

C= {(ln)nZO | ly > 0}'

Note that we have the following chain of proper inclusichs- B C C.

0-1 Laws. In [2], deMathan proved an analogue of Khintchine’s theorem:(fpr € A the solution
set of the above inequality is either finite or infinite for almost @lithe latter holding if and only if
> a " = oo (see Fuchsd] for a different approach based on continued fraction expansions).

In a recent paper, Inoue and Nakadpghowed that the monotonicity assumption is in fact superfluous
(see Section 2 for a simplified proof of their result).

2



Theorem 1 (Inoue and Nakada {]). Let(l,,) € C. (1) has either finitely many or infinitely many solutions
for almost all f; the latter holds if and only if

o0
E q’l" = 00.
n=0

Central Limit Theorems. Define a sequence of random variables as

Zn(f) =#{P/Q : (P,Q)isasolution of ), deg@ < N}.

Assuming thatl,) € A, >°° ¢ '» = oo and under some further technical conditions(y), Fuchs
[3] proved the central limit theorem fdtZ ). His approach was based on continued fraction expansions
which made the additional conditions seemingly hard to drop.

A new approach, not relying on continued fraction expansions, was devised by Deligero and Nakada in
[1]. With this approach they succeeded in dropping the additional conditions in Fuchs’s result, thereby gen-
eralizing the central limit theorem to Khintchine’s setting, i.e., to all sequefiges Awith >~>2 ¢~/ =
oo. Note that a similar result for the real number field has not been proved yet; see LeVgqué][and
Philipp [13] for similar but weaker results in the real case.

The Invariance Principle. In [5], Fuchs obtained the invariance principle for sequeritgse A that
satisfy >> ¢~ = oo and some technical extra conditions. Here, we are going to explore further
the approach of Deligero and Nakada in order to extend Fuchs’s result to all sequgnces3 with

> om0 g~ = oo,
In order to state the result we fix some notation. Set
Py e 40T = 1) = 214 (g — 1)) N, (CL;
q_l (q - 1) ZnSN q_lna if (C2)’
and
N, - max{n : F(n) <t}, ift> F(0);
"o, otherwise

fort > 0. Define on(L, £, m) x ([0, 1], B, \) the following stochastic process

20) = 206 f0) = 2 9) - (1- 1) L a7

whereB denotes the set of Borel sets {fn1] and A is the Lebesgue measure. Note that the definition
does not depend on the second variable. However, adjoining a uniformly distributed random variable is
necessary to guaranteeing that the probability space is rich enough (see Remark 6 ifdJyuchs [

Theorem 2. There_exists a sequenc¢#),),>o of independent, standard normal random variables on
(L, £,m) x ([0, 1], B, A) such that, asV — oo,

Z(N) =Y Y. =o((NloglogN)'?), as.
n<N
and
1
(m x \) [—Nrglga% Z(n) — ;Yk >e| —0
forall e > 0.



Consequences. The above result implies the functional central limit theorem which generalizes the result
of Deligero and Nakadal].

Corollary 1. AsN — oo,
Z(F(N)t
ZEWND o<1l o<t <1,
F(N)
wherelV (t) denotes the standard Brownian motion.
Moreover, we have the functional law of the iterated logarithm.
Corollary 2. The sequence of functions
Z(F(N)t
(FND e
(2F(N)loglog F(N)) N30

is a.s. relatively compact in the topology of uniform convergence and has Strassen’s set as its set of limi
points.

Since our set of sequencgs) contains the sequences of Khintchine’s theorem, we note the following
consequence of the latter result which is a refinement of Khintchine’s theorem for formal Laurent series.

Corollary 3 (Law of the iterated logarithm for Khintchine’s setting). Assume that/,,) € .4 and
> ¢~ = co. Then, for almost alf,

lim su ‘ZN(f> ~(1-q" anN g _
n—»oop V/2F(N)loglog F(N)

Note that a similar result for the real number field has so far not been established; see PHjilgym[
Fuchs [1] for similar but weaker results in the real case. Moreover note that the above result also gives the
optimal bound in the law of large numbers:

Let(l,) € A. Then, for almost alf,

Zn(f)=1=q¢") ) g+ O ((F(N)loglog F(N))"/?) .

n<N

The previous best bound was of ordéfN)'/?(log F(N))%/?*¢ ¢ > 0 which more generally even holds
for all (I,,) € C; see a remark by Inoue and Nakadh [

2 Blocking

Define a sequence of sets as
F, = {f € L: 3(P,Q) such that{) holds}.
The measure of these sets was computed by Inoue and Néal{ada [

m(F,) = ¢~ (1 - 1) . )
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Moreover, as was proved by Inoue and Nak&daaf well, two distinct set$; and F; are either indepen-
dent or have empty intersection, the first case occurring if and onky i < j.
Note that the latter implies

m(FL N Fy) < m(E)m(Fy) (i # ). @3)

Sequences of sets satisfying this condition are called negative quadrant dependent (see Lidhnidums [
gives a simplified proof of Theoret

Proof of Theorentl. Sinced. _ym(F,) = (1—q¢')> _yq ' the result follows from the Borel-
Cantelli lemma for negative quadrant dependent sequences of sets (see MitateRenyi [14]). 1

In the sequel, we use the notation
Xn = ]'Fn — m(Fn),

where1l, denotes the indicator function of the sét Furthermore, we sdim,,_...l, = [ regardless
whether we have (C1) or (C2). Subsequently, we shall interpret all expressions in teffios (£2) as
the corresponding value obtained by taking the limit, > = 0. Finally, the constant is defined in
the following lemma.

Lemma 1. With the assumptions from the introduction,
1 —l _ g,
c.—ilirilo Z qg 7 =Ilqg".
i<j<i+l;

Proof. If we assume (C1), then the assertion follows from the factthat [,n > N for a sufficiently
large V. For (C2), since the limit is assumed to exist, it suffices to prove that

lim inf Z ¢ =0.
e i<j<i+l;
Assume that this is wrong. Then there isean 0 such that for ali > i(e),

Y ghze

1<j<i+l;

Y ali<lg™

1<j<i+l;
Sincel,, — oo, the above chain of inequalities cannot hold(#) is chosen large enough. Hence, starting
with any fixedi, > i(e), we can find ani; > i, such that,, > [;, etc. This gives a contradiction. I

Ifl; <liyg <--- <liy, then

Blocking I: 2-dependent process. Define the sequence recursively as, = 0 and

Tpp1:= max {j:j+l;>i+foralr, <i<t,+1[,}
TnSjSTn+lTn, )

Furthermore, denote by
Tn+171

Y, = Z X, (n>0).

J=Tn

We gather some properties of the sequei¢e.
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Lemma2. (i) (Y.).>o IS a2-dependent process.
(i)
V(ZYH> NF(’TN_H—]_) (4)

n<N

Proof. Due to the properties of the séf, the first part follows from

max (j+1;) < This.
Tn§]<7-n+1

In order to prove the latter, observe that the left hand side is bounded by- I, . ,. Moreover, we have
Tog2 + by < Togs + 1y (5)
Assuming thatr, ;3 < 7,41 + [, ., would now imply that
Toa2 ey 2 Tugs + 15y

which however contradict$). Hence, we have proved the first part of the lemma.
For the second part, we first observe that

Y (Z Yn> = > mF)— Y mF)+2 D (m(FNEF) - m(F)m(F)).
n<N N<TN 41 N<TN4+1 1<J<TN+1
From the assumptions a@r,) and @),

> m(F)~ g (1 - $>2 > g

N<TN+1

Moreover, from the property of the sequen¢ementioned in the paragraph precediy (

Y (ENE) —mE)m(F)) =~ Y m(F) > m(F})

1<j<TN+1 I<TN41 i<j<min{i+l;,7n11—1}
2
~—c|l—-- E q Z>
q 1<TN41

the last step following from the assumptions(@y), Lemmal, and(2).
Putting everything together yields the claimed resulkt.
Blocking IlI: Linear variance.  For any positive integet define the integey,, by
F(Tj,41=1) <n < F(7j,42—1)
and setj, = —1. Note that
F(rtpie—1) = F (1h41— 1)

< ((1 - 1) — (2c+4¢7") (1 — $>2> Z o~

q Tn+1 §j§7n+1+l7n+1

<1,



where the last line holds i is chosen large enough. Hence, the above definition makes sense.

Now, we define
jn+1

&n = Z Y;, (n >0).

J=in+1

Some properties df,,) are summarized in the next lemma.
Lemma 3. We have

(i) (&.)n>0is a 2-dependent process.
(i)

El¢, P < 1.
(iii)

\Y% (Z 5”) ~ N.

n<N

Proof. Property (i) is clear. For the proof of (ii), we first apply the multinomial theorem,

3
Tjn+l+171

E|§n|3 <E Z |XJ|

j:7—.77L+1

3 . _
= Z ( >E|X7—J'n+1 |6‘an+1 R |XTjn+1+1—1|eTJ"+l+1 L (6)
Erjpt1s -

erjpr1tter 1 -1=3 0 Tyl

In order to estimate the right hand side, we use prop@&jtya( property that more generally holds for
any finite number of pairwise distinét’s as was proved by Deligero and Nakada [

Now, observe

Tipy1+1—1 Tipy1+1—1
j:Tjn+1 j:‘rjn+1

where the last estimate follows by the definitionjpf
Next, we treat the following sum

7—.7'n+1+1_1
> E|X: | X;| < > mE)m(F) < | > m(F) | <1
Tjn+lgi<jSTjn+1+1_1 Tjn+1gi<jSTjn+1+1_1 j:Tjn+1
Similarly, we have
3 E1X,]|X;)* < 1.
Tin+1<0<J<Tj, 4411
Hence, we are left with
Ting1+171 3
> EIXX|X < [ Y. mE)| <L
Tjn+1<i<G<I<T), 411 I=Tjn 41



Plugging the last three estimates in® gives property (ii).
For property (iii), observe that by,

V<Z§n> V( > Yn) = F (Tjyot1— 1)

n<N n<JN+1
Moreover, by the definition of,, and the remark succeeding the definition, we have
N < F (TjN+1+2 — 1) + (F (TjN+1+1 — ].) - F (TjN+1+2 — 1)) = F (TjN+1+1 — 1) S N + 1.

This yields the desired result. I

3 Proof of the invariance principle

The proof of Theoren2 will rest on the following extension of a theorem of Philipp and Stout (see Fuchs
[4]). We state the result in a simplified form that will be sufficient for our purpose.

Proposition 1. Let&,, denote a 2-dependent process of centered random variables on the probability space
(2, A, P) and suppose that
El&)? <« 1

and
\Y% (Z &) ~ N.
n<N
Define a stochastic procesgét) on (92, A, P) x ([0, 1], B, \) by

1) = &

n<t

Then, ag — oo,
£(t) —W(t) = o((tloglogt)'?), a.s.
and

(Px ) [% oup () — W(5)| > } 0

forall e > 0.

Due to the Lemma&, the sequencg, of the previous section satisfies all the assumptions of the above
proposition. Therefore, we obtain, &s- oo,

£(t) — W(t) = o ((tloglog t)l/Q) , as.

and

(mx ) | Zzsuples) = W(5)] = e| —0

forall e > 0, where{(t) = >, , &



The invariance principle for Z(t). We prove the following lemma.

Lemma 4. Ast — oo,
Z(t) —£(t) < tV/27¢, as.

forall 0 < e < 1/6.

Proof. We have

Tjn+1+1_1 Tjn+l+1_1 3
m Z |X]| > n1/2—e < n—3/2+36E Z |Xj| < n—3/2+36‘

j:Tjn+1 j:Tj"+1

Consequently, by the Borel-Cantelli lemma,

Tjn+l+1_1
>l <n?e as. (7)
j:Tjn+1
Now, observe
it 41+
Z6) €@ =D Xa= Y X< D 1X
n<N; nSTj[t]+1+171 joj[t]+1

and combining with {) concludes the proof of the desired resulL.

The above lemma yields, as— oo,
Z(t) — W(t) = o((tloglog t)l/Q) , a.s.

and

(m x \) %ﬂ)w(s) _W(s)| > €| — 0

for all e > 0. Reformulation gives Theoregh 1
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