
行政院國家科學委員會專題研究計畫 成果報告

利用前置式區域搜尋技術增強機率模型構建式基因演算法

之執行效能研究

計畫類別：個別型計畫

計畫編號： NSC94-2213-E-009-120-

執行期間： 94 年 08 月 01 日至 95 年 07 月 31 日

執行單位：國立交通大學資訊工程學系(所)

計畫主持人：陳穎平

報告類型：精簡報告

報告附件：出席國際會議研究心得報告及發表論文

處理方式：本計畫可公開查詢

中 華 民 國 95 年 10 月 24 日

 1

利用前置式區域搜尋技術增強
機率模型構建式基因演算法之執行效能研究
Performance Speed-up for Probabilistic Model Building

Genetic Algorithms by Using Prefix Local Searchers

中文摘要

機率模型構建式基因演算法 (probabilistic model building genetic algorithms) 為當前

所可使用的最好的基因與演化演算法之中的一種。然而和傳統或是一般的基因演算

法比起來，通常會需要比較大的人口數目 (population size) 方能達到預計的效能。

此外，一般人口初始化的過程使得基因演算法和隨機搜尋演算法 (random search)幾
近相同。本研究採用前置式區域搜尋技術(prefix local search techniques)來初始人

口，用以增進機率模型構建式基因演算法之效能。奠基於機率模型構建過程的特性，

前置式區域搜尋技術應當能夠製造出比完全隨機產生的人口，更適合於進行構建機

率模型的初始人口。在本研究中，我們採用由 Harik 於 1999 年提出的延伸型緊緻

基因演算法 (extended compact genetic algorithm)做為研究的標的，提出之新式人口

初始化方法，除了可以使用於延伸型緊緻基因演算法，亦可以使用於其他的機率模

型構建式基因演算法以獲得效能之增進。

關鍵字: 機率模型構建式基因演算法, 前置式區域搜尋技術, 效能增強技術

ABSTRACT

The probabilistic model building genetic algorithms are among the best genetic and
evolutionary algorithms currently available. However, algorithms belonging to this class
usually require larger populations compared to the traditional genetic algorithm.
Otherwise, the common initialization procedure currently employed makes the algorithm
close to the random search. This research project employs a prefix local searcher for
initializing the population in order to improve the performance of the probabilistic model
building genetic algorithms. Based on the properties of the probabilistic model building
process, the prefix local searcher should be able to provide a population that is more
appropriate for building probabilistic models. In particular, we use the extended compact
genetic algorithm, which was proposed by Harik in 1999, as our study subject in this
project. The developed initialization scheme should not be only applicable to the
extended compact genetic algorithm but also applicable to other algorithms or techniques
belonging to the class of probabilistic model building genetic algorithms.

Keywords: Probabilistic model building genetic algorithms, prefix local search,
efficiency enhancement techniques

 2

I. INTRODUCTION

The probabilistic model building genetic algorithms are among the best genetic and
evolutionary algorithms currently available. However, as studies in the literature
indicated, algorithms belonging to this class usually require larger populations compared
to the traditional genetic algorithms. Moreover, according to the properties of genetic
algorithms, in the first few generations, the individuals contained in the population are all
virtually random. In this case, the algorithm is almost identical to the random search. In
order to alleviate this situation and therefore to enhance the performance, we would like
to develop an initialization scheme in this work.
 In fact, modifying the initialization procedure or seeding the initial population is not
new at all and has been broadly investigated in the early stage of the development of
genetic and evolutionary algorithms. As reported by the existing publications, using
exiting solutions in the initial population can offer the following interesting benefits: (1)
avoiding “reinventing the wheel” and preventing waste of computational efforts; (2)
directing the search into certain search space regions of interests; (3) better performance
by mixing heuristic initialization and evolutionary search (Eiben & Smith, 2003). A
number of different ways for this purpose have been proposed by researchers in this field,
include seeding, which uses known good solutions in the initial population, selective
initialization, which holds N k-way tournaments to form the initial population,
conducting a local search for each member of the initial population, and using a starting
individual with mass mutation to fill up the initial population.

This research project employs a prefix local searcher for initializing the population
in order to improve the performance of the probabilistic model building genetic
algorithms. Based on the properties of the probabilistic model building process, the prefix
local searcher should be able to provide a population that is more appropriate for building
probabilistic models. With a properly initialized population, the efficiency of the
probabilistic model building genetic algorithms should be improved not only in the early
stage but also during the whole evolutionary process. In particular, we use the extended
compact genetic algorithm(Harik, 1999) as our study subject in this project. The
developed initialization scheme should not be only applicable to the extended compact
genetic algorithm but also applicable to other algorithms or techniques belonging to the
class of probabilistic model building genetic algorithms.

The major steps to conduct this research project include (1) select the local searcher
to incorporate, (2) determine the way to conduct local search, (3) study the ratio of the
starting points and generated points, and (4) understand the effect of the scheme on the
probabilistic model building process. The scheme proposed and developed in this project
can be considered as an efficiency enhancement technique, which speeds up the
underlying genetic and evolutionary algorithm, as well as a tool for us to better
understand the probabilistic model building process in both theory and practice.

II. BACKGROUND

Genetic algorithms (GAs) are powerful stochastic, population-based search and
optimization techniques loosely modeled after the paradigms of evolution (Goldberg,
1989; Holland, 1973). They guide the search through the solution space by using natural
selection and genetic operators, such as crossover, mutation, and the like. Genetic

 3

algorithms are now widely applied to solve problems in a number of different fields and
domains (Goldberg, 2002). However, most genetic algorithms employed in practice
nowadays are simple, traditional genetic algorithms with fixed genetic operators and
chromosome representations, which implicitly require their users to have the problem
specific knowledge a priori such that appropriate chromosome representations can be
designed for the genetic algorithm to work with. Unable to overcome the difficulty
caused by the chromosome representation or variable arrangement, these common
genetic algorithms suffer from the linkage problem (Goldberg, Korb, & Deb, 1989;
Thierens, 1995; Thierens & Goldberg, 1993), which refers to the need of appropriately
arranging or adaptively ordering the genes on chromosomes or variables in encoding
strings during the evolutionary optimization process.

Because it is supposedly hard to guarantee that the user-designed chromosome
representation provides correctly, tightly linked building blocks when the problem
domain knowledge is unavailable, a variety of linkage learning techniques have been
proposed and developed to handle the linkage problem during the run of a genetic
algorithm (Kargupta & Bandyopadhyay, 2000; Larranaga & Lozano, 2001; Pelikan &
Goldberg, 2002). Existing linkage learning techniques, according to the way they detect,
process, and present linkage, can be broadly classified into the following three categories
(Munetomo & Goldberg, 1999):

 Perturbation-based methods
Perturbation-based methods detect the linkage between genes by perturbing the
individual and observing the fitness difference caused by the perturbation, such
as the messy genetic algorithm (mGA) (Goldberg, Deb, & Korb, 1990;
Goldberg et al., 1989), the fast messy genetic algorithm (fmGA) (Goldberg,
Deb, Kargupta, & Harik, 1993; Kargupta, 1995), the gene expression messy
genetic algorithm (gemGA) (Kargupta, 1996), the linkage identification by
nonlinearity check (LINC) (Munetomo & Goldberg, 1998), the linkage
identification by non-monotonicity detection (LIMD) (Munetomo & Goldberg,
1999), and the linkage identification based on epistasis measures (LIEM)
(Munetomo, 2002).

 Linkage adaptation techniques
Linkage adaptation techniques employ specifically designed representations,
operators, and mechanisms for adapting linkage along with the evolutionary
process. The examples of linkage adaptation techniques include the punctuation
marks (Schaffer & Morishima, 1987), the metabits (Levenick, 1995) for
implementing the differential crossover probability, the linkage evolving
genetic operator (LEGO) (Smith & Fogarty, 1996) for adapting the
recombination strategy via evolution of linkage, and the linkage learning
genetic algorithm (LLGA) (Chen, 2004; Harik, 1997) using a special
representation and an expression mechanism for learning linkage naturally.

 Probabilistic model builders
Probabilistic model builders learn linkage via building probabilistic models
based on the current population and generating new individuals according to
the obtained probabilistic models. Useful and popular probabilistic model
building genetic algorithms include the mutual-information-maximizing input
clustering algorithm (MIMIC) (De Bonet, Isbell, & Viola, 1996), the

 4

combining optimizers with mutual information trees method (COMIT) (Baluja
& Davies, 1997), the bivariate marginal distribution algorithm (BMDA)
(Pelikan & Muhlenbein, 1999), the IDEA framework (Bosman & Thierens,
2001), the Bayesian optimization algorithm (BOA) (Pelikan, Goldberg, &
Cantu-Paz, 2000), the factorized distribution algorithm (FDA) (Muhlenbein &
Mahnig, 1999), and the extended compact genetic algorithm (Harik, 1999).

III. EXTENDED COMPACT GENETIC ALGORITHM

The extended compact genetic algorithm partitions the genes or variables into
linkage groups, which can be considered as building blocks, and tries to find good
probability distributions with the help of these linkage groups. The judging criterion for
discriminating superior probability distributions from inferior ones is developed based on
the principle of the minimum description length (MDL) (Rissanen, 1978, 1989). The
probabilistic models used in the extended compact genetic algorithm is a class of
probabilistic models known as marginal product models (MPMs), which are formed as a
product of marginal distributions on a partition of the genes for variables, i.e., a linkage
group. For a typical generation, the extended compact genetic algorithm selects the better
individuals with the specified selection scheme, constructs the marginal product models
with the individuals of the current population as well as the guidance given by the
principle of the minimum description length, and then gets samples from the constructed
probabilistic model as individuals of the population in next generation.

As pointed out by the studies in the literature, in order to acquire good enough
probabilistic models for probabilistic model building genetic algorithms, such as the
extended compact genetic algorithm, the population size grows at least proportionally in
terms of the problem size (Pelikan, 2002). According to the properties of genetic
algorithms, the individuals in these large populations in the first few generations are very
close to totally random ones. As a consequence, in the early stage of the evolutionary
computational process, the probabilistic model building genetic algorithms are not quite
different from the random search. In order to avoid waste of time on the random search in
the early stage and therefore speed up the whole run duration, the initial populations
which may be more appropriate for building probabilistic models should be utilized in the
probabilistic model building genetic algorithms, such as the extended compact genetic
algorithm in this project.

IV. EXPERIMENTS
i. Prefix Local Search

Although many different initialization techniques have been introduced to the
genetic and evolutionary algorithms, the proposed initialization scheme in this study
is distinguishably different from those previously described in the literature in that a
local searcher is incorporated in the initialization phase and more importantly, the
path in the search space walked through by the local searching points are kept to
help the probabilistic model building process.

To realize the novel initialization scheme is to select an appropriate local
search method by which the search points generated along the local search process

 5

can actually help the later probabilistic model building process. Candidate local
search methods for this purpose include the deterministic hill-climbing, the
stochastic hill-climbing, the steepest gradient descent, and the like.

We use a prefix local searcher for initializing the population. First, part of
individuals are randomly generated as seeds and evaluated. Second, the local search
is conducted on each individual for specified steps to “fill” up the population. We
use different mutation rates to produce offspring for local search. Compare the
parent with its offspring, the better is held to next local search. Therefore the
population size is the number of initial individuals multiplied by the number of local
search steps. The parameters to initialize populations are presented in Table 1.

Table 1. The initialization parameters in our experiments.
Population size Randomly initial individuals Steps for local search

40 4
20 8 160
10 16
64 4
32 8 256
16 16
96 4
48 8 384
24 16
144 4
72 8 576
36 16
240 4
120 8 960
60 16
476 4
238 8 1904
119 16

Combined with mutation rates: 0.05, 0.1, and 0.2

ii. Fitness function

For each individual, it is a binary string which is composed of ten 4-bit
trap. The objective function h(x) for ith 4-bit trap is described as:

⎩
⎨
⎧

=
==

= ∑
=

)()(else,
5)(,0)(

 if

)(
4..1

xuxh
xhxu

xxu

i

i

j
j

where xj is a bit in a 4-bit trap x . Therefore the fitness function is:
∑
=

=
10..1

)()(
i

i xhXf

 where x is an individual.

 6

V. RESULTS

For each parameters setting (see Table 1), we performed 50 runs and each run has
250,000 evaluations. We get best fitness averaging 50 runs and compare with original
ECGA. Figure (a)-(r) show the result of each generation in the different population size
with different mutation rate. We can see that sometimes our approach is better than
original ECGA, but usually isn’t. When population size is large enough, the results
between our approach and original ECGA are similar. For all results of our approach, the
result in 4 steps for local search is always better than others. Besides, we get the final
fitness in Figure (a)-(r) to show the variation of the fitness in different population
size.(see Figure 1-3)

(a) 160_0.05

40

41

42

43

44

160 960 1760 2560 3360 4160 4960 5760

evaluations

fitness

org_ECGA
40X4

20X8

10X16

(b) 160_0.1

40

40.5

41

41.5

42

42.5

43

43.5

160 960 1760 2560 3360 4160 4960 5760

evaluations

fitness

org_ECGA

40x4

20x8

10x16

(c) 160_0.2

40

40.5

41

41.5

42

42.5

43

43.5

44

160 960 1760 2560 3360 4160 4960 5760

evaluations

fitness

org_ECGA

40X4

20X8

10X16

(d) 256_0.05

40

41

42

43

44

45

256 1536 2816 4096 5376 6656 7936 9216

evaluations

fitness

org_ECGA

64X4

32X8
16X16

(e) 256_0.1

40

41

42

43

44

45

256 1536 2816 4096 5376 6656 7936 9216

evaluations

fitness

org_ECGA

64X4

32X8

16X16

(f) 256_0.2

40

41

42

43

44

45

46

256 1536 2816 4096 5376 6656 7936 9216

evaluations

fitness

org_ECGA

64X4
32X8
16X16

 7

(g) 384_0.05

40

41

42

43

44

45

46

47

48

49

50

384 2304 4224 6144 8064 9984 11904 13824

evaluations

fitness

org_ECGA
94X4
48X8
24X16

(h) 384_0.1

40

41

42

43

44

45

46

47

48

49

50

384 2304 4224 6144 8064 9984 11904 13824

evaluations

fitness

org_ECGA
94X4
48X8
24X16

(i) 384_0.2

40

41

42

43

44

45

46

47

48

49

50

384 2304 4224 6144 8064 9984 11904 13824

evaluations

fitness

org_ECGA
94x4
48x8
24x16

(j) 576_0.05

40

41

42

43

44

45

46

47

48

49

50

51

52

53

576 3456 6336 9216 12096 14976 17856 20736

evaluations

fitness

org_ECGA

144X4
72X8

32X16

(k) 576_0.1

40

41

42

43

44

45

46

47

48

49

50

576 3456 6336 9216 12096 14976 17856 20736

evaluations

fitness

org_ECGA

144X4

72X8

32X16

(l) 576_0.2

40

41

42

43

44

45

46

47

48

49

50

576 3456 6336 9216 12096 14976 17856 20736

evaluations

fitness

org_ECGA
144X4

72X8
32X16

(m) 960_0.05

40

41

42

43

44

45

46

47

48

49

50

51

960 5760 10560 15360 20160 24960 29760 34560

evaluations

futness

org_ECGA
240X4

120X8

60X16

(n) 960_0.1

40

41

42

43

44

45

46

47

48

49

50

51

960 5760 10560 15360 20160 24960 29760 34560

evaluations

fitness

org_ECGA

240X4
120X8

60X16

 8

(o) 960_0.2

47

48

49

50

51

960 5760 10560 15360 20160 24960 29760 34560

evaluations

fitness

org_ECGA

240X4

120X8

60X16

(p) 1904_0.05

45

46

47

48

49

50

1904 11424 20944 30464 39984 49504 59024 68544

evaluations

fitness

org_ECGA

476X4
238X8

119X16

(q) 1904_0.1

45

46

47

48

49

50

51

1904 11424 20944 30464 39984 49504 59024 68544

evaluations

futness

org_ECGA

476X4

238X8

119X16

(r) 1904_0.2

45

46

47

48

49

50

1904 11424 20944 30464 39984 49504 59024 68544

evaluations

fitness

org_ECGA

476X4

238X8

119X16

(1) mutation rate = 0.05

40

41

42

43

44

45

46

47

48

49

50

51

160 256 384 576 960 1904

population size

fitness

org_ECGA

4 steps

8 steps

16 steps

(2) mutation rate = 0.1

40

41

42

43

44

45

46

47

48

49

50

51

160 256 384 576 960 1904

population size

fitness

org_ECGA

4 steps

8 steps

16 steps

(3) mutation rate = 0.2

40

41

42

43

44

45

46

47

48

49

50

51

160 256 384 576 960 1904

population size

fitness

org_ECGA

4 steps

8 steps

16 steps

VI. CONCLUSIONS

We attempted to design an approach to enhance the efficiency and performance of
the extended compact genetic algorithm by using a prefix local searcher to assist to
generate the initial population and therefore to help the probabilistic model building
process utilized by the extended compact genetic algorithm. However, the experimental

 9

results indicate that the approach in the present study does not help ECGA to provide
superior performance in either convergence speed or the best fitness value. There are
several possibilities for this situation. One may be that the model building process
intrinsically cannot be enhanced by the proposed approach. Another may be that the
chosen local searcher is not compatible with ECGA and hence cannot assist the model
building process. In order to clarify the cause of the failure and to gain further
understanding of the nature of model building, more studies and experiments have to be
done along this line of research.

VII. REFERENCE

Baluja, S., & Davies, S. (1997). Using optimal dependency-trees for combinatorial
optimization: Learning the structure of the search space. Proceedings of the
Fourteenth International Conference on Machine Learning, 30-38.

Bosman, P. A. N., & Thierens, D. (2001). Advancing Continuous IDEAs with Mixture
Distributions and Factorization Selection Metrics. Proceedings of the
Optimization by Building and Using Probabilistic Models OBUPM Workshop at
the Genetic and Evolutionary Computation Conference (GECCO-2001 OBUPM),
208-212.

Chen, Y.-p. (2004). Extending the Scalability of Linkage Learning Genetic Algorithms:
Theory and Practice. Unpublished Doctoral Dissertation. University of Illinois at
Urbana-Champaign, Urbana, IL, USA.

De Bonet, J. S., Isbell, C., & Viola, P. (1996). MIMIC: Finding Optima by Estimating
Probability Densities. Advances in Neural Information Processing Systems, 9,
424-430.

Eiben, A. E., & Smith, J. E. (2003). Introduction to Evolutionary Computing: Springer.
Goldberg, D. E. (1989). Genetic Algorithms in Search, Optimization, and Machine

Learning: Addison-Wesley Publishing Co.
Goldberg, D. E. (2002). The Design of Innovation: Lessons from and for Competent

Genetic Algorithms (Vol. 7): Kluwer Academic Publishers.
Goldberg, D. E., Deb, K., Kargupta, H., & Harik, G. R. (1993). Rapid, accurate

optimization of difficult problems using fast messy genetic algorithms.
Proceedings of the Fifth International Conference on Genetic Algorithms
(ICGA-93), 56-64.

Goldberg, D. E., Deb, K., & Korb, B. (1990). Messy genetic algorithms revisited: Studies
in mixed size and scale. Complex Systems, 4(4), 415-444.

Goldberg, D. E., Korb, B., & Deb, K. (1989). Messy Genetic Algorithms: Motivation,
Analysis, and First Results. Complex Systems, 3(5), 493-530.

Harik, G. R. (1997). Learning gene linkage to efficiently solve problems of bounded
difficulty using genetic algorithms. Unpublished Doctoral Dissertation. University
of Michigan at Ann Arbor, Ann Arbor, MI, USA.

Harik, G. R. (1999). Linkage learning via probabilistic modeling in the ECGA.
University of Illinois at Urbana-Champaign, Illinois Genetic Algorithms
Laboratory.

Holland, J. H. (1973). Genetic algorithms and the optimal allocation of trials. SIAM
Journal on Computing, 2(2).

 10

Kargupta, H. (1995). SEARCH, polynomial complexity, and the fast messy genetic
algorithm. Unpublished Doctoral Dissertation. University of Illinois at
Urbana-Champaign, Urbana, IL, USA.

Kargupta, H. (1996). The gene expression messy genetic algorithm. Proceedings of the
1996 IEEE International Conference on Evolutionary Computation, 814-819.

Kargupta, H., & Bandyopadhyay, S. (2000). A perspective on the foundation and
evolution of the linkage learning genetic algorithms. Computer Methods in
Applied Mechanics and Engineering, 186(2-4), 269-294.

Larranaga, P., & Lozano, J. A. (2001). Estimation of Distribution Algorithms: A New
Tool for Evolutionary Computation (Vol. 2): Kluwer Academic Publishers.

Levenick, J. R. (1995). Metabits: Generic endogenous crossover control. Proceedings of
the Sixth International Conference on Genetic Algorithms (ICGA-95), 88-95.

Muhlenbein, H., & Mahnig, T. (1999). Convergence theory and applications of the
factorized distribution algorithm. Journal of Computing and Information
Technology, 7, 19-32.

Munetomo, M. (2002). Linkage Identification Based on Epistasis Measures to Realize
Efficient Genetic Algorithms. Proceedings of the 2002 Congress on Evolutionary
Computation (CEC2002), 1332-1337.

Munetomo, M., & Goldberg, D. E. (1998). Identifying Linkage by Nonlinearity Check
(No. IlliGAL Tech Report. 98012): University of Illinois at Urbana-Champaign,
Illinois Genetic Algorithms Laboratory.

Munetomo, M., & Goldberg, D. E. (1999). Linkage identification by non-monotonicity
detectio for overlapping functions. Evolutionary Computation, 7(4), 377-398.

Pelikan, M. (2002). Bayesian Optimization Algorithm: From Single Level to Hierarchy.
Unpublished Doctoral Dissertation. University of Illinois at Urbana-Champaign,
Urbana, IL, USA.

Pelikan, M., & Goldberg, D. E. (2002). A survey of optimization by building and using
probabilistic models. Computational Optimization and Applications, 21(1), 5-20.

Pelikan, M., Goldberg, D. E., & Cantu-Paz, E. (2000). Linkage problem, distribution
estimation, and Bayesian networks. Evolutionary Computation, 8(3), 311-341.

Pelikan, M., & Muhlenbein, H. (1999). The bivariate marginal distribution algorithm.
Advances in Soft Computing-Engineering Design and Manufacturing, 521-535.

Rissanen, J. (1978). Modeling by shortest data description. Automatica, 14, 465--471.
Rissanen, J. (1989). Stochastic Complexity in Statistical Inquiry (Vol. 15): World

Scientific Publishing Co.
Schaffer, J. D., & Morishima, A. (1987). An adaptive crossover distribution mechanism

for genetic algorithms. Proceedings of the Second International Conference on
Genetic Algorithms (ICGA-87), 36-40.

Smith, J., & Fogarty, T. C. (1996). Recombination strategy adaptation via evolution of
gene linkage. Proceedings of the 1996 IEEE International Conference on
Evolutionary Computation, 826-831.

Thierens, D. (1995). Analysis and Design of Genetic Algorithms. Unpublished Doctoral
Dissertation. Katholieke Universiteit Leuven.

Thierens, D., & Goldberg, D. E. (1993). Mixing in genetic algorithms. Proceedings of the
Fifth International Conference on Genetic Algorithms (ICGA-93), 38-45.

