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利用前置式區域搜尋技術增強 
機率模型構建式基因演算法之執行效能研究 
Performance Speed-up for Probabilistic Model Building  

Genetic Algorithms by Using Prefix Local Searchers 

 

中文摘要 

機率模型構建式基因演算法 (probabilistic model building genetic algorithms) 為當前

所可使用的最好的基因與演化演算法之中的一種。然而和傳統或是一般的基因演算

法比起來，通常會需要比較大的人口數目 (population size) 方能達到預計的效能。

此外，一般人口初始化的過程使得基因演算法和隨機搜尋演算法 (random search)幾
近相同。本研究採用前置式區域搜尋技術(prefix local search techniques)來初始人

口，用以增進機率模型構建式基因演算法之效能。奠基於機率模型構建過程的特性，

前置式區域搜尋技術應當能夠製造出比完全隨機產生的人口，更適合於進行構建機

率模型的初始人口。在本研究中，我們採用由 Harik 於 1999 年提出的延伸型緊緻

基因演算法 (extended compact genetic algorithm)做為研究的標的，提出之新式人口

初始化方法，除了可以使用於延伸型緊緻基因演算法，亦可以使用於其他的機率模

型構建式基因演算法以獲得效能之增進。 

關鍵字: 機率模型構建式基因演算法, 前置式區域搜尋技術, 效能增強技術 

 

ABSTRACT 

The probabilistic model building genetic algorithms are among the best genetic and 
evolutionary algorithms currently available. However, algorithms belonging to this class 
usually require larger populations compared to the traditional genetic algorithm. 
Otherwise, the common initialization procedure currently employed makes the algorithm 
close to the random search. This research project employs a prefix local searcher for 
initializing the population in order to improve the performance of the probabilistic model 
building genetic algorithms. Based on the properties of the probabilistic model building 
process, the prefix local searcher should be able to provide a population that is more 
appropriate for building probabilistic models. In particular, we use the extended compact 
genetic algorithm, which was proposed by Harik in 1999, as our study subject in this 
project. The developed initialization scheme should not be only applicable to the 
extended compact genetic algorithm but also applicable to other algorithms or techniques 
belonging to the class of probabilistic model building genetic algorithms. 

Keywords: Probabilistic model building genetic algorithms, prefix local search, 
efficiency enhancement techniques 
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I. INTRODUCTION 

The probabilistic model building genetic algorithms are among the best genetic and 
evolutionary algorithms currently available. However, as studies in the literature 
indicated, algorithms belonging to this class usually require larger populations compared 
to the traditional genetic algorithms. Moreover, according to the properties of genetic 
algorithms, in the first few generations, the individuals contained in the population are all 
virtually random. In this case, the algorithm is almost identical to the random search. In 
order to alleviate this situation and therefore to enhance the performance, we would like 
to develop an initialization scheme in this work. 
 In fact, modifying the initialization procedure or seeding the initial population is not 
new at all and has been broadly investigated in the early stage of the development of 
genetic and evolutionary algorithms. As reported by the existing publications, using 
exiting solutions in the initial population can offer the following interesting benefits: (1) 
avoiding “reinventing the wheel” and preventing waste of computational efforts; (2) 
directing the search into certain search space regions of interests; (3) better performance 
by mixing heuristic initialization and evolutionary search (Eiben & Smith, 2003). A 
number of different ways for this purpose have been proposed by researchers in this field, 
include seeding, which uses known good solutions in the initial population, selective 
initialization, which holds N k-way tournaments to form the initial population, 
conducting a local search for each member of the initial population, and using a starting 
individual with mass mutation to fill up the initial population. 

This research project employs a prefix local searcher for initializing the population 
in order to improve the performance of the probabilistic model building genetic 
algorithms. Based on the properties of the probabilistic model building process, the prefix 
local searcher should be able to provide a population that is more appropriate for building 
probabilistic models. With a properly initialized population, the efficiency of the 
probabilistic model building genetic algorithms should be improved not only in the early 
stage but also during the whole evolutionary process. In particular, we use the extended 
compact genetic algorithm(Harik, 1999) as our study subject in this project. The 
developed initialization scheme should not be only applicable to the extended compact 
genetic algorithm but also applicable to other algorithms or techniques belonging to the 
class of probabilistic model building genetic algorithms. 

The major steps to conduct this research project include (1) select the local searcher 
to incorporate, (2) determine the way to conduct local search, (3) study the ratio of the 
starting points and generated points, and (4) understand the effect of the scheme on the 
probabilistic model building process. The scheme proposed and developed in this project 
can be considered as an efficiency enhancement technique, which speeds up the 
underlying genetic and evolutionary algorithm, as well as a tool for us to better 
understand the probabilistic model building process in both theory and practice. 

 

II. BACKGROUND 

Genetic algorithms (GAs) are powerful stochastic, population-based search and 
optimization techniques loosely modeled after the paradigms of evolution (Goldberg, 
1989; Holland, 1973). They guide the search through the solution space by using natural 
selection and genetic operators, such as crossover, mutation, and the like. Genetic 
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algorithms are now widely applied to solve problems in a number of different fields and 
domains (Goldberg, 2002). However, most genetic algorithms employed in practice 
nowadays are simple, traditional genetic algorithms with fixed genetic operators and 
chromosome representations, which implicitly require their users to have the problem 
specific knowledge a priori such that appropriate chromosome representations can be 
designed for the genetic algorithm to work with. Unable to overcome the difficulty 
caused by the chromosome representation or variable arrangement, these common 
genetic algorithms suffer from the linkage problem (Goldberg, Korb, & Deb, 1989; 
Thierens, 1995; Thierens & Goldberg, 1993), which refers to the need of appropriately 
arranging or adaptively ordering the genes on chromosomes or variables in encoding 
strings during the evolutionary optimization process.  

Because it is supposedly hard to guarantee that the user-designed chromosome 
representation provides correctly, tightly linked building blocks when the problem 
domain knowledge is unavailable, a variety of linkage learning techniques have been 
proposed and developed to handle the linkage problem during the run of a genetic 
algorithm (Kargupta & Bandyopadhyay, 2000; Larranaga & Lozano, 2001; Pelikan & 
Goldberg, 2002). Existing linkage learning techniques, according to the way they detect, 
process, and present linkage, can be broadly classified into the following three categories 
(Munetomo & Goldberg, 1999): 

 Perturbation-based methods 
Perturbation-based methods detect the linkage between genes by perturbing the 
individual and observing the fitness difference caused by the perturbation, such 
as the messy genetic algorithm (mGA) (Goldberg, Deb, & Korb, 1990; 
Goldberg et al., 1989), the fast messy genetic algorithm (fmGA) (Goldberg, 
Deb, Kargupta, & Harik, 1993; Kargupta, 1995), the gene expression messy 
genetic algorithm (gemGA) (Kargupta, 1996), the linkage identification by 
nonlinearity check (LINC) (Munetomo & Goldberg, 1998), the linkage 
identification by non-monotonicity detection (LIMD) (Munetomo & Goldberg, 
1999), and the linkage identification based on epistasis measures (LIEM) 
(Munetomo, 2002). 

 Linkage adaptation techniques 
Linkage adaptation techniques employ specifically designed representations, 
operators, and mechanisms for adapting linkage along with the evolutionary 
process. The examples of linkage adaptation techniques include the punctuation 
marks (Schaffer & Morishima, 1987), the metabits (Levenick, 1995) for 
implementing the differential crossover probability, the linkage evolving 
genetic operator (LEGO) (Smith & Fogarty, 1996) for adapting the 
recombination strategy via evolution of linkage, and the linkage learning 
genetic algorithm (LLGA) (Chen, 2004; Harik, 1997) using a special 
representation and an expression mechanism for learning linkage naturally. 

 Probabilistic model builders 
Probabilistic model builders learn linkage via building probabilistic models 
based on the current population and generating new individuals according to 
the obtained probabilistic models. Useful and popular probabilistic model 
building genetic algorithms include the mutual-information-maximizing input 
clustering algorithm (MIMIC) (De Bonet, Isbell, & Viola, 1996), the 
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combining optimizers with mutual information trees method (COMIT) (Baluja 
& Davies, 1997), the bivariate marginal distribution algorithm (BMDA) 
(Pelikan & Muhlenbein, 1999), the IDEA framework (Bosman & Thierens, 
2001), the Bayesian optimization algorithm (BOA) (Pelikan, Goldberg, & 
Cantu-Paz, 2000), the factorized distribution algorithm (FDA) (Muhlenbein & 
Mahnig, 1999), and the extended compact genetic algorithm (Harik, 1999).  

 

III. EXTENDED COMPACT GENETIC ALGORITHM 

The extended compact genetic algorithm partitions the genes or variables into 
linkage groups, which can be considered as building blocks, and tries to find good 
probability distributions with the help of these linkage groups. The judging criterion for 
discriminating superior probability distributions from inferior ones is developed based on 
the principle of the minimum description length (MDL) (Rissanen, 1978, 1989). The 
probabilistic models used in the extended compact genetic algorithm is a class of 
probabilistic models known as marginal product models (MPMs), which are formed as a 
product of marginal distributions on a partition of the genes for variables, i.e., a linkage 
group. For a typical generation, the extended compact genetic algorithm selects the better 
individuals with the specified selection scheme, constructs the marginal product models 
with the individuals of the current population as well as the guidance given by the 
principle of the minimum description length, and then gets samples from the constructed 
probabilistic model as individuals of the population in next generation. 

As pointed out by the studies in the literature, in order to acquire good enough 
probabilistic models for probabilistic model building genetic algorithms, such as the 
extended compact genetic algorithm, the population size grows at least proportionally in 
terms of the problem size (Pelikan, 2002). According to the properties of genetic 
algorithms, the individuals in these large populations in the first few generations are very 
close to totally random ones. As a consequence, in the early stage of the evolutionary 
computational process, the probabilistic model building genetic algorithms are not quite 
different from the random search. In order to avoid waste of time on the random search in 
the early stage and therefore speed up the whole run duration, the initial populations 
which may be more appropriate for building probabilistic models should be utilized in the 
probabilistic model building genetic algorithms, such as the extended compact genetic 
algorithm in this project. 

 

IV. EXPERIMENTS 
i. Prefix Local Search 

Although many different initialization techniques have been introduced to the 
genetic and evolutionary algorithms, the proposed initialization scheme in this study 
is distinguishably different from those previously described in the literature in that a 
local searcher is incorporated in the initialization phase and more importantly, the 
path in the search space walked through by the local searching points are kept to 
help the probabilistic model building process. 

To realize the novel initialization scheme is to select an appropriate local 
search method by which the search points generated along the local search process 
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can actually help the later probabilistic model building process. Candidate local 
search methods for this purpose include the deterministic hill-climbing, the 
stochastic hill-climbing, the steepest gradient descent, and the like. 

We use a prefix local searcher for initializing the population. First, part of 
individuals are randomly generated as seeds and evaluated. Second, the local search 
is conducted on each individual for specified steps to “fill” up the population. We 
use different mutation rates to produce offspring for local search. Compare the 
parent with its offspring, the better is held to next local search. Therefore the 
population size is the number of initial individuals multiplied by the number of local 
search steps. The parameters to initialize populations are presented in Table 1. 

Table 1. The initialization parameters in our experiments. 
Population size Randomly initial individuals Steps for local search 

40 4 
20 8 160 
10 16 
64 4 
32 8 256 
16 16 
96 4 
48 8 384 
24 16 
144 4 
72 8 576 
36 16 
240 4 
120 8 960 
60 16 
476 4 
238 8 1904 
119 16 

Combined with mutation rates: 0.05, 0.1, and 0.2 

ii. Fitness function 

For each individual, it is a binary string which is composed of ten 4-bit 
trap. The objective function h(x) for ith 4-bit trap is described as: 
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V. RESULTS 

For each parameters setting (see Table 1), we performed 50 runs and each run has 
250,000 evaluations. We get best fitness averaging 50 runs and compare with original 
ECGA. Figure (a)-(r) show the result of each generation in the different population size 
with different mutation rate. We can see that sometimes our approach is better than 
original ECGA, but usually isn’t. When population size is large enough, the results 
between our approach and original ECGA are similar. For all results of our approach, the 
result in 4 steps for local search is always better than others. Besides, we get the final 
fitness in Figure (a)-(r) to show the variation of the fitness in different population 
size.(see Figure 1-3) 
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(c) 160_0.2
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(g) 384_0.05

40

41

42

43

44

45

46

47

48

49

50

384 2304 4224 6144 8064 9984 11904 13824

evaluations

fitness

org_ECGA
94X4
48X8
24X16

(h) 384_0.1

40

41

42

43

44

45

46

47

48

49

50

384 2304 4224 6144 8064 9984 11904 13824

evaluations

fitness

org_ECGA
94X4
48X8
24X16

 

(i) 384_0.2
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(m) 960_0.05
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(o) 960_0.2
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(1)  mutation rate = 0.05
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(2)  mutation rate = 0.1
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( 3)  mutation rate = 0.2
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VI. CONCLUSIONS  

We attempted to design an approach to enhance the efficiency and performance of 
the extended compact genetic algorithm by using a prefix local searcher to assist to 
generate the initial population and therefore to help the probabilistic model building 
process utilized by the extended compact genetic algorithm. However, the experimental 



 9

results indicate that the approach in the present study does not help ECGA to provide 
superior performance in either convergence speed or the best fitness value. There are 
several possibilities for this situation. One may be that the model building process 
intrinsically cannot be enhanced by the proposed approach. Another may be that the 
chosen local searcher is not compatible with ECGA and hence cannot assist the model 
building process. In order to clarify the cause of the failure and to gain further 
understanding of the nature of model building, more studies and experiments have to be 
done along this line of research. 
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