FREATHELRE ¢ MP TP E YA

AF o 8051 AJEE 2 AT AR
SR GER)

ELAE I |
H 7 H

K ow

%fb
R

s
(had

DO s A

: NSC 94-2213-E-009-137-

294 #2082 0l p 2 95=&09°% 30p
FCERT R S FERT SIC)

PR LAY 4 TR iR R

R G 4 - EehTm 3 ik s sk 4

DR R AR A

P - v 1y A . ; ,'I.
T > A d-E.é ‘pm—:;_l. “
f ﬁfm@‘:]n ?}iﬁgﬁf -E?’*%E 4 ﬁ Dﬁpﬂ Fﬁ#}f’*

JE{FIJ-H_' 8051 &Lﬁ.ﬂ‘npn [/F)Jfglﬁl;%}):f

PEaEel 0 BuARtE 94-2213-E-009 -137
4 e NSC94—2213—E—009—137—
HFHH94E2082 01 p3 95207 3p

FEAFA IR AE

=4

E - N

FEFEAR CERER S 2B A
SERFLFARET P FERT) HHEFEL OxgEg2

&ﬂ”it%éﬁgﬁpi?% ﬁ AEHIFEZAIRTEL VS
31J§3L%;“rznj,rg'— /F] s BB f
EEZESTEEEE S P T B BEImEE -

HITH i‘a’«’gfg‘ygmw A2

P F A RWIEIL* 05 p

B2 & (%427 low power ~ 2L f # F i asynchronous circuit ~ 8051 #ciy 4] % 8051
mlcrocontroller Balsa # % ~ FPGA)

GRT SRR R AR AR 0 T T AR A S R R d 0 TR
PR A TR T IS TR A - BATEZR A 8051 Mk enfR A

B2 A d 800l A BT ihiR* nfEEEL - o X AR B F T FE A
FEE o

AT ¢ TEKIR Y Balsai® 30— & CSP (Communication Sequential Process)
A AHDERHTRAMKFEFT T I 2T AR H TR Balsa GRS
Xilinx & = B Verilog netlist > AP # ot w2hfe &2) T8 & Xilinx FPGA F e
2@ v CAD1 E R FmB » & -

Recently mobile devices have been popularly used, and low power is becoming an import
subject. With the data-driven feature, the asynchronous circuit is suited to be used for low-power
design. We will propose a new decoder design of the asynchronous 8051 microcontroller because
the 8051 is one of the most popular microcontroller and is often used in applications where low
energy consumption is important.

The circuit is a complied VLSI-program, using Balsa as VL SI-programming language
which is a CSP-based asynchronous hardware description language and synthesis tool. A Verilog
netlist for XST (XILINX Synthesis Tool) is generated by Balsa. We will compare asynchronous
8051 and synchronous 8051 in XILINX FPGA and then use Cadence tools and Synopsys tools to
synthesis the layout of the circuit.

FLRE

Research in asynchronous circuit design can be traced back to the mid 1950s, however,
because of testability and easy to design issues, synchronous design becomes the major
technology of digital circuit design. However, in the late 1990s projects in academia and industry
demonstrated that it is possible to design asynchronous circuits which exhibit significant benefits
in nontrivial rea-life examples, and therefore commercialization of the technology began to take
place.

We hope to design a new decoder with low power and high performance features, and thus
the asynchronous design technology is the one we chose for this purpose.

The architecture of the pipelined asynchronous 8051

The architecture of asynchronous pipelined 8051 is show in figure 1

There are five stages of our pipeline, and an interface between the processor core and the
RAM. The IF (instruction fetch) stage fetches instructions from ROM. The ID (instruction decode)
stage decodes the instruction and handles the branch instruction. The OF (operand fetch) stage
fetches operands from RAM. The EXE (execute) stage execute instructions according to opcodes
of instructions. The WB (write back) stage write back the result into RAM.

There are three basic componentsin the IF stage- mem interface, buffer, and fetcher ctrl.
Mem interface is a arbitrator to arbitrate requests from one of the buffers. Buffers are controlled
by fetcher ctrl. According to the control signal, buffers prefetch instructions from the externa
ROM or provide the target byte which fetcher ctrl needs. Fetcher ctrl receives the value of the
program counter, and check if it ishit in one of the buffers or miss. If it is hit, fetcher ctrl sendsa
request of read to the hit buffer, and if it is miss, fetcher ctrl sends arequest of prefetch to all
buffers. In addition, if the buffer is read the last byte, fetcher ctrl would send a request of
prefetch.

=)

NN\

—
-

LIy

E——
T

V

Figure 1 Thearchitecture of asynchronous pipelined 8051

In asynchronous systems, there exists a problem that the inputs of a merge circuit may come
simultaneously. In Balsa, we can use an arbitrator component to solve this problem. The mem
interface may receive a address for one of the buffers and access the ROM according to this
address. However, it would happen that both buffers send addresses to the mem interface and the
circuit might be error. Thus, we use the “arbitrate description” to resolve this problem.

For each buffer, it receives the target address and the action signal from fetcher ctrl. If the

action signal isread, it returns the target byte according to the address. If the action signal iswrite,
it fetches 32 byte data which start from the address.

Fetcher ctrl controls al the buffers. It fetches the value of the program counter first. Then it
checks if the target byte exists in one of the buffers. If there is a buffer which has the byte,
Fetcher ctrl sends a read request and the address to the buffer and then passes the target byte to
the ID stage. If the target byte is the last byte of the buffer, fetcher ctrl will send awrite request to
the buffer. However, if no buffer has the target byte, fetcher ctrl will flush all the buffers.

The ID stageisdivided into ID1 and ID2 two stages. In the ID1, it fetches the first byte of
an instruction, decodes this instruction, determine the remained bytes, abstract the opcode, and
generate the control signal of this instruction. In the 1D2, it would fetch remained bytes and
provide completed control signals for the OF stage. If the current instruction is a branch
instruction, the ID2 stage would calculate the target address and handle the branch action.

When ID1 receives the instruction byte, it would determine that this instruction is regular or
non-regular. This could decrease the size of the multiplexer. Then, according to the instruction,
ID1 generates the signals needed by the following stages such as the remained bytes, the opcode,
the read signal, and the write signal. In order to decrease the area cost, we use the shared
procedure in Balsa, which would construct only one component whatever times this procedure is
caled.

In the ID2 stage, it will fetch the remained bytes first. To avoid the race condition between
the ID1 stage and ID2 stage, we use the “handshake enclosure” description in Balsa to promise
that ID2 fetches the remained bytes before ID1 fetches a new instruction.

After fetches al remained bytes, ID2 would transform these bytes into suitable operands and
pass all signals to the OF stage. If the instruction is a branch instruction, 1D2 would calcul ate the
target address and change the PC value if the branch is taken.

We had aready implemented an asynchronous pipelined 8051 with Balsa. The Basa
program was compiled into a handshake component netlist, and finally this netlist was converted
to a verilog gate-level netlist for Xilinx FPGA. With the gate-level netlist, we used other CAD
tool to implement this circuit and do some simulation.

Because we wanted to implement the circuit in Xilinx FPGA, first we got the gate-level
netlist by Balsa. Second, we imported this netlist into Xilinx ISE, a CAD tool for Xilinx FPGA.
Then we added "keep hierarchy” description for each handshake component to avoid the
optimization of CAD tool because the optimization will break the timing constraint. Finally we
followed the standard design flow of the Xilinx FPGA, and burned the design into FPGA. All the
flow is shown in Figure 2.

< Balsa description >e —————————————————————— -

Balsa-c

< Breeze description) Behaviour Smulation

Balsa-netlist

Verilog netlist for >
Xilinx

Synthesis

|
I
I
I
I
|
|
|
|
|
|
|
|
|
|
|
|
Function Simulation

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
:
Placement & Routing :
}

Timing Smulation

<FPGA Programming
file

Figure 2. The FPGA design flow
232 ;}gJe :

[1] A.Barddey, D. A. Edwards, “The Balsa Asynchronous Circuit Synthesis System”

[2] Yuan-Teng Chang, “SA8051: An Asynchronous Soft-core Processor for L ow-Power
System-on-Chip Applications”, 2005.

[3] Cota, E.F.; Krug, M.R.; Lubaszewski, M.; Carro, L.; Susin, A.A, “Implementing a
self-testing 8051 microprocessor”, Integrated Circuits and Systems Design, 1999.
Proceedings. XII Symposium on 29 Sept.-2 Oct. 1999 Page(s): 202 - 205

[4] van Gageldonk, H.; van Berkel, K.; Peeters, A.; Baumann, D.; Gloor, D.; Stegmann, G.;”
An asynchronous low-power 80C51 microcontroller”, Advanced Researchin
Asynchronous Circuits and Systems, 1998. Proceedings. 1998 Fourth International
Symposium on , 30 March-2 April 1998 Pages. 96 — 107

[5] Intel, “MCS51 Microprocessor Family User’s Manual: Intel”, 1994

[6] Martin, A.J.; Nystrom, M.; Papadantonakis, K.; Penzes, Pl.; Prakash, P; Wong, C.G;
Chang, J,; Ko, K.S,; Lee, B.; Ou, E.; Pugh, J,; Talvaa, E.-V.; Tong, J.T.; Tura, A, “The
L utonium: a sub-nanojoule asynchronous 8051 microcontroller”, Asynchronous
Circuits and Systems, 2003. Proceedings. Ninth International Symposium on 12-15 May
2003 Page(s):14 — 23

[7] Je-Hoon Lee; Won-Chul Lee; Kyoung-Rok Cho, “A novel asynchronous pipeline
architecture for CISC type embedded controller, A8051”, Circuits and Systems, 2002.
MWSCAS-2002. The 2002 45th Midwest Symposium on Volume 2, 4-7 Aug. 2002
Page(s):11-675 - 11-678 vol.2

[8] Chelcea, T.; Nowick, S.M.; “Resynthesis and peepholetransformationsfor the
optimization of large-scale asynchronous systems”, Design Automation Conference,
2002. Proceedings. 39th , 10-14 June 2002 Pages: 405 — 410

THEAE
P
We have successfully compl eted the behavior simulation in Balsawith small benchmarks
such as GCD and Fibnacci Code. The simulation results are shown in the following.

1. The performance of the decoder

Because we integrate a cache-like buffer with our decoder, we need to know the effects
with different kinds of buffers. We first measured the issue rate with different numbers of
buffers. The buffer size is 32 bytes, and because the programs of GCD or Fibnacci Code are
small, the benchmark is 256 instruction of the additions. The result is shown in Table 1.

The numbers of buffers Thg consumeq time The normalized result
(in Balsa units)
0 155,062,000 20.55
1 11,896,100 1.58
2 7,544,200 1
3 10,012,600 1.33

Table 1. The comparison of different numbers of buffers

Second, we measured the issue rate in different sizes of buffers. The buffer size are 8

bytes, 16 bytes, 32 bytes and 64 bytes. The result is shown in Table 2.

The size of buffer The consumed time The normalized result
(byte) (in Balsa units)
8 7,801,000 1.03
16 7,629,800 1.01
32 7,544,200 1
64 7,501,400 0.99

Table 2. The comparison of different sizes of buffers

Finally, we measured the performance of the whole pipelined asynchronous 8051 with

different sizes of the buffer. The result is shown in Table 3.

The size of buffer

(byte)

The consumed time
(in Balsa units)

The normalized result

8 13,681,400 1
16 13,681,400 1
32 13,681,400 1
64 13,681,400 1
Table 3. The performance of the whole pipelined asynchronous 8051 with different sizes of
buffers

2. The performance of the pipelined asynchronous 8051

The comparison of performance and cost of single-cycle asynchronous 8051 and
pipelined 8051 is shown in Table 4. We use the pipelined asynchronous 8051 with two
32-byte buffers to compare with the single-cycle 8051, SA8051[2], which was designed by
our laboratory last year.

The consumed
Hme The The cost The
normalized (inBasa | normalized

(in Balsa unit) time unit) cost
SA8051 24,891,300 3.30 210,513.5 0.43
PA8051 7,544,200 1 494,752.25 1

Table 4. The comparison between the 1-cycle asynchronous 8051 and the pipelined
asynchronous 8051

3. Area cost

We use the Xilinx ISE 6.3i to synthesize our PA8051 processor, and the target

FPGA chipis Xilinx FPGA Spartan-I1E 300 ft256.
The gate and path delays of every part of PA8051 are shown in Table 5. The ID stageis

the most dominant stage of the whole design, taking half of the total cost of PA8051.

The biggest part is the ID stage. That is because that there are 256 cases of
instructions. Even though we divided the instructions into regular and non-regular
instructions, they still need to be multiplexed and that causes the cost so big.

Slice gate minimum path delay(ns)

IF 1007 13987 |157

ID 5353 61973 |721

OF 564 7086 34

EXE 1284 16938 (174
MEM_INTERFACE 1098 13217 125
RAM_READ_ARBITOR 57 1051 28

WB 232 2977 40

TOTAL 9595 117229

Table5. The Cost of Every Part of 8051

1A RRE G o WL

+a%5% INSCI94—2213—E—009—137—

Phoeg |PHFl 8051 AR Ve R

MR R My A

PRI B 2 BAE |~ B AT AR R

¢ R PFF & 2 |September 3-6, 2006, Wuhan and Three Gorges, China

v b oge The 3rd International Conference on Ubiquitous Intelligence and Computing
R EH uicos)

wE#m~ 4P |None

- R
9 EJ 2 F! K HfF[% Z(L > 5% reception °
9 F] 3 F! opening ceremony . i% £ = i keynote speeches ~ f[I-T %EI?UE{" ¥ EFU‘J%E .
O E] 4 F1 RIS j\jﬁﬁrgﬁ_&é@?ﬁ .
9FISE =2~ ﬁm@gﬁi o
9 K16 F flFghrd i T S5 e > P W T

TR [M2 R/ ¢ 1. Ubiquitous Intelligent/Smart Objects ~ 2. Ubiquitous Intelligent/Smart
Env1ronments 3. Ubiquitous Intelligent/Smart Systems ~ 4. Personal/Social/Physical Aspects » ¥2 |
?‘,’? | * * Electronic Label, Card, E-Tag and RFID * Embedded Chips, Sensor & Actuator * MEMS,
NEMS, Mote & Biometric Device * Everyday Good, Artifact, Robot, etc. * Smart Appliance and
Wearable Device * Material, Textile, Cloth, Furniture, etc. * Emerging Intelligent/Smart Objects *

\J‘L
%
@

{

Embedded Software and Agents * Room, Home, Office, Laboratory, etc. * Building, Library, School,
Campus, etc. * Shop, Clinic, Hospital and Health Care * Street, Yard, Park, Ground, City, etc. * Vehicle,
Road, Traffic & Transportation * Land, Pool, Space and Hyperspace * Learning, Sport, Entertainment,
etc. * Novel Intelligent/Smart Applications * Sensor, Ad Hoc & Intelligent Network * Knowledge
Representation and Ontology * Wearable, Personal and Body Area Systems * OS, Middleware and
Intelligent Association * Intelligent Service Architecture, Grid & Mesh * Massive Agents,
Swarm/Amorphous Systems * Proactive, Autonomic and Organic Systems * Novel Intelligent/Smart
Systems * Real/Cyber World Modeling and Semantics * End-User Interface, Control & Programming

* Social/Natural/Physical Model of UI & SW * User/Object Identity and Activity Recognition * Security,
Privacy, Trust and Legal/Policy Issues * Emotional, Ethical and Psychological Factors * Implication and
Impact of UI and SW * Relations between Real and Cyber Worlds © [‘J?}’ﬁ‘?ﬁ‘% IPETH PRI

