
行政院國家科學委員會專題研究計畫 成果報告

非同步 8051 處理器之研究與設計

研究成果報告(精簡版)

計 畫 類 別 ：個別型

計 畫 編 號 ： NSC 94-2213-E-009-137-

執 行 期 間 ： 94年 08 月 01 日至 95年 09 月 30 日

執 行 單 位 ：國立交通大學資訊工程學系(所)

計 畫主持人：陳昌居

計畫參與人員：博士班研究生-兼任助理：鄭緯民

碩士班研究生-兼任助理：王端傑、蔡瑞夫

報 告 附 件 ：出席國際會議研究心得報告及發表論文

處 理 方 式 ：本計畫可公開查詢

中 華 民 國 96年 11 月 05 日

行政院國家科學委員會補助專題研究計畫
■ 成 果 報 告
□期中進度報告

非同步 8051 處器器之研究與設計

計畫類別： 個別型計畫 94-2213-E-009 -137
計畫編號：NSC 94－2213－E－009－137－
執行期間：94 年 08 月 01 日至 95 年 07 月 31 日

計畫主持人：陳昌居
共同主持人：
計畫參與人員：鄭緯民、王端傑、蔡瑞夫

成果報告類型(依經費核定清單規定繳交)：■精簡報告 □完整報告

處理方式：除產學合作研究計畫、提升產業技術及人才培育研究計畫、
列管計畫及下列情形者外，得立即公開查詢
□涉及專利或其他智慧財產權，■一年□二年後可公開查詢

執行單位：交通大學資訊工程系

中 華 民 國 96 年 11 月 05 日

中英文摘要：（低耗電 low power、非同步電路 asynchronous circuit、8051 微控制器 8051
microcontroller、Balsa 語言、FPGA）

近來可攜式裝置的使用越來越普遍，因此低耗電的設計成為重要的目標，由於資料驅動的

特性使得非同步電路適用於低耗電設計，我們會提出一個新的非同步 8051 微控制器的解碼

器設計，這是由於 8051 是最普遍使用的解碼器之一，而且往往在其應用上低耗電特性是相

當重要的。

在本論文中電路設計使用Balsa語言，一種以CSP (Communication Sequential Process)

為基礎的非同步電路硬體描述語言並且可以合成非同步電路，由 Balsa 可以合成適用於

Xilinx 合成器的 Verilog netlist，我們可以比較非同步與同步電路在 Xilinx FPGA 上的

表現或使用其它 CAD 工具來實現晶片設計。

Recently mobile devices have been popularly used, and low power is becoming an import
subject. With the data-driven feature, the asynchronous circuit is suited to be used for low-power
design. We will propose a new decoder design of the asynchronous 8051 microcontroller because
the 8051 is one of the most popular microcontroller and is often used in applications where low
energy consumption is important.

The circuit is a complied VLSI-program, using Balsa as VLSI-programming language
which is a CSP-based asynchronous hardware description language and synthesis tool. A Verilog
netlist for XST (XILINX Synthesis Tool) is generated by Balsa. We will compare asynchronous
8051 and synchronous 8051 in XILINX FPGA and then use Cadence tools and Synopsys tools to
synthesis the layout of the circuit.

報告內容：

Research in asynchronous circuit design can be traced back to the mid 1950s, however,
because of testability and easy to design issues, synchronous design becomes the major
technology of digital circuit design. However, in the late 1990s projects in academia and industry
demonstrated that it is possible to design asynchronous circuits which exhibit significant benefits
in nontrivial real-life examples, and therefore commercialization of the technology began to take
place.

We hope to design a new decoder with low power and high performance features, and thus
the asynchronous design technology is the one we chose for this purpose.

The architecture of the pipelined asynchronous 8051

The architecture of asynchronous pipelined 8051 is show in figure 1

There are five stages of our pipeline, and an interface between the processor core and the
RAM. The IF (instruction fetch) stage fetches instructions from ROM. The ID (instruction decode)
stage decodes the instruction and handles the branch instruction. The OF (operand fetch) stage
fetches operands from RAM. The EXE (execute) stage execute instructions according to opcodes
of instructions. The WB (write back) stage write back the result into RAM.

There are three basic components in the IF stage- mem interface, buffer, and fetcher ctrl.
Mem interface is a arbitrator to arbitrate requests from one of the buffers. Buffers are controlled
by fetcher ctrl. According to the control signal, buffers prefetch instructions from the external
ROM or provide the target byte which fetcher ctrl needs. Fetcher ctrl receives the value of the
program counter, and check if it is hit in one of the buffers or miss. If it is hit, fetcher ctrl sends a
request of read to the hit buffer, and if it is miss, fetcher ctrl sends a request of prefetch to all
buffers. In addition, if the buffer is read the last byte, fetcher ctrl would send a request of
prefetch.

Figure 1 The architecture of asynchronous pipelined 8051

In asynchronous systems, there exists a problem that the inputs of a merge circuit may come
simultaneously. In Balsa, we can use an arbitrator component to solve this problem. The mem
interface may receive a address for one of the buffers and access the ROM according to this
address. However, it would happen that both buffers send addresses to the mem interface and the
circuit might be error. Thus, we use the“arbitrate description”to resolve this problem.

For each buffer, it receives the target address and the action signal from fetcher ctrl. If the

IF ID OF EXE WB

RAM INTERFACE

CORE

forward forward

operaction

ROM

RAM

action signal is read, it returns the target byte according to the address. If the action signal is write,
it fetches 32 byte data which start from the address.

Fetcher ctrl controls all the buffers. It fetches the value of the program counter first. Then it
checks if the target byte exists in one of the buffers. If there is a buffer which has the byte,
Fetcher ctrl sends a read request and the address to the buffer and then passes the target byte to
the ID stage. If the target byte is the last byte of the buffer, fetcher ctrl will send a write request to
the buffer. However, if no buffer has the target byte, fetcher ctrl will flush all the buffers.

The ID stage is divided into ID1 and ID2 two stages. In the ID1, it fetches the first byte of
an instruction, decodes this instruction, determine the remained bytes, abstract the opcode, and
generate the control signal of this instruction. In the ID2, it would fetch remained bytes and
provide completed control signals for the OF stage. If the current instruction is a branch
instruction, the ID2 stage would calculate the target address and handle the branch action.

When ID1 receives the instruction byte, it would determine that this instruction is regular or
non-regular. This could decrease the size of the multiplexer. Then, according to the instruction,
ID1 generates the signals needed by the following stages such as the remained bytes, the opcode,
the read signal, and the write signal. In order to decrease the area cost, we use the shared
procedure in Balsa, which would construct only one component whatever times this procedure is
called.

In the ID2 stage, it will fetch the remained bytes first. To avoid the race condition between
the ID1 stage and ID2 stage, we use the “handshake enclosure”description in Balsa to promise
that ID2 fetches the remained bytes before ID1 fetches a new instruction.

After fetches all remained bytes, ID2 would transform these bytes into suitable operands and
pass all signals to the OF stage. If the instruction is a branch instruction, ID2 would calculate the
target address and change the PC value if the branch is taken.

We had already implemented an asynchronous pipelined 8051 with Balsa. The Balsa
program was compiled into a handshake component netlist, and finally this netlist was converted
to a verilog gate-level netlist for Xilinx FPGA. With the gate-level netlist, we used other CAD
tool to implement this circuit and do some simulation.

Because we wanted to implement the circuit in Xilinx FPGA, first we got the gate-level
netlist by Balsa. Second, we imported this netlist into Xilinx ISE, a CAD tool for Xilinx FPGA.
Then we added "keep hierarchy" description for each handshake component to avoid the
optimization of CAD tool because the optimization will break the timing constraint. Finally we
followed the standard design flow of the Xilinx FPGA, and burned the design into FPGA. All the
flow is shown in Figure 2.

Balsa description

FPGA Programming
file

Timing Simulation

Balsa-c

Breeze description

Balsa-netlist

Verilog netlist for
Xilinx

Synthesis

MAP

Placement & Routing

Behaviour Simulation

Function Simulation

Figure 2. The FPGA design flow

參考文獻：

[1] A. Bardsley, D. A. Edwards,“The Balsa Asynchronous Circuit Synthesis System”
[2] Yuan-Teng Chang,“SA8051:An Asynchronous Soft-core Processor for Low-Power

System-on-Chip Applications”, 2005.
[3] Cota, E.F.; Krug, M.R.; Lubaszewski, M.; Carro, L.; Susin, A.A, “Implementing a

self-testing 8051 microprocessor”, Integrated Circuits and Systems Design, 1999.
Proceedings. XII Symposium on 29 Sept.-2 Oct. 1999 Page(s):202 - 205

[4] van Gageldonk, H.; van Berkel, K.; Peeters, A.; Baumann, D.; Gloor, D.; Stegmann, G.;”
An asynchronous low-power 80C51 microcontroller”,Advanced Research in
Asynchronous Circuits and Systems, 1998. Proceedings. 1998 Fourth International
Symposium on , 30 March-2 April 1998 Pages:96 –107

[5] Intel,“MCS51 Microprocessor Family User’s Manual: Intel”, 1994

[6] Martin, A.J.; Nystrom, M.; Papadantonakis, K.; Penzes, P.I.; Prakash, P.; Wong, C.G.;
Chang, J.; Ko, K.S.; Lee, B.; Ou, E.; Pugh, J.; Talvala, E.-V.; Tong, J.T.; Tura, A, “The
Lutonium: a sub-nanojoule asynchronous 8051 microcontroller”, Asynchronous
Circuits and Systems, 2003. Proceedings. Ninth International Symposium on 12-15 May
2003 Page(s):14 –23

[7] Je-Hoon Lee; Won-Chul Lee; Kyoung-Rok Cho, “A novel asynchronous pipeline
architecture for CISC type embedded controller, A8051”, Circuits and Systems, 2002.
MWSCAS-2002. The 2002 45th Midwest Symposium on Volume 2, 4-7 Aug. 2002
Page(s):II-675 - II-678 vol.2

[8] Chelcea, T.; Nowick, S.M.; “Resynthesis and peephole transformations for the
optimization of large-scale asynchronous systems”,Design Automation Conference,
2002. Proceedings. 39th , 10-14 June 2002 Pages:405 –410

計畫成果：
We have successfully completed the behavior simulation in Balsa with small benchmarks

such as GCD and Fibnacci Code. The simulation results are shown in the following.

1. The performance of the decoder

Because we integrate a cache-like buffer with our decoder, we need to know the effects
with different kinds of buffers. We first measured the issue rate with different numbers of
buffers. The buffer size is 32 bytes, and because the programs of GCD or Fibnacci Code are
small, the benchmark is 256 instruction of the additions. The result is shown in Table 1.

The numbers of buffers The consumed time
(in Balsa units) The normalized result

0 155,062,000 20.55
1 11,896,100 1.58
2 7,544,200 1
3 10,012,600 1.33

Table 1. The comparison of different numbers of buffers

Second, we measured the issue rate in different sizes of buffers. The buffer size are 8
bytes, 16 bytes, 32 bytes and 64 bytes. The result is shown in Table 2.

The size of buffer
(byte)

The consumed time
(in Balsa units) The normalized result

8 7,801,000 1.03
16 7,629,800 1.01
32 7,544,200 1
64 7,501,400 0.99

Table 2. The comparison of different sizes of buffers

Finally, we measured the performance of the whole pipelined asynchronous 8051 with
different sizes of the buffer. The result is shown in Table 3.

The size of buffer
(byte)

The consumed time
(in Balsa units) The normalized result

8 13,681,400 1
16 13,681,400 1
32 13,681,400 1
64 13,681,400 1

Table 3. The performance of the whole pipelined asynchronous 8051 with different sizes of
buffers

2. The performance of the pipelined asynchronous 8051

The comparison of performance and cost of single-cycle asynchronous 8051 and
pipelined 8051 is shown in Table 4. We use the pipelined asynchronous 8051 with two
32-byte buffers to compare with the single-cycle 8051, SA8051[2], which was designed by
our laboratory last year.

The consumed
time

(in Balsa unit)

The
normalized

time

The cost
(in Balsa
unit)

The
normalized

cost

SA8051 24,891,300 3.30 210,513.5 0.43
PA8051 7,544,200 1 494,752.25 1

Table 4. The comparison between the 1-cycle asynchronous 8051 and the pipelined
asynchronous 8051

3. Area cost
We use the Xilinx ISE 6.3i to synthesize our PA8051 processor, and the target

FPGA chip is Xilinx FPGA Spartan-IIE 300 ft256.
The gate and path delays of every part of PA8051 are shown in Table 5. The ID stage is

the most dominant stage of the whole design, taking half of the total cost of PA8051.
The biggest part is the ID stage. That is because that there are 256 cases of

instructions. Even though we divided the instructions into regular and non-regular
instructions, they still need to be multiplexed and that causes the cost so big.

Slice gate minimum path delay(ns)
IF 1007 13987 757
ID 5353 61973 721
OF 564 7086 34
EXE 1284 16938 174
MEM_INTERFACE 1098 13217 125
RAM_READ_ARBITOR 57 1051 28
WB 232 2977 40
TOTAL 9595 117229

Table 5. The Cost of Every Part of 8051

出席國際學術會議心得報告

計畫編號 NSC 94－2213－E－009－137－

計畫名稱 非同步 8051 處器器之研究與設計
出國人員姓名

服務機關及職稱

陳昌居

交通大學資訊資訊工程系副教授

會議時間地點 September 3-6, 2006, Wuhan and Three Gorges, China

會議名稱 The 3rd International Conference on Ubiquitous Intelligence and Computing
(UIC-06)

發表論文題目 None

一、參加會議經過

9月 2 日 早上經香港到武漢，晚上參加 reception 。

9 月 3 日 opening ceremony 之後有三個 keynote speeches、中午搭車到宜昌，晚上搭江輪。

9月 4 日 早上觀光、下午時間論文發表。

9月 5 日 全天論文發表。

9月 6 日 早上論文發表，中午抵達重慶，晚間搭機經香港回台灣

二、與會心得

該會議有四大主題：1. Ubiquitous Intelligent/Smart Objects、2. Ubiquitous Intelligent/Smart

Environments、3. Ubiquitous Intelligent/Smart Systems、4. Personal/Social/Physical Aspects，涵蓋內

容有：* Electronic Label, Card, E-Tag and RFID * Embedded Chips, Sensor & Actuator * MEMS,

NEMS, Mote & Biometric Device * Everyday Good, Artifact, Robot, etc. * Smart Appliance and

Wearable Device * Material, Textile, Cloth, Furniture, etc. * Emerging Intelligent/Smart Objects *

Embedded Software and Agents * Room, Home, Office, Laboratory, etc. * Building, Library, School,

Campus, etc. * Shop, Clinic, Hospital and Health Care * Street, Yard, Park, Ground, City, etc. * Vehicle,

Road, Traffic & Transportation * Land, Pool, Space and Hyperspace * Learning, Sport, Entertainment,

etc. * Novel Intelligent/Smart Applications * Sensor, Ad Hoc & Intelligent Network * Knowledge

Representation and Ontology * Wearable, Personal and Body Area Systems * OS, Middleware and

Intelligent Association * Intelligent Service Architecture, Grid & Mesh * Massive Agents,

Swarm/Amorphous Systems * Proactive, Autonomic and Organic Systems * Novel Intelligent/Smart

Systems * Real/Cyber World Modeling and Semantics * End-User Interface, Control & Programming

* Social/Natural/Physical Model of UI & SW * User/Object Identity and Activity Recognition * Security,

Privacy, Trust and Legal/Policy Issues * Emotional, Ethical and Psychological Factors * Implication and

Impact of UI and SW * Relations between Real and Cyber Worlds。內容相當廣泛豐富，不虛此行。

