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Abstract

The low power dissipation and high performance achievement are the most
crucial challenges in designing system-on-chip (SOC), especially for an embedded
system. Since all of these embedded systems are battery-operated, reducing the SOC
power dissipation to extend the battery life therefore is important. On the other hand,
achieving high performance is another critical issue in designing SoC. Because most
power is consumed by embedded processor in most SOC systems, we propose several
methods to reduce power consumption and increase execution performance for the
embedded processor in this report.

In first year, we present an algorithm, which comprises advantages of register
relabeling and instruction encoding, to reduce power consumption of instruction bus.
The simulation results showed that our algorithm can reduce over 50% and 19 % of
bit transitions than register relabeling and instruction encoding, respectively.

In second year, we propose 2 schemes, are ARM9 low power mechanism and

low power instruction cache (I-Cache) respectively, to reduce power consumption in
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the embedded processor. Most operation units, such as ALU, multiplier and Shifter,
would not be used at same time according to application profiles from ARM9. Such
phenomenon provides a feasible way to reduce processor power dissipation. In this
report, we propose a method to turn on/off unused parts of operation units to reduce
processor power dissipation. Our simulation shows that our proposed method reduces
30~60% and 99% switching power in ALU/shifter and multiplier respectively. In our
observation, only one cache line is accessed in the I-Cache at any cycle. Other unused
cache line can hence be turned to low power mode to reduce I-Cache’s static power
dissipation. But the cache accessing time would increase, if the processor accesses a
cache line in low power mode. Thanks to branch target buffer (BTB), the processor
easily predicts the next one and two instruction address and turns these cache lines
corresponding to this instruction addresses to active mode in advance. By the same
way, the processor predicts whether a cache line will be used in the future. If no, this
cache line would be turned to the low power mode. Our simulation shows that our
proposed method reduces 80% static power in I-Cache.

Instruction set extension (ISE) is an effective way to meet the growing efficiency
demands for both circuit and speed in many applications. In third year, we propose an
ISE generation algorithm to improve the execution performance of embedded
processor. Because most applications frequently execute the several instruction
patterns, grouping these instruction patterns into new instructions, i.e. instructions in
ISE, is an effective way to enhance the performance. For simplicity, instruction(s) in
ISE is called ISE(s) hereinafter. ISEs are realized by application specific functional
units (ASFU) within the execution stage of the pipeline.

ISE generation flow usually consists of ISE exploration and ISE selection phases.
In ISE exploration, in order to achieve the highest speed-up ratio, most works deploy
the fastest implementation option for each operation in application specific functional
unit (ASFU) which executes instruction in ISEs. Nevertheless, the fastest
implementation option may be not the best choice. Two considerations are important
in selecting an implementation option for each operation in ASFU: (1) the execution
time of an ASFU should meet pipestage timing constraint, i.e. fit to an integral
number of original pipeline cycles; and (2) under (1), the ASFU should use the least
silicon area. To conform to these considerations, we propose an ISE exploration
algorithm which not only explores ISE candidates but also their implementation
options to minimize the execution time meanwhile use less silicon area. Results with
MiBench indicate that the approach achieves up to 35.28%, 15.92% and 22.41%
(max., min. and avg.) of further reduction in extra silicon area usage and only has
maximally 1.06% performance loss compared with the approach without the

consideration of pipestage timing constraint for ASFU. Furthermore, simulation
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results also show that our approach is very close to optimal one, but takes much less
computing time.

Keyword: SoC, low power memory, embedded processor, register relabeling,
instruction encoding and instruction set extension
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A new algorithm for instruction set extension (ISE) exploration with considering
pipestage timing constraint is proposed in this paper. In order to achieve the highest
speed-up ratio, most works deploy the fastest hardware implementation option to
execute instruction(s) in ISE. For simplicity, instruction(s) in ISE is called ISE(s).
Nevertheless, the fastest hardware implementation option may not be the best choice.
Two considerations are important in selecting a hardware implementation option for
each operation within ISE: (1) the execution time of an ISE should meet pipestage
timing constraint, i.e. fit to an integral number of original pipeline cycles; and (2)
under (1), the ISE should use the least silicon area. To conform to these considerations,
the proposed ISE exploration algorithm explores not only ISE candidates but also
their hardware implementation option. Compared to previous work, the proposed
algorithm minimizes the silicon area cost and further reduces the execution time.
Results with MiBench indicate that under same number of ISE, our approach achieves
69.43%, 1.26% and 33.8% (max., min. and avg.) of further reduction in silicon area
and also has maximally 1.6% performance improvement compared with the previous
work. Furthermore, simulation results also show that our approach is very close to

optimal one in small cases, but takes much less computing time.



1. {4

Instruction set extension (ISE) is an effective means of meeting the growing
efficiency demands for both circuit and speed in many applications. Currently, the
growing number of commercial products is marked, such as Tensilica Xtensa [1],
ARC ARCtangent [2], MIPS CorExtend [3] and Nios II [4]. Because most
applications frequently execute the several instruction patterns, grouping these
instruction patterns into new instructions, i.e. instructions in ISE, is an effective way
to enhance the performance. For simplicity, instruction(s) in ISE is called ISE(s)
hereinafter. ISEs are realized by application specific functional units (ASFU) within
the execution stage of the pipeline. Notably, since this work adopts a load-store
architecture, the ASFU cannot access data directly from main memory.

The ISE design flow, as illustrated in Figure 1, comprises application profiling,
basic block (BB) selection and ISE generation which consists of ISE exploration as
well as selection phases. After profiling, basic blocks are selected as the input of ISE
exploration based on their execution time. ISE exploration explores legal instruction
patterns as ISE candidates, which have to conform to predefined physical constraints,
including ISA format, pipestage timing and instruction/operation types. In other
words, ISE exploration determines which operation in basic block should be
implemented in hardware (i.e. ASFU) or in software (i.e. executed in CPU core). In
addition to exploring ISE candidate(s), the proposed algorithm also explores the
hardware implementation options of all operations in ISE candidates. After generating
ISE candidates, ISE selection chooses as many ISEs as possible among ISE
candidates under predefined physical constraints, which are silicon area and ISA
format. In this paper, we only focus on ISE exploration; therefore, the algorithms of
ISE selection would not be addressed. Interesting readers could refer ISE selection to
[9, 15 and 16] for details.



Application(s)

Profiling

BBs ISE . Physical

BB Selection . .
Exploration constraints

ISE candidates

ISE Selection

i

ISE(s)

Figure 1: ISE design flow
Several important physical constraints, e.g., pipestage timing, instruction set
architecture (ISA) format, register file, convex and silicon area, should be considered
during exploring ISE candidates. These physical constraints are described as follows:

Pipestage Timing

The pipestage timing constraint refers to a situation in which the execution time
of ASFU should fit in the original pipestage, i.e. the execution time of ASFU should
be an integral number of original pipeline cycles. Many operations in ASFU often
have multiple hardware implementation options owing to different area and speed
requirements. In ISE exploration, to achieve the highest speed-up ratio, most works
[XXXX] usually deploy the fastest hardware implementation option for each
operation in ASFU. Nevertheless, the fastest hardware implementation option may not
be the best choice unless it can make the execution time of ASFU to fit in or to be as
close as possible to the original pipestage. Restated, an ASFU using miser hardware
implementation option is better choice due to the manufacturing cost benefit, if it has
same execution time reduction with the one wusing the fastest hardware
implementation option. From another perspective, under the same silicon area
constraints, designers can employ more ISEs to achieve higher performance
improvement than previous works, if the miser implementation option is adopted.
Figure 2 is an example to explain the benefit of considering pipestage timing
constraint. Assume that there are two hardware implementation options for an ISE,
namely implementation option-A (IO-A) and implementation option-B (I0-B). The
silicon area and execution time of I0-A are 3000 um?” and 0.7 cycle, respectively; as
well as I0-B, 7000 pm” and 0.35 cycle. Obviously, IO-B has faster execution time
than 10-A. Nevertheless, under pipestage timing constraint, both of them have same
performance improvement, but 10-A consumes less silicon area. This is why

considering pipestage timing constraint can bring benefit in silicon area saving;



meanwhile, maintain the same level of performance.

| IF | ID |  EXE | MEM WB
- Implementation option-A
K\\\\\\\\\\ 0.7 cycle, 3000 pm?
Implementation option-B
0.35 cycle, 7000 pm? E

Figure 2: The benefit with considering pipestage timing constraint

Instruction Set Architecture (ISA) Format

The ISA format represents two constraints. The first constraint limits the number
of input/output operands employed by an ISE. The second constraint is the number of
ISEs and is usually used in ISE selection. That is, the number of ISEs generally
cannot exceed the number of unused opcodes. However, perhaps some people would
question why not use multiple instructions to overcome both constraints. The reason
is that using multiple instructions to represent one ISE may increase ISE fetching
latency. This leads to lengthening the execution time of ISE. The trade-off between
execution time reduction and the number of opcodes as well as operands is another
problem. We do not intend to address this problem in this paper.

Register File

The Register file constraint resembles the first constraint of the ISA format.
Under the register file constraint, the number of input/output operands adopted by an
ISE cannot exceed the number of read/write ports of the register file.

Convex

The convex constraint is that the ISE’s output cannot connect to its input via
other operations not grouped in ISE. In other words, if no path exists from a operation
ul1ISE A to another operation v[/ISE 4 involving a operation w¢ ISE A4, then ISE 4 is
convex. Figure 3 illustrates an example of the convex and non-convex ISEs. The
convex constraint is needed to ensure that a feasible scheduling exists. On the other
hand, an ISE violating the convex constraint would have less or no execution time

reduction.

Convex Non-convex

Figure 3: The convex and non-convex ISEs

Silicon Area



The silicon area constraint limits the silicon area usage for a single ISE to a
predefined or reasonable size. In ISE selection, the silicon area constraint also restricts
the total silicon area utilized by all ASFUs.

In ISE exploration, many investigations may overlook pipestage timing
constraint such that causes unnecessary waste of silicon area. To handle pipestage
timing and other constraints above, we propose a new ISE exploration algorithm. The
proposed algorithm is derived from the ant colony optimization (ACO) algorithm [5,
6 and 7]. In contrast with previous studies [8], the proposed algorithm explores not
only ISE candidates, but also their hardware implementation option, thus reducing the
silicon area and minimizing the execution time. Results with MiBench reveal that
under same number of ISE, the proposed approach achieves 69.43%, 1.26% and
33.8% (max., min. and avg.) of further reduction in silicon area, and also has
maximally 1.6% performance improvement over the previous work [8]. Conversely,
under the same silicon area constraint, the proposed approach reaches up to 3.85%,
0.97% and 2.17% (max., min. and avg.) more speedup than the previous one [8§].
Moreover, simulation results also demonstrate that the proposed approach is
extremely close to the optimal scheme, but takes much less computing time.

This study has the following contributions:

I. An ISE exploration algorithm is proposed, which explores not only ISE
candidates, but also their hardware implementation options, and thus reducing
the silicon area cost.

2.  The proposed ISE exploration algorithm not only significantly lowers silicon
area cost, but also enhances performance over the previous algorithm.

3. The proposed ISE exploration algorithm can explore a search space comprising
hundreds of instructions in a few minutes, and has a near-optimal solution.

The rest of this work is structured as follows. Section 2 studies the previous
related work and background of Ant Colony Optimization Algorithm. Section 3 then
presents the proposed approach. Next, Section 4 presents the simulation results and

discussion. Conclusions are finally drawn in Section 5.

2. ML 2 F L RP

2.1 Relative Works

Pozzi [8] proposed an algorithm, called the exact algorithm, to examine all
possible ISE candidates such that it can obtain an optimal solution. The exact
algorithm maps the ISE search space, such as a basic block, to a binary tree, and then

discards some portion of the tree that violates predefined constraints. Nevertheless,



this algorithm is highly computing-intensive, so it does not process a larger search
space. For instance, if a BB has N operations, and each operation has only one
hardware implementation option, then it has 2" possible ISE patterns (legal or illegal).
Notably, one ISE candidate may consists of one or multiple legal ISE pattern(s).
When N = 100 (the standard case), then the number of possible ISE patterns is 2'%.
Obviously, this number of patterns cannot be computed in a reasonable time. To
decrease the computing complexity, heuristic algorithms derived from genetic [8],
Kernighan-Lin (KL) [9] and greedy-like algorithms [10] have been developed.

Yu [11] investigated the effect of various constraints, such as ISA format,
hardware area and control flow, for ISE generation. Such constraints restrict the
performance improvement of the ISEs. The ISA format limits the number of read and
write ports to the register file. The limitation of the control flow is whether the search
space of ISE exploration can cross basic block boundaries. To meet time constraint in
real-time applications, the operations locating on the worst-case execution path would
have higher opportunity to be grouped into ISE than others, as in [12]. This is because
the most frequently executed instruction pattern may not contribute execution time
reduction to the worst-case execution path. The granularity of each vertex within the
search space can be varied from one instruction to multiple subroutine calls [13].
Borin [13] also claims that one search space can consist of multiple basic blocks in
their proposed algorithm. From a different perspective, Peymandoust [14]
characterized each basic block as a polynomial representation. First, the
multiple-input single-output (MISO) algorithm extracts symbolic algebraic patterns
from the search spaces, and represents them as polynomials on behalf of ISE
candidates. These ISE candidates are then mapped to the polynomial representations
of program segments using symbolic algebraic manipulations. Nevertheless, some
algorithms [8, 9, 10, 11, 12, 13 and 14] do not consider the pipestage timing constraint,

and therefore waste silicon area unnecessarily.

2.2 Background - Ant Colony Optimization (ACO) Algorithm
Basic Idea of Ant Colony Optimization Algorithm

Ant Colony Optimization algorithm is inspired by the behavior of ants in finding
paths from the colony to food. This algorithm [1, 2] has been extensively applied to
solve many optimization problems.

In the real world, ants wander randomly when they begin to find paths from the
colony to food. The ants lay down pheromone on the paths which they have passed
through. The density of the pheromone on one path determines the probability that the
next ant will pass through this path. Because the pheromone evaporates with time, the

shortest path is marched over fastest, and thus has the highest pheromone density.



After a period of time, an increasing number of ants select the shortest path, causing
the density of pheromone on this path gradually grow. Finally, the shortest path is
obtained. The shortest path can be treated as the optimal solution for an optimization
problem.

Figure 2 depicts an example of ACO. Suppose that 50 ants are going to find food,
and can choose from among two paths, namely left-path (left hand side path) and
right-path (right hand side path). Left-path is twice as long than right-path, as
illustrated in Fig. 2 (a). In Fig. 2, D and P are the number of unit of distance and
pheromone, respectively, and ¢ represents the time unit. At ¢ = 0, neither path has
pheromone, and the ants choose paths with equal probability. Suppose that 25 ants
choose left-path, and 25 ants choose right-path at the beginning of # = 1, as shown in
Fig. 2 (b). Every ant leaves one unit of pheromone on the path. At the end of t =1, 25
ants arrive food source, and another 25 ants are in the middle of left-path. Black spots
in Fig. 2 (c) depict the locations of ants at the end of #+ = 1. Assume that the
pheromone evaporates at a rate of 5 units per time unit. The paths ant passed have 20
(=25-5) units of pheromone after evaporation, as displayed in Fig. 2 (c). Then, the
ants start walking again at the beginning of ¢ = 2, as demonstrated in Fig. 2 (d). 25
ants return to their colony and another 25 ants arrive food source, at the end of ¢ = 2.
The locations (black spots) of ants at the end of # = 2 is shown in Fig. 2 (e). Fig. 2 (f)
depicts the number of pheromone units on each path segment after t = 2. At next
iteration, right-path has a higher probability of being chosen by ants than left-path
owing to the higher pheromone density. After a period of time, an increasing number
of ants select right-path due to higher density of pheromone, causing the density of
pheromone on right-path grows. Finally, the shortest path, i.e. right-path, is obtained.
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Figure 2: An example of ant colony

Why Use the Ant Colony Optimization Algorithm?

ISE exploration is an optimization problem. Many computation models, such as
genetic algorithms and simulated annealing, have been successfully adopted to solve
many optimization problems. One of those computation models, named ACO, is very
similar to the ISE exploration problem that explores not only ISE candidates, but also
their hardware implementation options. A computation model that is more similar to
the original problem than others should be chosen for minimizing the modification
required. In other word, a computation model that more closely resembles the original
problem requires less modification than other models do.

The ISE exploration problem is clearly analogous to ACO. Selecting the shortest
path among multiple paths in ACO can be viewed as similar to choosing the best
implementation option (hardware or software) among different implementation
options for each operation in the basic block. One can imagine that different
implementation options for all operations in a basic block can be modeled as a tree.
An operation can be seen as a node in the tree, and different implementation options
are different links between two nodes in the tree. Figure 3, in which O1 is operation 1
as well as SW-IO and HW-IO denote the software and hardware implementation
option, respectively, illustrates this concept. In Fig. 3, the ants start from their colony

(operation 1) to food (operation m), and make a decision at every node (choose one



implementation option of each operation). After a period of time, i.e. several iterations,
the ants find the shortest path (the dotted line with arrow in Fig. 3) between their

colony and food. The shortest path is the optimal solution in ISE exploration.

M Ant Colony
ey ey

K aidl ey

\

db

\

Operation 1 \
\
\

Food

Figure 3: Analogy between ACO and ISE exploration

3. ISE Exploration

ISE exploration in this work not only identifies frequently executed instruction
patterns as ISE candidates, but also evaluates hardware implementation options of
each operation in ISE candidates to minimize the execution time while using less
silicon area. The input and output of ISE exploration algorithm are basic blocks and

ISE candidates as well as their hardware implementation options, respectively. The



implementation option(s) of an operation denote(s) its implementation method(s), and
can be roughly divided into two categories, namely hardware and software.

The flow of ISE exploration is briefly described as follows. According to the
results of BB selection, each selected basic block is transformed to a data flow graph
(DFG). DFG is represented by a directed acyclic graph G(V,E) where V' denotes a set
of vertices, and E represents a set of directed edges. Every vertex v[ 1V is an assembly
instruction in the basic block, called an “operation” or “node” hereafter. Each edge
(u,v)[1E from operation u to operation v signifies that the execution of operation v
needs the data generated by operation u. Then, an implementation option (IO) table
representing all implementation options for an operation is appended to each
operation in a DFG. Using the DFG with 10 table, ISE exploration algorithm is
repeatedly executed until no ISE candidate can be discovered. Significantly, the ISE
exploration algorithm identifies at least one ISE candidate at each round. A round
usually consists of multiple iterations.

At each iteration, the ISE exploration algorithm initially selects one
implementation option in each operation according to a probability value (p), which is
a function of trail and merit values. Note that every implementation option has one
probability value (p). The meaning of trail is the same with the pheromone in the
ACO algorithm, i.e. how many times an implementation option is chosen in previous
iterations. The merit value is the benefit of one implementation option being chosen.
The trail value of the selected implementation option is increased, while others (i.e.
non-selected implementation options) are decreased after making a choice. Restated,
the result having the highest merit value can be regarded as a local optimal solution.
The trail value guides the current solution to achieve global optimal, and the
probability value (p) assists the current solution in departing local optimal. After
updating trail values, the algorithm evaluates all implementation options of each
operation in DFG, i.e. it computes their merit value using merit function. This process
is iteratively performed until convergence criteria are met, i.e. until the probability
values (p) of all operations have exceeded a predefined threshold value.

3.1 Implementation option

An operation normally has multiple implementation options, which can be
divided into two categories, namely hardware and software. The hardware
implementation option means that the operation is included in an ISE and is
implemented in additional hardware, i.e. ASFU. Because of different speed and area
requirements, most operations usually have multiple hardware implementation
options. By contrast, the software implementation option signifies that the operation
is performed in the CPU core.

To represent all implementation options for an operation, a table, called

10



implementation option (IO) table, is appended to every operation. Each entry in the
10 table comprises three fields, namely implementation option, delay and area. The
name of implementation option is shown in implementation option field. The
execution time and the extra silicon area cost of one implementation option are shown
in delay field and area field, respectively. Obviously, using software implementation
option requires at least one execution cycle, but does not introduce any extra silicon
cost. Conversely, using the hardware implementation option can reduce the number of
execution cycle, but increases the silicon area consumed. A new graph G is generated
after the IO table is appended to G. Figure 3 shows an example of G', consisting of

two operations, A and B.

Implementation options Delay Area
Software 1 0
Hardware - 1 0.4 900

Hardware - 2 0.2 2000

Implementation options Delay Area
<:> Software 1 0
Hardware 0.5 600

Figure 3: An example of G

3.2 Formulation of ISE exploration

ISE exploration explores ISE candidates in G', and evaluates the
implementation options of each operation in ISE candidates. An ISE candidate in G*
is a subgraph S{IG". The proposed ISE exploration can be formulated as follows.

ISE exploration: Considering a graph G', obtain subgraph S[/G", and evaluate
the implementation options of vertex v[]S to minimize the execution cycle count
while reducing the silicon area as many as possible under the following constraints:

1. IN(S) < Ny,

2. OUT(S) < Nout,

3. S 1s convex,

4. Load and store operations ¢ S.

IN(S) (OUT(S)) is the number of input (output) values used (generated) by a
subgraph § (i.e. an ISE). The user-defined values Nj, and Ny, denote the read and
write ports limitations of the register file, respectively. To conform to the limitation of
load-store architecture, the load and store operations are forbidden from being
grouped into ISE.

3.3 ISE exploration algorithm

11



The main task of the proposed ISE exploration algorithm can be considered as
assigning an implementation option (including hardware and software) for each
operation in the basic block to minimize the execution time and silicon area cost.
Therefore, how to choose a “right” implementation option for an operation is crucial
for the proposed ISE exploration algorithm. As with the ACO algorithm, the
implementation option is chosen according to its probability value (p). The
probability value (p) of an implementation option is the implementation option’s
probability of being selected at each iteration of the ISE exploration algorithm. The
reason using the probability value (p) is that selecting the implementation option
based on its probability value (p) can prevent local optimal solutions. The probability
value (py;) of implementation option j in operation x is a function of the trail and the
merit values, as revealed in Equation (1). The significance of the trail value is
identical to that of the pheromone in the ACO algorithm, and reveals the number of
times that an implementation option is selected in previous iterations. Here, the trail
value of implementation option j of operation x is denoted by trail,;, and trail, o is
designated as the trail value of software implementation option. The trail value, like
the pheromone, must be updated at each iteration. The merit value is defined as the
benefit of one implementation option being selected, and it is obtained by using the
merit function, which is described in detail later. The merit value of implementation
option j of operation x is represented by merit, ;, and merit,  is designated as the merit
value of the software implementation option. The probability value of implementation
option j of operation x (py) is derived with:

a-trail _; +(1-a) -merit_,

k
Z(a trail  +(1-a)-merit, ;)

Jj=0

Py = ,0<j<kand 0<a<l1 (1)

where k is the number of hardware implementation options in operation x, and « is

utilized to determine the relative influence of trail and merit, and

k
2P, =1 2
j=0

Figure 4 shows the pseudo code of the proposed ISE exploration algorithm. Here,
a DFG is assumed to have m (m > 0) operations, each with n (n > 0) implementation
options. Initially, i.e. in step 1, the algorithm sets initial values for the trail and merit
values of each implementation option of all operations. Notably, the hardware
implementation options have higher initial merit values than software ones such that
the algorithm could preferentially choose the hardware implementation option at the
start of execution to achieve higher performance improvement. In step 2, the
algorithm wverifies all operations to determine whether they have hardware

implementation options. If yes, then the algorithm selects one implementation option
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(including hardware and software) in each operation based on the probability value; if
no, then it selects the software implementation option. In Step 3, the algorithm
updates the trail value of each implementation option in all operations. The trail value
of the chosen implementation option (i.e. the implementation option has been selected
in Step 2) is raised with increasing p, a positive constant value, while those of others
are reduced. Here, p is called evaporating factor and very similar to the evaporation
rate in ACO. The algorithm in Step 4 derives the merit value of each implementation
option in all operations. As in Step 2, the algorithm first checks each operation to
determine whether it has a hardware implementation option. If yes, then the algorithm
executes the Hardware Grouping function, which determines whether an operation
can be grouped with its reachable operations as a virtual ISE candidate. If it can be
grouped, then the Hardware-Grouping function adopts this virtual ISE candidate to
obtain the execution time and silicon area for every hardware implementation option
in this operation. The Hardware-Grouping function is described in detail later. The
ISE exploration algorithm then computes the merit value with the merit function.
Finally, the ISE exploration algorithm checks the end condition in Step 5. If the end
condition is not fulfilled, then the ISE exploration algorithm returns to Step 2 and
enters the next iteration; otherwise, it terminates.

The end condition is that for all operations in DFG, the probability value (p) of
one of implementation options exceeds P END, which is a predefined threshold value
and is very close to 100%. A larger P END has a higher opportunity of obtaining a
better result, but typically takes a longer time to converge. An implementation option
with the probability value (p) larger than P_END is called a taken implementation
option. An ISE candidate is a set of reachable nodes (i.e. operations) all of which have

taken hardware implementation option.
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1. (Initialization)
For implementation option j (j=0 to n) of operation x (x=1 to m) in DFG
trail, ;= 0;
If (j=0)
merit, o = initial value of software implementation option;
Else
merit, ; = initial value of hardware implementation option;
2. (Calculating probability value (p) and choosing implementation option)
For operation x (x=1 to m)
If (x has hardware implementation option)
For implementation option j (j=0 to n) in operation x
Calculate p, j;
Choose one implementation option according to its probability
value (p);
Else
Choose software implementation option;
3. (Trail update)
For implementation option j (j=0 to n) of operation x (x=1 to m) in DFG
If the implementation option is selected
trail,; = trail.; + p;
Else
trail, ;= trail.; — p;;
4. (Calculating merit)
For operation x (x=1 to m)
If (x has hardware implementation option)
Hardware Grouping;
For implementation option j (j=1 to n) in operation x
Calculate merit, j;
5. (Terminating condition)
If not (end_condition) goto step 2;

Figure 4: ISE Exploration Algorithm
Hardware-Grouping

Hardware-Grouping checks whether the operation x can be grouped with its
reachable nodes (i.e. operations) as a virtual ISE candidate, and recursively groups
operation x with its reachable nodes, which have chosen hardware implementation
option in previous iteration, as a virtual ISE candidate, i.e. a virtual subgraph vS\. The
result of Hardware-Grouping of operation x using implementation option j is denoted
as vSy;. Significantly, vS; is the set of all vS,; (i.e. vS:={ vSx; |j = 1 to n}), and vS, is
meaningless due to implementation option O is the software option. Using vS,,
Hardware-Grouping measures the execution time, silicon area and register read/write
port usage of vS,; The execution time of vS,; is the critical path time in vSy;, the
silicon area of vS,; is the sum of silicon areas used by all operation in vS\;, and

register read/write port usage is the number of register file read/write ports utilized by
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vS,;. Notably, cumulating the silicon area used by each operation in vS,; may not
reflect the silicon area utilized by vS,; in real; however, it can simplify the calculation
of silicon area, and the cumulating result is the upper bound of silicon area; that is,

more silicon area saving can be achieved in real case.

Operation Chou}e m Implementation
previous . Delay Area
ID iteration Option
1 [ ) software 1 0
software 1 0
2
[ J hardware 0.4 600
software 1 0
3
[ J hardware 0.4 600
4 o software 1 0
o software 1 0
5 hardware 1 0.6 400
hardware 2 0.3 1000
software 1 0
6
[ J hardware 0.3 500
software 1 0
7
[ hardware 0.2 300

Hardware grouping of operation #5

Figure 5: Examples of Hardware-Grouping

Figure 5 depicts the working of the Hardware-Grouping function. The table in
Fig. 5 lists the delay and area of each implementation option of all operations, and
specifies the chosen implementation option in the previous selection. In both the top
and bottom left of Fig. 5, nodes grouped by a dotted line are treated as a virtual ISE
candidate. For operation #2, Hardware-Grouping groups operation #2 and #3 as a
virtual ISE candidate, i.e. vS>, as shown in the top left of Fig. 5. Because operation #2
only has one hardware implementation option, vS, has one evaluation result, namely
vS> ; (execution time = 0.8, silicon area = 1200). The bottom left of Fig. 5 is another
example, in which Hardware-Grouping groups operation #5 and other nodes, are #2,
#3, #6 and #7, as a virtual ISE candidate, i.e. vSs5. Since operation #5 has two
hardware implementation options, vSs has two evaluation results, namely vSs;
(execution time = 1.7, silicon area = 2400) and vSs, (execution time = 1.4, silicon
area = 3000).
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Merit Function

The merit function determines the benefit, i.e. merit value, of different
implementation options in an operation. Briefly, the merit function consists of three
cases, size checking (case 1), constraints violation determination (case 2) and
performance as well as area benefits calculating (case 3). Figure 6 shows the merit
function algorithm. Initially, in case 1, the algorithm checks whether size(vS, ), which
is the number of operation in vS,, is equal to 1. Notably, this work assumes that every
operation is one-cycle delay in original processor specification. If a multiple-cycle
delay is assumed, then case 1 should be tailored to fit this situation. If size(vSy;) = 1,
then vS,; only has one operation x such that the performance cannot be improved.
Therefore, the algorithm multiplies the merit value of every hardware implementation
option by a constant f; (0 < ;< 1) to lower the chance of it being chosen. The
calculation of the merit function is then terminated. If no, then goto case 2.

Case 2 verifies whether vS, violates input/output port and/or convex constraints.
If yes, then the merit value of each hardware implementation option is multiplied by
constant £, and/or f; (0 < > < 1 and 0 < f3 < 1), reducing the opportunity for
selecting the hardware implementation option, as in case 1. The calculation of the
merit function is then terminated. Since operation x may have chance to be grouped in
an ISE candidate at the following iterations, the algorithm only divides the merit value
of each hardware implementation option by a constant. If the algorithm does not allow
the possibility of operation x becoming an operation in an ISE candidate, the optimal
solution may also be excluded. If no, then enter case 3.

In case 3, the merit value of implementation option j (merit,, j > 0) in operation
x is computed according to (1) the speedup that can be achieved by vS\;, and (2) the
silicon area utilized by vS.;. The execution cycle reduction and silicon area of the
virtual subgraph vS,; is represented by cycle_saving.; and area,;, respectively. The
basic concept of case 3 is: (1) if vSy; can improve the performance, then all hardware
implementation options should have larger merit value than the software one; (2) the
merit value should be direct proportion to the execution time reduction, and (3) under
the same performance improvement, the hardware implementation option using less
silicon area should have larger merit value Accordingly, the merit of software
implementation option is always set as a constant, merit, g, to be a baseline. In case 3,
the algorithm first sets the merit value of implementation option j as the product of
cycle saving, yax + 1 and merit, ) ,where cycle saving, y4x 1s the maximal execution
cycle reduction achieved by vS,. The algorithm then checks whether the execution
time reduction of implementation option j is equal to the cycle saving,yax. If yes,
then the algorithm adjusts the merit value according to the silicon area of

implementation option j. Here, area, 4x represents the largest silicon area consumed
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by vS.. Note that the difference between area.ysx and area.; as well as
cycle_saving.yax and cycle_saving.; are only in operation x. Restated, besides
operation x, all operations in vS, deploy the same hardware implementation option. If
no, then the merit of implementation option j is divided by the difference between

cycle_saving,; and cycle_savingyux + 1.

Case 1. (The size of vS, is equal to 1)
If (size(vSy) = 1)
For each hardware implementation option (j=1 to k) in operation x
merit,; = merit.j X Bi;
Case 2. (Violate constraints and the size of vS,; is larger than 1)
If (vS; violates in/out constraint)
For each hardware implementation option (j=1 to k) in operation x
merit,; = merit,; x [
If (vS, violates convex constraint)
For each hardware implementation option (j=1 to k) in operation x
merit,; = merit,; X /PR
Case 3. (Conform with constraints and the size of vS,; is larger than 1)
If (vS, observes in/out and convex constraint)
For each hardware implementation option (j=1 to k) in operation x
merit,; = (cycle_saving, yax + 1) x merity ;
If (cycle_saving,; = cycle_saving yx)
area

merit, ; = merit, . X

x,MAX |
area,

Else

merit,;

merit_; = - - ;
(I+cycle _saving ) —cycle_saving,

Figure 6: Algorithm of merit function

4 BRI %

4.1. Experimental setup

The Portable Instruction Set Architecture (PISA) [17], which is a MIPS-like ISA,
and MiBench [18] was employed to evaluate the proposed ISE exploration algorithm
and genetic algorithm [8]. Each benchmark was compiled by gcc 2.7.2.3 for PISA
with -O0 and -O3 optimizations. Owing to the limitation in the corresponding glibc
and compiler, 6 benchmarks, namely mad, typeset, ghostscript, rsynth, sphinx and pgp,
could not be compiled successfully. For both ISE exploration algorithms, 6 cases were
evaluated, includes 2/1, 4/2 and 6/3 register file read/write ports as well as using -O0

and -O3 optimization.
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Table 1: Hardware implementation option setting

Operation | Delay (ns) | Area (pmz) Operation | Delay (ns) | Area (umz)
add 4.04 926.33 and 1.58 21431
addi andi
addu or

addiu 2.12 2075.35 o 1.85 214.21
sub 4.04 926.33 XOr 4.17 375.1
subu 2.14 2049.41 XOri 2.01 565.14
mult 5.77 84428 1
multu 5.65 79778.1 iy
nor 2.00 250.00 ol
slt ) 3.00 400.00
sl 2.64 1144 STV
sltu Sra
sltiu 1.01 2636 srav

In the simulation, we assume that: (1) the CPU core is synthesized in 0.13 pm
CMOS technology and executes in 100MHz; (2) the area of the base CPU core, in
which no register file is comprised, is 1378855.84um?*; (3) the read/write ports of
register file are 2/1, 4/2 and 6/3, respectively; and (4) the execution cycle of all
instructions in PISA is one cycle, i.e. 10 (ns). Table 1 lists the hardware
implementation option settings (delay and area) of instructions in PISA. Significantly,
only instructions that can be grouped into ISEs are listed in table 1. These settings
were either obtained from Lindstrom [19], or modeled by Verilog and synthesized
with Synopsys Design Compiler. Since enlarging the number of read/write ports in the
register file increases the required silicon area, different read/write ports of register
file were also synthesized. Therefore, the silicon areas of the CPU cores with 2/1, 4/2
and 6/3 (register file read/write ports) were 1500000um? 1574138.80um’® and
1631359.54um? respectively.

Because of the heuristic nature of the ISE exploration algorithm, the exploration
was repeated 5 times within each basic block, and the best result among the 5
iterations was chosen.

For obtaining the set of parameters (a, p, f;, f> and f;), this work adopted a
greedy-like method. The parameter exploration method is described as follows:

Step 1: Randomly select a smaller basic block, and manually compute its
optimal result. Then, randomly choose a set of parameters. Based on this
set of parameters, only adjust one parameter at a time to execute the
proposed algorithm. When the simulation result is equal or very close to
the optimal one, stop adjusting this parameter and start to adjust other
parameters. Once all the parameters are obtained, enter Step 2.

Step 2: Randomly choose several bigger basic blocks, and execute the proposed

18



algorithm to compute their results using the set of parameters obtained in
step 1. If the proposed algorithm converges for these bigger basic blocks,
apply this set of parameters for all basic blocks. Otherwise, go back to
Step 1, and use other smaller basic block to find a set of parameters. If
the proposed algorithm can not converge for all basic blocks, go back to
Step 1, too.

Note that the basic block(s) used in Step 1 and 2 must be chosen among the
result of BB selection in the ISE design flow. The parameters adopted in this paper
and their meanings are listed below.

¢ a: the weight of merit and pheromone in p, ;.

¢  p:the evaporating factor in trail update.

¢ p;: the decay speed when a selected-hardware-implementation-option

operation is stand alone.

¢ [»: the decay speed when the input/output constraint is violated.

¢ [3: the decay speed when the convex constraint is violated.

A large a makes the algorithm converge slowly, while a small o is on the contrary.
Restated, a large o obtains a solution slowly, and a small a obtains a poor solution, but
quickly. p has same characteristic with a. £;, B> and f; affect the opportunity of being
selected again for the violated-constraint(s) implementation option. In other words,
large f;, B> and f; let the violated-constraint(s) implementation option have higher
chance of being selected again at following iterations.

In this experiment, the initial merit value of the software and hardware
implementation option was 100 and 200, respectively; P END was 99%. The
probability value adopted a = 0.25, the evaporating factor p was 5, and the merit
function had f; = 0.9, £, =0.9 and 5= 0.5.

Additionally, since [author of 3]’s approach [3] does not consider pipestage
timing constraint, we assume that it always deploys the fastest implementation option
for every operation in ASFU.

4.2 Experimental results

Figures 7 and 8 depict the average execution time reduction and the average
extra silicon area cost of Mibench with different numbers of ISE, respectively. Each
bar in Figs. 7 and 8, comprises several segments, which indicate the execution time
reduction using 1, 2, 4, 8, 16 and 32 ISEs. The first word of each label on X axis in
both Figs. 7 and 8 indicates which ISE exploration algorithm is adopted. “Proposed”
and “genetic” denote the proposed ISE exploration algorithm and that of [author of 3]
[3], respectively. The first and second symbols in parentheses of each label on the
X-axis are the number of register file read/write ports in use, and which optimization
method (-O0 or -O3) is used. For instance, (4/2, O3) means that the register file has 4
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read ports as well as 2 write ports, and that the -O3 optimization method is employed.

For both algorithms, -O3 exhibits better execution time reduction than -O0 in
most cases. Possibly, -O3 often uses various compiler optimization techniques. Some
of these techniques (like loop unrolling, function inlining, etc.) remove branch
instructions, and increase the size of basic block(s). The bigger basic block usually
has a larger search space, such that it has a greater opportunity to obtain the ISEs,
which consist of more operations. This results in more execution time reduction.
However, increasing the size of basic blocks also enlarges the opportunity of violating
register read/write port constraint, when only few read/write ports can be used, e.g.
2/1. This 1s why -O3 has less execution time reduction than -O0 in some cases.

Most of execution time reduction is dominated by several ISEs within hot basic
blocks. In other words, the number of ISE is not entirely proportional to the execution
time reduction. In most cases, 8 ISEs can perform over half of execution time
reduction achieved by 32 ISEs, and only utilize less than quarter of silicon area used
by 32 ISEs. For instance, while using 4/2 (register file read/write ports) register file, 8
ISEs can save average 14.95% execution time and cost 81467.5um’ silicon area,
which is 5.43% of the original core area. Conversely, if 32 ISEs are adopted, then the
average execution time reduction can rise to 20.62%, but extra area cost also increases
to 345135.45um?, which is 23.01% of the original core area.
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Figure 7: Execution time reduction
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Figure 8: Extra silicon area cost

Except for several cases in 6/3 (register file read/write ports), the proposed ISE
exploration algorithm achieved a better execution time reduction than [author of 3] [3].
The proposed approach has lower performance improvement in some cases because
one set of parameters (o, f;, > and f3) does not work well in all cases. This problem
can be mitigated by dynamically adjusting these parameters according to different
situations. Theoretically, ISE candidates always adopting the fastest hardware
implementation option would have the best performance. However, as revealed in Fig.
7, the proposed ISE exploration algorithm has better execution time reduction in most
cases, since even in the same BB, the operations grouped into an ISE candidate and
the number of ISE candidate explored by both algorithms may be not identical.

Because the proposed ISE exploration algorithm explores not only ISE candidate
but also their implementation options, less extra silicon area is used in all cases.
Figure 9 illustrates the silicon area saving of proposed algorithm for all cases, as
compared with the genetic algorithm [3]. Obviously, the proposed algorithm can
significantly reduce the extra silicon area cost. Figure 9 also reveals that relaxing the
constraint of register file read/write ports tends to decrease the silicon area saving.
Relaxing the constraint of register file read/write ports can increase the number of
operations grouped into ISE. However, the operations grouped into ISE due to
relaxing the constraint of register file read/write ports usually are logic operations
such that only one hardware implementation option can be selected. This leads to less

silicon area being saved using our approach.
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Figure 9: Silicon area saving

From another perspective, under the same silicon area constraints, adopting the
miser implementation option can enlarge the number of ISEs that can be utilized in
processor core, can increase the level of performance improvement. Figure 10 shows
this perspective. In Fig. 10, each bar consists of several segments, which indicate the
execution time reduction under different silicon area constraints, are 5%, 10%, 15%,
20%, 25% and 30% of the original CPU core size. In all cases, the proposed ISE
exploration algorithm has better performance improvement than genetic algorithm [3].
Significantly, the improvement in execution time reduction is not in proportion to the
available silicon area, since most execution time reduction is dominated by several
ISEs. Table 2 presents the detailed results of Fig. 10. describe why only few
performance improvement
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Figure 10: Execution time reduction under different silicon area constraint

Table 2: Execution time reduction under different silicon area constraint

Silicon area

. 5% 10% 15% 20% 25% 30%
constraint
Number of ISE being selected
proposed (2/1, O0) 13 28 50 71 102 128
proposed (2/1, O3) 12 27 40 55 79 100
genetic (2/1, 00) 8 15 22 35 48 61
genetic (2/1, O3) 8 12 18 26 34 46
Execution time reductio
proposed (2/1, O0) 8.60% 9.81%| 10.38%| 10.61%| 10.76%| 10.83%
proposed (2/1, O3) 7.57% 8.49% 8.94% 9.29% 9.54% 9.64%
genetic (2/1, O0) 6.23% 6.90% 7.25% 7.63% 7.87% 8.01%
genetic (2/1, 0O3) 6.42% 6.83% 7.23% 7.57% 7.79% 8.05%
Number of ISE being selected
proposed (4/2, O0) 8 18 23 34 46 56
proposed (4/2, O3) 6 14 20 26 34 45
genetic (4/2, 00) 4 8 14 21 28 36
genetic (4/2, O3) 4 8 14 19 22 26
Execution time reductio
proposed (4/2, O0) 13.61%| 17.26%| 18.19%| 19.31%| 20.13%| 20.64%
proposed (4/2, O3) 14.98%| 19.04%| 20.46%| 21.30%| 22.09%| 22.84%
genetic (4/2, 00) 10.76%| 13.17%| 15.37%| 16.86%| 17.70%| 18.40%
genetic (4/2, O3) 13.30%| 15.99%| 18.02%| 18.99%| 19.43%| 19.93%
Number of ISE being selected
proposed (6/3, O0) 5 12 19 25 31 39
proposed (6/3, O3) 6 9 14 19 25 32
genetic (6/3, O0) 4 7 12 17 22 28
genetic (6/3, O3) 4 7 10 15 19 23
Execution time reductio
proposed (6/3, O0) 14.95%| 19.25%| 20.97%| 21.77%| 22.33%| 22.87%
proposed (6/3, O3) 18.76%| 20.92%| 22.72%| 23.77%| 24.61%| 25.32%
genetic (6/3, 00) 13.83%| 16.12%| 18.47%| 19.83%| 20.66%| 21.44%
genetic (6/3, O3) 16.91%| 19.76%| 21.35%| 22.92%| 23.81%| 24.50%

4.3 Optimal Solution

To understand the quality of ISE candidates explored by the proposed ISE

exploration algorithm, the results of proposed algorithm are compared with the

optimal solution, as shown in Table 3. Table 4 compares the processing times. The
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legal pattern number is the number of ISE candidates that obey constraints
(input/output constraint, convex, no load/store operation). The processing time of the
optimal solution strongly depends on the DFG size or legal pattern number. The
results of proposed algorithm are very close to the optimal result when the optimal
solution can be obtained successfully. Nevertheless, the proposed algorithm can
significantly decrease the computing time. Additionally, releasing the input/output
constraint normally increases the legal pattern number significantly. In this case, the
optimal solution is difficult to obtain, but the proposed algorithm still behaves well.

Table 3: Comparison of optimal solution and ISE Exploration Algorithm (result)

DF G piiiil In/ Oq ; COptlimal S];)lution Proposed Algorithm
Size Constraint ycle xtra Area Cycle Extra Area
Number Reduction Cost Reduction Cost
13 4 2/1 3 1228 3 1228
26 9 2/1 5 7381 5 7603
20 30 2/1 8 11683 6 9152
41 7 2/1 7 10028 7 10028
64 2/1 1 1141 1 1141
32 45 2/1 % -- 16 107160
23 75 2/1 -- -- 9 13886
1 13 2/1 6454 5128
28 4/2 8752 8752
13 2/1 9127 9350
44 46 4/2 -- -- 13 13929
108 6/3 -- -- 15 14357

P.S. *: means the solution can’t be obtained in practical time.

Table 4: Comparison of optimal solution and ISE Exploration Algorithm (processing

time)
D_F G PI;iiiln In/ Oq ¢ Op‘;imal Sglution Proposed Algorithm
Size Constraint rocessing Processing
Number Time Time
13 4 2/1 0.01s 0.03s
26 9 2/1 0.03s 1.21s
20 30 2/1 14m22.46s 2.705s
41 7 2/1 2m12.53s 1.249s
64 1 2/1 4.08s 0.753s
32 45 2/1 --* 4.49s
23 75 2/1 - 2.333s
12 13 2/1 0.01s 0.438s
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28 4/2 2m15.33s 0.777s
13 2/1 4.73s 1.786s
44 46 4/2 -- 2.102s
108 6/3 -- 3.067s

P.S. *: means the solution can’t be obtained in practical time.

5. \3“;_ %ﬁ

The proposed ISE generation algorithm can significantly reduce the silicon area
cost with almost no performance loss. Previous studies in ISE exploration deploy the
fastest implementation option for each operation in ASFU to achieve the highest
speed-up ratio. Nevertheless, the fastest implementation option is not always the best
choice in terms of performance and silicon area cost. This work considers the
pipestage timing constraint, such that the proposed ISE exploration algorithm
explores not only ISE candidates, but also their implementation option. The
advantages of the proposed ISE exploration algorithms are as follows: (1)
significantly lower the extra silicon area cost with almost no performance loss, and (2)
is polynomial time solvable. Experiment results demonstrate that the proposed design
can further decrease the extra silicon area by up to 69.43%, 1.26% and 33.8% (max.,
min. and avg., respectively), and also has a maximum performance improvement of
1.6%.

Additionally, we recommend addressing several issues in future work. First, the
parameters (a, p, f1, > and f;) significantly influence experimental results. This work
adopts the same set of parameters for different cases, i.e. different combination of
register file read/write ports and the size of BB. However, the dynamic adjustment for
these parameters to further improve performance would be interesting to study.
Second, [combination] raises one interesting issue, namely “ISE combination”.
Without introducing any performance loss, if several analogous ISE candidates are
merged into one, or one hardware resource is used to execute identical operations in
the same ISE, then the silicon areca can be further lowered. Third, most ISE
exploration algorithms only address on the single-scalar processor, which issues at
most a single instruction per cycle into its execution pipeline. Grouping operations
into ISE can often benefit in performance improvement in a single-scalar processor.
Nevertheless, it would not be true in a multiple-issue processor. Grouping operations,
which can be executed in parallel with others in a multiple-issue processor, into ISE is
difficulty to improve performance, but increases the silicon area cost. ISE exploration

in the multiple-issue processor would be another interesting issue.
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