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中文摘要 
 

我們研究解隨機化相關問題。虛擬亂數產生器(Pseudo-random number generator)在

下列問題中扮演了重要的角色：是否每一個在問題類 BPP 中的問題都有一個多項式時間的

確定式演算法能解決。(稱為 BPP 的解隨機化。) 為了構造偽亂數產生器，通常我們需要經

由一些函數難度上的假設出發去建構此產生器。在本計畫，我們將探討不同的函數難度上

的假設與偽亂數產生器之關係。我們特別探討下列主題： 

(ㄧ) 難度放大器之構造的不可能結果； 

(二) 在 NP 問題類之難度放大問題與構造； 

(三) 建立虛擬亂數產生器與不同函數難度上的假設間之關係； 

(四) 對於更限制一類電路分辦者，構造一虛擬亂數產生器使其無法分辦。 

 

 

關鍵詞：隨機計算(randomized computation)、難度放大(hardness amplification)、

解隨機化(derandomization)、虛擬亂數產生器(Pseudo-random number 

generator) 
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英文摘要 
 

We study the Derandomization. Pseudorandom number generators play an important role in 
whether every problem in BPP can be transformed into P (Derandomization of BPP). To construct  
pseudorandom generators, one need to start from some hardness assumptions. In this project, we 
study the the relationship between these various hardness assumptions and pseudorandomness. 
Particularly, we study the following topics.  

 The impossibility results of hardness amplification. 
 Construction of an efficient procedure for hardness amplification within NP. 
 To establish the relationship between various hardness assumptions and pseudorandomness. 
 Construction of an efficient pseudorandom generator against restricted classes of circuits. 

         

 
 
Keywords：Randomized computation, Hardness Amplification, Derandomization, Pseudorandom 

number Generators 
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1 Introduction

1.1 Background

Understanding the power of randomness in computation is one of the central topics in theoretical
computer science. A major open question is the BPP versus P question, asking whether or not all
randomized polynomial-time algorithms can be converted into deterministic polynomial-time ones.
A standard approach to derandomizing BPP relies on constructing the so-called pseudorandom
generators (PRG), which stretch a short random seed into a long pseudorandom string that looks
random to circuits of polynomial size. So far, all known constructions of PRG are based on unproven
assumptions of the nature that certain functions are hard to compute. The idea of converting
hardness into pseudorandomness first appeared implicitly in the work of Blum and Micali [BM82]
and Yao [Yao82]. This was made explicit by Nisan and Wigderson [NW94], who showed how
to construct a PRG based on a Boolean function which is hard in an average-case sense. To
get a stronger result, one would like to relax the hardness assumption, and a series of research
[NW94, BFNW93, Im95] then worked on how to transform a function into a harder one. Finally,
Impagliazzo and Wigderson [IW97] were able to convert a function in E that is hard in worst
case into one that is hard in average case, both against circuits of exponential size. As a result,
they obtained BPP = P under the assumption that some function in E cannot be computed by a
circuit of sub-exponential size. Simpler proofs and better trade-offs have been obtained since then
[STV01, ISW00, SU01, Uma03].

Note that hardness amplification is the major step in derandomizing BPP in the research dis-
cussed above, as the step from an average-case hard function to a PRG is relatively simple and has
low complexity. We say that a Boolean function f is β–hard (or has hardness β) against circuits
of size s if any such circuit attempting to compute f must make errors on at least β fraction of
the input. The error bound β is the main parameter characterizing the hardness; the size bound
s also reflects the hardness, but it plays a lesser role in our study. Formally, the task of hardness
amplification is to transform a function f : {0, 1}n → {0, 1} which is β–hard against circuits of
size s(n) into a function f ′ : {0, 1}m → {0, 1} which is β′–hard against circuits of size s′(m), with
β < β′ and s′(m) close to (usually slightly smaller than) s(n). Normally, one would like to have
m as close to n as possible, preferably with m = poly(n), so that one could have s′(m) close to
s(m); otherwise, one would only be able to have the hardness of f ′ against much smaller circuits.
Furthermore, one would like f ′ to stay in the same complexity class of f , so that one could establish
the relation among hardness assumptions within the same complexity class.

Two issues come up from those works on hardness amplification. The first is on the complexity of
the amplification procedure. All previous amplification procedures going from worst-case hardness
(β = 2−n) to average-case hardness (β′ = 1/2 − 2−Ω(m)) need exponential time [BFNW93, IW97,
STV01] (or slightly better, in linear space [KM02] or ⊕ATIME(O(1), n) [Vio04]). As a result, such
a hardness amplification is only known for functions in high complexity classes. Then a natural
question is: can it be done for functions in lower complexity classes? For example, given a function
in NP which is worst-case hard, can we transform it into another function in NP which is average-
case hard? Only for some range of hardness (e.g. starting from mild hardness, with β = 1/poly(n))
is this known to be possible [Yao82, NW94, IW97, OD02, HVV04].

The second issue is that hardness amplification typically involves non-uniformity in the sense
that hardness is usually measured against non-uniform circuits. In fact, one usually needs to start
from a function which is hard against non-uniform circuits, even if one only wants to produce a
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function which is hard against uniform Turing machines. This is why most results on hardness
amplification are based on non-uniform assumptions (except [IW98, TV02]).

It is also known that from a PRG, one can obtain a worst-case hard function [NW94]. Therefore,
in a high complexity class such as E, the notions of pseudrandomness and various degrees of hardness
are equivalent. However, when we go down to a lower complexity class, such as NP, the picture
among worst-case hardness, average-case hardness, and pseudorandomness is no longer clear. In
fact, all the known transformations from a worst-case hard function to a mildly hard one or to a
PRG require exponential time (or linear space) [IW97, STV01, KM99, ISW00, SU01, Uma03], and
it appears very difficult to bring down the complexity.

1.2 Strongly and Weakly Black-Box Constructions.

According to the prior discussion, we would like to show that some kind of hardness amplification
or PRG construction is indeed impossible. For this, we need to clarify what type of hardness am-
plification we are talking about, especially given the possibility that an average-case hard function
may indeed exist.

One important type of hardness amplification is the (strongly) black-box hardness amplification
from ε-hardness to ε̄-hardness. First, the initial function f is given as a black box to construct the
new function f̄ , in the sense that there is an oracle Turing machine Amp(·) such that f̄ = Ampf .
Furthermore, the ε̄-hardness of the new function f̄ is also guaranteed in a black box way, in the
sense that there is another oracle Turing machine Dec(·) such that given any adversary A which
computes f̄ correctly on at least (1 − ε̄) fraction of inputs, Dec using A as oracle can compute f
correctly on at least (1− ε) fraction of inputs. We call Amp the encoding procedure and Dec the
decoding procedure. In fact, almost all previous constructions of hardness amplification were done
in such a black-box way [Yao82, BFNW93, GNW95, Im95, IW97, STV01, KM99, OD02, HVV04].
As we will see, such type of hardness amplification has its limitation.

One relaxation is the so-called weakly black-box hardness amplification, in which the hardness
proof is no longer required to be done in a black-box way (dropping the requirement of having a
decoding procedure). Precisely, its hardness proof is only to show the following statement: if there
is an efficient adversary A computing f̄ correctly on at least (1− ε̄)-fraction of inputs, then there
exists an efficient adversary B which computes the initial function f on at least (1− ε) fraction of
inputs. Note that the analysis is arbitrary and hence is not necessarily restricted in a black-box way.
In this sense, this weakly model is a natural relaxation of strongly black-box model. The difference
between strongly and weakly black-box models is remarkable especially when an average-case hard
function indeed exists. A hardness proof of the weakly black-box model may just to show that
the resulting function f̄ is close to that average-case hard one. Hence this sufficiently fulfills the
statement of hardness proof. However, this proof approach is not allowed for the strongly black-box
model. Again, as we will see, the weakly black-box hardness amplification also has its limitation
when it is unable to embed any average-case (or mildly) hard function in itself.

Similarly, one can consider black-box construction of a PRG from a hard function, which builds
a PRG from a hard function in a black-box way. Again, almost all previous PRG constructions
were done in such a black-box way [IW97, STV01, KM99, ISW00, SU01, Uma03]. We will also
consider black-box construction of a hard function from a PRG, which builds a hard function from
a PRG in a black-box way. The construction of [NW94] was indeed a black-box one. Now we can
back to the relationship among pseudorandomness and various degrees of hardness within NP (or
PH).

2



2 Goal of this Research

Our goal in this project is to study the the following topics.

• The impossibility results of hardness amplification.

• To construct an efficient procedure for hardness amplification within NP.

• To establish the relationship between various hardness assumptions and pseudorandomness.

• To construct an efficient pseudorandom generator against restricted classes of circuits.

3 Previous Results

3.1 Hardness Amplification and Pseudorandomness

Viola [Vio04] gave the first lower bound on the complexity required for black-box hardness ampli-
fication. He showed that to transform a worst-case hard function f into a mildly hard function f ′,
both against circuits of size 2o(n), the encoding procedure Amp cannot possibly belong to the com-
plexity class ATIME(O(1), 2o(n))). This rules out the possibility of doing such hardness amplification
in PH, which explains why previous such procedures all require a high computational complexity.
He also showed a similar lower bound for black-box construction of PRG from a worst-case hard
function.

Trevisan and Vadhan [TV02] observed that a black-box hardness amplification from worst-case
hardness corresponds to an error-correcting code with some list-decoding property. Then results
from coding theory can be used to show that for any such amplification from worst-case hardness
to hardness (1 − ε)/2, the decoding procedure Dec must need Ω(log(1/ε)) bits of advice in order
to compute f . This explains why almost all previous hardness amplification results were done in a
non-uniform setting, except [IW98, TV02] which did not work in a black-box way.

There were also impossibility results on weaker types of hardness amplification, from worst-case
hardness to average-case hardness. Bogdanov and Trevisan [BT03] considered hardness amplifica-
tion for functions in NP in which the black-box requirement on the encoding procedure is dropped.
They showed that the decoding procedure cannot be computed non-adaptively in polynomial time
unless PH collapses.

The other possibility is to consider weakly black-box hardness amplification, in which the con-
straint on the decoding procedure is dropped, while the encoding procedure is still required to be
done in a black-box way. Viola [Vio05a] proved that if a weakly black-box procedure amplifying
from worst-case hardness to mild hardness can be realized in PH, then one can obtain from it a
mildly hard function computable in PH. Although this can be seen as a negative result, it does
not rule out the possibility of such a weakly black-box hardness amplification. In fact, it appears
difficult to establish impossibility results for such a hardness amplification. This is because if an
average-case hard function indeed exists, an amplification procedure may simply ignore the initial
hard function and compute the average-case function from scratch. This raises the question: can
one prove any meaningful impossibility result for weakly black-box hardness amplification?

All these results discussed above are basically on the difficulty of amplifying from a worst-case
hard (or even slightly harder) function into a mildly hard one. On the other hand, in polynomial
time one can transform a mildly hard function into an average-case hard one [IW97], or to construct
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a PRG from an average-case hard function [NW94]. In fact, each of them can be done in a strongly
black-box way, with both the encoding and decoding procedures realized in P.

Finally, to complete the circle, one can transform a PRG back to a worst-case hard function
[NW94]. Note that the above transformation can be done in a black-box way, in which the decoding
procedure is realized in P while the encoding procedure needs the complexity of NP. This raises
the following two questions. First, can the complexity of the encoding procedure be reduced?
Next, since the transformation from worst-case hardness to average-case hardness seems to require
high complexity, can we transform a PRG directly into an average-case hard function, using a
low-complexity procedure, say in NP (or even in P)?

3.2 Hardness Amplification within NP

It remains open for lower complexity classes. In fact, there are results showing that the same
techniques used for high complexity classes can not be used for the class NP to obtain average-
case hardness when starting from worst-case hardness [BT03] or even starting slightly below mild
hardness [Vio04, LTW05, Vio05a].

So we focus on the task of transforming mild hardness to average-case hardness for the com-
plexity class NP. One attempt is to use Yao’s XOR lemma [Yao82, GNW95], which trans-
forms a given function f : {0, 1}n → {0, 1} into a function f ′ : ({0, 1}n)k → {0, 1} defined by
f ′(x1, · · · , xk) = f(x1)⊕ · · · ⊕ f(xk). However, we do not know if this works here, since we do not
know if NP is closed under the XOR operation. O’Donnell [OD02] gave the first result along this
line, showing how to convert any balanced function f ∈ NP which is mildly hard for polynomial-size
circuits into another f ′ ∈ NP which is (1/2 − 1/n1/2−α)-hard for polynomial-size circuits, for any
constant α > 0. He considered transformations of the form: f ′(x1, . . . , xk) = C(f(x1), . . . , f(xk)),
where C is a polynomial-time computable monotone function. Then he used the “tribes” function
and the “recursive majority” function, and took their composition as the function C. Recently,
Healy et al. [HVV04] were able to amplify hardness beyond 1/2−1/poly(n), showing how to convert
any balanced function in NP which is mildly hard for circuits of size s(n) into one in NP which is
(1/2− 1/s′(n))-hard for circuits of size s′(n), with s′(n) = s(n1/2)Ω(1). In particular, s′(n) = nω(1)

when s(n) = nω(1), s′(n) = 2nΩ(1)
when s(n) = 2nΩ(1)

, and s′(n) = 2Ω(n1/2) when s(n) = 2Ω(n).
A key source of their improvement came from derandomizing O’Donnell’s proof (the other source
being nondeterminism). They observed that the function C used by O’Donnell can be computed by
a small-size read-once branching program and thus can be fooled by the pseudorandom generator
of Nisan [Nis91]. Unfortunately, this generator becomes the bottleneck of their approach when
s(n) = 2Ω(n), which prevents them from achieving the goal of having s′(n) = 2Ω(n).

3.3 Pseudorandom Generators fooling Restricted Classes of Circuits

A pseudorandom generator (PRG) is an efficiently computable function which maps a short random
input to a long pseudorandom output which is hard for small boolean circuits to distinguish from
truly uniform distribution. Pseudorandom generators play an important role in the theory of
computation such as derandomization of randomized algorithms. The first pseudorandom generator
for derandomization is constructed by Nisan and Wigderson [NW94] based on a boolean function
which is hard for subexponential circuits to approximate. However it is unknown about the existence
of such a hard function so far.
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When we consider more restricted circuits such as AC0 circuits, i.e. constant depth circuits with
unbounded fanin, one can find an explicit function that is hard for AC0 circuits to approximate.
In fact, parity function is hard for subexponential AC0 circuits to approximate [Has86]. Therefore,
it is interesting to ask whether one can construct a pseudorandom generator fooling AC0 circuits
based on parity function. This is positively answered by Nisan [Nis91]. In [Nis91], parity function is
plugged into the Nisan-Wigderson construction to achieve a pseudorandom generator fooling small
AC0 circuits.

Even when AC0 circuits are allowed to use few symmetric gates (i.e. the gate depending only on
the weight of its fanin), there is still an explicit function that is hard to approximate for these kinds
of circuits. Viola [Vio05b] shows that there exists an explicit function which is hard to approximate
by AC0 circuits of size nO(log n) and with O(log2 n) symmetric gates. Subsequently Viola plugs
this function into the Nisan-Wigderson construction to obtain a pseudorandom generator for AC0

circuits of size nO(log n) and with O(log2 n) symmetric gates [Vio05b].

4 Our Results

We mainly focus on hardness amplification and its relation to pseudorandom generators. The
following is the description of our research.

4.1 Strongly Black-Box Hardness Amplification

Previous lower bound results only address hardness in a specific range. However, whether or
not one can amplify hardness beyond this range is also a natural and interesting question. For
example, it is known that a black-box hardness amplification from hardness 1/poly(n) to average-
case hardness can be realized in polynomial time [Yao82, GNW95, Im95, IW97]. Can such a
hardness amplification be realized in a lower complexity class, such as AC0? Can it start from
hardness below 1/poly(n) and still be realized in polynomial time? Can it be done in a uniform
way (with a uniform decoding procedure) if we drop the complexity constraint? In general, how does
the quality of a hardness amplification (the amount of hardness increased) determine its inherent
complexity or non-uniformity? These questions will all be answered in this paper. We generalize
previous results [Vio04, TV02] and consider hardness amplification in a much broader spectrum:
from hardness (1− δ)/2 to hardness (1− δk)/2, for general δ ∈ (0, 1) and k ∈ N.

Our first result addresses both the complexity issue and the non-uniformity issue in the same
framework, showing how complexity constraints on the encoding procedure result in the inherent
non-uniformity of the decoding procedure. Formally, we prove that if the encoding procedure Amp
for such a hardness amplification is computed by a circuit of depth d and size 2o(k1/d), the decoding
procedure Dec must need an advice of length 2Ω(n). As a result, with Amp ∈ PH when k = nω(1)

or with Amp ∈ ATIME(O(1), 2o(n)) when k = 2Ω(n), such a hardness amplification is impossible if
the hardness is measured against circuits of size 2o(n).

Our lower bound is almost tight as the well known XOR lemma [Yao82, GNW95] can achieve
such a hardness amplification with Amp realized by a circuit of depth O(d) and size 2O(k1/d)

and Dec using an advice of length poly(n/δk). Note that Viola’s result in [Vio04] is a special
case of ours, because he only addressed explicitly the specific case with (1 − δ)/2 = 2−n and
(1− δk)/2 = 1/poly(n) (or equivalently, δ = 1− 2−n+1 and k = 2Ω(n)). Although it seems that his
technique can be extended to show lower bounds when (1− δ)/2 is small enough, but beyond that,
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say with (1− δ)/2 = Ω(1), it fails to give a meaningful bound. We can cover this case: our result
implies that no AC0 circuit can realize a black-box hardness amplification, say, from hardness 1/3 to
hardness 1/2+2−nΩ(1)

. On the other hand, our result when restricted to worst-case to average-case
hardness amplification is incomparable to those of [BT03] and [Vio05a]. Finally, two interesting
facts follow from our result. First, it is impossible to produce in a black-box way a function which
is (1 − δk)/2–hard against a uniform low complexity class, say DTIME(O(1)), even if we start
from a function which is (1 − δ)/2–hard against a uniform but arbitrarily high complexity class
equipped with an advice of length 2o(n), say DTIME(22n

)/2o(n). On the other hand, it is easy to
show that hard functions against DTIME(O(1)) do exist. This demonstrates one severe weakness of
black-box hardness amplifications. Second, when amplifying hardness from (1− δ)/2 to (1− δk)/2,
the complexity of such amplification is determined mainly by the parameter k; a larger value of k
results in a higher complexity requirement, for typical values of δ.

Note that our lower bound above vanishes for d = Ω(log k). Our second result deals with this
issue. We show that if the encoding procedure is computed by a nondeterministic circuit of size
o(k/ log k), even with arbitrary depth, the decoding procedure Dec must need an advice of length
2Ω(n). As a result, in nondeterministic polynomial time, one can not amplify hardness from (1−δ)/2
to hardness (1− δk)/2 for any super-polynomial k (for example, from hardness below 1/poly(n) to
hardness Ω(1)).

Our third result shows that even without any complexity constraint on the encoding or decoding
procedure, amplification between certain range of hardness is still inherently non-uniform. One can
derive this for the case of amplifying hardness beyond 1/4, using Plotkin bound [Plo60] from coding
theory. We obtain a quantitative bound on the non-uniformity for a general range of hardness
amplification. We show that to amplify from hardness (1−δ)/2 to hardness (1−ε)/2, the decoding
procedure Dec must need an advice of Ω(log(δ2/ε)) bits. Thus, when ε = δk, an advice of length
Ω(k log(1/δ)) is necessary, and when ε ≤ cδ2 for some constant c, such hardness amplification must
be inherently non-uniform. Our result generalizes that of Trevisan and Vadhan [TV02].

Finally, we derive similar lower bounds on black-box constructions of PRG from any function
with a given hardness.

4.2 The Relationship between Mild Hardness and Pseudorandomness

Our result provides strongly black-box constructions of average-case hard functions from PRGs.
As a result, we build the equivalence between PRG and average-case hardness within NP Then, we
also derive negative results for weakly black-box hardness amplification. Therefore, we widen the
gap between worst-case and mild hardness within NP.

First, we give strongly black-box constructions of average-case hard functions from PRGs. The
first construction has the encoding procedure realized in NP and the decoding procedure realized
in P/poly (or randomized polynomial time). This improves the result of [NW94] which, using an
encoding procedure in NP as well, obtains only a worst-case hard function. A natural question then
is: can we further reduce the complexity of the encoding procedure, or can we prove a complexity
lower bound? We give a partial answer to this by providing another strongly black-box construction
with the encoding procedure realized in P but at the expense of increasing the complexity of the
decoding procedure to NP, which rules out the possibility of proving a complexity lower bound
for the encoding procedure without restricting the complexity of the decoding procedure. This
still leaves open the question of whether or not one can have both the encoding and decoding
procedures realized in P. Our positive results also imply some impossibility results. By combining
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with the impossibility results of strongly black-box hardness amplification in [?, LTW05] and our
following impossibility results of weakly black-box hardness amplification, respectively, we can
obtain corresponding impossibility results of black-box PRG constructions from hard functions.

4.3 Weakly Black-Box Hardness Amplification

We prove that if a weakly black-box hardness amplification realized in TIME(t) can amplify hardness
by an ω(t) factor, from o(ε/t) to ε, then it must embed in it a function computable in TIME(t)
with hardness about ε. Note that a function in TIME(t) cannot be hard against a class containing
TIME(t). Therefore, we obtain an unconditional impossibility result: it is impossible to use a
procedure in TIME(t) to transform a function which is o(ε/t)-hard against the class C = SIZE(2n/3)
into a function which is ε-hard against a class C̄ ⊇ TIME(t). This rules out the possibility of using a
low-complexity procedure to do such a hardness amplification for high-complexity functions. Note
that when t = 2o(n), this gives an impossibility result for amplifying from worst-case hardness to
mild hardness in sub-exponential time. We also extend this impossibility result to the case with
C being any uniform complexity class equipped with an advice of length at most 2n/3. This says
that such a weakly hardness amplification, just as in the strongly black-box case [LTW05], must
also be highly non-uniform in nature: it is impossible to have such a weakly hardness amplification
if one start from an initial function which is hard against any complexity class with only 2n/3 bits
of non-uniformity (even of arbitrarily high uniform complexity). Second, we prove that if a weakly
black-box hardness amplification realized in NP (ΣkP, respectively) can amplify hardness beyond
a polynomial factor, from ε2/nω(1) to ε, then one can obtain from it a function computable in
NP (ΣkP, respectively) with hardness about ε. This improves the result in [Vio05a], as the hard
function obtained there seems to need at least the complexity of Σk+1P, one level higher then ours
in PH. Again, this enables us to derive an unconditional impossibility result: it is impossible to
use a procedure in NP (ΣkP, respectively) for such a hardness amplification, if the new function’s
hardness is measured against a class containing NP/poly (ΣkP, respectively), when the initial
function is hard against a uniform complexity class equipped an advice of length 2n/3. Note that
this excludes the possibility of having such a hardness amplification from worst-case hardness to
mild hardness for functions in NP.

4.4 Hardness Amplification Within NP

We study the problem of hardness amplification in NP. We prove that if there is a balanced function
in NP such that any circuit of size s(n) = 2Ω(n) fails to compute it on a 1/poly(n) fraction of inputs,
then there is a function in NP such that any circuit of size s′(n) fails to compute it on a 1/2−1/s′(n)
fraction of inputs, with s′(n) = 2Ω(n2/3). This improves the result of Healy et al. (STOC’04), which
only achieves s′(n) = 2Ω(n1/2) for the case with s(n) = 2Ω(n).

4.5 Jensen-Shannon Divergence and Variational Distance

We study the distance measures between two probability distributions via two different distance
metrics, a new metric induced from Jensen-Shannon Divergence[DS03] and the well known L1

metric. We show that several important results and constructions in computational complexity
under the L1 metric carry over to the new metric, such as Yao’s next-bit predictor [Yao82], the
existence of extractors [Tre99], the leftover hash lemma [Sti02] and the construction of expander
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graph based extractor. Finally we show that the useful parity lemma [Vaz87] in studying pseudo-
randomness does not hold in the new metric.
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