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伴隨矩陣之數值域 
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中文摘要： 

    我們證明任一 矩陣n n× A的數值域 的邊界上最多有 條

線段且 的邊界上恰好有 條線段之充份必要條件為，當 為奇

數時，

( )W A n
( )W A n n

A是一酉矩陣，且當 為偶數時，n A是酉等價於下列兩個

伴隨矩陣 ( / 2) ( / 2)n n×

0 1

1
0a

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 和 

0 1

1
1/ 0a

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥−⎣ ⎦

 

的直和，其中 滿足1a | | tan( / ) sec( / )a n nπ π≤ < + 。 
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Abstract

We show that an n-by-n companion matrix A can have at most n line segments on

the boundary ∂W (A) of its numerical range W (A), and it has exactly n line segments

on ∂W (A) if and only if, for n odd, A is unitary, and, for n even, A is unitarily

equivalent to the direct sum A1 ⊕ A2 of two (n/2)-by-(n/2) companion matrices

A1 =


0 1

0
. . .

. . . 1

a 0

 and A2 =


0 1

0
. . .

. . . 1

−1/a 0


with 1 ≤ |a| < tan(π/n) + sec(π/n).
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For every complex monic polynomial p(z) = zn+a1z
n−1+ · · ·+an−1z+an (n ≥ 2),

there is associated an n-by-n matrix

0 1

0 ·

· ·

· ·

· ·

0 1

−an −an−1 · · · −a2 −a1


,(1)

called its companion matrix. In this paper, we consider properties of the numerical

ranges of such matrices. To be more precise, we study the number of line segments

on the boundary of such a numerical range. We show that for an n-by-n companion

matrix, this number is at most n, and we also completely determine all the companion

matrices which attain this number “n”. In the case of an odd n, this happens exactly

when the companion matrix is unitary, while, for even n, the condition is that the

matrix be unitarily equivalent to the direct sum of the two (n/2)-by-(n/2) companion

matrices 
0 1

0
. . .

. . . 1

a 0

 and


0 1

0
. . .

. . . 1

−1/a 0


for some complex number a satisfying 1 ≤ |a| < tan(π/n) + sec(π/n).

Recall that the numerical range W (A) of an n-by-n complex matrix A is by def-

inition the subset {〈Ax, x〉 : x ∈ Cn, ‖x‖ = 1} of the complex plane, where 〈·, ·〉 and

‖ · ‖ denote the standard inner product and norm in Cn. The numerical radius w(A)

of A is max {|z| : z ∈ W (A)}. It is known that the numerical range is always convex.
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For other properties, the reader can consult [6, Chapter 1].

The study of the numerical ranges of the companion matrices was started in [4].

Among other things, it was shown therein that an n-by-n companion matrix A whose

numerical range W (A) is a closed circular disc centered at the origin must be equal

to the Jordan block of size n:

Jn =


0 1

0
. . .

. . . 1

0


(cf. [4, Theorem 2.9]). We start with an improvement of this result by weakening the

assumption on A to “W (A) contains a closed circular disc D centered at the origin

with the boundary ∂W (A) intersecting ∂D at more than n points”. For any matrix

A, Re A denotes its real part (A + A∗)/2.

Theorem 1. If A is an n-by-n companion matrix with W (A) containing a closed

circular disc D centered at the origin and with ∂W (A) ∩ ∂D having more than n

points, then A = Jn.

Proof. This is done by modifying the proof of [4, Theorem 2.9]. Let A be as in (1)

and let r be the radius of D. For |z| = 1, consider the expansion of det(rIn−Re (zA))

as a trigonometric polynomial p(z) in z. Since zJn−1 is unitarily equivalent to Jn−1

for all z, |z| = 1, the numerical range W (zJn−1) is a circular disc with center the

origin and radius w(Re (zJn−1)). On the other hand, since Re (zJn−1) is an (n − 1)-

by-(n − 1) compression of Re (zA), we infer from our assumption on W (A) that

w(Re (zJn−1)) ≤ r ≤ w(Re (zA)) for all z, |z| = 1, and r = w(Re (zA)) for more than

n values of z. Also, w(Re (zJn−1)) lies between w(Re (zA)) and the second largest
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eigenvalue of Re (zA). Thus the same is true for r. Therefore, p(z) ≤ 0 for all z,

|z| = 1, and p(z) = 0 for n values of z. By a classical result of Fejér [7, p. 77,

Problem 40], there is a polynomial q of degree n such that |q(z)|2 = −p(z) for all z.

Since |q(z)|2 = −p(z) = 0 for more than n values of z, we conclude that q ≡ 0 and

thus p ≡ 0. In particular, the coefficients of zj in p for j = 0,±1, . . . ,±n are all zero.

Using the arguments for the second half of the proof of [4, Theorem 2.9], we can show

that the ak’s in A are all zero. Thus A = Jn as asserted. �

The preceding theorem is analogous to a result of Anderson’s: if A is an n-by-n

matrix whose numerical range W (A) is contained in a closed circular disc D such

that ∂W (A) ∩ ∂D has more than n points, then W (A) = D. A proof of this which

makes use of Fejér’s result on nonnegative trigonometric polynomials can be found in

[8, Lemma 6].

An immediate corollary of Theorem 1 is the following:

Theorem 2. For any n-by-n companion matrix A, there can be at most n points

in ∂W (A) ∩ ∂W (Jn−1).

In this case, Theorem 1 is applicable since Jn−1 is a compression of A and hence

W (A) contains the circular disc W (Jn−1) = {z ∈ C : |z| ≤ cos(π/n)} (cf. [5, Propo-

sition 1]).

Next we give an alternative proof of Theorem 2 based on the following Lemma

3. It is simpler and more direct. Moreover, the techniques involved are useful in

the determining of when ∂W (A)∩ ∂W (Jn−1) contains exactly n points for an n-by-n

companion matrix A.

4



Lemma 3. Let A be the companion matrix given by (1). If z0 cos(π/n) is a point

in ∂W (A) ∩ ∂W (Jn−1), where |z0| = 1, then z0 is a zero of the polynomial

p(z) = zn sin
π

n
−

n∑
j=2

zn−jaj sin
(n− j + 1)π

n
.

Proof. It is easily seen that cos(π/n) is an eigenvalue of Re (z0Jn−1) with the

corresponding unit eigenvector

x0 =

√
2

n

[
z0 sin

π

n
, z2

0 sin
2π

n
, . . . , zn−1

0 sin
(n− 1)π

n

]T

in Cn−1 (cf. [5, Proposition 1]). Let y0 = [x0, 0]T in Cn. Then

〈Re (z0A)y0, y0〉 = 〈Re (z0Jn−1)x0, x0〉 = cos
π

n
.

From this we deduce that cos(π/n) is an eigenvalue of Re (z0A) with the corresponding

eigenvector y0, that is, it satisfies (Re (z0A) − cos(π/n)In)y0 = 0. Carrying out the

computations, we obtain from the equality of the nth components the equation

zn
0 sin

(n− 1)π

n
−

n∑
j=2

zn−j
0 aj sin

(n− j + 1)π

n
= 0.

Hence z0 is a zero of p as asserted. �

Proof of Theorem 2. If ∂W (A) ∩ ∂W (Jn−1) has more than n points, then the

degree-n polynomial in Lemma 3 has more than n zeros. The fundamental theorem

of algebra dictates that, in particular, the leading coefficient sin(π/n) be zero, which

is a contradiction. �

We next consider the number of line segments on the boundary of the numerical

range of a companion matrix. The following theorem says that this number is at most
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the size of the matrix.

Theorem 4. An n-by-n companion matrix can have at most n line segments on

the boundary of its numerical range.

This is the consequence of the next lemma and Theorem 2.

Lemma 5. Let A be an n-by-n matrix and let B be the (n− 1)-by-(n− 1) subma-

trix of A obtained by deleting the last row and last column from A. Then every line

segment of ∂W (A) intersects ∂W (B).

Proof. Let [a, b] be a line segment in ∂W (A) and let K = {x ∈ Cn : 〈Ax, x〉 =

λ‖x‖2 for some λ in [a, b]}. It is known that K is a subspace of Cn with dimension

at least two (cf. [2, Lemma 2]). If L = Cn−1 ⊕ {0}, then

dim(K ∩ L) = dim K + dim L− dim(K + L)

≥ 2 + (n− 1)− n = 1.

Hence there is in K a unit vector x = x1 ⊕ 0 with x1 in Cn−1. Thus 〈Bx1, x1〉 =

〈Ax, x〉 ∈ [a, b], showing that [a, b] ∩ ∂W (B) 6= ∅. �

Proof of Theorem 4. Let A be an n-by-n companion matrix and let B = Jn−1.

Lemma 5 says that every line segment of ∂W (A) intersects the circle ∂W (B). Our

assertion then follows from Theorem 2. �

As the preceding proof shows, for an n-by-n companion matrix A every line seg-

ment on ∂W (A) intersects ∂W (Jn−1). The converse is in general false, namely, not

every point in ∂W (A) ∩ ∂W (Jn−1) arises as the intersection of a line segment on
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∂W (A) with ∂W (Jn−1). This is illustrated by the following example.

Example 6. Let A be the 3-by-3 companion matrix associated with the polynomial

p(z) = (z− (1/2))(z− 2ω)(z− 2ω2), where ω = (−1+
√

3i)/2. It can be checked that

A is unitarily equivalent to [1/2] ⊕
[

2ω 3

0 2ω2

]
. Thus W (A) is the elliptic disc with

foci 2ω and 2ω2 and minor axis of length 3. Hence ∂W (A) ∩ ∂W (J2) consists of the

singleton 1/2 and there is no line segment on the ellipse ∂W (A).

We remark that via Kippenhahn’s result we can show that the number of line

segments on ∂W (A) for an n-by-n matrix A is at most n(n−1)/2. It was asked in [1,

p. 108] whether this number can be further reduced to 2(n− 2). As of now, nobody

knows.

In the remaining part of this paper, we determine when the boundary of the nu-

merical range of an n-by-n companion matrix has exactly n line segments. This is

given by the following theorem.

Theorem 7. The following conditions are equivalent for an n-by-n (n ≥ 3) com-

panion matrix A:

(a) ∂W (A) has n line segments on it;

(b) ∂W (A) ∩ ∂W (Jn−1) consists of n points;

(c) for n odd,

A =


0 1

0
. . .

. . . 1

a 0
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for some a, |a| = 1, and, for n even,

A =



0 1

0 1

0 ·

· ·

· ·

· ·

· 1

a 0 · · · 0 b 0 · · · 0


,

where |a| = 1 and b is in the (n, (n/2) + 1)-position with |b| < 2 tan(π/n) and, if

b 6= 0, arg b = (arg a± π)/2;

(d) for n odd, A is unitary, and, for n even, A is unitarily equivalent to the direct

sum of the two (n/2)-by-(n/2) matrices

A1 =


0 1

0
. . .

. . . 1

c 0

 and A2 =


0 1

0
. . .

. . . 1

−1/c 0

 ,

where c is a complex number satisfying 1 ≤ |c| < tan(π/n) + sec(π/n).

The implication (a)⇒(b) follows from Lemma 5 and Theorem 2. The proofs for

the remaining implications (b)⇒(c), (c)⇒(d) and (d)⇒(a) are more laborious. We

start with the following lemma on an expression for some determinants associated

with the real part of the Jordan block. This is useful in proving the subsequent lem-

mas.

Lemma 8. For any k, 1 ≤ k ≤ n− 1, we have

det((cos
π

n
)Ik − Re Jk) =

1

2k
·
sin (k+1)π

n

sin π
n

.
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In particular, if dk, 1 ≤ k ≤ n − 1, denotes the above determinant and d0 = 1, then

dk = 2n−2k−2dn−k−2 for 0 ≤ k ≤ n− 3.

Proof. For k = n − 1, the asserted equality is obviously true since cos(π/n) is

an eigenvalue of Re Jn−1 and thus both sides are equal to zero. We next consider

k = n− 2. Since

cos π
n

−1
2

−1
2

cos π
n

·

· · ·

· · ·

· · −1
2

−1
2

cos π
n





sin π
n

sin 2π
n

·

·

·

sin (n−2)π
n


=



0

·

·

·

0

1
2
sin (n−1)π

n


,(2)

applying Cramer’s rule to solve for sin(π/n), we obtain

sin
π

n
=

(−1)n−1 1
2
sin (n−1)π

n
(−1

2
)n−3

dn−2

=
(1

2
)n−2 sin (n−1)π

n

dn−2

.

It follows that dn−2 = 1/2n−2 as asserted.

Assume now 1 ≤ k ≤ n − 3. In this case, we solve sin((k + 1)π/n) by Cramer’s

rule to obtain

sin
(k + 1)π

n
=

(−1)n−1+k 1
2
sin (n−1)π

n
· dk(−1

2
)n−3−k

dn−2

=
(1

2
)n−2−k sin (n−1)π

n
· dk

(1
2
)n−2

= 2k sin
π

n
· dk.

Our asserted expression for dk follows immediately. �

Note that if A is the n-by-n companion matrix (1), then, for any real θ, eiθA is
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unitarily equivalent to the companion matrix

0 1

0
. . .

. . . 1

0 1

−ane
inθ −an−1e

i(n−1)θ · · · −a2e
i2θ −a1e

iθ


.

This will be used in the proofs below.

Lemma 9. Let A be the n-by-n companion matrix (1). If ∂W (A) ∩ ∂W (Jn−1)

consists of n points, then aj = 0 for all j, 1 ≤ j ≤ n − 1, except possibly, when n is

even, for j = n/2.

Proof. Let zk cos(π/n), 1 ≤ k ≤ n, be the n points in ∂W (A) ∩ ∂W (Jn−1), where

the zk’s all have modulus one. Lemma 3 says that every zk is a zero of the polynomial

p(z) = zn sin
π

n
−

n∑
j=2

zn−jaj sin
(n− j + 1)π

n
,

which, by Lemma 8, is the same as

p(z) = sin
π

n
(zn −

n∑
j=2

zn−jaj2
n−jdn−j) ≡ sin

π

n
p1(z)(3)

where dm = det((cos(π/n))Im − Re Jm) for 1 ≤ m ≤ n − 2 and d0 = 1. Let σ0 = 1

and let

σj =
∑

k1<···<kj

zk1 · · · zkj
,

1 ≤ j ≤ n, be the jth elementary symmetric function of the zk’s. Hence we have

p1(z) =
n∏

k=1

(z − zk) =
n∑

j=0

(−1)jσjz
n−j.(4)
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Equating the corresponding coefficients of p1(z) in (3) and (4) yields σ1 = 0, σn =

(−1)n+1an and

σj = (−1)j+1aj2
n−jdn−j, 2 ≤ j ≤ n− 1.(5)

Since |zk| = 1 for all k, we have σj = σn−j/σn and thus

aj2
n−jdn−j = −anan−j2

jdj, 2 ≤ j ≤ n− 2.(6)

Note that σ1 = 0 implies that σn−1 = 0 and therefore an−1 = 0.

To prove that the remaining aj’s are also zero, we consider the (n− 1)-by-(n− 1)

matrices

Ak =



cos(π/n) −zk/2 0

−zk/2 · · an−2zk/2

· · · ...

· · −zk/2 a3zk/2

−zk/2 cos(π/n) (a2zk − zk)/2

0 an−2zk/2 · · · a3zk/2 (a2zk − zk)/2 cos(π/n) + Re (a1zk)


,

1 ≤ k ≤ n. Since |zk| = 1, the matrices zkJm and Jm are unitarily equivalent and

hence det((cos(π/n))Im −Re (zkJm)) = dm for 1 ≤ m ≤ n− 2. Expanding det Ak by

cofactors along its last row and then expanding the latter along their last columns,

we obtain

det Ak = (cos π
n

+ Re (a1zk))dn−2 − 1
4
|a2zk − zk|2dn−3

−2Re [
n−2∑
j=3

(a2zk−zk

2
)(−1)j(

ajzk

2
)(− zk

2
)j−2dn−j−1]

−
n−2∑
j=3

1
4
|ajzk|2dj−2dn−j−1

+2Re [
n−2∑
l=3

(−1)l+1(alzk

2
)(

n−2∑
j=l+1

(−1)j(
ajzk

2
)(− zk

2
)j−ldl−2dn−j−1)]

(7)

= d1dn−2 + Re (a1zk)dn−2 −
1

4
(|a2|2 − 2Re (a2z

2
k) + 1)dn−3
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−1

4

n−2∑
j=3

|aj|2dj−2dn−j−1

+2Re [
n−2∑
j=3

aj(
zk

2
)jdn−j−1 −

1

4

n−3∑
l=2

al(
n−2∑

j=l+1

aj(
zk

2
)j−ldl−2dn−j−1)]

= (d1dn−2 −
1

4
dn−3) + Re (a1zk)dn−2 +

1

2
Re (a2z

2
k)dn−3 −

1

4

n−2∑
j=2

|aj|2dj−2dn−j−1

+2Re [
n−2∑
j=3

(aj(
zk

2
)jdn−j−1 −

1

4

j−1∑
l=2

alaj(
zk

2
)j−ldl−2dn−j−1)]

= Re (a1zk)dn−2 +
1

2
Re (a2z

2
k)dn−3 −

1

4

n−2∑
j=2

|aj|2dj−2dn−j−1

+2Re [
n−2∑
j=3

(
aj

2j
)dn−j−1(z

j
k +

j−1∑
l=2

(−1)lσlz
j−l
k )],

where in the last equality we used the facts that d1dn−2− (1/4)dn−3 = dn−1 = 0, since

cos(π/n) is an eigenvalue of Re Jn−1, and

−al2
l−2dl−2 = −al2

n−ldn−l = (−1)lσl, 2 ≤ l ≤ n− 2,(8)

by Lemma 8 and (5). Since cos(π/n) is the maximum eigenvalue of Re (zkJn−1), we

have Ak ≥ 0 and thus det Ak ≥ 0 for all k. Hence

0 ≤
n∑

k=1

det Ak

= Re (a1s1)dn−2 +
1

2
Re (a2s2)dn−3 −

n

4

n−2∑
j=2

|aj|2dj−2dn−j−1(9)

+2Re [
n−2∑
j=3

(
aj

2j
)dn−j−1(sj +

j−1∑
l=2

(−1)lσlsj−l)],

where sj =
∑n

k=1 zj
k for 1 ≤ j ≤ n − 1. Note that s1 = σ1 = 0 and the sj’s and σl’s

are related by Newton’s identities:

sj = (

j−1∑
l=1

(−1)l+1σlsj−l) + (−1)j+1jσj, 1 ≤ j ≤ n.
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Hence

sj +

j−1∑
l=2

(−1)lσlsj−l = sj +

j−1∑
l=1

(−1)lσlsj−l

= (−1)j+1jσj = jaj2
j−2dj−2, 2 ≤ j ≤ n− 2,

by (8). Therefore, (9) becomes

0 ≤ |a2|2dn−3 −
n

4

n−2∑
j=2

|aj|2dj−2dn−j−1 + 2Re [
n−2∑
j=3

(
aj

2j
)dn−j−1jaj2

j−2dj−2](10)

=
n−2∑
j=2

2j − n

4
|aj|2dj−2dn−j−1.

For any real number x, we use bxc to denote the largest integer which is less than or

equal to x. The second half of the above summation, namely,

n−2∑
j=bn/2c+1

2j − n

4
|aj|2dj−2dn−j−1,

equals
b(n−1)/2c∑

j=2

2(n− j)− n

4
|an−j|2dn−j−2dj−1,(11)

which we want to express as a linear combination of the |aj|2dj−2dn−j−1’s as in the

first half. For this purpose, note that |aj|2n−jdn−j = |an−j|2jdj for 2 ≤ j ≤ n − 2

from (6). Therefore,

|an−j|2dn−j−2dj−1

= |aj|222n−4j
d2

n−j

d2
j

dn−j−2dj−1

= |aj|222n−4j (22j−n−2dj−2)
2

d2
j

(22j−n−2dj)(2
n−2jdn−j−1)

= |aj|2dj−2dn−j−1 ·
1

4

dj−2

dj

= |aj|2dj−2dn−j−1 ·
sin (j−1)π

n

sin (j+1)π
n

13



with the aid of Lemma 8. Plugging this into (11), we obtain from (10) the nonnega-

tivity of

−
b(n−1)/2c∑

j=2

(
n− 2j

4
)(1−

sin (j−1)π
n

sin (j+1)π
n

)|aj|2dj−2dn−j−1.

Since all the terms except |aj|2 in the above summation are strictly positive, we con-

clude that aj = 0 for all j, 2 ≤ j ≤ b(n − 1)/2c. By (6), we also have aj = 0 for

bn/2c+ 1 ≤ j ≤ n− 2. To complete the proof, we need only show that a1 = 0. Since

|an| = 1, we may assume, by the remark in the paragraph preceding Lemma 9, that

an = −1. Consider the cases of odd and even n separately.

Assume first that n is odd. Then, from (3),

p1(z) = zn − 2an−1d1z − an = zn + 1.

We assume that the zeros of p1 are given by zk = e(2k−1)πi/n, 1 ≤ k ≤ n. Now we

obtain from (7) that det Ak = Re (a1zk)dn−2. Hence

0 ≤ Re (a1zk) = cos
(2k − 1)π

n
Re a1 + sin

(2k − 1)π

n
Im a1

for all k, 1 ≤ k ≤ n. Replacing k by n− k + 1 in the above, we also have

cos
(2k − 1)π

n
Re a1 − sin

(2k − 1)π

n
Im a1 ≥ 0.

Thus cos((2k − 1)π/n)Re a1 ≥ 0 for all k. Since cos((2k − 1)π/n) can be positive

or negative for different values of k, we infer that Re a1 = 0. Then, from above,

± sin((2k − 1)π/n)Im a1 ≥ 0 for all k, which implies that Im a1 = 0. Hence, as as-

serted, a1 = 0 for odd n.

Finally, assume that n is even. In this case, we deduce from (6) that an/2 =

−anan/2 = an/2, that is, an/2 is real, and from (3) that

p1(z) = zn − 2n/2an/2dn/2z
n/2 + 1
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= (zn/2 − z+)(zn/2 − z−),

where z± = (2n/2an/2dn/2 ± (2na2
n/2d

2
n/2 − 4)1/2)/2. Since the zeros zk’s of p1 have

modulus one, we have |z±| = 1, which is equivalent to |2n/2an/2dn/2| ≤ 2. Hence, in

particular, Re z± = 2(n/2)−1an/2dn/2. On the other hand, from (7) we have

det Ak = Re (a1zk)dn−2 −
1

4
a2

n/2d(n/2)−2d(n/2)−1

+2Re (
an/2

2n/2
d(n/2)−1z

n/2
k ),

where, since z
n/2
k = z±, the last term can be simplified as

2Re (
an/2

2n/2
d(n/2)−1z

n/2
k ) = 2

an/2

2n/2
d(n/2)−1Re z±

= 2
an/2

2n/2
d(n/2)−12

(n/2)−1an/2dn/2

= a2
n/2d(n/2)−1dn/2.

Hence

0 ≤ det Ak = Re (a1zk)dn−2 − a2
n/2d(n/2)−1(

1

4
d(n/2)−2 − dn/2)

= Re (a1zk)dn−2

by Lemma 8. Because dn−2 > 0, we have Re (a1zk) ≥ 0 for all k, 1 ≤ k ≤ n. If z+ =

eiθ0 for some real θ0, then z− = e−iθ0 and the zk’s are equal to uj ≡ e(2θ0+4jπ)/n and

vj ≡ e(−2θ0+4jπ)/n, 0 ≤ j ≤ (n/2)−1. Since uj = v(n/2)−j, both Re (a1uj) and Re (a1uj)

(= Re (a1v(n/2)−j)) are nonnegative. Hence (Re a1) cos((2θ0 + 4jπ)/n) ≥ 0 for all j.

Since different values of j yield positive and negative values of cos((2θ0 +4jπ)/n), we

infer that Re a1 = 0. Then

Re (a1uj) = (Im a1) sin
2θ0 + 4jπ

n
≥ 0

and

Re (a1uj) = −(Im a1) sin
2θ0 + 4jπ

n
≥ 0

15



for all j. Hence Im a1 = 0 and, therefore, a1 = 0. This completes the proof. �

We now resume the proof of Theorem 7.

Proof of Theorem 7, (b)⇒(c). If n is odd, then, as proved in Lemma 9,

A =


0 1

0
. . .

. . . 1

−an 0


with |an| = 1 as required.

Now assume that n is even. From Lemma 9, we have

A =



0 1

0 ·

· ·

· ·

· ·

· ·

· 1

−an 0 · · · 0 −an/2 0 · · · 0


with |an| = 1. Let an = eiθ0 with θ0 real and let θ = (π−θ0)/n. Then eiθA is unitarily

equivalent to

A′ =



0 1

0 ·

· ·

· ·

· ·

· ·

· 1

1 0 · · · 0 −ian/2e−iθ0/2 0 · · · 0


(cf. the paragraph before Lemma 9). If b′ = −ian/2e

−iθ0/2, then Lemma 3 as applied

to A′ yields that the zeros of the polynomial p1(z) = zn + zn/2b′ cot(π/n) + 1 are
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distinct and have modulus one. However, the zeros of p1 are the (n/2)th roots of

(−b′ cot(π/n) ± (b′2 cot2(π/n) − 4)1/2)/2. Thus we must have |b′ cot(π/n)| < 2 or

|b′| < 2 tan(π/n). On the other hand, (6) as applied to A′ with j = n/2 yields that

b′ (= −ian/2e
−iθ0/2) is real. Hence for nonzero b′ we have arg an/2 = (θ0 ± π)/2. Let-

ting a = −an and b = −an/2, we conclude that |a| = 1, |b| < 2 tan(π/n) and, if b 6= 0,

arg b = (θ0 ± π)/2. �

We next prove the implication (c)⇒(d) of Theorem 7.

Proof of Theorem 7, (c)⇒(d). We need only prove the case for even n. Considering

eiθA with θ = (π − arg a)/n instead of A, we may assume that a = 1 and b is real

(cf. the paragraph before Lemma 9). Let c = (b± (b2 + 4)1/2)/2 with the “+” sign if

b ≥ 0 and “−” sign if b < 0. Then

1 ≤ |c| = 1

2
|b± (b2 + 4)1/2|

≤ 1

2
(|b|+ |b2 + 4|1/2) < tan

π

n
+ sec

π

n

and b = c− (1/c). Let d = 1/(1 + c2)1/2 and

U = d

 In/2 cIn/2

cIn/2 −In/2

 .

Then U is unitary and UA = (A1 ⊕ A2)U , completing the proof. �

To prove (d)⇒(a) of Theorem 7, we need the following lemma for even n.
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Lemma 10. Let

A1 =


0 1

0
. . .

. . . 1

c 0

 and A2 =


0 1

0
. . .

. . . 1

−1/c 0


be (n/2)-by-(n/2) matrices, where n (≥ 4) is even and c is real satisfying 1 ≤ c <

tan(π/n)+ sec(π/n). Let z0 be a zero of p1(z) = zn + zn/2(c− (1/c)) cot(π/n)+1 and

let

x =

[
z0 sin

π

n
, z2

0 sin
2π

n
, . . . , z

n/2
0 sin

n
2
π

n

]T

,

y =

[
z

(n/2)+1
0 cos

π

n
, z

(n/2)+2
0 cos

2π

n
, . . . , zn−1

0 cos
(n

2
− 1)π

n
, 0

]T

,

u = (x + cy)/‖x + cy‖ and v = (cx− y)/‖cx− y‖ be vectors in Cn/2. Then

〈z0A1u, u〉 = cos
π

n
− i

ncIm (z
n/2
0 ) sin π

n
n
2
(1 + c2) + (1− c2) csc2(π

n
)

and

〈z0A2v, v〉 = cos
π

n
+ i

ncIm (z
n/2
0 ) sin π

n
n
2
(1 + c2) + (c2 − 1) csc2(π

n
)
.

Proof. Since 1 ≤ c < tan(π/n) + sec(π/n), we have 0 ≤ c− tan(π/n) < sec(π/n)

and therefore c2−2c tan(π/n)+tan2(π/n) < sec2(π/n) or c2−2c tan(π/n) < 1. Hence

(c− (1/c)) cot(π/n) < 2. Thus

z
n/2
0 = −1

2
(c− 1

c
) cot

π

n
± 1

2
i(4− (c− 1

c
)2 cot2 π

n
)1/2

and, in particular, z0 has modulus one. Since

〈z0A1u, u〉 =
1

‖x + cy‖2
(〈z0A1x, x〉+ c〈z0A1x, y〉+ c〈z0A1y, x〉+ c2〈z0A1y, y〉),
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we need compute the values of ‖x+ cy‖ and the four inner products above. To obtain

the former, note that

‖x‖2 =

n/2∑
j=1

|z0|2j sin2(
jπ

n
)

=
1

2

n/2∑
j=1

(1− cos
2jπ

n
) =

n

4
− 1

2
Re (

1− e(1+(2/n))πi

1− e2πi/n
− 1)

=
n

4
− 1

2
(−1) =

1

4
(n + 2),

‖y‖2 =

(n/2)−1∑
j=1

|z0|n+2j cos2(
jπ

n
)

=
1

2

(n/2)−1∑
j=1

(1 + cos
2jπ

n
) =

1

4
(n− 2),

〈x, y〉 = z
n/2
0

(n/2)−1∑
j=1

sin(
jπ

n
) cos(

jπ

n
)

=
1

2
z

n/2
0

(n/2)−1∑
j=1

sin
2jπ

n
=

1

2
z

n/2
0 Im (

1− eπi

1− e2πi/n
− 1)

=
1

2
z

n/2
0 cot

π

n
,

and

‖x + cy‖2 = ‖x‖2 + 2cRe 〈x, y〉+ c2‖y‖2

=
1

4
(n + 2) + c cot

π

n
· Re (z

n/2
0 ) +

1

4
(n− 2)c2

=
n

4
(1 + c2) +

1

2
(1− c2) + c cot

π

n
(−1

2
(c− 1

c
) cot

π

n
)

=
n

4
(1 + c2) +

1

2
(1− c2) csc2(

π

n
).

Moreover, we have

〈z0A1x, x〉 = (

(n/2)−1∑
j=1

sin
jπ

n
sin

(j + 1)π

n
) + cz

n/2
0 sin

π

n
sin

π

2
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= cz
n/2
0 sin

π

n
− 1

2

(n/2)−1∑
j=1

(cos
(2j + 1)π

n
− cos

π

n
)

= cz
n/2
0 sin

π

n
− 1

2
Re (e3πi/n · 1− e(2πi/n)(n−2)/2

1− e2πi/n
) +

1

2
(
n

2
− 1) cos

π

n

= cz
n/2
0 sin

π

n
+

n

4
cos

π

n
,

〈z0A1x, y〉 = z
n/2
0

(n/2)−1∑
j=1

sin
(j + 1)π

n
cos

jπ

n

=
1

2
z

n/2
0

(n/2)−1∑
j=1

(sin
(2j + 1)π

n
+ sin

π

n
)

=
1

2
z

n/2
0 (Im (e3πi/n · 1− e(2πi/n)(n−2)/2

1− e2πi/n
) + (

n

2
− 1) sin

π

n
)

=
1

2
z

n/2
0 (csc

π

n
+ (

n

2
− 2) sin

π

n
),

〈z0A1y, x〉 = z
n/2
0 (

(n/2)−2∑
j=1

cos
(j + 1)π

n
sin

jπ

n
) + c cos

π

n

= c cos
π

n
+

1

2
z

n/2
0

(n/2)−2∑
j=1

(sin
(2j + 1)π

n
− sin

π

n
)

= c cos
π

n
+

1

2
z

n/2
0 ((csc

π

n
− sin

π

n
− sin

(n− 1)π

n
)− (

n

2
− 2) sin

π

n
)

= c cos
π

n
+

1

2
z

n/2
0 (csc

π

n
− n

2
sin

π

n
),

and

〈z0A1y, y〉 =

(n/2)−2∑
j=1

cos
(j + 1)π

n
cos

jπ

n

=
1

2

(n/2)−2∑
j=1

(cos
(2j + 1)π

n
+ cos

π

n
)

= (
n

4
− 1) cos

π

n
.

Hence

〈z0A1u, u〉 =
1

‖x + cy‖2
[(cz

n/2
0 sin

π

n
+

n

4
cos

π

n
) +

1

2
cz

n/2
0 (csc

π

n
+ (

n

2
− 2) sin

π

n
)

20



+c(c cos
jπ

n
+

1

2
z

n/2
0 (csc

π

n
− n

2
sin

π

n
)) + c2(

n

4
− 1) cos

π

n
]

=
1

‖x + cy‖2
(
n

4
(1 + c2) cos

π

n
+

1

2
c(z

n/2
0 + z

n/2
0 ) csc

π

n
+

n

4
c(z

n/2
0 − z

n/2
0 ) sin

π

n
)

=
1

‖x + cy‖2
(
n

4
(1 + c2) cos

π

n
+ cRe (z

n/2
0 ) csc

π

n
− 1

2
nciIm (z

n/2
0 ) sin

π

n
)

=
1

‖x + cy‖2
(
n

4
(1 + c2) cos

π

n
− 1

2
c(c− 1

c
) cot

π

n
csc

π

n
− 1

2
nciIm (z

n/2
0 ) sin

π

n
)

=
1

‖x + cy‖2
((

n

4
(1 + c2) +

1

2
(1− c2) csc2(

π

n
)) cos

π

n
− 1

2
nciIm (z

n/2
0 ) sin

π

n
)

= cos
π

n
− i

ncIm (z
n/2
0 ) sin π

n
n
2
(1 + c2) + (1− c2) csc2(π

n
)

as asserted.

In a similar fashion, we derive that

‖cx− y‖2 =
n

4
(1 + c2) +

1

2
(c2 − 1) csc2(

π

n
),

〈z0A2x, x〉 = −1

c
z

n/2
0 sin

π

n
+

n

4
cos

π

n
,

〈z0A2x, y〉 =
1

2
z

n/2
0 (csc

π

n
+ (

n

2
− 2) sin

π

n
),

〈z0A2y, x〉 = −1

c
cos

π

n
+

1

2
z

n/2
0 (csc

π

n
− n

2
sin

π

n
),

and

〈z0A2y, y〉 = (
n

4
− 1) cos

π

n
.

The asserted expression for 〈z0A2v, v〉 can be proved analogously as before. �

Finally, we are ready for the proof of (d)⇒(a) in Theorem 7.
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Proof of Theorem 7, (d)⇒(a). If A is unitary, then

A =


0 1

0
. . .

. . . 1

−an 0


with |an| = 1 and ∂W (A) is a regular n-gon (cf. [4, Corollary 1.2]). For the re-

maining part of the proof, we assume that n is even and A = A1 ⊕ A2, where A1

and A2 are as in (d). Multiplying A by an eiθ with θ = − arg c, we may further

assume that c is positive. If c = 1, then A1 and A2, and hence A, are all unitary,

in which case ∂W (A) has n line segments. Under the hypotheses that n ≥ 4 and

1 < c < tan(π/n) + sec(π/n), we have 0 < (c − (1/c)) cot(π/n) < 2. Since the zeros

of the polynomial p1(z) = zn + zn/2(c − (1/c)) cot(π/n) + 1 are the (n/2)th roots of

(−(c− (1/c)) cot(π/n)± ((c− (1/c))2 cot2(π/n)− 4)1/2)/2, we infer that they are all

distinct and have modulus one. These we denote by zk, 1 ≤ k ≤ n.

We now show that cos(π/n) is a multiple eigenvalue of Re (zkA) for any k. Indeed,

if

xk =

[
zk sin

π

n
, z2

k sin
2π

n
, . . . , z

n/2
k sin

n
2
π

n

]T

,

yk =

[
z

(n/2)+1
k cos

π

n
, z

(n/2)+2
k cos

2π

n
, . . . , zn−1

k cos
(n

2
− 1)π

n
, 0

]T

,

uk = (xk + cyk)/‖xk + cyk‖ and vk = (cxk − yk)/‖cxk − yk‖, then it is easily checked

that Re (zkA1)uk = cos(π/n)uk and Re (zkA2)vk = cos(π/n)vk, where for the equal-

ity of the (n/2)th components we need that zk be a zero of p1. Hence cos(π/n) is a

multiple eigenvalue of Re (zkA).

Next note that cos(π/n) is the maximum eigenvalue of Re (zkA). To prove this,

let c1 ≥ c2 ≥ · · · ≥ cn and d1 ≥ d2 ≥ · · · ≥ dn−1 be the eigenvalues of Re (zkA) and
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Re (zkJn−1), respectively. Since Re (zkJn−1) is unitarily equivalent to Re Jn−1, the

dj’s are all distinct and d1 = cos(π/n) (cf. [3, Corollary 2.7]). On the other hand, we

proved in the preceding paragraph that cos(π/n) = cj0 = cj0+1 for some j0. If j0 > 1,

then from the interlacing of the cj’s and the dj’s: c1 ≥ d1 ≥ c2 ≥ d2 ≥ · · · ≥ cn−1 ≥

dn−1 ≥ cn, we obtain d1 = c2 = d2 = · · · = cj0+1 = cos(π/n), which contradicts the

distinctness of the dj’s. Hence j0 ≤ 1 and therefore c1 = cos(π/n) as required. In

particular, we have cos(π/n) = max W (Re (zkA)) = max Re W (zkA).

Finally, we check that W (A) has n line segments on its boundary. For this,

consider u′
k = uk ⊕ 0 and v′k = 0⊕ vk as vectors in Cn. Then

〈zkAu′
k, u

′
k〉 = 〈zkA1uk, uk〉 = cos

π

n
− i

ncIm (z
n/2
k ) sin π

n
n
2
(1 + c2) + (1− c2) csc2(π

n
)

and

〈zkAv′k, v
′
k〉 = 〈zkA2vk, vk〉 = cos

π

n
+ i

ncIm (z
n/2
k ) sin π

n
n
2
(1 + c2) + (c2 − 1) csc2(π

n
)

by Lemma 10. Hence

Re 〈zkAu′
k, u

′
k〉 = Re 〈zkAv′k, v

′
k〉 = cos

π

n
= max Re W (zkA)

and

Im 〈zkAu′
k, u

′
k〉 6= Im 〈zkAv′k, v

′
k〉.

Therefore, the vertical line Re z = cos(π/n) yields a line segment on ∂W (zkA). Thus

∂W (A) has n line segments given by Re (zkz) = cos(π/n), 1 ≤ k ≤ n. This completes

the proof. �
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