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Abstract
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For every complex monic polynomial p(z) = 2" +a12" '+ -+ a,_12+a, (n > 2),

there is associated an n-by-n matrix

0 1
0
(1) ,
0 1
—Qp —Qp-1 c - —Gy —ap

called its companion matriz. In this paper, we consider properties of the numerical
ranges of such matrices. To be more precise, we study the number of line segments
on the boundary of such a numerical range. We show that for an n-by-n companion
matrix, this number is at most n, and we also completely determine all the companion
matrices which attain this number “n”. In the case of an odd n, this happens exactly
when the companion matrix is unitary, while, for even n, the condition is that the

matrix be unitarily equivalent to the direct sum of the two (n/2)-by-(n/2) companion

matrices

and
1 IR |

a 0 —1/a 0

for some complex number a satisfying 1 < |a| < tan(w/n) + sec(m/n).

Recall that the numerical range W (A) of an n-by-n complex matrix A is by def-
inition the subset {(Az,z) : x € C", ||z|| = 1} of the complex plane, where (-,-) and
| - || denote the standard inner product and norm in C". The numerical radius w(A)

of Ais max{|z|:z € W(A)}. It is known that the numerical range is always convex.

2



For other properties, the reader can consult [6, Chapter 1].

The study of the numerical ranges of the companion matrices was started in [4].
Among other things, it was shown therein that an n-by-n companion matrix A whose
numerical range W (A) is a closed circular disc centered at the origin must be equal

to the Jordan block of size n:

(cf. [4, Theorem 2.9]). We start with an improvement of this result by weakening the
assumption on A to “W(A) contains a closed circular disc D centered at the origin
with the boundary W (A) intersecting 0D at more than n points”. For any matrix
A, Re A denotes its real part (A + A*)/2.

Theorem 1. If A is an n-by-n companion matriz with W (A) containing a closed
circular disc D centered at the origin and with OW (A) N 0D having more than n
points, then A = J,.

Proof. This is done by modifying the proof of [4, Theorem 2.9]. Let A be as in (1)
and let r be the radius of D. For |z| = 1, consider the expansion of det(r,, —Re (zA))
as a trigonometric polynomial p(z) in z. Since z.J,_; is unitarily equivalent to J,_4
for all z, |z] = 1, the numerical range W (zJ,_1) is a circular disc with center the
origin and radius w(Re (zJ,-1)). On the other hand, since Re (2J,,—1) is an (n — 1)-
by-(n — 1) compression of Re(zA), we infer from our assumption on W (A) that
w(Re (z2J,-1)) <r <w(Re(zA)) for all z, |z| =1, and r = w(Re (2A4)) for more than
n values of z. Also, w(Re(zJ,-1)) lies between w(Re (zA)) and the second largest

3



eigenvalue of Re (zA4). Thus the same is true for r. Therefore, p(z) < 0 for all z,
|z] = 1, and p(z) = 0 for n values of z. By a classical result of Fejér [7, p. 77,

* =

Problem 40], there is a polynomial g of degree n such that |g(z) —p(z) for all z.

Since |q(2)|? = —p(z) = 0 for more than n values of z, we conclude that ¢ = 0 and
thus p = 0. In particular, the coefficients of 27 in p for j = 0,41, ..., 4n are all zero.
Using the arguments for the second half of the proof of [4, Theorem 2.9], we can show

that the a;’s in A are all zero. Thus A = J,, as asserted. [ |

The preceding theorem is analogous to a result of Anderson’s: if A is an n-by-n
matriz whose numerical range W (A) is contained in a closed circular disc D such
that OW (A) N 0D has more than n points, then W (A) = D. A proof of this which
makes use of Fejér’s result on nonnegative trigonometric polynomials can be found in

8, Lemma 6].

An immediate corollary of Theorem 1 is the following:

Theorem 2. For any n-by-n companion matrix A, there can be at most n points

in OW (A) N OW (Jo_).

In this case, Theorem 1 is applicable since J,,_; is a compression of A and hence
W (A) contains the circular disc W (J,,—1) = {z € C: |z| < cos(m/n)} (cf. [5, Propo-

sition 1]).

Next we give an alternative proof of Theorem 2 based on the following Lemma
3. It is simpler and more direct. Moreover, the techniques involved are useful in
the determining of when OW (A) N OW (J,,—1) contains exactly n points for an n-by-n

companion matrix A.



Lemma 3. Let A be the companion matriz given by (1). If zocos(m/n) is a point
in OW(A) NOW (J,—1), where |zo| = 1, then zy is a zero of the polynomial
T o~~~ .. . (n—j+Drm
— g "Jq.sin ~— 2 /7
p(z) = 2" sin " Zz a;sin - :
=2
Proof. 1t is easily seen that cos(m/n) is an eigenvalue of Re (ZpJ,—1) with the
corresponding unit eigenvector

T
2 .M, . 2m w1 . (m—1m
o =/ — |zosin—, z5sin —, ..., 25 sin ————
n n n

n
in C"~! (cf. [5, Proposition 1]). Let yo = [x0,0]7 in C*. Then

s
(Re (ZoA)yo, vo) = (Re (ZoJn—1)x0, xo) = cos e

From this we deduce that cos(w/n) is an eigenvalue of Re (ZoA) with the corresponding
eigenvector yo, that is, it satisfies (Re (ZgA) — cos(mw/n)l,)yo = 0. Carrying out the
computations, we obtain from the equality of the nth components the equation

n

-1 . —i+1
PR LN o F M it e L

n - n
Jj=2

Hence zj is a zero of p as asserted. [ |

Proof of Theorem 2. If OW(A) N OW (J,-1) has more than n points, then the
degree-n polynomial in Lemma 3 has more than n zeros. The fundamental theorem
of algebra dictates that, in particular, the leading coefficient sin(7/n) be zero, which

is a contradiction. [ |

We next consider the number of line segments on the boundary of the numerical

range of a companion matrix. The following theorem says that this number is at most



the size of the matrix.

Theorem 4. An n-by-n companion matriz can have at most n line segments on

the boundary of its numerical range.

This is the consequence of the next lemma and Theorem 2.

Lemma 5. Let A be an n-by-n matriz and let B be the (n — 1)-by-(n — 1) subma-
triz of A obtained by deleting the last row and last column from A. Then every line

segment of OW (A) intersects OW (B).

Proof. Let [a,b] be a line segment in OW(A) and let K = {z € C" : (Az,z) =
Al|z||? for some X in [a,b]}. Tt is known that K is a subspace of C" with dimension

at least two (cf. [2, Lemma 2]). If L = C"~! & {0}, then

dim(KNL)=dimK + dim L — dim(K + L)

> 24 (n—1)—n=1

Hence there is in K a unit vector x = x; & 0 with z; in C""!. Thus (Bzy,x) =

(Az,z) € [a,b], showing that [a,b] N OW (B) # 0. |

Proof of Theorem 4. Let A be an n-by-n companion matrix and let B = J,,_;.
Lemma 5 says that every line segment of OW (A) intersects the circle OW (B). Our

assertion then follows from Theorem 2. [ |

As the preceding proof shows, for an n-by-n companion matrix A every line seg-
ment on W (A) intersects OW (J,—1). The converse is in general false, namely, not

every point in OW(A) N OW (J,—1) arises as the intersection of a line segment on



OW (A) with OW (J,,—1). This is illustrated by the following example.

Example 6. Let A be the 3-by-3 companion matrix associated with the polynomial
p(z) = (z— (1/2))(z — 2w) (2 — 2w?), where w = (—14+/3i)/2. It can be checked that
2 222 } Thus W (A) is the elliptic disc with
foci 2w and 2w? and minor axis of length 3. Hence OW (A) N OW (J;) consists of the

A is unitarily equivalent to [1/2] &

singleton 1/2 and there is no line segment on the ellipse OW (A).

We remark that via Kippenhahn’s result we can show that the number of line
segments on OW (A) for an n-by-n matrix A is at most n(n —1)/2. It was asked in [1,
p. 108] whether this number can be further reduced to 2(n — 2). As of now, nobody

knows.

In the remaining part of this paper, we determine when the boundary of the nu-
merical range of an n-by-n companion matrix has exactly n line segments. This is

given by the following theorem.

Theorem 7. The following conditions are equivalent for an n-by-n (n > 3) com-
panion matriz A:

(a) OW(A) has n line segments on it;

(b) OW (A) NOW (J,—1) consists of n points;

(c) for n odd,




for some a, |a| = 1, and, for n even,

0 1
0 1

a 0 -+ 0 b 0 - 0

where |a| = 1 and b is in the (n,(n/2) + 1)-position with |b| < 2tan(mw/n) and, if
b#0,argb= (arga £ m)/2;
(d) for n odd, A is unitary, and, for n even, A is unitarily equivalent to the direct

sum of the two (n/2)-by-(n/2) matrices

Alz h and AQ: h s
o1 o1

¢ 0 —1/c 0

where ¢ is a complex number satisfying 1 < |c| < tan(w/n) + sec(mw/n).

The implication (a)=-(b) follows from Lemma 5 and Theorem 2. The proofs for
the remaining implications (b)=-(c), (¢)=-(d) and (d)=-(a) are more laborious. We
start with the following lemma on an expression for some determinants associated
with the real part of the Jordan block. This is useful in proving the subsequent lem-

mas.

Lemma 8. For any k, 1 <k <n —1, we have

- (kD)7
T 1 smm-—-—
det((cos E)[k — Re Jk) = ? : W



In particular, if di, 1 < k < n — 1, denotes the above determinant and dy = 1, then

dp =2"2k"2d, 1 5 for 0 <k <n—3.

Proof. For k = n — 1, the asserted equality is obviously true since cos(w/n) is
an eigenvalue of Re J,_1 and thus both sides are equal to zero. We next consider

k =n — 2. Since

cosT 1 sin = 0
n 2 n
—% cosZT . sin 2=
n n

(2) = ;
1
5 0
. ) . —1
L 2 n | L n i L 2 n i

applying Cramer’s rule to solve for sin(m/n), we obtain

— s (n=1)m n— -2 . (n—=D)m
sinﬁ _ (—=1)" 1%sm—( n) (—%) 3 _ (%)” 2 gjp (= n)

n dy_o dp—2

It follows that d,_» = 1/2""% as asserted.

Assume now 1 < k < n — 3. In this case, we solve sin((k + 1)7/n) by Cramer’s

rule to obtain

Sin (k + 1)7T _ (—1)77»—14-/6% Sin w . dk(—%)n_3—k

n dn—2
1\n—2—Fk i, (n=D)7
s sin ~—— - d
= (2) T % k:2ksinz-dk.
(5)17,—2 n
Our asserted expression for dj follows immediately. [ |

Note that if A is the n-by-n companion matrix (1), then, for any real 0, ¢ A is



unitarily equivalent to the companion matrix

0 1
0
1
0 1
_aneinO _an_lei(n—l)é‘ _a2ei29 _aleiG

This will be used in the proofs below.

Lemma 9. Let A be the n-by-n companion matriz (1). If OW(A) N OW (J,—1)
consists of n points, then a; = 0 for all j, 1 < 7 < n —1, except possibly, when n is

even, for j =mn/2.

Proof. Let zcos(m/n), 1 < k <n, be the n points in OW (A) N OW (J,_1), where

the z;’s all have modulus one. Lemma 3 says that every z; is a zero of the polynomial

n .
. i n—=j+)rm
p(z) = 2" sin . Z 2" a;sin - ,
7j=2
which, by Lemma 8, is the same as
. Tn - n—j n—j )
(3) p(z) = sin g(z - Z 2" a;2"d,_;) = sin Epl(z)

=2
where d,,, = det((cos(mw/n))I,, — ReJ,,) for 1 <m <n —2and dy = 1. Let gp =1
and let

0’]: Z Zkl...zkj’
k1<...<kj
1 < j < n, be the jth elementary symmetric function of the z;’s. Hence we have

n

(4) pz) =16 -2) =D (~1Yo" .

k=1 j=0

10



Equating the corresponding coefficients of p;(z) in (3) and (4) yields oy = 0, 0, =
(—1)"*1a, and

(5) oj = (=1)*q;2"d, ;, 2<j<n-1
Since |zx| = 1 for all k, we have 0; = 7,,_; /7, and thus
(6) an"_jdn_j = —anan_ijdj, 2 S] S n—2.

Note that o; = 0 implies that 0,,_1 = 0 and therefore a,,_; = 0.

To prove that the remaining a;’s are also zero, we consider the (n — 1)-by-(n — 1)

matrices
cos(m/n)  —Z/2 0
—Zk/2 . : En_gzk/Q
A = )
—zk/Q E3Z]€/2
—21/2 cos(m/n) (Goz — Zk) /2
0 Up_9Zk/2 -+ a3Zp/2 (agZx — 21)/2 cos(mw/n) + Re (a1Zy)

1 < k < n. Since |z;| = 1, the matrices ZyJ,, and J,, are unitarily equivalent and

hence det((cos(m/n)) I, — Re (ZxJm)) = d,, for 1 < m < n — 2. Expanding det A; by

cofactors along its last row and then expanding the latter along their last columns,

we obtain
det A, = (cosZ + Re(a1Zg))dn—2 — 1|aoZk — 2i|*dp—3
n=2 Zz irajz z -
—236[2(%)(—1)3(%)(—7’“)] 2dpj 1]
j=
@
— > ilaZPd;adn
j=3
n—2 _ n—2 Hez il
+2Re [X0 (=1)FHEE)( 3 (1) (455 (=) di—adp—j )]
=3 j=1+1
1
= dldn_Q + Re (alzk)dn_z — Z(|a2|2 — 2R€ (agzi) + 1>dn_3

11



n—2
1
~1 E |a;?d;_odn—j
i=

3
)
]
w
i
N

—|—2Re[ J(sz J

<.
Il
w
~
I|
V)
<.
Il
—
+
—

1 1
= (dldn,Q — Z—ldnfg) + Re (alzk)dn,g + §R€ (agzi)dn,;& — ‘CLj’de,an,j,1

B~ —
.

[|

no

3
[\

2k 14 2k
+2Re[) (@ j(f)ydn—j—l ~ 1 Zaﬁj(f)ﬂdmdn—j—l)]
=2

<.
Il
w

1 1
= Re (alik)dn,g + §Re (aﬁz)dn,g — Z_l JZQ |aj’2dj72dnfjfl

[\
—_

3
<.

. | .
+2Re [ (57)dn-j-1(%; + (—D'ouz )],
l

S,
Il
w
I
I\

where in the last equality we used the facts that dyd, o — (1/4)d,_35 = d,_1 = 0, since

cos(m/n) is an eigenvalue of Re J,,_1, and

(8) —a;2 7%y = —a;2" My = (—1)loy, 2<1<n-—2,

by Lemma 8 and (5). Since cos(m/n) is the maximum eigenvalue of Re (ZxJ,,—1), we
have A; > 0 and thus det A;, > 0 for all k. Hence

0 S Z det Ak
k=1

(9) = Re (algl)dn 2+ 2Re (CL252 Z|CLJ’ dj an j—1

n—2

CL
—FQRG[Z(Q n—j—1 8J+Z 0'18] l

7j=3
where s; = ZZ:1 zi for 1 < j <n—1. Note that s; = 01 = 0 and the s;’s and o;’s
are related by Newton’s identities:

j—1

si=0 (=) asj) + (1) o, 1<j<n
=1

12



Hence
Jj—1 Jj—1
55+ Z(—l)lﬂzsj—l =5+ Y (=D'aisj
I=1
= (- 1)J+1j0 = ja;2'7%d; s, 2<j<n-—2

by (8). Therefore, (9) becomes

V]

n—

n—2 —
n Q5 . i
(10) 0 < aslPdns = 5 > lajPdjadnjs + 2Re [D_(5H)dnjrja;2>d; )

j=2 j=3

n—2 .

27 —n
- Tl djadn .
j=2

For any real number z, we use |z | to denote the largest integer which is less than or

equal to x. The second half of the above summation, namely,

n—2

27 —n
> Tl djadn i,
j=In/2]+1
equals
[(n—1)/2] 2 .
(11) | (b — ]| dp— —Jj—= 2d] 1s

71=2
which we want to express as a linear combination of the |a;|*d;_od,—;_1’s as in the
first half. For this purpose, note that |a;|2"7d,_; = |an_;|27d; for 2 < j < n —2
from (6). Therefore,
|an—j P dn—j—2d;

d2
262n—45 “n—j
|CL]’ 2 5 dn jfgdjfl

d
22] n— Qd ) )
— |aj’222n—4j< d2 Jj— ) (22j—n—2dj)<2n—2]dn_j_l)
i
1d;_,
|a;*d;adn—j1 - ij—j
2y sin U=17
|a;"d;—2 i e

13



with the aid of Lemma 8. Plugging this into (11), we obtain from (10) the nonnega-

tivity of
L(313/%(”_2‘7)(1 s ad
- — )14 —2dn—j 1.
s 4 sin —(JT)W T !

Since all the terms except |a;|? in the above summation are strictly positive, we con-
clude that a; = 0 for all j, 2 < j < [(n —1)/2]. By (6), we also have a; = 0 for
n/2]+1<j <n—2. To complete the proof, we need only show that a; = 0. Since
la,| = 1, we may assume, by the remark in the paragraph preceding Lemma 9, that

a, = —1. Consider the cases of odd and even n separately.

Assume first that n is odd. Then, from (3),
pi(z) = 2" —2a,_1d1z —a, = 2" + 1.

We assume that the zeros of p; are given by z, = e®*=D7m/n 1 < L < n. Now we
obtain from (7) that det Ay, = Re (a1Zy)d,,—o. Hence

(2k — 1)m (2k — 1)

0 < Re(a1Zx) = cos Rea; + sin " m a;

for all £, 1 < k < n. Replacing k by n — k + 1 in the above, we also have
2k —1)m . (2k—D)m

cos ———Rea; —sin———Ima; > 0.
n n

Thus cos((2k — 1)m/n)Rea; > 0 for all k. Since cos((2k — 1)m/n) can be positive
or negative for different values of k, we infer that Rea; = 0. Then, from above,
+sin((2k — 1)m/n)Ima; > 0 for all k, which implies that Ima; = 0. Hence, as as-

serted, a; = 0 for odd n.

Finally, assume that n is even. In this case, we deduce from (6) that a,, =

—Qp0p/2 = Gy )2, that is, ay/s is real, and from (3) that
pi(z) = 2" — 2n/QCLn/ziiln/zzn/Q +1

14



= ("2 - 2" - 2,

where zy = (2"2a,/9d, /9 + (2"ai/2di/2 — 4)1/2)/2. Since the zeros z’s of p; have
modulus one, we have |z.| = 1, which is equivalent to |27/ 2ay2d, 2| < 2. Hence, in

particular, Re 2. = 20"/?~1q, 5d, 5. On the other hand, from (7) we have

1
det A, = Re (a15k)dn_2 — é—lai/Qd(n/g),gd(n/g),l

G /2

n/2
Sura dn/2-12 ),

+2Re (

/2

where, since z,'” = 2z, the last term can be simplified as

Qn /2
2n/2

n an
A1) = 25 dinya) 1 Re 2

2Re ( /3
(n/2)

Qn /2

= 2—2n/2 d(n/Q)_12

71an/2dn/2

- ai/gd(n/z)qdn/z-

Hence

1
0 S det Ak = Re (aﬁk)dn_g — ai/Qd(n/Q)—1<Zd(n/2)—2 - dn/g)

= Re (aﬁk)dn_Q

by Lemma 8. Because d,,_s > 0, we have Re (a1zx) > 0 forall k, 1 <k <n. If z, =
e for some real fy, then z_ = e~ and the 2;’s are equal to u; = e0+4m/m and
v; = elZHotam/n () < j < (n/2)—1. Since u; = V(n/2)—;, both Re (a11;) and Re (a;u;)
(= Re (a10(n/2)—;)) are nonnegative. Hence (Reay) cos((26y 4 4j7)/n) > 0 for all j.
Since different values of j yield positive and negative values of cos((20y +4j7)/n), we

infer that Rea; = 0. Then

200 + 45
Re (a1@;) = (Imay) sin o+ AT >0
n
and
20 + 4j
Re (aju;) = —(Imay) sinM >0
n

15



for all j. Hence Im a; = 0 and, therefore, a; = 0. This completes the proof. [

We now resume the proof of Theorem 7.

Proof of Theorem 7, (b)=(c). If n is odd, then, as proved in Lemma 9,

with |a,| = 1 as required.

Now assume that n is even. From Lemma 9, we have

0 1
0

1

~an 0 -+ 0 —anp O .- O

with |a,| = 1. Let a,, = ¢ with 6, real and let = (7 —6y)/n. Then € A is unitarily

equivalent to

A =

1
1 0 -+ 0 —ia,ppe” /2 0 ... 0

—ibo /2

cf. the paragraph before Lemma 9). If ¥’ = —ia,, ne , then Lemma 3 as applied
/

to A’ yields that the zeros of the polynomial py(z) = 2™ + 2™/2¥ cot(r/n) + 1 are

16



distinct and have modulus one. However, the zeros of p; are the (n/2)th roots of
(=¥ cot(m/n) £ (b2 cot?(n/n) — 4)1/2)/2. Thus we must have |b' cot(r/n)| < 2 or
|b'| < 2tan(m/n). On the other hand, (6) as applied to A" with j = n/2 yields that
V (= —ia,me”%/?) is real. Hence for nonzero o' we have arga, /s = (6 & 7)/2. Let-
ting a = —a, and b = —ay, s, we conclude that |a| = 1, |b| < 2tan(7w/n) and, if b # 0,
argh = (6y £ )/2. [

We next prove the implication (c)=-(d) of Theorem 7.

Proof of Theorem 7, (¢)=(d). We need only prove the case for even n. Considering
e A with = (7 — arga)/n instead of A, we may assume that a = 1 and b is real
(cf. the paragraph before Lemma 9). Let ¢ = (b4 (b* +4)/?)/2 with the “+” sign if
b >0 and “—” sign if b < 0. Then

1
L< e = Slb (6" +4)"7

1
< (o] + |0? +4Y%) < tan = + sec ~
n n

5(

and b=c— (1/c). Let d = 1/(1+ ¢*)'/? and

I, cl,
U—d /2 /2
CIn/Z —4in/2
Then U is unitary and UA = (A; @ A,)U, completing the proof. [

To prove (d)=-(a) of Theorem 7, we need the following lemma for even n.

17



Lemma 10. Let

te
I

and Ay =
1 R |

c 0 —1/c 0

be (n/2)-by-(n/2) matrices, where n (> 4) is even and c is real satisfying 1 < ¢ <

tan(m/n) +sec(m/n). Let 2y be a zero of p1(2) = 2"+ 2"%(c— (1/c)) cot(r/n) + 1 and

let
n_AT
. T g 2w n/2 . b
T = |zpsin —, zgsin —, ..., 2, “sin=—| |,
n n n
T
n
n/2)+1 T (n/2)+2 2 _ (‘_1>7T
y:{zé/) cos—,z(()/) COS —, ..., %) 1(;032—,() ,
n n n

u=(z+cy)/||z +cyl| and v = (cx — y)/||cx — y|| be vectors in C*/2. Then

n/2\ -
(7oA - T nclm (") sin =
Fosutl, = eos lg(l + %) + (1 = c?) esc?(X)

and

nelm (23/2) sin T

21+ + (2 —1)esc2(E)

(ZoAgu,v) = cosg +1

Proof. Since 1 < ¢ < tan(m/n) + sec(w/n), we have 0 < ¢ — tan(m/n) < sec(m/n)
and therefore ¢ —2c tan(7/n)+tan?(m/n) < sec*(w/n) or ¢ —2ctan(r/n) < 1. Hence

(¢ —(1/c))cot(m/n) < 2. Thus

1 1 1 1
4= b HenZx Lo LTy

and, in particular, zy has modulus one. Since

1

Hx + CyH2 (<20A1$7 ZL‘> + C<20A1$, y> + C<50A1y, $> + 02<§OA1?/’ y>),

<20A1U, U) =
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we need compute the values of ||z + cy|| and the four inner products above. To obtain
the former, note that

n/2

]| = Z [0/ sin®

1 2jm. n 11— lt@/m)m
— 5;(1—COST)—Z—§RG( 1_6271’7,'/71 —1)
n 1 1
= 5 5t =70+2),
(n/2)-1 j
ol = > lzol"" cos® (=)
j=1
(n/2)-1
1 2 1
= 3 > (I+4cos==)==(n-2),
j=1
p (n/2)-1 jn i
) =5 3 sinCE) eos( D)

(n/2)—1 . .
Y 29w 1 _pnpe 1—e™
R e K e

1
= 558”00132

and

Iz + cyl|* = [l2]1* + 2cRe (z, ) + ¢*|ly|*

1 n 1
= —(n+2)+ ccot% -Re (20/2) + Z(n —2)c?

4
1 1 1
= %(1+c2)—|—5(1—02)+ccot%(—§(c—E)Cotg)
n 1 T
- 21 2 (1 — 2 207 )
4( +c)+2( c”) esc <n>
Moreover, we have
(n/2)—
1)m n/2 . .
(ZoA17, x) Z sin ﬂsi ‘7—;) )+ czl? sm%smg
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and

Hence

<EDA1U> U)

(n/2)—1

—n/2 .
czy “sin— — = (cos

j=1

Re (637ri/n .

(2j 4+ )m T

— cos —)

n n
1 — e(27ri/n)(n—2)/2

1 — e2mi/n

GADm 7

1 — e(27rz‘/n)(n—2)/2 n

1 —

(Fodw, ) =2 Y ¢

T 1
CCOS — + — 2,
n 27

m 1
cCOoS — + =2
n 2

T 1
CCOS — + =%
n 27

n/2 Z:_ (sin S okl

J=1

12 ((ese T _sin” —sin

n
n/2 ™ n
o/

csc — — —sin —),
n

<20A13/ y

e2mi/n

™
n

n n
™

n

(n/2)—

Z cos )
)7T

™
+ cos —)
n

)+

(n—1)m

B

s
Ccos —

) - (5



: - '
—|—c(ccos.‘777T + 520/2(Cscg — gsm%)) + 02(% —1)cos g]

1 n (O N Vo T N a2 a2y . T
= ||m—+ il (1(1 + c*) cos - + 56(20/ + zO/ ) cse - + ZC(ZO/ — ZO/ ) sin ﬁ>
1 1
= m(g(l +c?) cos% + cRe (1) CSC% — §nci1m (20/%) sin %)
1 n 9 ™ 1 1 T w 1 NI
= m(z(l + ¢”) cos o EC(C — Z) cot —cse = Enczlm (2/7) sin E)
1 1 1
= —2((2(1 + A+ (1 -2 CSCQ(E)) cos = — =neilm (23/2) sin E)
|z + cy[]> 4 2 n no 2 n
R nclm (28/2)3111%
n 5(14c?) + (1 —c?)esc?(T)
as asserted.
In a similar fashion, we derive that
n 1 T
lex —yl|* = Z(l +¢) + 5(02 - 1) CSCQ(E%
_ 1l .0 . @ n s
(ZoAgzx, x) = _EZO/2 sin + 705
1
(ZoAgm,y) = 553/2(68(3% + (g — 2)sin %),
_ 1 T 1 . T om0
(ZoAgy, ) = —-cos— + on/ (csc i ﬁ)’
and
(ZoAay,y) = (g - 1) cos%_
The asserted expression for (ZoAsv,v) can be proved analogously as before. |

Finally, we are ready for the proof of (d)=-(a) in Theorem 7.
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Proof of Theorem 7, (d)=-(a). If A is unitary, then

with |a,| = 1 and OW(A) is a regular n-gon (cf. [4, Corollary 1.2]). For the re-
maining part of the proof, we assume that n is even and A = A; & A,, where A
and A, are as in (d). Multiplying A by an € with § = —arge, we may further
assume that c is positive. If ¢ = 1, then A; and A, and hence A, are all unitary,
in which case 0W(A) has n line segments. Under the hypotheses that n > 4 and
1 < ¢ < tan(mw/n) + sec(mw/n), we have 0 < (¢ — (1/¢)) cot(m/n) < 2. Since the zeros
of the polynomial p;(2) = 2™ + 22(c — (1/¢)) cot(w/n) + 1 are the (n/2)th roots of
(—(c—(1/¢)) cot(m/n) £ ((c — (1/c))? cot?(m/n) — 4)1/2) /2, we infer that they are all

distinct and have modulus one. These we denote by zx, 1 < k < n.

We now show that cos(m/n) is a multiple eigenvalue of Re (Z;A) for any k. Indeed,

if

n T
T g 2 n/2 . ol
Ty = |zpsin—, zpsin —, ..., 2. "sin =—| |
n n n
n T
o T g2 2W w1 (F=Dm
Yk = |2 cos —, 2, coS —, ..., 2, COST,O ,

ur = (xk + cyr) /|| zx + cyrll and vg = (cxr, — yi)/||czr — yi|l, then it is easily checked
that Re (Zx A1 )ur = cos(m/n)uy and Re (ZAg)vy, = cos(m/n)vg, where for the equal-
ity of the (n/2)th components we need that z; be a zero of p;. Hence cos(m/n) is a

multiple eigenvalue of Re (ZA).

Next note that cos(m/n) is the maximum eigenvalue of Re (Z;A). To prove this,

let ¢y >cg>--->¢cpand dy > dy > -+ > d,_;1 be the eigenvalues of Re (ZA) and
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Re (ZJn_1), respectively. Since Re (ZxJ,_1) is unitarily equivalent to ReJ, 1, the
d;’s are all distinct and dy = cos(m/n) (cf. [3, Corollary 2.7]). On the other hand, we
proved in the preceding paragraph that cos(w/n) = ¢, = ¢;,+1 for some jo. If jo > 1,
then from the interlacing of the ¢;’s and the d;’s: ¢; > dy > co > dy > --- > ¢, >
dn—1 > ¢, we obtain dy = ¢y = dy = -+ = ¢j,41 = cos(m/n), which contradicts the
distinctness of the d;’s. Hence jo < 1 and therefore ¢; = cos(m/n) as required. In

particular, we have cos(m/n) = max W (Re (ZxA)) = max Re W (Z;A).

Finally, we check that W(A) has n line segments on its boundary. For this,

consider u), = u, ® 0 and v, = 0 @ vy, as vectors in C". Then

TL/2 . m

T nelm (z,77) sin ©
EAu', A . A : _ N k n
(Zreduy, up) = (GeArug, ur) oS Z§(1+62)+(1—02)0502(§)

and
neclm (ZZ/Q) sin ©

(14 ¢c%) + (2 — 1) csc?(X)

m
(ZrAvp, v).) = (ZAgug, V) = cos - +1

by Lemma 10. Hence
Re (Z Auy, up) = Re (ZpAvy,, vy,) = cos T — maxRe W(zxA)
n

and

Im (Z, Auy, uy) # Im (Zp Aoy, v),).

Therefore, the vertical line Re z = cos(m/n) yields a line segment on OW (Z;A). Thus
OW (A) has n line segments given by Re (Zxz) = cos(m/n), 1 < k < n. This completes
the proof. [ |
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