FREATHELRE ¢ MP TP E YA

- B &

Bl RENARE LT RS RA AT

B AR G)

Gl S L B

& M %t NSC 94-2213-E-009-135-

i oH B 1 94&087 01p 2 95# 07 310
fFE o AR TR K(H)

Gl EE AR .
FEAE AR Bl s HlEmE L2y

RSy 4 - e

—
s
e
n

FRERFPELE eI T H = 5 3 —j-

(¥ ¥ 2 R 4R

BRI AR AR R TR A e A T g

STUE EUEE BN SR
P E %5 C NSC 94-2213-E-009-135
PpEHEF 94 =82 1 px 9H & T F 3l P

BT B
FERFEAR R4 fhhim o

SEFEFIA(REF PTG ERTEY) A RS D= FHS

fs‘+

T P R Al ¥ SRR
(AR LS @R L - 5
Di*%%&»iﬂpﬂmwﬁ»—@

(MR RERwE R @R FLLGY £ 5
DW%€W?2#%W+P2$?E—@

},f@/___% FAV Kﬁ;ggbi%ggﬁiﬂgi% ‘ﬁe*ﬂé',i?}il’ﬁ:; A ‘Ji ’s/\f-ﬂ?[jf'% N
ﬂ*&$£ﬁvw@vgﬂ,@ivamaﬁ
(2 282w rEpate (- 2- 237 2B 43
HEEC I W2~ FTALRE AR EMIETHRZ

2y 96 # 1 ! 30 2

T
i
Ppu

He

T TERARE TR gt £ ¥ N AF SR %I A2(business process) st e it F IR - ARk
- B3 iEiARE 2% s(WFMS, Workflow Management System) &_d & i 1 & e~ i -2k 34 3k

BAMGERE -+ 30 RS Ra (F04 § Sehl mafd > 1 (iR R ahlg
W RS TREFLIEF F AR o AL P o P R0 2 SR E
AP AL PEBFL BT RN EUEEEAFEFLIT 0 B RERF OF ALK
—*ﬁ A% ffu_z’a_é;%—*ﬂf vl R R RS B REE G RS hL (FIRAR L AR o

BEgET ¢ 1 TEIRARE IR kAL RHM D E > FTIRA- 1 ALY

Abstract

Workflow management technology helps modulizing and controlling complex business
processes within an enterprise. Generally speaking, a workflow management system (WfMS) is
composed of two primary components, a design environment and a run-time system. Structural,
timing and resource verifications of a workflow specification are required to help assure the
correctness of the specified system. In this paper, we address an incremental methodology to
analyze resource consistency and timing constraints after each editing activity of a workflow
specification and to provide proper feedbacks to designer or maintainer of the workflow
specification.

Keywords: Workflow Management System, W{MS, Incremental Methodlogy, Resource
Consistency, Timing Constraints

The following paper published in Proceedings of the 12th Asia-Pacific Software Engineering
Conference (APSEC'05) - Pages: 122 - 129

An Incremental Analysis to Workflow Specifications
Hwai-Jong Hsu, Da-Li Yang, and Feng-JianWang
Department of Computer Science and Information Engineering, National Chiao-Tung University
{hjhsu, dlyang, fiwang}@csie.nctu.edu.tw

Abstract

Workflow management technology helps modulizing and controlling complex business
processes within an enterprise. Generally speaking, a workflow management system (WfMS) is
composed of two primary components, a design environment and a run-time system. Structural,
timing and resource verifications of a workflow specification are required to help assure the
correctness of the specified system. In this paper, we address an incremental methodology to
analyze resource consistency and timing constraints after each editing activity of a workflow
specification and to provide proper feedbacks to designer or maintainer of the workflow
specification.

1. Introduction

Electronic workflow integrates business rules and staffs inside an enterprise into an
automatic information system. Inside a flow, the process (activities) and information flow
between them are specified according to the business rules to accomplish specific tasks [1][12].
Furthermore, workflow specifications schedule tasks, and coordinates human resources and
information system [13]. Modern workflow management systems (WfMSs) support environments
for both workflow design and workflow enactment.

To assure the correctness of executing a workflow specification, analyses on structural
integrity, temporal correctness, and resource conflicts are required. Structural analysis is given
precedence over analysis of the other two, since the rest give a better result on the specification
whose structure has been analyzed. Various methodologies for structural and temporal analysis of
workflow system specifications have been developed and proved effective [3][5][6][7][9][10].
However, the methodologies proposed work only for static and total verifications of resource
consistency. These methodologies might be ineffective in analyzing influence of workflow
specifications with large amount of processes after each modification, and provide insufficient
information to designers and maintainers [2].

In this paper, we present an incremental methodology for analysis of resource constraints in
structuralized workflow specifications. The analysis works after each editing operation of
workflow specification, and provides more precise and effective information to the
designer/maintainer directly. Our approach focuses on influence of each editing operation, and
therefore is more efficient than traditional methodology.

The paper is structured as follow: Section 2 describes the definitions and notations us. An
incremental algorithm for analysis of resource conflicts in workflow specifications is constructed
in section 3, and the temporal factor is considered in section 4. The time complexity and
conclusion of our methodology are discussed in section 5 and 6.

2. Definitions and Notations

Directed acyclic graph (DAG) is a simplified model for workflow specifications [3] [8].
DAG can be applied for verifying consistency of control and data flows. We describe workflow
specifications based on DAG with a five-tuple (N, F, R, S, E). S and E represent the start and end
processes of the workflow. N represents the set of processes which can be distinguished as
activity and control process. An activity process describes a task and control processes are
and-split, and-join, xor-split, and xor-join process defined in [WfMC TG]. Each flow f in F,
represented as (n;, nj) means a transition from process n; to process n;. Flow f is called an
out-flow of process n;, and an in-flow of process nj; besides, n;is the source process of flow f and
n; is the sink process of flow f. R is a set of sets of resources associated to each activity process in
a workflow.

Definition 1 (Workflow Specification)

Workflow Specification ws = (N, F, R, S, E)

(1) N: a set of processes, where Vne N, nTYPE = {ACTIVITY, AND-SPLIT,
XOR-SPLIT, AND-JOIN}

(2) F:asetof flow, where Vf eF, f=(n;, n;), n,n&€ NU{S, E}

(3) R: a set of sets of resources referenced by each process, where VR, eR, R,= {r,| 1,
is a resource accessed by n;, nje N, n. Type = ACTIVITY}

(4) S and E are the starting and the ending process correspondingly. S, E € N

[2] describes path, reachability, distance and ancestor. In order to construct our algorithm,
we define path, reachability, distance, ancestor, distance to ancestor, nearest common ancestor
and control block formally in following definitions.

Definition 2 (Path)
Apathp=(nj, ny, ..., n)) whereV i, 1 <i<t-1, (n,,n,)eF
A path p is acyclic, if V nj, nj€ p,i#]j, nj#n;
The length of an acyclic path p is denoted as |p|. [p| =t

Definition 3 (Reachability)
Process n; is reachable from process n; if there is an acyclic path p = (n;, ..., nj) Reachable(n,
n;) is a boolean function to denote whether n; is reachable from n;

TRUE, if 3 a path
Reachable(;, n;) = p=(0;,...,n;)
FALSE,otherwise.
Distance(n,n;) =
MIN(C{ [p| [p=(n;,...,n;) or
p=j,...0) }), if
Reachable(n;, n;) or

Reachable(n;, n;)

+ o0, otherwise.

Definition 4 (Distance)
Distance(n;, n;) is a function returns the distance between two processes n; and n

Definition 5 (Ancestor)
Process n; is an ancestor of n; if Reachable(n;, n;) = True
Process n; is a common ancestor of n; and ny if n; is an ancestor of both n; and ny

Definition 6 (Distance to the Common Ancestor)
Let n; is the common ancestor of n; and n,. We define distance of n;, n¢ to its common
ancestor n; as DCA(n, nj, ny)
DCA(n, nj, ny) = MIN(Distance(n; n;), Distance(n;, ny))

Definition 7 (Nearest Common Ancestor)
Process n; is a nearest common ancestor of n; and ny where DCA(n;, nj, ny) is the shortest
among all the common ancestor of n; and ny.

In our algorithm, function NCA(n;, nj) is defined as a function returns the nearest common
ancestor of process n; and n;

Definition 8 (Control Block)
B = (n, ne, Np) is a Control Block where ns, ne EN, Np is a subset of N. Np contains each
process n where Reachable(ns, n) = Reachable(n, n.) = true.
B.start = n, B.end = ny and n,. TYPE = AND_SPLIT if and only if n.. TYPE = AND-JOIN or
n,. TYPE = XOR_SPLIT if and only if n.. TYPE = XOR-JOIN.
Two control blocks B; and B, are said to be distinct if and only if Ng; ~ N, = ¢, Byis
said to be totally contained by B, if and only if Ng; < Ng».

In order to simplify the discussion of out algorithm, we assume that our algorithms are
adopted only for well-formed workflow specification. The well-formed workflow specification is
defined in definition 9.

Definition 9
(Well-formed Workflow Specification)
A well-formed workflow specification is a workflow in which all the processes are
connected by flows and any two control blocks are either distinct or totally contained by one
another.

3. An Incremental Algorithm for Analysis of Resource Conflicts in Workflow Specifications

In this section, first, we introduce the conditions leading to resource conflicts. Second,
editing operations on activity processes potentially causing resource conflicts are described. Third,
our algorithms to analyze the resource conflicts to the corresponding operations in a workflow
specification are presented. The influence caused by editing operations on processes other than
activity processes is not discussed.

3.1. The Conditions and Editing Operations Leading to Resource Conflicts

A resource conflict may occur when two or more activity processes refer to one common
(sharable) resource concurrently. In a workflow specification, two activity processes are
potentially resource conflict when the following two conditions simultaneously hold [2].

(1) Resource Dependency: Two activity processes are resource dependent if and only if they
refer to the same sharable resource.

(2) Potential Concurrent Execution: Two activity processes are potentially executed in
parallel if and only if they are not on the same path, and one of their nearest common ancestors is
a control process of AND-SPLIT.

Definition 9 (Resource Dependency)
Let n;, nj € N, i # j, and n;. Type = n;. Type = ACTIVITY. n;and n; are resource dependent if
and only if R;, Rj € R, R;NR;#4¢

Definition 10 (Potential Concurrent Execution)
Let ni, nj € N, i #j, and n;. Type = n;. Type = ACTIVITY . n;and n; are potentially executed
concurrently if and only if V path p, njin p, nj not in p, n; and n; has a nearest common
ancestor ng of AND-SPLIT type where DCA(ny, nj, n;) > 0

The following editing operations might produce or eliminate resource conflicts: (1) Adding
or deleting a resource reference associated with an activity process, (2) Adding or deleting an
activity process within a workflow specification. Both operations might affect resource
dependencies within a workflow specification. Since the editing operations on processes other
than activity processes are not discussed, there’s no operation which directly changes potential
concurrent executions.

Not all resource dependencies result in resource conflicts. There’re no resource conflicts
between two distinct processes which are on the same path, or whose nearest common ancestor is
not AND-SPLIT when they are not in the same path.

3.2. The Algorithm for Detecting Resource Conflicts in a Well-Formed Workflow
To describe our algorithm clearly, we describe split paths and resource lists on a split path
formally and in order to simplify our algorithm, the type of each resource reference is ignored.

Definition 11 (Split Path)
v control block B = (ns, n, Np), a path ps = (ng, ny, ..., ng, n¢) where n;, ..., nx € Ngis a
split path of B

Definition 12 (Resource List on a SPLIT PATH)
RLgpiis a resource list on some split path SP;, where
(1) vV nj in SP;, RLgpi= U Rj
(2) v r,risaresource, RLgy.ProcessRef(r) ={nyny in SP;r € Ry}

Resource lists are indexed by split paths among each control block, and we assume that
whenever a split path is created during editing of workflow specification the corresponding
resource list is also constructed. Each resource list records resource references of processes along

with the corresponding split path. The information used within an incremental algorithm is
recorded in the resource list on each split path, and is updated when resource references and
activity processes are added in or deleted from the workflow specification.

Besides we define the notation for resource conflicts and how to record resource conflict for each
process for usage of incremental algorithm.

Definition 13 (Resource Conflict)
(r, n;, ny) is a resource conflict if and only if r is a resource, n;and n; € N,r € R;, Rj and n;
and n; potentially concurrent in execution. W.L.O.G, (1, n;, nj) and (r, nj, n;) is considered as
the same in our discussion.

Definition 14
(Resource Conflict set for a Process)
n.Rd(r) = {nj, ..., ng} is and only if for any i = 1,.., k and n # nj, (r, n, n;) is a resource
conflict

The notation in definition 14 would be used in section 4.

There are two algorithms CSP (Collect Split Paths) and CRD (Check Resource Dependency)
constructed. CSP is used to collect the processes which might execute concurrently and CRD is
used to detect the resource dependencies among them. Since not all resource dependencies result
in resource conflicts, the CSP algorithm is executed first and the result set is passed to CRD for
execution. CSP and CRD are applied when adding or deleting a resource r associated with a
process N. Adding a process can be viewed as adding multiple resources to the process, and
deleting a process can be viewed as deleting all the resources referenced by the process.

In CSP algorithm, first, a flow queue Q is initialized. Q is used to store the flows when CSP
back tracks the processes starting from the target process n. At line 2 all the in-flows of n are put
into Q. At line 5, the first flow f = (n;, n;) in Q is dequeued and checked for its type. If the
algorithm finds that the source process of the flow, n;, is typed as AND-SPLIT, the resource list
along with the split path which the process n belonging to is updated at line 8. The resource list is
updated according to what editing operation that triggers the function. Adding resource reference
to the target process can be viewed as adding resource reference to the split path where the target
process n belongs to, and removing resource reference from the target process n can also operate
in similar way. At line 9 to 10, the split paths from the AND-SPLIT process other than the path
from the target process n are collected into the result SPLIT PATH set CSP. At line 12, the
in-flows of the n; are enqueued into Q, and the loop start from line 4 to line 12 continues until Q
1S empty.

SPLIT_PATH SET CSP
(workflow specification ws,
process n, resource r)
CSP= ¢
flow queue Q = ¢; // initialize flow queue
Vv in-flow f of n, Q.enqueue(f); // put the inflow of process n into Q
while Q # ¢ // back tracking ws from the process n
Let f= Q.dequeue() and assume that f = (nj, n;)
//collect information about parallel split path when //meet an AND-SPLIT
if (n;. TYPE = AND-SPLIT) then
3 a split path SPy where nj, n € SPy, Update Resource List of SPy
according to the editing operation on process n and r
0. Vv out-flow of n; f*, where f* = (nj, ny), nx # n;
10. //collecting all the split paths other than the //source path into CSP
11. 3 a split path SP,, where n;, ny € SP,,, CSP = CSP + SP,,
12. V in-flow £’ of n;, Q.enqueue(f”)

PN R R =

We have shown that any process which is potentially concurrent to target process n must be
concluded in some split path contained in SPLIT PATH set CSP. With the SPLIT PATH set
collected in CSP algorithm, line 2 and 3 of CRD algorithm check the resource list along with
each split path to see if the resource r is referenced by other processes in the split paths not
containing process N. At line 4 we update the resource conflict list according to the resource
conflict found in algorithm.

RESOURCE_CONFLICT SET CRD
(SPLIT PATH set P, process n, resource r)
i CRD= ¢

2.V SPLIT PATH SP; € Pand n; € RLgp;.ProcessRef(r)
3. mnsert (r, n, nj) into CRD
4. update n.Rd(r) and n;,Rd(r)

4. An Incremental Algorithm to detect Resource Conflicts with Temporal Consideration

Two processes can have potential resource conflict as the last section describes, however, the
conflict never happens if execution of both processes doesn’t overlap. We define such resource
conflict as resource conflict with temporal consideration.

In this section, first, the concept of Estimated Active Interval (EAI) is introduced. Second,
Potential Overlapped Execution between activity processes is defined. The resource conflicts
with temporal consideration are the resource conflicts which are potentially overlapped in
execution. The incremental algorithm to detect resource conflict with temporal consideration is
constructed.

4.1. Calculating EAI in a Workflow Specification

The earliest start time (EST) and the latest end time (LET) of process in a workflow can be
calculated if the maximal and minimal durations of each process are described in a workflow
specification. [4]. The time interval starts from EST to LET is named as Estimated Active Interval
(EAI). The EAI for process n is denoted as [EST(n), LET(n)]. Reasonably, LET(n) must not be
less to EST(n) to any process n. EAI table is used to record EAI values of all the processes in the
workflow specification.

For the process n, d(n) and D(n) shows the minimal and maximal durations of n. For activity

processes, the values are specified by the designer, and for control processes the values are
initialized as zero. EST and LET of starting process are initialized as zero. Besides, EST and LET
of the rest processes are calculated from their precedent process(s). In a well-formed workflow,
there’s only one precedent process for an activity, AND-SPLIT, or XOR-SPLIT process and
there’re multiple precedent processes to an AND-JOIN, XOR-JOIN, or End process. To lengthen
D(n) postpones the LET of n and its following processes; on the contrary, to shorten the D(n)
advances the LET of n and its following processes. To alter d(n) of the process n would not
directly affect the EAI of n; however, to lengthen d(n) postpones the EST of n’s following
processes, and to shorten d(n) advances the EST of n’s following processes.
After each temporal related editing operation, which means modification of D(n) or d(n) on some
process n, the algorithm Calculate EAI is adopted to calculate EAI for each effected process.
After introducing the algorithm, we would show that the algorithm covers all the influenced
processes. In this algorithm, we assume that there’s no delay between end and start of each
process

The workflow specification ws, the target process n, and a flag string mode are the input
parameters of the algorithm Calculate EAI. There’re two values “target” and “ripple” for the flag
string mode. When the Calculate EAI is invoked when some temporal editing operation is
committed, the flag string “target” is used, When the Calculate EAI is invoked recursively by
itself, the flag string “ripple” is used. At line 1 and 2, we store the original EST and LET value of
target process N for later usage. At line 3 to 5, the EAI of process n which is typed as AND-JOIN
is calculated. Process n can be fired only when all precedent processes of n are committed.
Value of EST of n is the maximal earliest end time among all its precedent processes. The earliest
end time of any process n; 1s the summation of EST(n;) and d(n;). Since the D(n) is zero, LET of n
is the maximal LET among all its precedent processes. At line 6 to 8, the EAI of process n which
is typed as OR-JOIN or end process is calculated. Process n can be fired only when any precedent
processes of n are committed. Value of EST of n is the minimal earliest end time among all its
precedent processes. Since D(n) is zero, LET of n is the maximal LET among all its precedent
processes. At line 9 to 11, EST value of the target process is equal to the earliest end time its
precedent process, and LET value is the LET value of its precedent process plus the maximal
working duration of itself. At line 13 to 16, the algorithm first stores the new EAI value of target
process into storage. The algorithm will recursively continues when the algorithm is invoked after
some editing operation or when EAI of the target process is changed and the ripple effect to its
following processes must be calculated. The flag string “ripple” is used when Calculate EAI
recursively invoke itself.

VOID Calculate_EAI
(Workflow Specification ws,
Process n, String mode)
1. EST old = EST(n); // record the original values
2. LET old=LET (n);//record the original values
3. if (n.Type = AND-JOIN) then

o

EST(n) = MAX({EST(n;) + d(n;) |
flow f= (nj,n)});

5. LET(n) = MAX({LET(n;) |

vV flow f=(nj,n)});
6. else if (n.Type = XOR-JOIN or n = End Process) then
7. EST(n) = MIN({EST(n;) + d(nj) |

vV flow f=(ni,n)});
8. LET(n)=MAX({LET(n)]|
vV flow f=(nj,n)});
9. else
10. EST(n) = EST(n;) + d(ny);
11. LET(n)=LET(n;) + D(n);
12. // store old data for analysis
13. if (mode = “target” or (EST(n) # EST old or
LET(n) # LET old)) then
14. store EST old to EST’(n);
15. store LET old to LET’(n)
16. vV n € N,(n,n’) € F,
Calculate EAl(ws, n’, “ripple”); // continue

4.2. The Definition of Resource Conflict with Temporal Consideration and the Temporal
Related Editing Operations

With EAI for each activity process, two activity processes are potentially overlapped in
execution if and only if their EAI are overlapped. Before we define the potential overlapped
execution, two operators on EAI is defined as following.

Definition 14 (Intersection between EAIS)
EALI of two processes n;, nj are denoted as [EST(n;), LET(n;)], [EST(n;), LET(n;)]
[EST(n;), LET(n;)] N [EST(n;), LET(n;)] means the interaction of the two interval. [EST(n;),
LET(n;)] N [EST(n;), LET(nj)] = ¢ if and only if LET(n;) < EST(n;) or LET(n;) < EST(n;);
on the contrtry, [EST(n;), LET(n;)] N [EST(n;), LET(n;)] # ¢. If [EST(n;), LET(n;)] N
[EST(n), LET(n)] # ¢, [EST(n), LET(n)] N [EST(nj), LET(nj)] is defined as
[MAX({EST(n;), EST(n;)}), MIN({LET(n;), LET(n;)})]

Definition 15 (Total Containment between EAIS)
[EST(n;), LET(n;)] < [EST(n;), LET(n;)] means [EST(n;), LET(n;)] is totally contained by
[EST(ni), LET(n;)]. [EST(n;), LET(nj)] < [EST(ni), LET(n;)] if and only if EST(n;) =
EST(n;j) and LET(n;) = LET(nj).

After the operators for EAls are defined, the formal description of potential overlapped execution
and the resource conflict with temporal consideration is defined in Definition 16 and 17.

Definition 16 (Potential Overlapped Execution)
Two activity processes n;and n; are potentially overlapped in execution if and only if nj, nj €
Nwhere 1 # j, n.Type = n;. Type = ACTIVITY, and [EST(n;), LET(n;)] N [EST(n;), LET(n;)]
¢

Definition 16
(Resource Conflict with Temporal Consideration)
(r, nj, ny) 1s a resource conflict with temporal consideration where r is a resource n; and n; €
N if and only if r € R;, Rj, n; and n; are potentially concurrent potentially overlapped in
execution. W.L.O.G, (r, n;, nj) and (1, nj, n;) is considered as the same in our discussion.

Adding or deleting a resource reference from some process might increase or eliminate one
or more resource conflicts, and only the processes in resource conflict are required to be checked
if there’s any overlapping in their execution.

Adding a new process can be viewed as adding a new process with d(n) and D(n) zero, and
causes no effect on EAI of existing processes. Deleting an activity process can be viewed as the
values of d(n) and D(n) of the target process are modified to zero.

Directly modifying minimal and maximal execution duration of some process n (d(n) or
D(n)) affects EAI of its following processes until the influence disappears. Such editing operation
is called temporal related editing operations.

4.3. An Incremental Algorithm for Detecting Potential Overlapped Execution

The set RCT is used to store the resource conflicts with temporal consideration. Algorithm
CTO finds the resource conflict with temporal consideration from the records of existing resource
conflict. Algorithm CTO can be viewed as a patch of CSP and CRD algorithm to detect resource
conflicts with temporal consideration after editing operations which are not temporal related.

The result set RD from CSP and CRD algorithm is used as the input parameter of algorithm
CTO. At line 1 to 3, each resource conflict in set RD is checked, the resource conflicts in which
the involved processes are potentially overlapped in execution are added in to set CTO. After
these steps, CTO contains all the resource conflicts with temporal consideration after the editing
operation. RCT contains the original resource conflicts with temporal consideration in the
workflow specification. The elements in RCT but not in CTO are the resource conflicts with
temporal consideration eliminated after the editing operation. On the other hand, the elements in
CTO but not in RCT are the resource conflicts with temporal consideration created after the
editing operation. At line 4 to 7, these elements are selected and the designer is informed about
these eliminated or created resource conflicts with temporal consideration. At line 8, the set RCT
is updated with CTO, all the resource conflicts with temporal consideration after the editing
operation.

RESOURCE_CONFLICT_EXT SET CTO
(RESOURCE_CONFLICT SET RD)
.V (r,n,n) € RD
if ((EST(ny), LET(n;)] N [EST(my), LET(my)]

1

¢) then
3. add (r, nj, n;) to CTO;
.V (r,n,n) € (RCT-CTO)
5. info(resource conflict with temporal

consideration (1, nj, nj) is eliminated);
vV (r,n;,n) € (CTO-RCT)
info(resource conflict with temporal
consideration (r, nj, n;) is created);
8. RCT=CTO;

Modification of working duration which changes EST and LET values of the target process
and its descendent processes affects execution overlapping between processes but doesn’t affect
resource conflict set found by CSP and CRD. The algorithm CDM (Calculating Duration
Modification) is constructed to handle the change of resource conflicts with temporal
consideration for such operations.

Assume that for the target process n, the temporal related editing operation changes the
EST(n) to EST’(n) and LET(n) to LET’(n). With the discussion in above section, we know that
change of D(n) affects LET of n and its following processes, and change of d(n) affects EST of
n’s following processes. For each temporal editing operation and for the target process n and each
effected processes only one of EST or LET is changed.

At line 1 to 5 of algorithm CDM, the situation LET’(n) < LET(n) is handled. The EAI of n is
shortened; therefore, for any existing resource conflict with temporal consideration (r, ny, n),
some existing overlapped process ny might not overlap to n when their intersection interval is
totally contained in the shortened interval. The resource conflict with temporal consideration (r,
ny, n) is eliminated when ny and n are no longer potentially overlapped in execution. The
climination is updated to RCT and informed to the designer. At line 16 to 20, the situation EST’(n;)
> EST(n;) is handled in similar way.

At line 6 to 10, LET’(n;) > LET(n;) is handled. In this situation, EAI of n is lengthened,;
therefore all the resource conflict related to n (r, ny, n) are checked. For any such resource conflict,
if EAI of ny is intersected with the lengthened part and (r, ny, n) is not a resource conflict with
temporal consideration in advance. (1, ny, n) becomes the new created resource conflict with
temporal consideration after this temporal related editing operation. (r, ny, n) is added into RCT,
and the designer is informed as well. At line 11 to 15 the situation EST’(n;) < EST(n;) is handled
in similar way.

At line 21 and 22, the algorithm continues recursively when EAI of n is changed.

Void CDM
(workflow specification ws, process n)
1. if (LET’(n) <LET(n)) then
2. V (r,ng n) € RCT
3, if ([EST(ny), LET(ny)] N [EST(n), LET(n)] <

[LET’(n), LET(n)]) then

4, RCT = RCT —(1, ng, n);

5. info(resource conflict (1, ny, n;) is no longer
potentially overlapped);

6. elseif (LET’(n)>LET(n)) then

7. V r e R(n), (1, ny, n) € n.rd(r)

8. if ([LET(n),LET’(n)] N [EST(n;),LET(n;)] # ¢

&& (r,ng,n) ¢ RCT) then
0. RCT =RCT + (r, ny, n);
10. info(resource conflict with temporal

consideration(r;, ny, n;) is created)

11. else if (EST’(n) < EST(n)) then

12. V r e R(n), (1, ng, n) € n.rd(r)

13. if ([EST’(n),EST(n)] N [EST(n;),LET(n;)] # ¢

&& (r,ng,n) ¢ RCT) then

14. RCT =RCT + (1, nk, n);

15. info(resource conflict with temporal
consideration(r;, ny, n;) is created)

16. else if (EST’(n) > EST(n)) then

17. ¥V (r,ng,n) € RCT

18. if ([EST(n),LET(n)] N [EST(n;),LET(n;)] <

[EST(n),EST’(n)]) then
19. RCT = RCT —(1, ng, n);
20. info(resource conflict (1, ny, n;) is no longer
potentially overlapped);
21. if (EST’(n) # EST(n)) or (LET’(n) # LET(n)) then
22. Vv n° € N,(n,n’) € F, CDM(ws, n’);

5. Discussion of Time Complexity

Since the existing work on analysis of resource conflicts in workflow specification neglect

the temporal factors, in comparison of time complexity of our approach and the traditional one,
we also focus on the part without temporal consideration.
We simply discuss the time complexity of the algorithms through the number of processes
required to be visited. With a workflow specification in which there are N processes. Since the
total and static methodology for analysis of resource conflicts [2] visit all the processes in the
workflow specification for each analysis, the worst case is O(N). In our approach, tracking of
processes is required when detecting potential concurrent execution. The worst case is also O(N)
when all the processes are sequentially ordered. However the calculation is only required when
AND-SPLIT is met in algorithm CSP, and when all the processes are sequentially ordered, there’s
no AND-SPLIT in the workflow specification.

Although our approach has the same worst case with the total and static methodology, it has
better time complexity in average cases.

The time complexity for total and static methodology in average case is still O(N), since it
always tracks the whole schema. In our approach, the number of nodes required to be visited is in
average equal to the length from the start process to the target process. Now we conclude the
average case of our algorithm as O(loggN), where k is the average number of branches of each
process. Value of k is influenced by the structure of the workflow specification. With a fixed
number of processes in a workflow specification, more control processes results more branches
for each process, i.e. the more processes visited the less calculations required, and therefore, our
approach is much better in average cases to the traditional approach.

6. Conclusions and Future Work

Workflow specification is a formal description of design and implementation of workflow
applications. Proper environment for verification of structural, resource, and timing constraints
helps designers produce workflow applications with high quality. There’re various effective
approaches for verification of structural and temporal correctness. However, there lacks a real
time approach for designers to verify resource conflicts associated with the designer’s editing
activity. This paper describes an incremental algorithm verifying resource conflicts in workflow
specification after every editing operation. We discuss the conditions causing resource conflicts
and the algorithm to detect them. Our approach provides abundant information to the designer
after each editing operation. The time complexity of efficiency about our algorithm is better then

the traditional approaches.

There’re still some issues not discussed in this paper, for example, considering editing operations
on control process, invocation of resource type and multiple resource instances, and analysis for
resource conflicts when the workflow specification is altered during run-time. To implement and
integrate the algorithm into existing WfMS is also necessary.

References

[1] WIMC, Workflow Management Coalition. http://www.wfmc.org/

[2] Hongchen Li, Yun Yang, T.Y. Chen, “Resource constraints analysis of workflow
specifications”, the Journal of System and Software 73 (2004).

[3] Sadiq, W., Orlowska, M.E., “Analysing process models using graph reduction techniques”,
Information System 25(2), p117-134. 2000.

[4] Marjanovic, O., “Dynamic verification of temporal constraints in production workflows.”,
Proceedings of the Australian Database Conference. IEEE Press, Canberra, Austalia, pp. 74-81.
[5] Aalst, WM.P.v.d., Basten, T., Verbeeck, H.M.W., Verkoulen, P.A.C., and Voorhoeve., M.
“Adaptive Workflow: An Approach Based on Inheritance.” In Proceedings of the IJCAI’99
Workshop on Intelligent Workflow and Process Management: The New Frontier for Al in
Business. 1999. Stockholm, Sweden.

[6] Fleurke, M and Ehrler, L, Purvis, M. A. (2003). “JBees - An Adaptive and Distributed
Agent-based Workflow System”, in Proceedings of the International Workshop on Collaboration
Agents: Autonomous Agents for Collaborative Environments (COLA 2003), Halifax, Canada,
October 2003.

[7] Adam, N., Atluri, V., Huang W., 1998. “Modeling and Analysis of Workflows using
Petri-Nets”, Journal of Intelligent Information System, 10(2), 1998.

[8] M. Reichert, P. dadam. “ADEPT-Supporting Dynamic Changes of Workflows without Losing
Control”, Journal of Intelligent Information System, 10(2), 1998.

[9] Onoda, S., Ikkai, Y., Kobayashi, T., Komoda, N.,1999. “Definition of deadlock patterns for
business processes workflow models.” Proceedings of the 32nd Hawaii International Conference
on System Sciences, pp. 1-11.

[10] Singh, M.P., “Formal aspects of workflow management, Part 1: Semantics.” Technical
Report, Department of Computer Science, North Carolina State University, 1997.

[11] Shazia Sadiq, Maria Orlowska, Wasim Sadiq, Cameron Foulger, “Data Flow and Validation
in Workflow Modeling”, Conferences in Research and Practice in Information Technology, Vol.
27.2003.

[12] David Hollingsworth, “The Workflow Reference Model”, 1995

[13] David Hollingsworth, “The Workflow Reference Model: 10 Years On”, 2004

[14] WIMC, “Workflow Management Coalition Terminology and Glossary, Document Number
WFMC-TC-1011” Feb, 1999

