
行政院國家科學委員會專題研究計畫 成果報告

一個在編輯流程軟體規格時的遞增性資源分配分析之研究

研究成果報告(精簡版)

計 畫 類 別 ：個別型

計 畫 編 號 ： NSC 94-2213-E-009-135-

執 行 期 間 ： 94年 08 月 01 日至 95年 07 月 31 日

執 行 單 位 ：國立交通大學資訊工程學系(所)

計 畫主持人：王豐堅

計畫參與人員：博士班研究生-兼任助理：吳建德

碩士班研究生-兼任助理：林友涵、簡璞

處 理 方 式 ：本計畫可公開查詢

中 華 民 國 96年 01 月 30 日

行政院國家科學委員會補助專題研究計畫 ■ 成 果 報 告
□期中進度報告

一個在編輯流程軟體規格時的遞增性資源分配分析之研究

計畫類別：■ 個別型計畫 □ 整合型計畫

計畫編號：NSC 94-2213-E-009-135
執行期間： 94 年 8 月 1 日至 95 年 7 月 31 日

計畫主持人： 王豐堅

計畫參與人員： 吳建德、林友涵、簡璞

成果報告類型(依經費核定清單規定繳交)：■精簡報告 □完整報告

本成果報告包括以下應繳交之附件：

□赴國外出差或研習心得報告一份

□赴大陸地區出差或研習心得報告一份

□出席國際學術會議心得報告及發表之論文各一份

□國際合作研究計畫國外研究報告書一份

處理方式：除產學合作研究計畫、提升產業技術及人才培育研究計畫、

列管計畫及下列情形者外，得立即公開查詢

 □涉及專利或其他智慧財產權，□一年□二年後可公開查詢

執行單位：國立交通大月資訊工程學系網路軟體工程實驗室

中 華 民 國 96 年 1 月 30 日

摘要

工作流程管理技術提供對於企業內複雜商業流程(business process)的模組化管理，一般說來

一個工作流程管理系統(WFMS, Workflow Management System)是由兩個主要的元件-設計環

境與執行環境-所組成，為了要確保所建構目標工作流程系統的正確性，工作流程規格的結

構、時序以及資源正確性都必須被檢驗。在本報告中，我們以遞增性的方法，針對設計過

程中每次設計動作之後的資源統一性以及時序限制進行分析，並且提供適當的資訊給設計

者以及系統維護者，以求幫助正確的建構有效率的工作流程應用程式。

關鍵字：工作流程管理系統，遞增性方法，資源統一性，時序限制

Abstract

Workflow management technology helps modulizing and controlling complex business
processes within an enterprise. Generally speaking, a workflow management system (WfMS) is
composed of two primary components, a design environment and a run-time system. Structural,
timing and resource verifications of a workflow specification are required to help assure the
correctness of the specified system. In this paper, we address an incremental methodology to
analyze resource consistency and timing constraints after each editing activity of a workflow
specification and to provide proper feedbacks to designer or maintainer of the workflow
specification.

Keywords: Workflow Management System, WfMS, Incremental Methodlogy, Resource

Consistency, Timing Constraints

The following paper published in Proceedings of the 12th Asia-Pacific Software Engineering
Conference (APSEC'05) - Pages: 122 - 129

An Incremental Analysis to Workflow Specifications

Hwai-Jong Hsu, Da-Li Yang, and Feng-JianWang
Department of Computer Science and Information Engineering, National Chiao-Tung University

{hjhsu, dlyang, fjwang}@csie.nctu.edu.tw

Abstract

Workflow management technology helps modulizing and controlling complex business
processes within an enterprise. Generally speaking, a workflow management system (WfMS) is
composed of two primary components, a design environment and a run-time system. Structural,
timing and resource verifications of a workflow specification are required to help assure the
correctness of the specified system. In this paper, we address an incremental methodology to
analyze resource consistency and timing constraints after each editing activity of a workflow
specification and to provide proper feedbacks to designer or maintainer of the workflow
specification.

1. Introduction

Electronic workflow integrates business rules and staffs inside an enterprise into an
automatic information system. Inside a flow, the process (activities) and information flow
between them are specified according to the business rules to accomplish specific tasks [1][12].
Furthermore, workflow specifications schedule tasks, and coordinates human resources and
information system [13]. Modern workflow management systems (WfMSs) support environments
for both workflow design and workflow enactment.

To assure the correctness of executing a workflow specification, analyses on structural
integrity, temporal correctness, and resource conflicts are required. Structural analysis is given
precedence over analysis of the other two, since the rest give a better result on the specification
whose structure has been analyzed. Various methodologies for structural and temporal analysis of
workflow system specifications have been developed and proved effective [3][5][6][7][9][10].
However, the methodologies proposed work only for static and total verifications of resource
consistency. These methodologies might be ineffective in analyzing influence of workflow
specifications with large amount of processes after each modification, and provide insufficient
information to designers and maintainers [2].

In this paper, we present an incremental methodology for analysis of resource constraints in
structuralized workflow specifications. The analysis works after each editing operation of
workflow specification, and provides more precise and effective information to the
designer/maintainer directly. Our approach focuses on influence of each editing operation, and
therefore is more efficient than traditional methodology.

The paper is structured as follow: Section 2 describes the definitions and notations us. An
incremental algorithm for analysis of resource conflicts in workflow specifications is constructed
in section 3, and the temporal factor is considered in section 4. The time complexity and
conclusion of our methodology are discussed in section 5 and 6.

2. Definitions and Notations

Directed acyclic graph (DAG) is a simplified model for workflow specifications [3] [8].
DAG can be applied for verifying consistency of control and data flows. We describe workflow
specifications based on DAG with a five-tuple (N, F, R, S, E). S and E represent the start and end
processes of the workflow. N represents the set of processes which can be distinguished as
activity and control process. An activity process describes a task and control processes are
and-split, and-join, xor-split, and xor-join process defined in [WfMC TG]. Each flow f in F,
represented as (ni, nj) means a transition from process ni to process nj. Flow f is called an
out-flow of process ni, and an in-flow of process nj; besides, ni is the source process of flow f and
nj is the sink process of flow f. R is a set of sets of resources associated to each activity process in
a workflow.

Definition 1 (Workflow Specification)
Workflow Specification ws = (N, F, R, S, E)
(1) N: a set of processes, where ∈∀n N, n.TYPE = {ACTIVITY, AND-SPLIT,

XOR-SPLIT, AND-JOIN}
(2) F: a set of flow, where F, f = (n∈∀f i, nj), ni, nj∈ N∪ {S, E}
(3) R: a set of sets of resources referenced by each process, where R, = {r∈∀ iR iR n | rn

is a resource accessed by ni, ni∈N, ni.Type = ACTIVITY}
(4) S and E are the starting and the ending process correspondingly. S, E N ∈

[2] describes path, reachability, distance and ancestor. In order to construct our algorithm,

we define path, reachability, distance, ancestor, distance to ancestor, nearest common ancestor
and control block formally in following definitions.

Definition 2 (Path)

A path p = (n1, n2, …, nt) where i, 1 ≤ i ≤ t-1, ∀ ∈+)n,(n 1ii F
A path p is acyclic, if n∀ i, nj∈ p, i ≠ j, ni ≠ nj
The length of an acyclic path p is denoted as |p|. |p| = t

Definition 3 (Reachability)
Process nj is reachable from process ni if there is an acyclic path p = (ni, …, nj) Reachable(ni,
nj) is a boolean function to denote whether nj is reachable from ni

function returns the distance between two processes ni and nj

Definition 5 (Ancestor)
stor of nj if Reachable(ni, nj) = True

estor of both nj and nk

efinition 6 (Distance to the Common Ancestor)
. We define distance of nj, nk to its common

e(ni, nj), Distance(ni, nk))

Definition 7 (Nearest Common Ancestor)
stor of nj and nk where DCA(ni, nj, nk) is the shortest

In our algorithm, function NCA(ni, nj) is defined as a function returns the nearest common

efinition 8 (Control Block)
trol Block where ns, n

⎪
⎩

⎪
⎨

⎧

=
∃

=

otherwise.FALSE,

)n,...,(np
path a if TRUE,

)n,nReachable(jiji

Definition 4 (Distance)
Distance(ni, nj) is a

Process ni is an ance
Process ni is a common ancestor of nj and nk if ni is an anc

D
Let ni is the common ancestor of nj and nk
ancestor ni as DCA(ni, nj, nk)
DCA(ni, nj, nk) = MIN(Distanc

Process ni is a nearest common ance
among all the common ancestor of nj and nk.

ancestor of process ni and nj

D

B = (ns, ne, NB) is a Con e∈N, NB is a subset of N. NB contains each
n

nly if ne.TYPE = AND-JOIN or

ly if NB1 NB2 =

process n where Reachable(ns, n) = Reachable(n, e) = true.
B.start = ns, B.end = ns and ns.TYPE = AND_SPLIT if and o
ns.TYPE = XOR_SPLIT if and only if ne.TYPE = XOR-JOIN.
Two control blocks B1 and B2 are said to be distinct if and on ∩ φ , B is

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

∞+

=

=

=

otherwise.,

) n ,n Reachable(

or) n ,n Reachable(

 if), })n ..., ,(np

or)n ..., ,(n p | |p| { MIN(

)n,istance(n

ij

ji

ij

ji

jiD

1
said to be totally contained by B2 if and only if NB1 ⊆ NB2.

In order to simplify the discussion of out algorithm, we assume that our algorithms are
adop

Definition 9
ed Workflow Specification)

A is a workflow in which all the processes are

3. An Incremental Algorithm for Analysis of Resource Conflicts in Workflow Specifications

In this section, first, we introduce the conditions leading to resource conflicts. Second,
editi

3.1. d Editing Operations Leading to Resource Conflicts

A resource conflict may occur when two or more activity processes refer to one common
(shar

y if they
refer

tion: Two activity processes are potentially executed in
para

Definition 9 (Resource Dependency)
= nj.Type = ACTIVITY. ni and nj are resource dependent if

ted only for well-formed workflow specification. The well-formed workflow specification is
defined in definition 9.

(Well-form
 well-formed workflow specification

connected by flows and any two control blocks are either distinct or totally contained by one
another.

ng operations on activity processes potentially causing resource conflicts are described. Third,
our algorithms to analyze the resource conflicts to the corresponding operations in a workflow
specification are presented. The influence caused by editing operations on processes other than
activity processes is not discussed.

The Conditions an

able) resource concurrently. In a workflow specification, two activity processes are
potentially resource conflict when the following two conditions simultaneously hold [2].

(1) Resource Dependency: Two activity processes are resource dependent if and onl
 to the same sharable resource.
(2) Potential Concurrent Execu

llel if and only if they are not on the same path, and one of their nearest common ancestors is
a control process of AND-SPLIT.

Let ni, nj ∈ N, i ≠ j, and ni.Type
and only if Ri, Rj ∈ R, φ≠ji RR I

Definition 10 (Potential Concurrent Execution)
= ACTIVITY . ni and nj are potentially executed

he following editing operations might produce or eliminate resource conflicts: (1) Adding
or de

pendencies result in resource conflicts. There’re no resource conflicts
betw

3.2. Algorithm for Detecting Resource Conflicts in a Well-Formed Workflow
 split path

form

finition 11 (Split Path)
(ns, ne, NB), a path ps = (ns, n1, …, nk, ne) where n1, …, n N is a

sp

Definition 12 (Resource List on a SPLIT PATH)
i , where

rocessRef(r) ={nk|nk in SPi, r

Let ni, nj ∈ N, i ≠ j, and ni.Type = nj.Type
concurrently if and only if ∀ path p, ni in p, nj not in p, ni and nj has a nearest common
ancestor nk of AND-SPLIT type where DCA(nk, ni, nj) > 0

T
leting a resource reference associated with an activity process, (2) Adding or deleting an

activity process within a workflow specification. Both operations might affect resource
dependencies within a workflow specification. Since the editing operations on processes other
than activity processes are not discussed, there’s no operation which directly changes potential
concurrent executions.

Not all resource de
een two distinct processes which are on the same path, or whose nearest common ancestor is

not AND-SPLIT when they are not in the same path.

The
To describe our algorithm clearly, we describe split paths and resource lists on a
ally and in order to simplify our algorithm, the type of each resource reference is ignored.

De

∀ control block B = k ∈ B
lit path of B

RLSPi is a resource list on some split path SP
(1) ∀ nj in SPi, RLSPi = U Rj

 ∈(2) r, r is a resource, RL∀ spi.P R }

esource lists are indexed by split paths among each control block, and we assume that
when

k

R
ever a split path is created during editing of workflow specification the corresponding

resource list is also constructed. Each resource list records resource references of processes along

with the corresponding split path. The information used within an incremental algorithm is
recorded in the resource list on each split path, and is updated when resource references and
activity processes are added in or deleted from the workflow specification.
Besides we define the notation for resource conflicts and how to record resource conflict for each

efinition 13 (Resource Conflict)
if and only if r is a resource, ni and nj

process for usage of incremental algorithm.

D

∈(r, ni, nj) is a resource conflict N, r R , Rj, and ni
, n

Definition 14
Conflict set for a Process)

n or any i = 1,.., k and n ≠ n , (r, n, ni) is a resource

he notation in definition 14 would be used in section 4.
RD (Check Resource Dependency)

cons

hen CSP
back

SPLIT_PATH SET CSP
ws,

1.

∈ i
and nj potentially concurrent in execution. W.L.O.G, (r, ni, nj) and (r j, ni) is considered as
the same in our discussion.

(Resource
.Rd(r) = {n1, …, nk} is and only if f i

conflict

T
There are two algorithms CSP (Collect Split Paths) and C
tructed. CSP is used to collect the processes which might execute concurrently and CRD is

used to detect the resource dependencies among them. Since not all resource dependencies result
in resource conflicts, the CSP algorithm is executed first and the result set is passed to CRD for
execution. CSP and CRD are applied when adding or deleting a resource r associated with a
process n. Adding a process can be viewed as adding multiple resources to the process, and
deleting a process can be viewed as deleting all the resources referenced by the process.

In CSP algorithm, first, a flow queue Q is initialized. Q is used to store the flows w
 tracks the processes starting from the target process n. At line 2 all the in-flows of n are put

into Q. At line 5, the first flow f = (ni, nj) in Q is dequeued and checked for its type. If the
algorithm finds that the source process of the flow, ni, is typed as AND-SPLIT, the resource list
along with the split path which the process n belonging to is updated at line 8. The resource list is
updated according to what editing operation that triggers the function. Adding resource reference
to the target process can be viewed as adding resource reference to the split path where the target
process n belongs to, and removing resource reference from the target process n can also operate
in similar way. At line 9 to 10, the split paths from the AND-SPLIT process other than the path
from the target process n are collected into the result SPLIT_PATH set CSP. At line 12, the
in-flows of the ni are enqueued into Q, and the loop start from line 4 to line 12 continues until Q
is empty.

(workflow specification
process n, resource r)
CSP = φ

2. flow qu eeu Q = φ ; // initialize flow queue
flow of process n into Q

w
3. ∀ in-flow f of n, Q.enqueue(f); // put the in
4. hile Q ≠ φ // back tracking ws from the process n
5. Let f = Q.dequeue() and assume that f = (ni, nj)
6. //collect information about parallel split path when //meet an AND-SPLIT
7. if (ni.TYPE = AND-SPLIT) then
8. ∃ a split path SPk where ni, n ∈ SPk, Update Resource List of SPk

ac p
9.

 //co ce path into CSP

cording to the editing operation on rocess n and r
∀ out-flow of ni f’, where f’ = (ni, nk), nk ≠ nj

10. llecting all the split paths other than the //sour
11. ∃ a split path SPm where ni, nk ∈ SPm, CSP = CSP + SPm
12. ∀ -flow f” of n in i, Q.enqueue(f”)

We have shown that any process which is potentially concurrent to target process n must be

ESOURCE_CONFLICT SET CRD
ce

concluded in some split path contained in SPLIT_PATH set CSP. With the SPLIT_PATH set
collected in CSP algorithm, line 2 and 3 of CRD algorithm check the resource list along with
each split path to see if the resource r is referenced by other processes in the split paths not
containing process n. At line 4 we update the resource conflict list according to the resource
conflict found in algorithm.

R

(SPLIT_PATH set P, process n, resour r)
1. CRD = φ

2. ∀ SPLI _T PATH SPi ∈ P and nj RLSPi.ProcessRef(∈ r)
 3. insert (r , n, nj) into CRD

4. update n.Rd(r) and ni,Rd(r)

4. An Incremental Algorithm to detect Resource Conflicts with Temporal Consideration

Two processes can have potential resource conflict as the last section describes, however, the
conf

e Interval (EAI) is introduced. Second,
Pote

4.1. Calculating EAI in a Workflow Specification

The earliest start time (EST) and the latest end time (LET) of process in a workflow can be
calcu

(n) and D(n) shows the minimal and maximal durations of n. For activity
proc

D(n) or d(n) on some

 workflow specification ws, the target process n, and a flag string mode are the input
para

ion ws,

1. cord the original values

lict never happens if execution of both processes doesn’t overlap. We define such resource
conflict as resource conflict with temporal consideration.

In this section, first, the concept of Estimated Activ
ntial Overlapped Execution between activity processes is defined. The resource conflicts

with temporal consideration are the resource conflicts which are potentially overlapped in
execution. The incremental algorithm to detect resource conflict with temporal consideration is
constructed.

lated if the maximal and minimal durations of each process are described in a workflow
specification. [4]. The time interval starts from EST to LET is named as Estimated Active Interval
(EAI). The EAI for process n is denoted as [EST(n), LET(n)]. Reasonably, LET(n) must not be
less to EST(n) to any process n. EAI table is used to record EAI values of all the processes in the
workflow specification.

For the process n, d
esses, the values are specified by the designer, and for control processes the values are

initialized as zero. EST and LET of starting process are initialized as zero. Besides, EST and LET
of the rest processes are calculated from their precedent process(s). In a well-formed workflow,
there’s only one precedent process for an activity, AND-SPLIT, or XOR-SPLIT process and
there’re multiple precedent processes to an AND-JOIN, XOR-JOIN, or End process. To lengthen
D(n) postpones the LET of n and its following processes; on the contrary, to shorten the D(n)
advances the LET of n and its following processes. To alter d(n) of the process n would not
directly affect the EAI of n; however, to lengthen d(n) postpones the EST of n’s following
processes, and to shorten d(n) advances the EST of n’s following processes.
After each temporal related editing operation, which means modification of
process n, the algorithm Calculate_EAI is adopted to calculate EAI for each effected process.
After introducing the algorithm, we would show that the algorithm covers all the influenced
processes. In this algorithm, we assume that there’s no delay between end and start of each
process

The
meters of the algorithm Calculate_EAI. There’re two values “target” and “ripple” for the flag

string mode. When the Calculate_EAI is invoked when some temporal editing operation is
committed, the flag string “target” is used, When the Calculate_EAI is invoked recursively by
itself, the flag string “ripple” is used. At line 1 and 2, we store the original EST and LET value of
target process n for later usage. At line 3 to 5, the EAI of process n which is typed as AND-JOIN
is calculated. Process n can be fired only when all precedent processes of n are committed.
Value of EST of n is the maximal earliest end time among all its precedent processes. The earliest
end time of any process ni is the summation of EST(ni) and d(ni). Since the D(n) is zero, LET of n
is the maximal LET among all its precedent processes. At line 6 to 8, the EAI of process n which
is typed as OR-JOIN or end process is calculated. Process n can be fired only when any precedent
processes of n are committed. Value of EST of n is the minimal earliest end time among all its
precedent processes. Since D(n) is zero, LET of n is the maximal LET among all its precedent
processes. At line 9 to 11, EST value of the target process is equal to the earliest end time its
precedent process, and LET value is the LET value of its precedent process plus the maximal
working duration of itself. At line 13 to 16, the algorithm first stores the new EAI value of target
process into storage. The algorithm will recursively continues when the algorithm is invoked after
some editing operation or when EAI of the target process is changed and the ripple effect to its
following processes must be calculated. The flag string “ripple” is used when Calculate_EAI
recursively invoke itself.
VOID Calculate_EAI

(Workflow Specificat
Process n, String mode)
EST_old = EST(n); // re

2. LET_old = LET_(n); // record the original values
3. if (n.Type = AND-JOIN) then

4. EST(n) = MAX({EST(ni) + d(ni) |
i, n)});

5. LET(n) = MAX({LET
f = (ni, n)}) ;

6. else if (n.Type = XOR-JOIN or n = End Process) then

, n)});
8. LET(n) = MAX({LET

f = (ni, n)}) ;
9. else

 (n) = EST(ni) + d(ni);

n) ≠ EST_old or
 then

14. store EST_old to EST’(

A ’, “ripple”); // continue

∀ flow f = (n
(ni) |

∀ flow

7. EST(n) = MIN({EST(ni) + d(ni) |
∀ flow f = (ni

(ni) |
∀ flow

10. EST
11. LET(n) = LET(ni) + D(n);
12. // store old data for analysis
13. if (mode = “target” or (EST(

LET(n) ≠ LET_old))
n);

15. store LET_old to LET’(n)
16. ∀ n’ ∈ N, (n, n’) ∈ F,

Calculate_E I(ws, n

.2. The Definition of Resource Conflict with Temporal Consideration and the Temporal

With EAI for each activity process, two activity processes are potentially overlapped in
exec

Definition 14 (Intersection between EAIs)
d as [EST(ni), LET(ni)], [EST(nj), LET(nj)]

. [EST(ni),

4
Related Editing Operations

ution if and only if their EAI are overlapped. Before we define the potential overlapped
execution, two operators on EAI is defined as following.

EAI of two processes ni, nj are denote
[EST(ni), LET(ni)] ∩ [EST(nj), LET(nj)] means the interaction of the two interval
LET(ni)] ∩ [EST(nj), LET(nj)] = φ if and only if LET(ni) < EST(nj) or LET(nj) < EST(ni);
on the contrtry, [EST(ni), LET(ni)] ∩ [EST(nj), LET(nj)] ≠ φ . If [EST(ni), LET(ni)] ∩
[EST(nj), LET(nj)] ≠ φ , [EST(ni), LET(ni)] ∩ [EST(nj), LET(nj)] is defined as
[MAX({EST(ni), EST(nj

Definition 15 (Total Containment between EAIs)

eans [EST(nj), LET(nj)] is totally contained by

After the operators for EAIs are defined, the formal description of potential overlapped execution

efinition 16 (Potential Overlapped Execution)
ly overlapped in execution if and only if ni, n

)}), MIN({LET(ni), LET(nj)})]

[EST(nj), LET(nj)] ⊆ [EST(ni), LET(ni)] m
[EST(ni), LET(ni)]. [EST(nj), LET(nj)] ⊆ [EST(ni), LET(ni)] if and only if EST(nj) ≦
EST(ni) and LET(ni) ≧ LET(nj).

and the resource conflict with temporal consideration is defined in Definition 16 and 17.

D

Two activity processes ni and nj are potential j ∈
N where i ≠ j, ni.Type = nj.Type = ACTIVITY, and [EST(ni), LET(ni)] ∩ [EST(nj), LET(nj)]
≠ φ

Definition 16
nflict with Temporal Consideration)

ideration where r is a resource ni and nj
(Resource Co
(r, ni, nj) is a resource conflict with temporal cons ∈
N if and only if r ∈ Ri, Rj, ni and nj are potentially concurrent potentially overlapped in
execution. W.L.O.G, r, n (

Adding or deleting a resource reference from some process might increase or eliminate one

or m

dding a new process with d(n) and D(n) zero, and
caus

 of some process n (d(n) or
D(n)

i, nj) and (r, nj, ni) is considered as the same in our discussion.

ore resource conflicts, and only the processes in resource conflict are required to be checked
if there’s any overlapping in their execution.

Adding a new process can be viewed as a
es no effect on EAI of existing processes. Deleting an activity process can be viewed as the

values of d(n) and D(n) of the target process are modified to zero.
Directly modifying minimal and maximal execution duration
) affects EAI of its following processes until the influence disappears. Such editing operation

is called temporal related editing operations.

4.3. An Incremental Algorithm for Detecting Potential Overlapped Execution

The set RCT is used to store the resource conflicts with temporal consideration. Algorithm
CTO

thm
CTO

RESOURCE_CONFLICT_EXT SET CTO
)

1.
 i), LET(ni)] ∩ [EST(nj), LET(nj)]

 finds the resource conflict with temporal consideration from the records of existing resource
conflict. Algorithm CTO can be viewed as a patch of CSP and CRD algorithm to detect resource
conflicts with temporal consideration after editing operations which are not temporal related.

The result set RD from CSP and CRD algorithm is used as the input parameter of algori
. At line 1 to 3, each resource conflict in set RD is checked, the resource conflicts in which

the involved processes are potentially overlapped in execution are added in to set CTO. After
these steps, CTO contains all the resource conflicts with temporal consideration after the editing
operation. RCT contains the original resource conflicts with temporal consideration in the
workflow specification. The elements in RCT but not in CTO are the resource conflicts with
temporal consideration eliminated after the editing operation. On the other hand, the elements in
CTO but not in RCT are the resource conflicts with temporal consideration created after the
editing operation. At line 4 to 7, these elements are selected and the designer is informed about
these eliminated or created resource conflicts with temporal consideration. At line 8, the set RCT
is updated with CTO, all the resource conflicts with temporal consideration after the editing
operation.

(RESOURCE_CONFLICT SET RD
∀ (r, ni, nj) ∈ RD

2. if ([EST(n
≠ φ) then

3. add (r, ni, nj) to CTO;
O)

 temporal
ated);

6. (r, ni, n
 temporal

);
8. RCT = CT

4. ∀ (r, ni, nj) ∈ (RCT – CT
5. info(resource conflict with

consideration (r, ni, nj) is elimin
∀ j) ∈ (CTO – RCT)

7. info(resource conflict with
consideration (r, ni, nj) is created

O;

Modification of working duration which changes EST and LET values of the target process
and

cess n, the temporal related editing operation changes the
EST(

’(n) < LET(n) is handled. The EAI of n is
shor

i) is handled. In this situation, EAI of n is lengthened;
there

nd 22, the algorithm continues recursively when EAI of n is changed.

Void CDM
specification ws, process n)

1.

 (nx)] ∩ [EST(n), LET(n)]

its descendent processes affects execution overlapping between processes but doesn’t affect
resource conflict set found by CSP and CRD. The algorithm CDM (Calculating Duration
Modification) is constructed to handle the change of resource conflicts with temporal
consideration for such operations.

Assume that for the target pro
n) to EST’(n) and LET(n) to LET’(n). With the discussion in above section, we know that

change of D(n) affects LET of n and its following processes, and change of d(n) affects EST of
n’s following processes. For each temporal editing operation and for the target process n and each
effected processes only one of EST or LET is changed.

At line 1 to 5 of algorithm CDM, the situation LET
tened; therefore, for any existing resource conflict with temporal consideration (r, nx, n),

some existing overlapped process nx might not overlap to n when their intersection interval is
totally contained in the shortened interval. The resource conflict with temporal consideration (r,
nx, n) is eliminated when nx and n are no longer potentially overlapped in execution. The
elimination is updated to RCT and informed to the designer. At line 16 to 20, the situation EST’(ni)
> EST(ni) is handled in similar way.

At line 6 to 10, LET’(ni) > LET(n
fore all the resource conflict related to n (r, nx, n) are checked. For any such resource conflict,

if EAI of nx is intersected with the lengthened part and (r, nx, n) is not a resource conflict with
temporal consideration in advance. (r, nx, n) becomes the new created resource conflict with
temporal consideration after this temporal related editing operation. (r, nx, n) is added into RCT,
and the designer is informed as well. At line 11 to 15 the situation EST’(ni) < EST(ni) is handled
in similar way.

At line 21 a

(workflow
 if (LET’(n) < LET(n)) then

2. ∀ (r, nx, n) ∈ RCT
3. if ([EST(nx), LET ⊆

[LET’(n), LET(n)]) then
4. RCT = RCT –(r, n , n)

i, nx, ni) is no longer

6. else if (LET’(

(ni),LET(ni)] ≠

x ;
5. info(resource conflict (r

potentially overlapped);
n) > LET(n)) then

7. ∀ r ∈ R(n), (r, nx, n) ∈ n.rd(r)
8. if ([LET(n),LET’(n)] ∩ [EST φ

&& (r, nx, n) ∉ RCT) en th
9. RCT = RCT + (r,

th temporal
)

11. else if (EST’(n

(ni),LET(ni)] ≠

 nx, n);
10. info(resource conflict wi

consideration(ri, nx, ni) is created
) < EST(n)) then

12. ∀ r ∈ R(n), (r, nx, n) ∈ n.rd(r)
13. if ([EST’(n),EST(n)] ∩ [EST φ

14. RCT ,
th temporal

)
16. else if (EST’(n

)] ∩ [EST(ni),LET(ni)] ⊆
hen

19. RCT = RCT –(r, n , n
i, nx, ni) is no longer

21. if (EST’(n) ≠ T(n)) then

&& (r, nx, n) ∉ RCT) then
 = RCT + (r, n n); x

15. info(resource conflict wi
consideration(ri, nx, ni) is created
) > EST(n)) then

17. ∀ (r, nx, n) ∈ RCT
18. if ([EST(n),LET(n

[EST(n),EST’(n)]) t
x);

20. info(resource conflict (r
potentially overlapped);
EST(n)) or (LET’(n) ≠ LE

22. ∀ n’ ∈ N, (n, n’) ∈ F, CDM(ws, n’);

5. Discussion of Time Complexity

Since the existing work on analysis of resource conflicts in workflow specification neglect
the t

ms through the number of processes

t case with the total and static methodology, it has
bette

tatic methodology in average case is still O(N), since it
alwa

6. Conclusions and Future Work

orkflow specification is a formal description of design and implementation of workflow

emporal factors, in comparison of time complexity of our approach and the traditional one,
we also focus on the part without temporal consideration.
We simply discuss the time complexity of the algorith
required to be visited. With a workflow specification in which there are N processes. Since the
total and static methodology for analysis of resource conflicts [2] visit all the processes in the
workflow specification for each analysis, the worst case is O(N). In our approach, tracking of
processes is required when detecting potential concurrent execution. The worst case is also O(N)
when all the processes are sequentially ordered. However the calculation is only required when
AND-SPLIT is met in algorithm CSP, and when all the processes are sequentially ordered, there’s
no AND-SPLIT in the workflow specification.

Although our approach has the same wors
r time complexity in average cases.
The time complexity for total and s
ys tracks the whole schema. In our approach, the number of nodes required to be visited is in

average equal to the length from the start process to the target process. Now we conclude the
average case of our algorithm as O(logkN), where k is the average number of branches of each
process. Value of k is influenced by the structure of the workflow specification. With a fixed
number of processes in a workflow specification, more control processes results more branches
for each process, i.e. the more processes visited the less calculations required, and therefore, our
approach is much better in average cases to the traditional approach.

W
applications. Proper environment for verification of structural, resource, and timing constraints
helps designers produce workflow applications with high quality. There’re various effective
approaches for verification of structural and temporal correctness. However, there lacks a real
time approach for designers to verify resource conflicts associated with the designer’s editing
activity. This paper describes an incremental algorithm verifying resource conflicts in workflow
specification after every editing operation. We discuss the conditions causing resource conflicts
and the algorithm to detect them. Our approach provides abundant information to the designer
after each editing operation. The time complexity of efficiency about our algorithm is better then

the traditional approaches.
There’re still some issues not discussed in this paper, for example, considering editing operations

eferences
orkflow Management Coalition. http://www.wfmc.org/

on control process, invocation of resource type and multiple resource instances, and analysis for
resource conflicts when the workflow specification is altered during run-time. To implement and
integrate the algorithm into existing WfMS is also necessary.

R
[1] WfMC, W
[2] Hongchen Li, Yun Yang, T.Y. Chen, “Resource constraints analysis of workflow

ing graph reduction techniques”,

of temporal constraints in production workflows.”,

.

s, M. A. (2003). “JBees - An Adaptive and Distributed

 Atluri, V., Huang W., 1998. “Modeling and Analysis of Workflows using

f Workflows without Losing

inition of deadlock patterns for

pects of workflow management, Part 1: Semantics.” Technical

 and Validation

 Hollingsworth, “The Workflow Reference Model”, 1995
s On”, 2004

ument Number

specifications”, the Journal of System and Software 73 (2004).
[3] Sadiq, W., Orlowska, M.E., “Analysing process models us
Information System 25(2), p117-134. 2000.
[4] Marjanovic, O., “Dynamic verification
Proceedings of the Australian Database Conference. IEEE Press, Canberra, Austalia, pp. 74-81.
[5] Aalst, W.M.P.v.d., Basten, T., Verbeek, H.M.W., Verkoulen, P.A.C., and Voorhoeve., M
“Adaptive Workflow: An Approach Based on Inheritance.” In Proceedings of the IJCAI’99
Workshop on Intelligent Workflow and Process Management: The New Frontier for AI in
Business. 1999. Stockholm, Sweden.
[6] Fleurke, M and Ehrler, L, Purvi
Agent-based Workflow System”, in Proceedings of the International Workshop on Collaboration
Agents: Autonomous Agents for Collaborative Environments (COLA 2003), Halifax, Canada,
October 2003.
[7] Adam, N.,
Petri-Nets”, Journal of Intelligent Information System, 10(2), 1998.
[8] M. Reichert, P. dadam. “ADEPT-Supporting Dynamic Changes o
Control”, Journal of Intelligent Information System, 10(2), 1998.
[9] Onoda, S., Ikkai, Y., Kobayashi, T., Komoda, N.,1999. “Def
business processes workflow models.” Proceedings of the 32nd Hawaii International Conference
on System Sciences, pp. 1-11.
[10] Singh, M.P., “Formal as
Report, Department of Computer Science, North Carolina State University, 1997.
[11] Shazia Sadiq, Maria Orlowska, Wasim Sadiq, Cameron Foulger, “Data Flow
in Workflow Modeling”, Conferences in Research and Practice in Information Technology, Vol.
27. 2003.
[12] David
[13] David Hollingsworth, “The Workflow Reference Model: 10 Year
[14] WfMC, “Workflow Management Coalition Terminology and Glossary, Doc
WFMC-TC-1011” Feb, 1999

