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This progress report will be expressed in terms of the major accomplishments made from the
NSC-supported research, as summarized below in two parts: A and B (five preprints submitted to
or to be submitted to the Journa of Physical Chemistry B for publication are attached).

Part A: A series of five papers on the thermorheological complexity related to glass transition
in polystyrene have been published in or submitted to the Journa of Physical Chemistry B(listed
at the end of this report), reporting the following important contributions:

(1) Demonstrate the validity and accuracy in practice of using the successful description of the
entropic region (long-time region) in terms of the extended reptation theory (ERT) for the
entangled system or in terms of the Rouse theory for the entanglement-free system as the
reference frame for analyzing the whole range of viscoelastic response: creep compliance J(t) line
shapes and viscoelastic spectra G'(w) & G”(w), yielding important dynamic and structura
information related to the glass transition of polystyrene (see Figures 1 and 2 of paper 1; Figure 1
of paper 3; and Figures 1-3 and Table 1 of paper 5).

(2) First quantitative analyses of the creep compliance J(t) line shapes of nearly monodisperse
polystyrene samples over 5 decades of dynamic range (or as wide as 9 decadesin time; asfar as |
know, this is a record-breaking span of time), yielding the frictional-factor vaue in close
agreement with the values obtained previously from other types of measurements: relaxation
modulus, viscosity and diffusion. (see Figure 1, Figure 2 and Table 1 of paper 1; and Figure 1 of
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paper 3).

(3) From the results obtained from analyzing the J(t) line shapes, it is shown that the
thermorheological complexity in polystyrene behaves in a universal way, entangled or not. (see
Figures 4, 5 and 6 of paper 3).

(4) The basic mechanism for the thermorheological complexity (TRC) in polystyrene is
analyzed and shown to be also responsible for the breakdown of the Stokes-Einstein relation
(BSE) in fragile glass-forming liquids, such as OTP and TNB. The equivalent quantities in the
two effects are shown to behave in a similar way. (see Figure 1 of paper 4). The importance of
this study can be reflected by the comments of the two reviewers of paper 4, who support the
publication of the paper with recommendations for minor changes: “TRC and BSE is an
important issue for polymer scientists and physical chemist.” and “...the manuscript addresses an
important issuein glass forming liquid.”

(5) It isshown how the length-scales associated with the Rouse-Moody normal modes (for the
entangled system) or the Rouse normal modes (for the entanglement-free system) may be used as
the internal yardstick for estimating the characteristic length-scale of relaxation at the glass
transition temperature, giving ~3 nm consistently for three different polystyrene systems, two
entangled and one entanglement-free, which is also in agreement with the value obtained by other
studies. (see Figures 8 of paper 3). The importance of this result can be reflected by the comment
of a reviewer of paper 3, who would like to support the publication of the paper after it is
properly shortened: ““To my opinion a highlight is the possibility to determine the length scale of
relaxation around Ty which, in agreement with different experiments, turns out to be around
3nm.”

(6) The comparison of dynamic quantities as reported in paper 2 clearly differentiates for the
first time the motion associated with a single Rouse segment from the o-relaxation— due to the
lack of clear definition in the past and the proximity of one to the other in the time scale, the two
modes could be easily confused.

The research accomplishments as listed above have resulted from analyzing or benefited from the



published data of the following laboratories: D. J. Plazek at the University of Pittsburg; M. D.
Ediger at the University of Wisconsin and T. Inoue et al at the University of Kyoto.

Part B: A series of two papers studying the stress relaxations, linear and nonlinear, of
entanglement-free Fraenkel chains will soon be submitted to the Journal of Physical Chemistry B
for publication. The important contributions in these two papers are highlighted as in the
following:

(1) The characteristic viscoelastic behavior of the Fraenkel chain is reveaded, including (a)
distinctive two modes of dynamics; (b) the holding of the Lodge-Meissner relation over the
whole time of relaxation; (c) nonzero second normal-stress difference.

(2) It isshown through analysis that the fast mode arises from the segment-tension fluctuations
or reflects the relaxation of the segment-tension arising from segments being stretched by the
applied step strain—an energetic interactions-derived dynamic process; while the slow mode
arises from the fluctuating segmental-orientation anisotropy or represents the randomization of
the induced segmental-orientation anisotropy—an entropy-derived dynamic process. The physical
basis for the distinctive coexistence of the energetic interactions-derived dynamics and the
entropy-derived dynamics, as observed in experiment, isfully revealed.

(3) Very significantly the slow mode is well described by the Rouse theory in all aspects: the
magnitude of modulus, the line shape and the number-of-beads dependence of the relaxation time.
In other words, with one Fraenkel segment substituting for one Rouse segment, it has been shown
that the entropic-force constant on each segment is not a required element to give rise to the
Rouse modes of motion, which have been typically observed in the long-time region of the linear
viscoel astic response of an entanglement-free polymer.  This conclusion provides an explanation
resolving a long-standing fundamental paradox in the success of modern molecular theories of
polymer viscoel asticity based on the Rouse segment as the most basic structural unit—namely, the
paradox between the Rouse segment size being of the same order of magnitude as that of the
Kuhn segment and the meaning of the Rouse segment as defined in the Rouse chain model.



(4) The holding of the Lodge-Meissner relation—which was originaly proposed based on a
phenomenologica argument—over the whole time of relaxation as observed in the smulation is
proven analyticaly.

(5) The workings of the fluctuations-dissipation theorem and viria theorem are, respectively,
illustrated by the simulation, which are valuable examples in the teaching of statistica
mechanics.

Reports from Part A:

(1) Lin, Y.-H. “Whole Range of Chain Dynamics in Entangled Polystyrene Melts Revealed
from Creep Compliance: Thermorheological Complexity between Glassy-Relaxation
Region and Rubber-Fluid Region. 1” J. Phys. Chem. B 2005, 109, 17654.

(2) Lin, Y.-H. “Motion Associated with a Single Rouse Segment versus the o Relaxation. 2”7
J. Phys. Chem. B 2005, 109, 17670.

(3 Lin, Y.-H. “Universality in Thermorheological Complexity Related to Glass Transition
in Polystyrene M elts. 3” J. Phys. Chem. B, revised and resubmitted.

(4) Lin, Y.-H. “Thermorheological Complexity in Polystyrene Melts and Breakdown of the
Sokes-Einstein Relation in o-Terphenyl. 4” J. Phys. Chem. B, revised and resubmitted.

(5) Lin, Y.-H. “Range of Universality Regarding the Tg-Related Thermorheological
Complexity in Polystyrene Melts. 5 J. Phys. Chem. B, submitted.

Reports from Part B:

(1) Lin, Y.-H.; Das, A. K. “Monte Carlo Smulations of Sress Relaxations of
Entanglement-Free Fraenkel Chains. 1: Linear Polymer Viscoeasticity” J. Phys. Chem. B, to
be submitted.

(2) Lin, Y.-H.; Das, A. K. “Monte Carlo Smulations of Sress Relaxations of
Entanglement-Free Fraenkel Chains. 2: Non-Linear Polymer Viscoelasticity” J. Phys. Chem.
B, to be submitted
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Abstract

In paper 1, using the successful description of the entropic region (long-time region) in terms of
the extended reptation theory (ERT) as the reference frame, the creep compliance J(t) curves over
the whole range of two entangled nearly monodisperse polystyrene melts: samples A and B, were
quantitatively analyzed, characterizing the energetic interactions-derived glassy-relaxation
process occurring in the short-time region in a perspective way. In this report, the J(t) curves

and steady-state complianceJ? of an entanglement-free nearly monodisperse polystyrene melt,

sample C, are equally quantitatively analyzed in terms of an equivalent scheme using the Rouse
theory instead of ERT as the reference frame. These studies show that the uneven
thermorheological complexity in J(t) arises from the temperature dependence of the glassy
relaxation being stronger in asimple way than that of the entropy-derived dynamics, as carried by
the frictional factor K. The structural-relaxation times s of samples A, B and C extracted from
the glassy-relaxation process are equaly well separated into two decoupled quantities: one, s’,
determined entirely by the line shape of J(t) and the other, K’, converted by the predetermined
molecular weight-dependent parameter R¢«(M) from the frictional factor K calculated from the

time-scale shifting factor (K’ =Rx(M)K and 7s=18s’K’). With decreasing temperature, the

! E-mail:yhlin@mail.nctu.edu.tw



increase in s’ represents the structural growth and characterizes the thermorheological complexity
while the increase in K’ represents the frictional slowdown. The effect due to the Ty difference
among samples on s, s” and K’ can be accounted for by expressing them as a function AT=T-Ty
where Ty is defined as the temperature at which the structural-relaxation time 7s=1000 sec.
From this it is shown that the glass transition together with the thermorheological complexity
behaves in a universal way within the polystyrene system, entangled or not. The observed
universality supports the previously obtained result that the frictional factor K in ERT is in
guantitative agreement with that in the Rouse theory indicating the same footing at the
Rouse-segmental level for both theories. Representing important physical features of the
universality, it is shown that vitrification at the Rouse-segmental level occurs gradually in the
same way as AT diminishes and the length-scale at Ty (or AT=0) has nearly the same value ~3

nm for all the three studied samples.
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1. Introduction

About forty years ago thermorheological complexity in polystyrene melts was first observed
by Plazek as the temperature approaches the glass transition temperature.®® The effect is
directly observed as the change with temperature in the creep-compliance J(t) line shapes of
entangled polystyrene samples. As entanglement gives rise to distinct features in the observed J(t)
curve—three bending regions along the course of time, the difference in temperature dependence
between different zones of the J(t) curve can be discerned easily. As reported in papers 1 and
2,%° the J(t) curves over the whole range of two entangled nearly monodisperse polystyrene
samples A and B (or s-A and s-B as in Table 1) have been quantitatively analyzed using the
successful description of the rubber(like)-to-fluid region® (or, simply but less accurately or
specificaly, the entropic region or the long-time/large-compliance region) by the extended

reptation theory (ERT)"2%1%1 as the reference frame. With respect to the reference frame, the

2 Plazek, D. J. J. Phys. Chem. 1965, 69, 3480.

% Plazek, D. J. J. Polym. Sci., Part A-2: Polym. Phys. 1968, 6, 621.

4 Lin, Y.-H. J. Phys. Chem. B 2005, 109, 17654.

® Lin, Y.-H. J. Phys. Chem. B 2005, 109, 17670.

® Seethenoteat ref. 9 of ref 3 for the definition of the term “rubber(like)-to-fluid.”

” Lin, Y.-H. Macromolecules 1984, 17, 28486.



glassy-relaxation process occurring in the short-time region of J(t) at different temperatures was
analyzed in a perspective way. The relaxation times of the various dynamic modes in ERT are
expressed as the products of the frictional factor K and a structural factor; thus, the time-scale of
the large-compliance region of J(t) is characterized by the frictional factor K. In ERT® *° aswell

asin the Rouse theory®%*2%3 thefrictional factor K is defined by

= ﬂ (1)
KTz ?m?

where ¢, (b? and m are the frictional constant, mean square bond length and mass of the Rouse
segment, respectively. As obtained from the analyses of relaxation modulus G(t) line shapes of
a series of nearly monodisperse polystyrene samples of different molecular weights and
calculated from the viscosity and diffusion data in terms of ERT, it has been shown that the
frictional factor K is independent of molecular weight as expected from the theory.®®*°  Asthe
logical consequence of K being independent of molecular weight, ERT explains the
mol ecul ar-weight dependences of the zero-shear viscosity and steady-state compliance; and their
respective transition points, Mc and M¢.°® The proven validity of ERT serves as the

foundation for the quantitative description of J(t) over the wholerange.  With the G(t) functional

® Lin, Y.-H. Macromol ecules 1986, 19, 159.

® Lin, Y.-H. Macromol ecules 1986, 19, 168.

1% Lin, Y.-H. Macromolecules 1987, 20, 885.

M Lin, Y.-H. Polymer \iscoelasticity: Basics, Molecular Theories, and Experiments;
World Scientific: Singapore, 2003.

2 Rouse, P. E. Jr. J. Chem. Phys. 1953, 21, 1271.

13 Bird, R. B.; Curtiss, C. F.; Armstrong, R. C.; Hassager, O. Dynamics of Polymeric

Liquids, Vol. 2, Kinetic Theory, 2" ed.; Wiley: New York, 1987.
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form known (see section 2), the line shape of J(t) can be calculated from the G(t) with K fixed at

a certain value through the basic equation of linear viscoel asticity:
t
t= j ()Gt -t )

The calculation can be accurately done numerically using the Hopkins- Hamming®***> method
(see Appendix A of ref. 3). Then the frictiona factor K can be determined from the shifting
factor obtained in the superposition of the calculated and measured J(t) line shapes; the K vaue
(Table 1) obtained from analyzing the J(t) result of sample A is in close agreement with the

previously obtained values (4.9x10 *+10% at 127.5°C),2 confirming the unique importance of K

and the vaidity of ERT. While being independent of molecular weight, K carries the

temperature dependence—often described by the Fulcher and Tammann-Hesse (FTH) equation or

the Williams- Landel - Ferry (WLF) equation*®*"*®—of all the relaxation times of the processesin

the rubber-to-fluid region.>®*°

As opposed to the entropic nature of the dynamics in this region,
the glassy-relaxation process that occurs in the short-time region is derived from the energetic
interactions among segments. It has been shown that the thermorheological complexity with

temporal unevenness in J(t) arises from the temperature dependence of the energetic

14 Hopkins, I. L.; Hamming, R. W. J. Appl. Phys. 1957, 28, 906; J. Appl. Phys. 1958,
29, 742.

> Tschoegl, N. W. The Phenomenological Theory of Linear Viscoelastic Behavior;
Springer-Verlag: Berlin, 1989.
® Ferry, J.D. \iscoelastic Properties of Polymers, 39 ed.; Wiley: New York, 1980.
7 Fulcher, G.S. J. Am. Chem. Soc., 1925, 8, 339, 789; Tammann, G. and Hesse, G, Z.
Anorg. Allg. Chem. 1926, 156, 245.
8 Williams, M. L.; Landel, R. F.; Ferry, J. D. J. Am. Chem. Soc. 1955, 77, 3701.
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interactions-derived process being stronger than that of the entropy-derived dynamicsin asimple

way,>*  as characterized by the parameter s defined by

©)

where (1) is the average glassy-relaxation time. s increases about an order of magnitude with
decreasing temperature over the range studied just above Ty in s-A and s-B.

According to the analysis in terms of eq 3,** the thermorheological complexity should
occur to a polystyrene melt as long as its molecular weight is greater than that of a Rouse
segment, which has been estimated to be about 850 by various methods,'®2021:2223:24.25.26.27
Below the entanglement molecular weight, the viscoelastic response of polystyrene in the

long-time/low-frequency region (or the entropic region) is described by the Rouse theory.®'%%

19 Ballard, D. G. H.; Rayner, M. G.; Schelten, J. Polymer 1976, 17, 349.

20 Norisuye, T.; Fujita, H. Polymer J. 1982, 14, 143.
%! Inoue T.; Okamoto, H.; Osaki, K. Macromolecules 1991, 24, 5670.
%2 |noue, T.; Hayashihara,H.; Okamoto, H.; Osaki, K. J. Polym. Sci. Polym. Phys. Ed.
1992, 30, 409.
% Inoue, T.; Osaki, K. Macromolecules 1996, 29, 1595; Inoue, T.; Uematsu, T.; Osaki,
K. Macromolecul es 2002, 35, 820.
24 Lin,Y.-H. J. Polym. Res. 1994, 1, 51.
% Lin, Y.-H.; Lai, C. S. Macromolecul es 1996, 29, 5200.
% Lai, C. S; Juang, J-H.; Lin, Y.-H. J. Chem. Phys. 1999, 110, 9310.
2" Lin, Y.-H.; Luo, Z.-H. J. Chem. Phys. 2000, 112, 7219; Lin, Y.-H. J. Chin. Chem.
So0c.2002, 49, 629.
% Lin, Y.-H.; Juang, J.-H. Macromolecules 1999, 32, 181: Note: blend solutions as

studied in this reference denote blends consisting of two polystyrene components. one



In an entanglement-free case, the time/frequency range covered by the viscoelastic response is
not as wide as in an entangled case and the line shape is much more monotonous. As aresult, it is
not as obvious to identify a region in the viscoelastic response where the
time- (frequency-)temperature superposition principle can be applied, reflecting that another
region does not follow the same temperature dependence—i.e. the manifestation of the
thermorheological complexity. Instead, the viscoelastic response changes its line shape over the
whole range greatly with a change in temperature. We shall show in this report that the same
thermorheological complexity occurs in an entanglement-free sample and is reflected by the

decrease in its steady-state compliance J? with temperature decreasing towards Ty as observed by

Plazek.?
A scheme of analysisin terms of eq 3 equivalent to that for analyzing s-A and s-B is used

for analyzing the J? and J(t) results reported by Plazek®® of a low-molecular-weight polystyrene

sample, as denoted by s-C in Table 1, by replacing ERT with the Rouse theory—because the
mol ecul ar-weight distribution of s-C is not that narrow, the Rouse theory becomes applicable here
even thought its My, value is dightly greater than Me=13500 as will be explained in section 3.

Ty is defined by the temperature at which the structural relaxation time s reaches 1000 sec

for all the samples. Using the thus defined Ty as the common reference point, the dynamic and

with molecular weight M, (weight fraction denoted by W,) much greater than
entanglement molecular weight M¢=13500 and the other with molecular weight M;
slightly below M, serving as the “solvent” for the high molecul ar-weight component as

far asthe “dilution” of entanglement is concerned; and the entanglement mol ecular
weight in the blend solution isgiven by M, = M, /W, . With theincreasein W, the
system transits from entanglement-free region to entangled region as M, becomes greater
thanM .

% Plazek, D. J.; ORourke, V. M. J. Polym. ci. A-2: Polym. Phys. 1971, 9, 209.
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structural quantities as obtained from analyzing the J(t) results of s-A, -B and -C are compared,

revealing the fundamental universal relationships between viscoelasticity—particularly the glassy

relaxation—and the glass transition.

2. G(t) Functional For msin the Entanglement and Entanglement-Free Regions
Incorporating the glassy-relaxation process into ERT, the stress relaxation modulus G(t) for a

nearly monodisperse entangled sampleis expressed®® *° as

4pRT

S0 =5m

FO[ f(M)Ge(M,t)dv 4

e

with

Ge(M,0)=| 1+ /5 ) [V W 50/ )+ T 2 00)] 9

and
FU) =1+u,(t/tp)+ Agua(t/ts) (6)

where f(M) is the molecular-weight distribution of the sample under study, ug(t) represents the
glassy-relaxation process and Ag is its relaxation strength; ua(t) represents the Rouse-Mooney

normal modes of motion*®3°3!

of an entanglement strand with both ends fixed; ux(t), the chain
slippage through entanglement links to equilibrate the uneven tension along the primitive chain;

us(t), the primitive-chain contour-length fluctuation; and uc(t), the reptation motion corrected for

% Mooney, M. J. Polym. Sci. 1959, 34, 599.
1 Doi, M. J. Polym. Sci., Polym. Phys. Ed. 1980, 18, 1005.
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the chain length-fluctuation effect. The relaxation times of these different processes are each
expressed as a product of the frictional factor K and a structural factor—a functional form
containing Me and/or M. We refer the functional forms of the four processes and their respective

characteristic (relaxation) times to the previous publications® *° but point out that, normalizing
(dividing) all the relaxation times by the relaxation time of the first mode of ua(t), 75, the whole
G(t) can be expressed as a universal function of the normalized molecular weight M/Mg—the

topological universality in polymer viscoelasticity. It has been found that the glassy-relaxation
process iswell described by the Kohlrausch, Williams and Watts (KWW) equation:

ue(t/te)=expl-(t/zg)’); 0<p<1 (D)

For arelaxation process as given by eq 7, the average relaxation time is defined by

@ =] peltizs)dt =%F(1/ﬂ) ®

where T is the gamma function. EQ 3 has been used to characterize the relative position of the

glassy-relaxation times with respect to those in the pa(t)-ux(t)-us(t)-uc(t) region, which are all
proportiona to the frictional factor K (note: the relaxation times in ua(t) are proportional to
K’'=R«(M)K; see section 4).% *° The combination of egs 3 and 4- 8 has been used to analyze the J(t)
results of s-A and -B at different temperatures consistently and quantitatively, revealing the basic
mechanism for the thermorheological complexity.®

It has been shown that in an entanglement-free melt® or blend solution®’ (see the note at ref

27), the viscoel astic spectrum over the entropic region iswell described by the Rouse theory. The
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onset molecular weight of entanglement as observed by monitoring the initial deviation
from the Rouse theory as the molecular weight or concentration (weight fraction W, of
the high-molecular-weight component) increases is shown to be in close agreement
with the entanglement molecular weight, Me or M. (as defined by eq 17) as calculated
from the plateau modulus (G,, = 4pRT/5M_ or G, = 4W,pRT/5M_). As reported
in ref 9,°1° the G(t) and G’(w) line shapes of a series of entangled blend solutions have
been analyzed in terms of the linear combination of ERT and the Rouse theory weighed
by the weight fractions of the two components in the blend solution (see refs 9 and 10
for details). From the extensive line-shape analysis, it has been shown that the
frictional factor K in ERT is the same as that in the Rouse theory within a small
possible experimental error (< 20%); in other words, the two theories have the same
footing at the Rouse-segmental level. Furthermore, as mentioned above, the
thermorheological complexity should occur to a polystyrene melt as long as its
molecular weight is greater than that of a Rouse segment.  Thus, corresponding to egs
4-6 for an entangled polymer melt, the relaxation modulus for an entanglement-free

melt is expressed by
f(M)

G(1) = Astt () + PRT [ === 11 (L, M)dM 9)

where A is the full relaxation strength of the glassy-relaxation process and is related
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to As of eq 6 by AL = A,pRT/M, = (5/4)A.G, (see the note at ref 31)* and

4r(t,M) represents the Rouse relaxation for the component with molecular weight M

as given by?1% 12

He(t,M) = gexp[— :—J (10
with
N = cint(M /m) +1 (12)
and
¢(b%) Kz?M?

- - 12
"0 = oaTsn?(pr/aN) 24Nsni(prj2N) D

% Because the relaxation times of the ux(t), us(t) and uc(t) processes are much
greater than the slowest relaxation time in ug(t), it makes no difference for a practical

purpose to express the glassy relaxation either as the A; g (t) term inside F(t) (eq 6)
or as a separate term A} i (t) as used in eg 9; note that incorporating A, 1 () into
ERT or A, u (t)into the Rouse theory is intended to be only a phenomenological

description.

15



where the function cint(x) converts a number x to an integer by rounding the fractional
part of x. N asdefined by eq 11 leads to the numerically calculated rubbery modulus
a zero time closest to the value pRT/m=3.75x10" dynes/icm® with p=1.0286 at

T=373K.

3. Analysisof the i3, Je” and J(t) Results

The polydispersity of a nearly monodisperse polymer sample is often given in
terms of the M,/M, ratio, which as can be easily affected by a small tail in the
molecular-weight distribution of the sample, is in genera difficult to determine
accurately by GPC. Thus, the M,,/M,, data coming with any standard sample in general
can only be used as a reference rather than be taken as rigorous. Under such a
situation, f(M) for a nearly monodisperse polystyrene sample as appearing in egs 4
and 9 is assumed to be well described by the Schulz distribution® characterized by
the polydispersity parameter Z, giving My/M=(Z+1)/Z. And the Z value of a studied
system is determined as an adjustable parameter giving the best fitting to the line
shape of the measured stress-relaxation modulus or viscoelastic spectrum. The
justification for such an approach is that the obtained Z values are well-behaving, all
giving M/Mp <1.03 in the series of the samples studied in ref 7, well within the range
expected for a nearly monodisperse distribution.

The viscoelastic properties of s-A, -B and -C as analyzed using ERT or the Rouse

% schulz, G V. Z. Physik. Chem., Abst. B 1943, 43, 25; Tung, L. H. Polymer

Fractionation; Cantow, M. J. R Ed.; Academic: New York, 1967.
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theory as the reference will be compared in this study; their values of My, Z(M,, /M),
K (at127.5°C), Ac'x10 ° and S as well as the reference theory used in the analysis are
listed in Table 1 for easy reference below. The studies of A and s-B have been
reported in detail in papers 1 and 2; mainly s-C will be studied in the following. In
Table 1, the results of sample E167 from a previous study is aso listed for a latter
comparison.

To achieve quantitative agreements between the calculated and measured in both

J2and J(t) of s-C, the proper choice of the functional form—i.e. either eq 4 or 9, and

the Z parameter for the molecular weight distribution f(M) as well as the Ag (or A\)

and (B values for the glassy relaxation matter. They can be best found by a
trial-and-error process until consistently quantitative agreements are obtained. The
functional form chosen must be well justified and consistent with other studies and
the obtained parameters must be within the expected range. A full discussion of the
uniqueness and significance of the involved fitting parameters and their
determinations can be found in section 3.4 of paper 1.% For s-C, we have found that
the combination of eq 9 and Z~=20 gives the best result—the analysis does not have the
resolution to differentiate, say, between Z=20 and Z=21, while a slight improvement
of Z=20 over Z=25 can be noticed. In fact, the uses of eq 9 and Z=20 are closely
related. In view of sC’s M,, value being slightly above M. (=13500),2%% eq 4
instead of eq 9 should be used. However, s-C’s molecular-weight distribution,
though nearly monodisperse, is broad enough to have a sufficiently large amount of

components with molecular weights below Mg, significantly diluting the entanglement.

17



At Z=20, s-C has 21 wt% of the distribution below M. The dilution increases the

entanglement molecular weight from MetoM | =17090 based on **°

M, =—=e (13)

As M_>M,,, sC immerses in an entanglement-free state. As opposed to this, the

stress-relaxation modulus and storage-modulus spectrum over the entropic region of
E167 with a similar molecular weight (see Table 1), were successfully analyzed in
terms of ERT with Z=120 corresponding to M,,/M;<1.01 but could not be described
by the Rouse theory.”®'® See the Appendix for additional discussion of the
viscoel astic difference between s-C and E167.

With the explanation as given above, we shall use eq 9 as the chosen functional
form in discussing the analysis of theJ?and J(t) results of s-C below. With (1)
being related to K by eq 3, an increase in s will lead to a decrease inJ?. Thus, a
computer program can be set up to scan through a wide range of sto calculate alarge

set of J2 values, from which the best matching with the values measured at different
temperatures can be identified. In an entangled system, because of the broad
relaxation-time distribution in the rubber-to-fluid region, the J2 value is not sensitive
to the change in s when the temperature is not close to Tg—here s is relatively small;
on the other hand, theJ? value is difficult to measure when the temperature is close

to Tg. Thus, s for an entangled system can mainly be obtained from analyzing the line

18



shape of J(t). For s-C, s can be extracted from both the analyses of J(t) and J?.

The A, and 8 values listed in Table 1 for s-C allow consistent and quantitative
matching of the calculated with the J(t) line shapes from 93 to 119.4°C and
the J2 values from 93 to 134.1°C as obtained by Plazek. The A, and S vaues are

very much uniquely dictated by the compliance values and line shapes, respectively,
of J(t) at 93 and 96°C—namely, the short-time region of J(t). Similarly as shown in
paper 1 for s-A and s-B, the time range covered by the available J(t) results of s-C at
higher temperatures is only affected by the product of A, and <r> o (or swith K
being fixed) and is virtually independent of 8. As shown in Table 1, the B value of
s-C is basically consistent with those obtained for s-A and s-B.  And the A} value for
s-C is between those for s-A (corresponding to As=5482) and s-B (corresponding to
As=4119). As explained in paper 1, the A, value of s-B being smaller is due to the
contamination by residual plasticizers in the sample (see ref 2 about the residua
plasticizers). That the A} value of s-C is smaller than that of s-A should be due to its
smaller molecular weight.

We use 100°C as the reference temperature at which the calculated and
measured J? values are matched; the same will be used for the compliance
coordinate in the comparison of the calculated and measured J(t) line shapes. Thus,

theJ? values listed in Table 11 of ref. 28 are first adjusted by the multiplication with
the factor pT/p,T, Where po is the density at To=373K; the adjusted JJ will be

denoted by ijp. With the A; and B vaues as chosen, from matching the
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calculated ijpval ues with the adjusted experimental values the s values at different

temperatures are obtained. These s values are then used to calculate the J(t) line
shapes for comparison with the measured ones. In general, the agreement between the
thus calculated J(t) and the measured is quite close.

The s values obtained from matching the cal culated with the measured J;’p values

have been modified somewhat in some cases to obtain a better agreement between the
calculated and measured J(t) line shapes as shown in Figure 1. The experimental J(t)
results shown in Figure 1 are those shown in Figure 1 of ref. 28, which have all been
reduced to using 100°C as the reference temperature for the compliance—i.e.,
multiplied by pT/p,T, . Accordingly, al the theoretical J(t) curves are caculated
at pT/p,T, =1; following Plazek’s notation,”® the thus calculated J(t) is denoted by
Jp(t)—as used above and will be used below, the corresponding viscoelastic quantities

G(t), J¢ and nwill be denoted by Gy(t), Jg, and ,, respectively. In this study, each

of the theoretical Jy(t) curves is first calculated with K=10"“ In superposing the
calculated on the measured Jy(t) at a certain temperature, only shifting along the time
axis is dlowed. From each superposition, a time-scale shifting factor, SF, is
obtained, which, when multiplied by 10*, gives the K value at the corresponding
temperature. s values obtained from fitting to the Jy(t) line shapes and the
corresponding SF and K values at different temperatures are listed in Table 2.  Using
the obtained s values, the viscosity values with K set at 0.0001 are also calculated, as
listed under the np(K:10’4) column in Table 2. Because the glassy relaxation

occurs in the short-time region, its contribution to the zero-shear viscosity, n,, often

20



referred to as the internal viscosity," is in general negligible if the molecular weight
of the sample is sufficiently large. The contribution of the internal viscosity to 7, in
s-C is in general significant because of its relatively low molecular weight. The
comparative importance of the contributions of the internal viscosity to 7, at different
temperatures and the associated changes in the Jy(t) line shape of s-C are clearly
illustrated in Figure 2, with all the curves caculated with K=10* corresponding to
those shown in real time in Figure 1. Numerically the contributions of the interna

viscosity can be obtained by comparing the np(K=10’4) values calculated without (i.e.,

setting A, =0; see the first row of Table 2) and with the glassy-relaxation process

using the s values determined at different temperatures. The enhancement by the
internal viscosity is expressed as the ratio, n,(K=10"%),/7(K=10"*% A,=0), as also
listed in Table 2. The contribution of the internal viscosity is about 11% at 134.1°C
and increases with decreasing temperature, enhancing the viscosity by a factor of 4.6
at 93°C. As shown in Figure 2, the large enhancement by the internal viscosity at a
low temperature is reflected by the large shift of the flow region in Ju(t) to the longer
normalized time from one at a high temperature—the term “normalized time” is used
because the time-scales of all the curves are on the same basis of K=10*.  While the
inclusion of the glassy relaxation process allows us to adjust the s values so that the
calculated Ju(t) line shapes are in close agreement with the measured at different
temperatures, whether the glassy-relaxation process contributes to the viscosity in the

right amount at different temperatures need be checked. Multiplying the np(K=1O’4)

values by SF and the ratio pT/p,T, gives the theoretical viscosity values at the
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corresponding temperatures, as listed under the n(calcd) column in Table 2. The
obtained n(calcd) values are in close agreement with the measured as also listed under
the n(exp) column in Table 2, further confirming the validity of the present analysis.
This is also illustrated by the agreement between the calculated and measured Jy(t)
long-time limit lines, t,n,, at different temperatures as also shown in Figure 1.

As the Jy(t) result of 134.1°C is not available, its SF and K vaues cannot be
obtained from the Jy(t) line shape analysis. However, with its s value obtained from

matching the calculated J;’pwith the measured, the K value of 134.1°C can be

caculated from the K values a other temperatures by using the
temperature-dependence information of K that can be extracted from the viscosity
data Dividing a measured viscosity vaue by both pT/p,T, and the viscosity

enhancement factor n,(K=10"%),/n,(K=10"* A’ =0), a viscosity value, denoted by 1,

is obtained, which is free from the contribution of the internal viscosity and, thus, is
only proportional to K. Then, the K value at 134.1°C can be calculated from
multiplying the K values at other temperatures by the ratios ng(134.1°C)/ nr(t°C).
In this way, the average K value at 134.1°C obtained from the K values at other seven
temperatures is 1.06x10 ° with a standard deviation of only 3.5%. As any
substantial error in s—especialy at low temperatures—can cause a large error in the
caculated nr value, the small standard deviation supports that the s values are
correctly obtained from the Jy(t) line-shape analysis.

The two set of s values as a function of temperature: one obtained from the

anaysis of Jé’p and the other from that of J,(t), are in good agreement as shown in
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Figure 2, indicating the consistency of the data analyses. The consistency is aso
indicated by the close agreement of the measured J? val ues and those cal cul ated based

on the s values obtained from the Jy(t) line-shape analysis, aslisted in Table 2.

The K values shown in Table 2 can be well fitted to an equation of FTH form.
Using the FTH equation obtained from the fitting, the K values at 127.5 and 93.75s°C
are calculated and also listed in Table 2, with the former also listed in Table 1; the K
values of s-C at different temperatures will be compared with those of s-A in the
discussion section and the result of K (and ts) at 93.756°C will be used in sections 5

and 7 studying the molecul ar-weight dependence of Ty and the length-scale at T,

4. Dynamic Anisotropy in Entangled Systems

The K values obtained from analyzing the viscoelastic results at 127.5°C of 11
nearly monodisperse samples of different molecular weights ranging from 3.4x10* to
6x10° (see Appendix B of ref 3)*"° in terms of ERT are independent of molecular
weight, giving an average value of 4.9x10 °+10%. Aslisted in Table 1 the K value
of E167 & M, =1.24M is only about 20% below the average value. While these
results of entangled systems indicate the molecular-weight independence of K
extending to a molecular weight virtualy as low as just above M., Ty starts to
decrease with decreasing molecular weight at around 10M..  From the view point of
the conventional concept of the relation between viscoelastic dynamics and Ty as

15,34,35,36

related to free volume, this contrast represents a paradox. The paradox has

% Dodlittle, A. K. J. Appl. Phys. 1951, 22, 1471; 1952, 23, 236; 1952, 23, 418.
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7-10,37,38

been explained by the physical picture that the free volume at both chain ends
is always available to the modes of motion along the primitive path (of the tube
model), whose relaxation times are all proportional to K. Such a mechanism may
allow K to be disengaged from a dependence on the free volume in the bulk and

7-10,36,37 the

become independent of molecular weight. Thus, as proposed previously,
decrease in Ty with decreasing molecular weight in the entangled region should be
related to the molecular-weight dependence of the K'/K ratio as described by the
empirical equation:

K' 2.525

K =R = T oeas(M/M )~ 45671

0.769 (14)

where K’ is the frictional factor in the Rouse-Mooney process ua(t/za) (eq 9.B.20 of
ref 10 or eq 20 of ref 6 with K replaced by K’). R«(M) as given by eq 14 has been
obtained from fitting the empirical form of equation to the obtained K’/K values at

different molecular weights.”°

K’/K>1 indicates the dynamics in an entangled
system is anisotropic in respect of the frictional factor. Asthe ua(t/za) processisthe

motion of an entanglement strand with both ends fixed, unlike K being for the modes

of motion along the primitive path that are always facilitated by the free volume at

% Cohen, M. H.; Turnbull, D. J. Chem. Phys. 1959, 31, 1164; Turnbull, D.; Cohen, M.
H. J. Chem. Phys. 1961, 34, 120.

% Berry, G C.; Fox, T. G Adv. Polym. Sci. 1968, 5, 261 and references therein.

% Lin, Y.-H. Macromolecules 1990, 25, 5292.

3 Lin, Y.-H. Macromolecules 1991, 24, 5346.
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both chain ends, K’ should be like Ty sensitive to the free volume in the bulk. The free
volume increases with increasing number of chain ends per unit volume, and thus
increases with decreasing molecular weight. R«(M) has a plateau value 3.3 in the
high-molecular-weight region and starts to decline with decreasing molecular weight
at around 10Me—where Ty also starts to decrease—to the limiting value 1 as M/M¢-1.
These results indicate that because of the tube (of the reptation model), the K value in
the entanglement region is not affected by the decline in Ty with decreasing molecular
weight. The tube is very much intact to a molecular weight as low as just above Me
as K has been rigorously shown independent of molecular weight to this point at and
above 127.5°C*. The molecular-weight independence of K is subjected to a
correction caused by the strong structural formation when the temperature is
significantly closer to Ty than 127.5°C as will be discussed in section 8.3.

The variations in s with temperature for s-A, -B, and -C are shown together in
Figure3. Theresultsof both the entangled (s-A and s-B) and entanglement-free (s-C)
systems are obtained through an equivalent analysis scheme, involving ERT as the
reference frame in the former and the Rouse theory in the latter. In the case of S-A
and s-B, the s values are obtained entirely from the Jy(t) line-shape analysis, while in

the case of s-C, the s values are obtained from both the analyses of theJSp values and

Jo(t) line shapes. The s values for both the entangled and entanglement-free systems

3 Asshownin Table 1 of ref 3, K isindependent of molecular weight at 127.5 and
174°C. As pointed out in ref 4, it is also true that the temperature dependence of
viscosity at different molecular weights can be superposed on one another over the

temperature range covered by viscosity measurements as reported in ref 28.
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change in asimilar way in a similar range of temperature above their individual Tg’s.
This similarity between the entangled and entanglement-free systems is significant,
considering that different molecular theories areinvolved. Yet, this similarity and the
consistency and relationships among them as will be further reveded from the
analysis given in section 6 should not be surprising, considering the two basic
conclusions derived from previous studies and listed below, on which the extraction
of svaluesis based:

(1) ERT and the Rouse theory have the same footing at the Rouse-segmental
level—the frictional factor K in both theories has been shown to be the same within a
small experimental error.>*°

(2) The thermorheological complexity should occur as long as the molecular
weight is greater than the Rouse segment size.®*

Neglecting the small difference in Ty between s-A and s-B, it was pointed out®
that their s values at the same temperature follows the molecular-weight dependence
of K’/K, namely, R«(M) given by eq 14. This molecular-weight dependence of s is
also borne out by the analysis (including s-C’s results) taking the Ty difference into
account, which will be given in section 6. s and K'/K having the same
molecular-weight dependence should be closely related to the fact that the us(t) and
ua(t) processes are next to each other in time-scale.®*

To eliminate this molecul ar-weight dependencein s, we define

S— S _ <T>G
(K'/K) K'

(15

26



in which eq 3 has been used for the second equality. Although the s values of s-C
have been obtained from analyzing its Jy(t) andJ? results by involving the Rouse

theory rather than ERT, we may regard its s to be the same as that of a sample at the
same molecular weight, but with a molecular-weight distribution sufficiently narrow
for ERT to be applicable. From the analyses of the relaxation modulus and

7,8,10 and

viscoelastic spectrum of E167 in terms of ERT as reported previously
mentioned above, K’/K=1 was obtained within a small experimental error (<10%)
indicating, as eq 14 does, K'/K=1as My~-M.. When the tube (of the reptation model)
is disappearing and the Rouse theory becoming applicable at Me, K’=K is meaningful
physically as it indicates that the dynamics in the system becomes isotropic as it
should.®2 *° As the molecular weights of both s-C and E167 are so close to Me, we may
regard the s values of s-C as corresponding to K’/K=1. In other words, s’=s for s-C.

Furthermore, in the entanglement-free region of molecular weight, there is only one

frictional factor K as the dynamics isisotropic; s’=s should always be applicable.

5. Tq Defined by Structural Relaxation Time 7s=1000 sec.

In paper 1, the structural-relaxation or «-relaxation time ts was defined by the
time when the ratio between the contribution of the glassy-relaxation process (G) to
the relaxation modulus and that from all the entropic processes (R), G/R, reaches 3.2
The structural relaxation time defined this way is basically equivaent physically to

that defined by®*
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Tg = 18<T>G (16)

which was shown, in the case of s-A, to be in close agreement with one of the two
traditional ways of defining the «-relaxation time: the time at which the relaxation
modulus reaches 10° dynesicm? (see Figures 8 and 9).® The detailed physical
meanings of the structura relaxation time as defined by these different but basically
equivalent criterions are referred to papers 1 and 2. As explained previoudly, the
structural relaxation time defined by eq 16, besides reflecting the effect of the glassy
relaxation on the bulk mechanica properties, has the virtue of following exactly the
temperature dependence of the involved dynamic process, unlike the other definitions
which are affected by the change in the line shape with temperature.

Using eq 15, the structural relaxation time given by eq 16 may be rewritten as

7 =18sK =18s'K' (17)

From the J(t) line-shape analysis at the calorimetric T, (97°C) of s-A, it was shown®*
that the structural-relaxation time 7s as defined by eq 17 reaches 1000sec and that the
length scale is about 3nm, which is of the same order of magnitude as estimated by

other methods.**#424344 | the literature,®***" 75 reaching 100~1000 sec with

0 Sillescu, H. J. Non-Crystal. Solids 1999, 243, 81; and references therein.
* Hempel, E.; Hempel, G; Hensai, A.; Schick, C.; Donth, E. J. Phys. Chem. B 2000,
104, 2460.
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decreasing temperature has been used as the criterion for defining Tg. In view of thers
value for s-A at its calorimetric Ty, we shall use 7s=1000 sec for defining the Ty’s of
s-B and s-C as well in the analysis below; such a criterion will allow us to have a
common reference point equivalent for all the three samples. It will be shown that
the thus defined Ty's are consistent with values expected from calorimetric
measurements. The dynamic and structural quantities: K, K’, s and s obtained at the
thus defined Ty and different temperatures from analyzing the creep results of s-A are
listed in Table 3.

By interpolation—using the FTH equation obtained from the |east-squares fitting
to the s values listed in Table 2, we obtained 7s=1000 sec at 93.756°C, which is then
regarded as Ty of S-C. Then, as aso listed in Table 2, K and s values of s-C at this
temperature can be obtained from their values at different temperatures by
interpolation—using the FTH equation for K obtained from the |least-squares fitting as
explained above and a modified FTH equation (the form as given by eq 19) for s.

s-B is contaminated by residual plasticizers;? it has been shown that its frictional

factor K is smaller than that of a normal sample as expected.®> Because of the

2 Tracht, U.; Wilhem, M.; Heuer, A.; Feng, H.; Schmidt-Rohr, K.; Spiess, H. W. Phys.
Rev. Lett. 1998, 81, 2727.

3 Cicerone, M. T.; Blackburn, F. R.; Ediger, M. D. J. Chem. Phys. 1995, 102, 471.

* Arndt,M.; Stannarius, R.; Groothues, E.; Hempel, E.; Kremer, F. Phys. Rev.
Lett. 1997, 79, 2077.

5 Angell, C. A. Science 1995, 267, 1924; and references therein.

6 Sillescu, H. J. Non-Crystal. Solids 1999, 243, 81; and references therein.

" Angell, C. A. J. Non-Cryst. Solids 1991, 131-133, 13.
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contamination, the Ty value of s-B is also somewhat smaller than that of a normal
sample at the same molecular weight.? The Ty of s-C is smaller than that of s-A
because of its smaller molecular weight. Here we shall treat in a similar way the
contamination by residua plasticizers in s-B causing its Ty to become smaller. In
other words, we shall aso use 7s=1000 sec to definethe Ty of s-B asitis. Fromthes
and K values extracted from the Jy(t) of s-B available at the lowest temperature
(98.3°C), ©<=779 sec is obtained, which is somewhat smaller than the criterion
7s=1000 sec. Because the difference is not large, we may calculate the temperature
at which 7s=1000 sec by extrapolation using the FTH equation that has been obtained
from fitting the 7s values at different temperatures. The Ty determined this way for
s-B is98.05°C. Then from the FTH equation best describing the K values of s-B at
different temperatures, the K at this temperature is obtained as listed in Table 3.
Thesor s’ value at Ty is then calculated from thus obtained 7s and K values, using eq
17. TheK, K’, sand zs values of s-B at different temperatures including those at Ty
as determined above are listed in Table 3.

As it is well-known and commonly observed that the structural-relaxation time
Ts increases sharply as the temperature approaches Ty from above.  The temperature
dependence of s of s-A and s-B has been obtained in paper 1 and that of s-C above; as
shown in Figure 2, the s values of the three samples increase in a similar way as the
temperature decreasing toward Ty. The Ty as defined above allows us to have a
common reference point equivalent for the different samples, with respect to which

we may compare the obtained tsand sor s’ in a perspective way.
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6. Dependences of 75, s’and K’ on AT=T- Ty

The results obtained from the Jy(t) line-shape analyses of s-A, -B and -C
strongly suggest that the 7s and s’ values of the three samples depend in a universal
way within the polystyrene system on how far the temperature is away from each
individual Tg. Using the above defined Ty individually for each sample, we display
the 75 values of s-A, -B and -C as a function of the temperature difference from Tg:
AT=T-Tg, as shown in Figure 4. In spite of the facts that s-C has a significantly
smaller Ty due to its smaller molecular weight and that s-B is contaminated by
residual plasticizers, the s values of the three samples fall closely on the same line.
Clearly, because the contamination in s-B by plasticizers is so low that s-B keeps the
Ty-related basic nature of polystyrene. And the residua plasticizers in s-B function
in asimilar way as a low-molecular-weight polystyrene component would lower the
Ty of the host dlightly. The close agreement among the three samples strongly
supports the way of using AT to account for the Ty difference. The s values can be

collectively well fitted by the FTH equation of the form:

br
IOg(TS) =a, +(AT—+tT) (18)

as shown by the calculated curve in Figure 4 with a,=-11.5045, b,=539.3497 and

t,=37.1827. The 15 values as shown in Figure 4 has the exactly same temperature

dependence as that of <r>G, purely reflecting that of the glassy-relaxation process

itsdlf; in other words, free from the effect of the change in line shape of the
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viscoelastic spectrum. The consistency of the AT dependence of s among the three
samples should make one prefer using eq 16 or 17 to define the structural-relaxation
time.

In Figure 5, the s’ values of s-A, -B and -C are shown together as a function of
AT. The consistency as revealed in the comparison indicates that the three sets of s’
values basicaly follow a universal curve for polystyrene; the thermorheological
complexity as analyzed in this study—i.e. expressed in terms of s—is a generd
phenomenon whether the system is entangled or not. This consistency supports the
validity of the two previously derived conclusions listed in section 4, upon which al
the analyses of s-A, -B and -C have been based. The AT dependence of s’ of the

three samples can be collectively well fitted by a modified FTH form:

C
| ) = AT +t 3 19
0g(s’) = ¢, +¢,( +s)+AT+t (19)

S

The curve shown in Figure 5 has been calculated with c¢;=-4.2189, ¢,=0.0364,
C3=375.6136 and t=55.0922.

The consistency of the AT dependences of s’ and s among the three samples
implies that the same consistency should occur to K’ according to eq 17; indeed so as
illustrated in Figure 6. In s-C, the dynamics is isotropic; there is only one frictional
factor indicating K’ =K in effect. Furthermore, K’/K-1 when the molecular weight
approaches Me, as observed in E167. Indeed, when the dynamics isisotropic, it isK

itself that is sensitive to the free volume in the bulk, and thus related to Tg.  Thus,
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whenever K’ of s-C isindicated below, automatically its K is meant or used, just as s
and s’ are the same in the case of s-C as explained in section 4. The AT dependence of
K’ of sA, -B and -C can be collectively fitted by the FTH equation of the form given
by eq 18 with the notations s, a, b, and t. replaced by K’, ak, bk, and tk, respectively.
Shown in Figure 6 is the curve calculated with ax=-15.3931, b«=536.9037 and
t«=42.8976. As the molecular-weight dependence of Ty has been accounted for by
expressing the dynamic quantity in terms of AT, the fact that the K’ values of s‘A, -B
and -C as afunction of AT fall on the same curve supports that the molecular-weight
dependence of Ty is directly related to the molecular-weight dependence of K’ as

7-10,36,37

proposed previously and pointed out above. In the meanwhile, K is
independent of molecular weight at and above 127.5°C; therefore, as opposed to the
consistency in the AT dependence of K’ among s-A, -B and -C, their K values are not
expected to have acommon AT dependence, as shown in Figure 7. Further discussion
of K at temperatures very close to Ty will be made in section 8.3.

It isinteresting to point out that the obtained best values t,=37.1827, t:=55.0922
and t«=42.8976 imply that the s, s” and K’ values become infinitely large each at a
temperature in the range 35~60 degrees below T,  The combination of
t,=37.1827<tx=42.8976 and b,=539.3497>hx=536.9037 is consistent with the fact that
75 has a stronger temperature dependencethan K’.  For s being the product of s’ and
K’ (eq 17), asinherent in the procedure of analysis, an error in s’ tends to be canceled
by an opposing one in K’. Because of such a mutual cancellation, the AT

dependence of 75 has smaller fluctuations of data than that of either s’ and K’. In

spite of some fluctuations in the data points, the consistency of the AT dependences of
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s’ and K’ among the three samples as well as the implied universality is very clear.
Such a consistency is particularly significant considering the fact that s’ values are
determined entirely by the line shapes of J(t) while K’ values are converted from K
values which are determined from the shifting factors SF (see section 3). These
results indicate that the AT dependence of K’ serves as an intermediate between this
universality in thermorheological complexity occurring in the short-time region and
another universality of topological nature occurring in the long-time region:  On the
one hand, just as for s’, it requires a Ty correction to show the consistency in K’; on
the other hand by the predetermined parameter Rq(M) it is converted from K, which is
independent of molecular weight at and above 127.5°C.*" The importance of Rq(M)
cannot be overemphasized; without it, the universal AT dependences of s’ and K’

cannot be obtained.

7. Information in G(t) as Extracted from the Analysis
7.1. Length-Scaleat T
With the s (or s”) and K (or K’) values at Tq for s-A, -B and -C as determined in
section 5, the Gy(t) curves of the three samples at their individual Ty points may be
calculated, using eqs 4-8 for ssA and s-B and eqs 7-12 for ssC. The three calculated

Gy(t) curves are shown together in Figure 8 for a comparison that would be revealing.

In the figure, the curves calculated by setting Ag (or A\, )=0 are also shown; in each set

of curves, the area between the full curve and the curve with Ag (or A\, )=0 represents

the contribution of the glassy-relaxation process to the relaxation modulus. For s-A



and s-B, the curves calculated without both the glassy-relaxation and Rouse- Mooney
norma modes are also shown; the area between a thus calculated curve and that with
As=0 represents the contribution of the Rouse-Mooney normal modes to Gg(t).
Also indicated in the figure are the positions in time corresponding to the relaxation
times of the Rouse norma modes in s-C (calculated from its K value) and the
relaxation times of the Rouse-Mooney normal modes in s-A and s-B (calculated from
their K’ values; K’=1.61K in s-A and K’'=3.16K in s—B3).

It has been proposed in paper 1 that the positions of the relaxation times of the
normal modes may be used as “graduations” of ayardstick for estimating the extent of
the influence of the glassy-relaxation process. The relaxation time of the p-th
norma mode, 7, (inthe Rouse-Mooney process of s-A and s-B) or 7, (in the Rouse

process of s-C), is associated with alength-scale given by'®#®

7y ~(a® 1) (20)

with a standing for the entanglement distance in the entangled case (s-A and s-B) or

standing for the end-to-end distance in the entanglement-free case (s-C). The value a

may be caculated from the characteristic ratio C. or equivaently K.

“8 Doi, M.; Edwards, S. F. The Theory of Polymer Dynamics; Oxford Univ. Press:
New

York, 1986.
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(=0.43x10 °nm?/Da for polystyrene);"****° one obtains a® = K, M _=58.1 nm’ for

sA and sB, and a®> =K_ M =70.5nm’ for s-C. One sees in Figure 8 that the

vertical dotted line at the time 1000 sec representing the structural-relaxation time s
at Tqy passes through between the relaxation times of the seventh and the eighth normal

modes in al three cases. Using the relative position of 7s=1000 with respect to
tr andr) (insAands-B)orto 7, andzg(in s-C), we may calculate from the values
of 4, and A; (eq 20) the length-scadle A a Ty by interpolation. The A values so
obtained are 2.76, 2.87 and 3.0nm for s-A, -B and -C, respectively. These values are
consistent with one another, indicating the universality of the characteristic
length-scale at AT-0; at the same time, they are nearly the same as that estimated by
the cal orimetric method.**4°

7.2. Changein Length-Scale with AT

For illustrating the change in length-scale with AT occurring in all the studied
samples in perspective, shown in Figure 9 is the comparison of the Gy(t) curves of the
three samples calculated at AT=9.7°, where 7s=1 sec is expected according to the
calculated curve shown in Figure 4. The parameters. s’ and K’ (or s and K) used to
calculate the Gy(t) curve for each of the samples are obtained from the values

determined at different temperatures by interpolation through least-squares fitting. It

is shown in the figure that the vertica dotted line at 1 sec representing the

9 Lin, Y.-H. Macromolecules 1987, 20, 3080.

0 Fetters, L. J.; Lohse, D. J.; Richter, D.: Witten, T. A.: Zirkel, A. Macromolecules

1994, 27, 4639.
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structural-relaxation time occurs before the relaxation time of the highest Rouse or
Rouse-Mooney mode by about an equal “distance” in al three cases—equivalent to
logl.9, log2.0 and logl.6 for s-C, -A and -B, respectively—indicating a universal effect.
7s=1 sec being shorter than the motional time of a single Rouse segment means that
the length-scale associated with the structural-relaxation process is shorter than the
Rouse-segmental length, ~2nm, and indicates a rubbery state, as opposed to
vitrification at the Rouse-segmental level at Ty or AT=0 as indicated by what is shown
in Figure 8.

Heuer and Okun®! have simulated the dynamics of entanglement-free chains
using the bond fluctuation model which contains the effect of intermolecular
interactions; based on the study, they have presented a sketch (Figure 12 of ref 50)
showing the encroaching of the heterogeneous dynamic mode on the homogeneous
dynamic modes at larger length-scales with decreasing temperature.  As discussed in
paper 1,° dynamic heterogeneity is enhanced as s’ increases with temperature
decreasing towards Tg.  Thus, with the homogeneous modes as corresponding to the
Rouse modes and a one-to-one correspondence between length-scale and time-scale,
the sketch given by Heuer and Okun may represent a rough picture of the actua

results of entanglement-free case shown in Figures 8 and 9.

8. Discussion

8.1. Sructural Factor and Frictional Factor of Viscosity

1 Heuer A.; Okun, K J. Chem. Phys. 1997, 106, 6176.
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The free-volume theory together with the molecular-weight dependence of T
led to the notion that the friction constant decreases with decreasing molecular weight

below a certain point.>3* %

Traditionally the viscosity n data are corrected to a
state with presumably the same friction constant for studying the structural factor of n;
after the correction, it is generally observed that 7 o« M below M, which is about
2.4M,, and 71 o« M ** above M. To isolate the information of the structural factor,
the viscosity values at different molecular weights may be compared at equal distance
from individual Ty’s rather than at the same temperature. As viscosity is dominated
by the slow modes of motion, the correction for the Ty difference implies that the
correction is mainly made to the modes of motion whose relaxation times are
proportional to K. This conventional notion of the relation between viscoelasticity
and T, contradicts directly what have been revealed in our previous studies:® *° K is
independent of molecular weight at and above 127.5°C to as low as just above Mg;
and K’ starts to decline from a plateau value of 3.3K around 10M. with decreasing
molecular weight to become identical to K when the molecular weight approaches Me.
Although, the conventional way of Ty correction for viscosity doesn’t contain an
element equivalent to the dynamic anisotropy (i.e, K'/K=Rx(M)>1), it was
proposed®®’ that the conventional way of correction may be equivalent in a practical
sense approximately to correcting for the molecular-weight dependence of K'/K.
Indeed, if the viscosity is calculated with K'/K fixed at its plateau value in the
high-molecular-weight region, 3.3, rather than following R«(M) given by eq 14, the

viscosity curve numerically calculated from ERT has an apparent n o« M relation

below M. and is closely approximated by 7 « M ** above M; and the transition point
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M. that can be identified in the calculated n curve is in close agreement with the
experimental value, 33000 (see Figures 1 and 2 of ref. 8). It has been shown that the
difference between the conventional correction and the molecular theoretical
correction is not great and may be easily buried in experimental errors®’ In other
words, the molecular theoretical correction has basically “explained” what has been
obtained through the conventional phenomenological way. Theoreticaly such a
molecular correction is valid when the contribution of the glassy-relaxation
process—i.e. the interna viscosity—is negligible as at temperatures sufficiently far
above Ty (2 Ty +20°), where sis smal. Most likely due to the lack of viscosity data
in the temperature range close to Ty, the conventional Ty correction for viscosity is
typically done at a temperature quite far above T,* More details are revealed and
clarified as the faster and directly Tg-related glassy-relaxation process is analyzed in
this studly.

8.2. Frictional Slowdown and Structural Growth

The results shown in Figure 6 indicate that after the Ty correction is made
directly to the K’ values of the three different samples, they fall on the same line; thus,
the molecul ar-weight dependence of K’ and that of Ty are directly related as proposed
previously.” 1%%%3" The consistency of the AT dependence of s’ among the three
samples indicates that the molecular-weight dependence of K’ extends into the time
domain of the glassy-relaxation process—see egs 16 and 17. After the Ty correction
is made to both the ua(t) (or ugr(t)) and ug(t) processes by expressing K’ and s’ in
terms of AT, they both become independent of molecular weight. This also means

that the molecular-weight dependence of Ty in the entanglement region is directly
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related to the fast dynamic processes. ua(t) and ug(t), both following the same
molecul ar-wei ght dependence.

While K’ is a frictiona factor, s’ should be regarded as a structural factor;
indeed, s’ has the unit of Da’.  Thus the AT dependence of s’ shown in Figure 5 and
the AT dependence of K’ shown in Figure 6 are of different physical nature; with
decreasing AT, the former reflects the growth of structure, while the latter represents
purely the frictional slowdown. The structural relaxation, with relaxation time
defined by eq 17, contains the effects of both the frictional slowdown and structural

growth while the ua(t) process is only affected by the frictional slowdown. Asa
result, the relative positions of zs with respect to{r,f} or {fp} in time-scale change
with AT as can be observed by comparing Figures 8 and 9 (also see Figures 6 and 7 of

ref 3). Thiseffect is further illustrated in Figure 10 by the comparison of zs and the

Rouse-segmental motional time 7, over awide AT range. 7, isdefined by

2,2
.S (21a)

for an entanglement-free case, or

B K'z?m?
Y 24

(21b)

T

for an entangled case, where m=850 is used for the mass of a Rouse segment. When

N=M/m or Ne=Mdm is sufficiently large for(N-1)/N =21or (N, -1)/ N, =1to be
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valid as in the present study, eq 21 is a close approximation to the relaxation time of
the highest Rouse or Rouse-Mooney normal mode as given by eq 12 (K ineq 12 is
replaced by K’ for the Rouse- Mooney modes). In Figure 10 one sees the crossing of
Ts over 7, as AT decreases near zero, indicating vitrification at the Rouse-segmental
level. What is shown in Figure 10 is equivalent to that shown in Figure 5 of ref 4
for s-A; here the results are shown for s-A, -B and -C collectively, illustrating that the
crossing-over is a universal behavior as the correction for Ty difference is made by
expressing both s and 7, in terms of AT. This universality and the consistency
among the three samples as observed in each of and between Figures 8 and 9 are
results logically expected from the universality of the AT dependences of s, s’ and K’
as shown in Figures 4-6, respectively.

In addition to the illustrations of universality as discussed above, it can be
observed that the Ty correction to the ua(t) (or ur(t)) and us(t) processes as a whole is
anonlinear one. Thisis aso clear from eq 17: 75 is proportiona to the product s’
and K’, both changing with AT. In other words, the glass transition together with the
closely related thermorheological complexity as a general phenomenon is a nonlinear
effect. The fact that both s” and K’ individually change with AT in a universal way
indicates that we have succeeded in separating the genera nonlinear effect into two
decoupled effects. structural growth and frictional slowdown. The decoupling is
fundamentally a clean-cut process, as s’ is first determined entirely by the line shape
of J(t) and then the time-scale shifting factor is obtained from which K’(=Rx(M)K) is
calculated. In terms of the two decoupled quantities, important features associated

with the glass transition and thermorheological complexity are revealed or explained.
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A severe test of the scheme of analysisis of course the quantitative explanation of the
J(t) line shapes as a function of temperature—including explaining naturaly in a
precise way the tempora unevenness in the thermorheological complexity of J(t) and

in the case of a low-molecular-weight polystyrene melt the dramatic decrease

inJ?2 with temperature approaching Ty from above. Representing important features

revealed in this study are the physical picture of vitrification at the Rouse-segmental
level and the length-scale at Ty for al the three studied samples.

Because of the validity of the molecular theories used as the reference frame and
the precise physica picture they contain, the time-scale and length-scale of the
glassy-relaxation process can be characterized in detail as they increase with
temperature decreasing towards Tg. The universality covering both the entangled and
entanglement-free cases as revealed in this study signifies two important points: (1) It
supports the conclusion derived from the study of the blend-solution systems that ERT
and the Rouse theory share the same frictional factor K within a small experimental
error and thus have the same footing at the Rouse-segmental level. Putting it in
another way, if the previously derived conclusion weren’t true and thus couldn’t be a
valid premise, the universality as obtained in this study couldn’t have occurred at all.
(2) It strongly indicates the importance of the roles which the obtained time-scale and
length-scale may play. An example of such importance is the outcome that the basic
mechanism of the thermorheological complexity as analyzed and detailed in refs 3

and 51°% should be aso responsible for the breskdown of the Stokes-Einstein

2 Lin, Y.-H. J. Phys. Chem. B (submitted).
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eguation in relating the trandational diffusion constant with the shear viscosity, which

53,54,55 and

has been observed for glass-forming liquids, such as OTP (o-terphenyl)
TNB™ (tris-napthylbenzene), when Ty is approached from above,
8.3. K Valuesin the Close Neighborhood of T

As pointed out above, the common length-scale at 7s=1000 or 1sec (at AT=0
or 9.7) as shown in Figures 8 and 9, respectively, and the same relative position of s
with respect to the Rouse-segmental motional time 7, as shown in Figure 10 for the
three samples are direct results of the universal behavior of s” and K’ as a function of
AT. As Figures 8-10 are al displayed in real time, the positions or magnitudes of the
relaxation times are ultimately determined by the K values. Thus, athough, as
expected, the K values as a function of AT for the three samples as shown in Figure 7
do not fall on auniversa line, the K value of a sample at a certain AT does not occur
without following a certain “rule” as the somewhat “chaotic” look of the collective
display may suggest. As the temperature is approaching Ty (AT <20; in this
temperature region 7sz1?), because K'=KRx(M) (K'=1.61K for s-A; K'=3.16K for

s-B; and K’=K for s-C) K hasto change with AT in such away that the corresponding

* Fujara, F.; Geil, B.; Sillescu, H.; Fleischer, G Z. Phys. B: Condens. Matter 1992,

88, 195.

* Cicerone, M. T.; Ediger, M. D. J. Phys. Chem. 1993, 97, 10489.

> Kind, R.; Liechti, N.; Korner, N.; Hulliger, J. Phys. Rev. B 1992, 45, 7697.

* Swallen, S. F; Bonvallet, P A.; McMahon, R. J; Ediger, M. D. Phys. Rev. Lett.

2003, 90, 015901.
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K’values will behave in the universal way as shown in Figure 6.  As the temperature
is very close to Ty, this effect becomes dominant; K becomes influenced through K’
by the Ty value, which declines with decreasing molecular weight below ~10M, for
polystyrene. This has to be reconciled with the fact that K is independent of
molecular weight at and above 127.5°C. As shown in Figure 11, the comparison of the
K values as a function of temperature between s-A, -B and -C illustrates such a
transition.

As s-C and E167 have very similar M, values, their K values as a function of
temperature should not be very different. The physical difference in K between s-C
and E167 should be quite small even though the viscoelastic response in the entropic
region of the former is described by the Rouse theory while that of the latter by ERT.
See the Appendix for a detailed discussion of the viscoelastic difference between s-C
and E167. As described by the Rouse theory, the dynamics in s-C has only one
frictional factor K—dynamically isotropic. In the case of E167, because its molecular
weight is so close to Mg, it has been found that K=K within a small experimental
error—virtually isotropic dynamically. Thus, as far as the frictional factor K is
concerned, it is basically the same in both samples. The pattern that the K values of
sA and sC diverge as the temperature approaching Ty and merge at high
temperatures, =130°C, as shown in Figure 11, should similarly occur between s-A and
E167. Thedivergencein approaching Ty in the latter case should be smaller as E167
has a dightly higher M,, vaue and a much narrower molecular-weight
distribution—factors favoring a higher T,. At 127.5°C the K values (Table 1) for s-C

and for E167 are both about 17~20% smaller than the average value K=4.9x
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10 °+10% over the molecular weight range from 3.4x10* to 6.0x10°.*"*° The 17%
smaller in K for s-C may be due to the effect of a substantial Ty difference, while the
20% smaller in K for E167 is at least partly due to the likely effect that very small
amounts of components with molecular weight below Mg in the sample system—as its
My is only 1.24Mcwill reduce the obtained K value somewhat. In any case, as
these differencesin K are so small, these results actually confirm that K at 127.5°C is
independent of molecular weight to a molecular weight virtually as low as M, and that
the Rouse theory and ERT have the same footing at the Rouse-segmental level.
Because s-B is contaminated by residual plasticizers, the K values of s-B cannot
be directly compared with those of sA.>® To illustrate the point made above, we
show the curve calculated from the FTH equation that has been obtained from
least-squares fitting to the K values of s-B and shifted to the higher temperature side
by 15° The temperature shift is to account for the decrease in Ty by the
contamination of residual plasticizers; after the shift, the curve superposes on the FTH
curve of s-A over the region of 118~140°C very closely, including at 127.5°C, where
the K values of ssA and the “uncontaminated s-B” are expected to be in close
agreement.  After such a shift, the FTH curve of s-B begins to rise above that of s-A
below~115°C, illustrating the divergence similar to, but smaller than, that between
sAands-C. If we usethe vaue K '=1.35x10 2 expected at AT=0 (see Figure 6), the
K value (=K’/3.16) at Ty should be around 4.3x10"*, which occurs at 99.55°C on the
shifted FTH curve of s-B. In other words, from such a “restoration” of s-B to its
uncontaminated state, its T, is estimated to be about 99.5°C. Thus, we have the Ty

values for s-A, hypothetically uncontaminated s-B, and s-C to be 97, 99.5 and 93.8°C,
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respectively; these values are consistent with what may be expected from caorimetric
measurements (see the note at ref 56).>

The above discussion of the results shown in Figure 11 suggests that the glass
transition is a nonlinear effect not only in form as expressed by the product of s’ and
K’ (eq 17) but aso in the interplay between the two variables: an increase in s’ can
enhance a further increase in K’ and vice versa. The sharper risein both s’ and K’ as
the temperature is getting closer to Ty may be the manifestation of such an effect.
Such an effect is imposed through K’ on the frictiona factor K; consequently, as the
temperature decreases below ~ 120°C, K gradualy deviates from its purely
topologically controlled behavior—namely, being independent of Ty and molecular
weight—which holds at higher temperatures. Below ~120°C, K becoming dependent
on molecular weight does not mean ERT ceases to be valid in describing the
topological effect on viscoelasticity; as shown in paper 1 (ref 3), in this
low-temperature range the line shapes of J(t) in the rubber(like)-to-fluid region
remains quantitatively described by ERT. Clearly, only the value of the frictional
factor K is affected; the functional forms of the entropy-derived dynamic modes and
the structural factors of their relaxation times as given in ERT are not affected. Thus,
using ERT as the reference frame in analyzing the J(t) line shapes remains valid
below ~120°C. On such abasis, it is no accident that the AT dependences of s’ and

K’ are found to be universal; the result of analysis represents a rea advancement in

%" Note: From Figure 3 of ref 36, one may obtain T,=93.4, 97 and 100°C at M,,=16400,

46900 and 122000, respectively.
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understanding the glass transition of polystyrene, which may be generalized to

polymersin general.

9. Summary

The quantitative success of the Rouse theory and ERT in describing the entropic
region of relaxation modulus G(t) or creep compliance J(t) allows them to be used as
areference frame—the former for an entanglement-free system (s-C) and the latter for
an entangled system (s-A and s-B)—with respect to which the glassy-relaxation
process that occurs in the short-time region can be studied in a perspective way.
From the analyses of the J(t) results of three polystyrene samples. s-A, -B and -C, the
structural-growth parameter s’, the frictional factor K’ for the Rouse-Mooney process
ua(t) in the entangled case or the frictiona factor K (equivalent to K’; and also treated
as K’ in notation as explained in section 6) for the Rouse process ug(t) in the
entanglement-free case, and the structural-relaxation time 7, =18s'K' are extracted.
It has been shown that the thermorheologica complexity occurring in J(t) of
polystyrene is due to the temperature dependence of the glassy-relaxation process uc(t)
being stronger than that of the entropy-derived ones. The uneven thermorheological
complexity in J(t) is fully characterized by a simple increase of the structural-growth
parameter s’ with decreasing temperature in both the entangled and entanglement-free
systems.

For &l the three studied samples, Ty is defined by the temperature at which the
structural-rel axation time 7s=1000 sec. Thus defined Ty provides a common reference

point equivalent to al the samples, with respect to which the obtained s, s’ and K’
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results may be compared in a proper perspective. When these values of s-A, -B and -C
are displayed as afunction of AT=T-Tj, universal behavior related to Ty is revealed.

A significant point of this study is that the universal AT-dependence of s is
separated into two decoupled effects. structural-growth as represented by s’ and
frictional-sowdown as represented by K'—by a clean-cut process. s’ being first
determined entirely by the J(t) line shape; then K’ determined from the time-scale
shifting factor—both changing with AT individualy in a universal way. Because of
the universality of s’ and K’ as a function of AT, the ug(t) process and the ua(t) or
HRr(t) process in both their absolute positions and positions relative to each other in
time depend on AT in the same way for al the three studied samples.  In other words,
the thermorheological complexity is a universal effect within the polystyrene system,
entangled or not. Ultimately this conclusion supports the result from the study of
the blend-solution systems that ERT and the Rouse theory have the same footing at

the Rouse-segmental level *'°

It aso strongly indicates the importance of the roles
which the obtained time-scale and length-scale may play.

It has been shown that the relaxation times of the Rouse-Mooney normal modes
(for ssA and s-B) or the Rouse norma modes (for ssC) may be used as the
“graduations” of an internal yardstick for estimating the extent of the influence of the
glassy relaxation at Ty. Asalogical consequence of s’ and K’ depending on AT in a
universal way, the length-scales at T, obtained this way for the three samples agree
with each other closdy—about 3nm for al the three samples. As pointed out

previously,® this kind of analysis represents a new methodology for studying the

length-scale at Tq. As the characteristic ratio and entanglement molecular weight of
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ed, 19849 this method would be of wide

various polymers have been well document
application.

Key concepts: decoupling of the structural-growth and frictional-slowdown
effects, universality in the thermorheologica complexity; and the time-scale and
length-scale in respect of the motion and size associated with the Rouse segment, as

developed, revealed and obtained in the previous and present studies represent a new

way to see and study the glass transition of a polymer.
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Appendix: Viscoelasticity at Molecular Weights Just Above M. Comparison of
Samples C and E167.

As explained in section 3, because the molecular-weight distribution of s-C is not
that narrow, its viscoelastic results have to be analyzed in terms of the Rouse theory
(egs 9-12) even though its M, is 1.22M.. As aso pointed out, the viscoelastic
results of E167, which with M,=1.24M. has an extremely narrow molecular-weight
distribution, have been well analyzed in terms of ERT.”®° The analysis of E167°s
results gives the K value at 127.5°C, very much the same as the value obtained for s-C,
(see Table 1) both being smaller than the average K value (4.9x10 °:10%)3"*° in the

entanglement region of molecular weight by about 17~20%. The difference in
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viscoelastic behavior between E167 and s-C is structural: entangled and described by
ERT in the former; entanglement-free and described by the Rouse theory in the |atter.
This difference in the structural aspect of viscoelasticity between the two samples has
already been indicated by the comparison of their viscosity results with the theoretical
curves of ERT and the Rouse theory in a previous report’—though the author has not
become aware of the subtlety involved until the present study of s-C: analysis of its
J(t) line shapes. Asshown in Figure 3 of ref. 8, the viscosity of s-C is below the line
of the Rouse theory by a small amount corresponding to its K value being about 17%
smaller than the average value. As opposed to this and also shown in the same
figure, the viscosity of E167 is above the Rouse line because its viscoel astic behavior
is structurally described by ERT, even though its K value is aso smaller than the
average value by ~20%. These discrepancies were displayed when the calculated
molecular-weight dependence of n for ideal monodispersity was superposed on the
experimental results of nearly monodisperse samples over a wide molecular-weight
range—allowing the viscosity values over the whole range of molecular weights to
shift vertically in the superposition as implied by “relative viscosity” used for the
ordinate in Figure 3 of ref 8. Here, we take a closer examination by comparing the
absolute values of viscosity for ideal monodispersity calculated with K=4.9x10° and
the experimental values which have been corrected for the effect of molecular-weight
distribution and the contribution of the glassy-relaxation process—the contribution of
the internal viscosity is appreciable only in the low molecular-weight region, about 3
~10% from M¢ to Me. It has been shown that the molecular-weight distribution of a

nearly monodisperse sample can enhance the viscosity by about 20~30% depending
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on the polydispersity, if the M,, value of the sample is used as equivaent to the
molecular weight of a theoretically ideally monodisperse system in the comparison
between experiment and theory. As described in detail in ref 10°® and in Appendix
B of paper 1,° the molecular-weight distribution for each individua sample as

described by the Schulz distribution can be extracted from matching the
calculated J2 with the measured value. Using the obtained polydispersity parameter Z,

the bulk of correction for the mol ecular-weight-distribution effect on viscosity may be
made, which should reduce the systematic error of 20~30% further to a basically
negligiblelevel. Asshown in Figure 12, the calculated absolute values of 7 for ideal
monodispersity are in close agreement with the corrected values over the whole range,
excluding s-C and E167. Thevaluesof Z involved in the viscosity corrections for all

the samples are in the range expected for nearly monodisperse samples.® In this

8 See pages 190- 191 of ref. 10.
% Note: Because of the presence of asmall tail in the molecular-weight distribution of

s-A on the high side (seeref 1), whose contribution isincluded in J(t) but has been
eliminated by Plazek from the listed J values,"?® the Z value involved in the viscosity

correction islarger than that obtained from the J(t) line-shape analysis as reported in

paper 1.2 The Z value from the J(t) line-shape analysisis 20 (equivalent to M,,/M,=1.05);

that from matching theJS valuesis 60 (equivalent to M,,/M,=1.02).
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more exact comparison, the relative positions of the data points of s-C and E167 to the
Rouse line and the ERT line (calculated with K’/K =Rg(M) given by eq 18) confirm

what have been shown in Figure 3 of ref. 8.
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Figure Captions:

Figure 1

Creep compliance Jy(t) data of s-C measured at 119.4 (0); 109.4 (@); 105.1 (»); 102.9
(a); 100.6 (<>); 96 (#); and 93 () °C in comparison with the theoretical curves (—;
from left to right, respectively) calculated with the s and K values at different

temperatures as listed in Table 2; and the A, and 8 values as explained and given in

the text. Also shown is the comparison between the experimental (— —) and calculated

(+++) long-time Jy(t) limits, t/7,, at each corresponding temperature.

Figure 2
Comparison of creep compliance Jy(t) curves of s-C calculated with K=10"*and the s
values corresponding to the calculated curves shown in Figure 1; lines from left to

right corresponding to 119.4, 109.4, 105.1, 102.9, 100.6, 96 and 93 °C, respectively.

Figure 3

s values as a function of temperature of s-A (0), s-B (<) and s-C (17 determined from

Jp(t) line-shape analysis; a from the analysisof J;)).

Figure 4
The structural relaxation time, ts, of s-A (0), B (¢) and s-C () as a function of the

temperature difference from each individual Ty, AT. The solid line is calculated
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from the FTH equation which best fits the data of the three samples collectively.

Figure5
s’ values of s-A (0), B (¢) and s-C (1 obtained from the Jy(t) line-shape analysis;

A from the analysis of J;’p) as a function of the temperature difference from each

individual Tg, AT. The solid line is calculated from the modified FTH equation (eq
19) which best fits the data of the three samples collectively.

Figure 6

K’ values of s-A (0), sB (¢) and s-C (1) as a function of the temperature difference
from each individual Ty, AT. The solid line is calculated from the FTH equation

which best fits the data of the three samples collectively.

Figure7
K values of s-A (0), B (¢) and s-C () as a function of the temperature difference

from each individual Tg, AT.

Figure 8

Comparison of the Gy(t) figures of s-A (middle figure), s-B (bottom one) and s-C (top
one) a individua Ty or AT=0. In each figure, the relaxation times of the
Rouse-Money norma modes (for s-A and s-B) or the Rouse norma modes (for s-C)
are indicated by (+); the (--) line is calculated with A} or Ag=0; and the (— ) line is

calculated with Ag=0 as well as setting the contribution of the Rouse-Mooney normal



modes to zero. The common vertical dotted line represents the structural-relaxation
time 7s=1000 sec. The points where the Gy(t) curves cross the horizontal dotted lines

at 108 dynes/cm? represent the traditionally defined structural- or a-relaxation times.*®

Figure9

Comparison of the Gy(t) figures of s-A (middle figure), s-B (bottom one) and s-C (top
one) at AT=9.7°. In each figure, the relaxation times of the Rouse-Money normal
modes (for s-A and s-B) or the Rouse normal modes (for s-C) are indicated by (+); the

(--) line is calculated with A} or Ac=0; and the (— —) line is calculated with Ac=0 as

well as setting the contribution of the Rouse-Mooney norma modes to zero. The
common vertical dotted line represents the structural-relaxation time ts=1 sec. The
points where the Gy(t) curves cross the horizontal dotted lines at 10° dynes/cm?

represent the traditionally defined structural- or -relaxation times.™

Figure 10

Collective comparison of the 7s and 1, values as a function of AT of s-A, -B and -C
(7s: @ forsA, e fors-Band m forsC; 1. © forsA, ¢ forsB and 1 for sC).
The lines are each calculated from the FTH equation which best fits the data of the

three samples collectively (— for 7s; - - forg).

Figure 11

The comparison of K values as a function of temperature between s-A (0), sC (@),
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and the hypothetically uncontaminated s-B (+) (see the text). The lines are
calculated from the FTH equation best fitting the experimental data: (—) for S-A ,

(——-) for s-C, and (- -) for the hypothetically uncontaminated s-B.

Figure 12

Comparison of the theoretical viscosity curves of ERT (the upper solid line) and the
free Rouse theory (the lower solid line) both calculated with K=4.9x10"° (and with
K’/K=Rk(M) as given by eq 14 for the ERT curve) with the experimental values at
127.5°C corrected for the effect of molecular weight distribution and the
internal-viscosity contribution as explained in the Appendix (o from ref. 8, with ¢
specifically representing the data point of E167; @ from ref. 28, with & specifically

representing the data point of s-C).
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Table 1: Weight Average M olecular Weight of Samples A, B and C and E167; and
the Reference Theories and Key Parameters: Z, M or Me, K (at 127.5°C), Ag'
and f (see the text) Used in or Obtained from the Creep Compliance J(t)

Analyses (for s-A, -B and -C) or the Relaxation Modulus G(t) Analysis (for E167)

Sample M., Z Entanglement Reference K (9D&)  Ag'x10° B
(My, IM,) MW Theory  (127.5°C)  dynes’cm?
SA 46900 20(1.05) M=13500 ERT 4.8x10°° 12.95 041
sB 122000 20(1.05) M=13500 ERT 60 9.73 0.41
sC 16400 20(1.05) Mg’ =17090 Rouse 4.15x10°° 9.93 0.42
E167 16700 120(1.01) M =13500 ERT 4.0x10°°

€ Because s-B is contaminated by residual plasticizers, the K valuein its pure state is not obtained.
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Table 2: Sructural and Dynamic Quantities Extracted from the J(t) Line-Shape
Analysis of Sample C

Temp s SF K logny,  mp/m(As=0)  pT/peTo  logn logn logJe logJe Ts
(°c) (D) (D) (K=10%  (K=10"% exp. calcd exp. calcd ©
As=0 10.159 1
1341 1640 (1.06x109  10.205 1111 1072 5257 (5261) 675  -675  (3.13x109)
1275 [ 415x10°]2 [1.28x10°]?
1194 1800  3.09x10*  3.09%x10° 10210 1.125 1042 6730 6717 679 6.75 1.00x10°3
109.4 4400  6.89%10° 689107 10275 1.306 1021 8116 812 690  -6.87 5.46x10 2
1051 7000 3.6x102 3.6x10° 10.331 1.486 1012 8832 8893 696  -698 454510t
1029 8990  8.33x107? 8.33x10° 10370 1.626 1008 9270 9294 705  -7.05 1.35
100.6 13200 0.245 245¢10° 10442 1.919 1003 9820 9832  -716  -7.19 5.82
% 28500 2.89 2.89x10* 10633 2.979 0993 11088 11090 -754  -757 1.48x10?
9375  [43960] [1.19x10°? [1000]
61
93 52300 20.8 208x10° 10825 4635 0987 12156 12138 -7.94  -7.94 1.96x10°

& Calcul ated from the equations obtained from | east-squares fittings to the val ues determined at
different temperatures (see the text)
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Table 3: Sructural and Dynamic Quantities: s, K, K’ and s Extracted from the
J(t) Line-Shape Analyses of SamplesA and B

Sample A Sample B
Temp K K’(1.61K) s Ts Temp K K’(3.16K) s Ts
() (D) (D) (D) ® () (D) (D) (D) ©®
97 9.84x10°* 1.58x10°3 56500 1000 [98.0,5)% [4.40:x10°9 [1.39x107  [126190] [1000]
1006  9.7x10°° 1.56x10°* 28275 49.4 98.3 3.6x10°* 1.14x10°3 120258 779
1045  12x10° 1.93x10°® 16337 353 101 6.02x10°° 1.9x10°* 77426 83.9
1006  12x10° 1.93x10°° 10053 0.217 103.3 1.515x10°° 4.79x10°° 58900 16.06
1145 1.96x107  3.16x10°7 6283  2.22x10°° 1055 5.43x10°° 1.72x10°° 41184 4,03
113.8 1.49x10°7 4.71x10°7 17297 4.64x10°2
119.8 2.61x10°® 8.25x10°8 9060 4.26x10°2

62 | isted values at this temperature are calculated from the equations obtained from least-squares
fittings to the values determined at different temperatures (see the text)
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Figure 3
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Figure 10
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Figure 11
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Figure 12
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Thermor heological Complexity in Polystyrene Melts
and

Breakdown of the Stokes-Einstein Relation in o-Terphenyl. 4

Y.-H. Lin®
Department of Applied Chemistry
National Chiao Tung University

Hsinchu, Taiwan

Abstract

In paper 1,%* based on the structural-growth parameter s (or s’) which increases
with decreasing temperature as extracted from analyzing the cregp compliance J(t)
line shapes of two nearly monodisperse entangled polystyrene melts, it was shown
that the basic mechanism for the thermorheological complexity (TRC) in polystyrene
should be also responsible for the breakdown of the Stokes- Einstein relation (BSE) in
o-Terpheny! (in tris-naphthylbenzene as well). It has been reported in paper 3% that
TRC as related to glass transition in polystyrene melts behaves in a universal way

within the polystyrene system, entangled or not. Benefiting from this new

8 E-mail: yhlin@mail.nctu.edu.tw

64 Lin, Y.-H. J. Phys. Chem. B 2005, 109, 17654.

65 Lin, Y.-H. J. Phys. Chem. B, submitted. (paper 3)
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understanding, we have made a closer analysis and comparison of the TRC in
polystyrene and BSE in o-Terphenyl. It is shown from the analysis that the ratio of the
structural-growth parameter s’ at temperature T to its plateau value S’ a high
temperatures, s’(T),/S’, is equivaent to the enhancement parameter u(T) in
o-Terphenyl as determined from the data of the diffusion constant Dy and rotational
relaxation time 7. The enhancement parameter being of different magnitude for
different materials, this conclusion is supported by the plotted curve of Iog(s' (T)/ so')
versus the temperature difference(AT =T —T,) from the glass transition temperature
in polystyrene being similar in shape to those of Iog(y(T))in o-Terphenyl and
tris-naphthylbenzene. Our genera description of the mechanism for the TRC in
polystyrene and BSE in o-Terphenyl is compared with the two-state model proposed
by Stllinger and Hodgdon for explaining the BSE in o-Terphenyl, showing a

one-to-one correspondence and illustrating the similar ideas involved.
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Thermor heological Complexity in Polystyrene M elts
and

Breakdown of the Stokes-Einstein Relation in o-Terphenyl. 4

Y.-H. Lin
Department of Applied Chemistry
National Chiao Tung University

Hsinchu, Taiwan

1. Introduction

As the glass transition temperature Ty is approached from above, two interesting
effects occur in glass-forming fluids: the thermorheological complexity (TRC) in
glass-forming polymer melts and the breakdown of the Stokes- Einstein relation (BSE)
in fragile glass-forming liquids. The former is represented by the different
temperature dependence between the short-time and long-time regions in the creep
compliance J(t) of polystyrene melts as first observed by Plazek;*%%°%"®8 the |atter is
exemplified by the temperature dependence of translationa diffusion being weaker
than that of viscosity n or rotational relaxation time 7z in o-Terphenyl

(OTP)®:70.71.72.73 (in tris-naphthylbenzene’™ ™ as well). These two effects are

66 Plazek, D. J. J. Phys. Chem. 1965, 69, 3480.
67 Plazek, D. J. J. Polym. Sci., Part A-2: Polym. Phys. 1968, 6, 621.

68 Plazek, D. J.; ORourke, V. M. J. Polym. Sci. A-2: Polym. Phys. 1971, 9, 209.

69 Fujara F; Gell, B.; Sillescu, H.; Fleischer, G Z. Phys. B: Condens. Matter
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interesting because the basic mechanisms for them should be much related to the glass
transition phenomenon, which <till does not have a fully clear theoretica
interpretation, even though much understanding has been gained from various studies

on it for the past few decades.”®"":78.7980

The BSE in glass-forming liquids has been
actively studied in the last decade, and various model *+#283848> have been proposed

to explain it. On the other hand, the TRC in polystyrene had been puzzling to

1992, 88, 195.
70 Cicerone, M. T.; Ediger, M. D. J. Phys. Chem. 1993, 97, 10489.
71 Kind, R.; Liechti, N.; Korner, N.; Hulliger, J. Phys. Rev. B 1992, 45, 7697.

72 Chang, |.; Fujara, F.; Gell, B.; Heuberger, G.; Mangel, T.; Sillescu, H. J. Non-Cryst.
Solids 1994, 172-174, 248.
73 Mapes, M. K.; Swallen, S. F; Ediger, M. D. J. Phys. Chem. B 2006, 110, 507.

74 Chang, |.; Sillescu, H. J. Phys. Chem. B 1997, 101, 8794.; and references therein.

75 Swallen, S. F; Bonvallet, P A.; McMahon, R. J.; Ediger, M. D. Phys. Rev. Lett.

2003, 90, 015901.

76 Angell, C. A. Science 1995, 267, 1924; and references therein.

77 Ediger M. D.; Angell, C. A.; Nagel, S. R. J. Phys. Chem. 1996, 100, 13200.

78 Sillescu, H. J. Non-Crystal. Solids 1999, 243, 81; and references therein.

79 Weeks, E. R.; Crocker, J. C.; Levitt, A. C.; Schofield, A.; Weitz, D. A. Science

2000, 287, 627.

80 Donati C.; Glotzer, S. C.; Poole, P. H.; Kob, W.; Plimpton, S. J. Phys. Rev.E 1999, 60, 3107.
81 Stllinger, F. H.; Hodgdon, J. A. Phys. Rev. E 1994, 50, 2064.
82 Tarjus, G; Kivelson, D. J. Chem. Phys. 1995, 103, 3071.

83 Cicerone, M. T.; Wagner, P. A.; Ediger, M. D. J. Phys. Chem. B 1997, 101, 8727.
84 Xia, X.; Wolynes, P. G. J. Phys. Chem. 2001, 105, 6570.

85 Jung, Y. J.; Garrahan, J. P; Chandler, D. Phys. Rev. E 2004, 69, 061205.
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polymer rheologists until quantitative analyses were made on the J(t) line shapes of
two entangled melts as reported in paper 1 (ref 1). Based on the length-scale and
time-scale (or equivalently the structural-growth parameter s) extracted from the J(t)
analyses, which increase with temperature approaching Ty from above, the basic
mechanism for the TRC was analyzed. It has been shown that the basic mechanism
should be also responsible for the BSE as occurring in OTP.  In paper 3 (ref 2), it has
been found that TRC as related to Ty behaves in a universal way within the
polystyrene system, entangled or not, advancing our understanding of the
structural-growth parameter s (or s’) extracted from the anayses of the J(t) results.
Benefiting from this new understanding, we present a closer analysis and comparison
of the two effects in this paper. Viscoelastic and dynamic results of glass-forming

pOI ymers86,87,88,89,90

in general indicate that the glassy-relaxation process (or the o- or
structural-relaxation process) has a stronger temperature dependence than that of the
dynamics involving the whole molecule—namely, the terminal relaxation—suggesting
that the TRC is a genera phenomenon. At the same time, the BSE occurs in

different fragile glass-forming liquids.® ** Here, we shall use polystyrene and OTP as

the (representative) subjects under study, with the understanding that the analyses as

86 Plazek, D. J. J. Rheol. 1996, 40, 987.

87 Plazek, D. J. Polymer J. 1980, 12, 43.

88 Okamoto, H.; Inoue, T.; Osaki, K. J. Polym. Sci: Part B: Polym. Phys. 1995, 33,
417.

89 Inoue, T.; Hwang, E. J.; Osaki, K. J. Rheol. 1992, 36, 1737.

90 Adachi, K.; Hirano, H. Macromolecules 1998, 31, 3958.
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presented here may be generalized to other glass-forming polymers or liquids.

2. Basic Mechanism for TRC and BSE

In paper 1,* using the successful description of the rubber(like)-to-fluid region of
the creep compliance J(t) in terms of the extended reptation theory (ERT)%-92939495.%
as the reference frame, the glassy-relaxation processes ug(t) occurring in the
short-time/ small-compliance region of J(t) of two nearly monodisperse entangled
polystyrene melts (sample A with M,,=46900 and sample B with M,,=122000)>* have
been analyzed in a perspective way. In terms of a stretched exponential form for
ua(t) incorporated into ERT, the J(t) line shapes over the whole range have been
guantitatively analyzed, indicating that the TRC occurring in J(t) of polystyreneis due
to the temperature dependence of the energetic interactions-derived glassy-relaxation
process being stronger than that of the entropy-derived dynamic processes as
described in ERT.  The stronger temperature dependence is expressed by the increase

with decreasing temperature in the normalized glassy-relaxation time or

structural-growth parameter s, defined by

91 Lin, Y.-H. Macromolecules 1984, 17, 2846.
92 Lin, Y.-H. Macromolecules 1986, 19, 159.
93 Lin, Y.-H. Macromolecul es 1986, 19, 168.

94 Lin, Y.-H. Macromolecules 1987, 20, 885.

95 Lin, Y.-H. Macromolecules 1989, 22, 1437.

96 Lin, Y.-H. Polymer Miscoelasticity: Basics, Molecular Theories, and

Experiments; World Scientific: Singapore, 2003.
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D

where(r)__ is the average relaxation time of ug(t) and K is the frictional factor,

b)) o

C KTz’m®>  Dx’m?

associated with the Rouse segment with mass m, mean square length <b2> and

diffusion constant D. In paper 3,° the creep compliance J(t) and steady-state
compliance J? results of an entanglement-free nearly monodisperse polystyrene melt

(sample C with M,,=16400; as explained in detail in section 3 of paper 3, due to the
molecular-weight distribution of sample C being not extremely narrow, it has to be
treated as an entanglement-free case even though its M,, value is a little higher than
M=13500) have been equally well analyzed in terms of an equivalent scheme using
the Rouse theory®>3*9"%:% ingtead of ERT as the reference frame. Both ERT and
the Rouse theory use the Rouse segment as the most basic structural unit; theoretically
the frictional factor K carries the temperature dependence of all the entropy-derived

dynamics processes. ua(t), ux(t), us(t), and uc(t) in ERT or ug(t) of the Rouse theory

97 Lin, Y.-H.; Juang, J.-H. Macromolecules 1999, 32, 181.
98 Rouse, P. E. Jr. J. Chem. Phys. 1953, 21, 1271.
99 Bird, R. B.; Curtiss, C. F; Armstrong, R. C.; Hassager, O. Dynamics of Polymeric

Liquids, Vol. 2, Kinetic Theory, 2™ ed.; Wiley: New York, 1987.
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(see the previous papers™®?

or ref 33 for the physical meanings and functiona
forms of the processes), which in general follows the Fulcher and Tammann-Hesse
(FTH) equation or the Williams-Landel-Ferry (WLF) equation.® The frictional
factor has been studied in detail by extensive testing of the two theories with

experiments,? 33101

The obtained key behavior and relationships as to the frictional
factor are summarized in the following; we refer to the previous studies for the
details:

(1) At and above 127.5°C,*%% it has been shown that the frictional factor K in the
ux(t), us(t), and uc(t) processes (as appearing in the expressions for tx, 7z, and
1c) for polystyrene melts in the entanglement region is independent of molecular
weight, as expected from the theory.

(2) However, the frictional factor in the Rouse-Mooney process ua(t) denoted by K’
(as appearing in the expression for 7} ) is greater than the frictional factor K in the
ux(t), wpe(t), and puc(t) processes by the molecular weight-dependent
factor R (M) (see eq 5 of ref 32 or eq 11.6 of ref 33),">*%"3 which has a

plateau value 3.3 in the high-molecular-weight region; starts to decline with

decreasing molecular weight at around 10M or 10M_, (M, =M_/W, with W;

being the weight faction of the entangled component in a blend solution); and

reaches 1 as the molecular weight reachesMeor M.

(3) The K value in the ux(t), us(t), and uc(t) processes of ERT is in quantitative

100 Ferry,J. D. Miscoelastic Properties of Polymers, 3 ed.; Wiley: New York, 1980.

101 See Table 1 and Appendix B of ref 1 and note at ref 38 of ref 2.
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agreement with the frictional factor K in the Rouse theory (as appearing in the
Rouse relaxation timery; see Figure 20 of ref 31 or Figure 11.1 of ref 33),
meaning that both theories have the same footing at the Rouse-segmental

Ie\/d 2,31,33

As indicated by the observationR, (M) —1asM — M_or M, K’ being greater

than K by the factor Rx(M) is due to the topological constraint of entanglement. At

temperatures close to Ty, in the relatively short yet macroscopic time scales of

(r),and 75 (non-ergodic times; see Table 2 of paper 1) the strong energetic

interactions among segments keep many configurations from being explored, whilein
the long time scales of 7, 7x, s, ad 7c or t (ergodic times) there is enough time to

explore the configurational space effectively, leading to entropy-derived modulus (as

102

represented by the entropy force constant; see the note at ref 39)“ and dynamics (as

described by the Langevin equation; see the note at ref 40).'%

Thus, except for the
factor R«(M) due to the topological constraint effect of entanglement, there is not a

fundamental difference between K’ and K. The expression for K (eq 2) is equally

102 Thisisindicated by the fact that no shift aong the compliance coordinateis
required in the quantitative analyses of J(t) line shapes of polystyrene meltsin the
expected entropic region using ERT (in paper 1)* or the Rouse theory (in paper 3)2
asthe reference frame, even when the temperature is very closeto T,

103 The successful quantitative analyses of the J(t) line shapes of polystyrene melts
in the expected entropic region indicate that the functiona forms for the relaxation
processes in the stress-rel axation modulus and the structural factors of the relaxation
times as given in ERT or in the Rouse theory remain valid, even when the

temperatureis very closeto Ty "2
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applied to K’; namely

) ) o

CKTz%m?  D'z’n?

where the diffusion constant D’ is smaller than D by the factor Rc(M).

As detailed in section 4 of paper 3,2 for more directly reflecting the close relation
between the ug(t) and ua(t) processes—the two processes occurring next to each other
in time, the normalized glassy-relaxation time s has been modified by introducing s’

as defined by

S'= = 4

Then the structural-relaxation time defined by z¢ = 18(r)  (see ref 41 (paper 3) for a

detailed study of the structural-relaxation time)'® can be expressed by

7o =18sK =18s'K' (5)

R((M) »>1asM — M._indicates that, when the tube (of the reptational model) is
disappearing and the Rouse theory becoming applicable, the dynamics in the system
has only one K and becomes isotropic as it should. Asdetailed in section 4 of paper

3,2 in an entanglement-free system (sample C), s can be regarded as s’ and K as K.

104 Lin, Y.-H. J. Phys. Chem. B 2005, 109, 17670.
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As far as sample C is concerned in the discussions below; sand s’, and K and K’ will
be used interchangeably without further explanation. As s or s’ decreases with
increasing temperature, the entropic region shifts more away from the glassy region as
can be observed in Figures 6 and 7 of ref 1 and in comparing Figures 8 and 9 of ref 2.

In the literature,* 1%

75 reaching 100~1000 sec has often been used as the
criterion for defining Tq.  Following this practice, the glass transition point Ty has
been defined as the temperature where 7s=1000 sec for all the three samples whose J(t)
results have been anayzed, two entangled and one entanglement-free. The thus
defined Ty provides a common reference point equivalent for al samples, with
respected to which the structural and dynamic quantities s, s’ and K’ obtained from
analyzing the J(t) results may be compared in a perspective way; the effect of the Ty

difference among samples on ts, " and K’ can be accounted for by expressing them

as a function of the temperature difference from Tq, AT =T -T,. It has been found

that 75, " and K’ values of the three samples plotted as a function of individual AT
fal on a common curve, indicating that TRC as closely related with the glass
transition behavesin a universal way within the polystyrene system, entangled or not.
When the temperature is significantly closer to T4 than 127.5°C, the formation of
structure as related to the increase in s’ starts to affect K through K; in other words, K
behaves in such away that K’ values as afunction of AT fall on a universal curve—K”’
differs from K by the factor R¢(M). Asaresult, below ~120°C, K begins to deviate

from the behavior purely controlled by the topological constraint of

105 Angell, C. A. J. Non-Cryst. Solids 1991, 131-133, 13.
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entanglement—namely, being independent of molecular weight and thus the difference
in Te—which holds at higher temperatures.  However, below ~ 120°C, ERT remains
valid in describing the topological effect on the line shape of the viscoelastic
responses as explained in section 8 of paper 3 even though K becomes gradually
dependent on molecular weight as the temperature approaches Ty (see Figure 11 of
paper 3)°. Because the effect of the formation of structure becomes dominant in the
close proximity of Ty, we should use K’ and its conjugate structural parameter s’to
discuss the Tg-related effects instead of K and s as used in paper 1. However, the
basic mechanism for the TRC developed in terms of K and s in paper 1 remains
equally valid as the only difference is a proportional constant. In an entangled case,
as the Rouse-Mooney process occurs right after the glassy-relaxation process ug(t),
using K’ and s’ instead of K and s aso indicates the need to shift our focus to the
shorter-time region for studying the Tq4-related effects.

Being Brownian motion, the diffusion constant of a Rouse segment can generally

be expressed as

2
p=XT ]

c el (6)

where | isthe step length that the Rouse segment has moved in atime interval At. The
only criterion for choosing At and | is that the steps are independent of one another;
then after sufficiently large number of steps of movement have taken place, the

centra limit theorem ensures that the dynamic process becomes Gaussian as required
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28,33,106,107

by the Langevin equation being applicable. At high temperatures, there is

awide range down to very small values to choose | and At to satisfy eq 6; the dynamic
process is often referred to as the continuous (small-step) or “free” diffusion.”™%® At
atemperature close to Ty, the structure is formed with a certain lifetime s which has

increased greatly with s’; then, the smallest independent time step that can be chosen

is of the order of the lifetime of the structureAr ~ 74 =18(r) .. We can choose At as

the time step because it is still much shorter thant), , 7x, s, and tc or (see Table 2
of paper 1 and Figure 8 of paper 3)."* Corresponding to At being longer at lower
temperatures, a larger length-scale denoted by d is expected for the step length as
explained in the following: As K’ (or K) has been determined from the quantitative
line-shape analysis of J(t), so D’ (or D) is defined. Due to eq 3, the following

constraint isimposed on the system

2 2 2
const =D'K'~ d- K'~ a K'= d- (7)
At Ts 18s

where eq 5 has been used. To maintain D’K’ being constant, d has to increase by
about 5 times as s” increases from about 1500 at temperatures higher than ~Tq+40° to

about 40000 at Ty (see Figure 5 of paper 3).

106 Mooney, M. J. Polym. Sci. 1959, 34, 599.

107 Doi, M. J. Polym. i, Polym. Phys. Ed. 1980, 18, 1005.

108 Thirumaai, D.; Mountain, R. D. Phys. Rev. E 1993, 47, 479.



The relaxation times in the long-time region (z;, ©x, s, and 7c Orzs) are
proportional to K « (JKT = At /d® or K’ o< ¢’/KT =A7 /d* while the structural

relaxation time istg ~ Az oc (r)_.  With decreasing temperature, At increases more

than A7/d? as the structure is formed following the increase in s’. This difference in
temperature dependence is the basic mechanism for the TRC as concluded from the
analyses of the polystyrene J(t) curves reported in papers 1 and 3.

It was pointed out in paper 1 that this basic mechanism should be also the reason
for the breakdown of the Stokes-Einstein equation in relating the transationa
diffusion constant Dy with the shear viscosity n or rotational relaxation time i as
observed in OTP, when Ty is approached from above. Without the entropy-derived

modes of motion—as described by ERT or by the Rouse theory—in OTR,

nmI:NG(t)dt:<T>GOCTSzTr0tzAT (8)

What is explained above for the diffusion of the Rouse segment in polystyrene melts

can similarly be applied to the molecular diffusion Dgyin OTP;

D ~— 9

Thus, from egs 8 and 9, one sees that Dyt increases with increasing d as Ty is
approached from above, meaning BSE.

To characterize the BSE, a trandational diffusion enhancement parameter u has
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been defined by
p=— (10)
where Dge is the trandational-diffusion constant expected when the Stokes-Einstein

relation holds.  Asthe Stokes- Einstein relation holds at temperatures far above Ty in

OTP, its u value at atemperature T close to Ty may be calculated from

~ Dy(M)r e (T)
H(T) = Dg (Thigh )Trot (Thigh )

(11)

where Thign Stands for a high temperature in the region where the Stokes-Einstein
relation holds.

As s’ for the polystyrene system reaches a plateau value of about 1500 as the
temperature is more than 40° above T, under the constraint imposed by eq 7, d should
reach alower limiting value at high temperatures, which is denoted by dp. Denoting
the plateau value of s’ at high temperatures by s,' (= 1500 for polystyrene), then the s’

value at atemperature T close to Ty may be expressed by

s$(T) = %-[?J (12)

Applying the same idea to the trandational diffusion enhancement parameter in OTP

and substituting egs 8 and 9 into eq 11, the u value at atemperature T close to Tg may
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be expressed by

u(T){%j 13)

On the basis of comparing egs 12 and 13, we conclude that u(T) for OTPis equivalent

tos'(T)/s, ' for polystyrene melts, reflecting the same mechanism.

3. Comparison of the Resultsof u(T) and s’(T)/s’

The data of u(T) for OTP and tris-naphthylbenzene (TNB) as defined by eq 11
have recently been compiled by Mapes et a*® from diffusion results obtained by
NMR® and isothermal desorption’® for the former and by NMR™ and forward recoil

6,11,110
In

spectrometry™® for the latter and the results of rotational relaxation time.
Figure 1, we compare the u(T) results of OTP and TNB with thes'(T)/s," values of
the three polystyrene samples: A, B and C as a function of AT=T-Tg. The
magnitude of the enhancement factor u(T) is different for different materials. The
similarity in shape of the three sets of data plotted as a function of AT in Figure 1

supports the conclusion of the analysis given above that u(T) for OTP and TNB plays

the samerole ass'(T)/s," for polystyrene.

109 Mapes, M. K.; Swallen, S. F; Kearns, K. L.; Ediger, M. D. J. Chem. Phys. 2005,
123, 1.
110 Zemke, K.; Schmidt-Rohr, K.; Magill, J. H.; Sillescu, H.; Spiess, H. W. Mol. Phys.

1993, 80, 1317.
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The magnitude of s'(T)/s,'in polystyrene is smaller than those of u(T) in OTP
and TNB as well as p(T) of smaller probe molecules: tetracene and
9,10-bis(phenylethynyl)anthracene, in polystyrene but is about the same as that of a

111,112,113

larger probe: rubrene, in polystyrene. The magnitude of s'(T)/s,'in
polystyrene being in general smaller than those of u(T) in the cases mentioned above
may have to do with the chain connectivity existing in a polymer, which has the effect
of keeping the translational motion of a segment from being as uninhibited as that of a
molecule in a glass-forming liquid—the translational motion takes place mainly when

the “window of opportunity” for the cooperative jumping motion opens up (see the

discussion below).

4. Discussion

In paper 1, we have pointed out that to satisfy the conditions imposed by eq 7 for
choosing A7 and d, a likely dynamic process for the Rouse segment to take is by
cooperative large-step jumping involving more than one Rouse segment. Such a
general description is consistent with the picture that the molecular (or segmental)
motion becomes spatially heterogeneous and dynamically correlated as revealed by
molecular dynamics simulations for glass-forming Lennard-Jones mixtures at low

temperatures'*** and observed directly by confoca microscopy in the colloidal

111 Cicerone, M. T.; Blackburn, F. R.; Ediger, M. D. Macromolecules 1995, 28, 8224.
112 Cicerone, M. T.; Ediger, M. D. J. Chem. Phys. 1996, 104, 7210.
113 Wang, C.-Y.; Ediger, M. D. Macromol ecules 1997, 30, 4770.

114 Thirumaai, D.; Mountain, R. D. Phys. Rev. E 1993, 47, 479.

88



fluids near T@,.16 Dynamic heterogeneity in glass-forming liquids and polymers in the
vicinity of Ty has aso been indicated by various studies using different
techniques 1> 116171819 Eor explaining the enhancement of translational diffusion,
several models of spatialy heterogeneous dynamics have been proposed. In
particular, one can find a one-to-one correspondence between the two-state model
proposed by Stillinger and Hodgdon (SH)*® for explaining BSE in OTP and the
anaysis originaly proposed in paper 1 and further elaborated above for explaining
TRC in polystyrene and BSE in OTP.  Such a comparison is made in the following,
which may illustrate the similar ideas involved.

The two-state picture proposed by SH consists of flickering fluidized domains in
an essentialy solid matrix; in the fluidized domains stress can be released quickly and
the molecule can move faster. The fluidized domains in the SH picture was described
in terms of four temperature-dependent average characteristics:

(1) domain volume vy,

(2) domain appearance rate per unit volume, ro;

(3) domain lifetime to;

(4) domain internal viscosity no.

115 Cicerone, M. T.; Ediger, M. D. J. Chem. Phys. 1995, 103, 5684.

116 Schiener,B.; Bohmer, R.; Loidl, A.; Chamberlin, R. V. Science 1996, 274, 752.
117 Richert, R. J. Phys. Chem. B 1997, 101, 6323.

118 Russdll, E. V,; Israeloff, N. E. Nature 2000, 408, 695.

119 Tracht, U.; Wilhelm, M.; Heuer, A.; Feng, H.; Schmidt-Rohr, K.; Spiess, H. W.

Phys. Rev. Lett. 1998, 81, 2727.
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1o must reflect the fluidized nature of the domains, and thus its magnitude must be
substantially less than the macroscopically measured viscosityn. Following SH, as the

volume fraction ¢y of the system that isinterior to the fluidized domainsis given by

P = TVolo; (14)

the structural relaxation time s is expressed as

1t
T(RT,y)=—=— 15
= tm)= =g (15)
and the viscosity n as
n~=G, rg= G, (16)
rOVO

A key assumption in the SH mode is that the system’s overall trandational diffusion
constant Dy is a simple volume average over fluidized domains and surrounding static

matrix; thus

D, = #Dy + (1~ ) x O = %( 6:; Rj (17)

where the Stokes- Einstein equation is assumed to hold in the fluidized domains; and
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R is the effective radius of the diffusing molecule. Then using egs 14 and 16, the

enhancement parameter u as defined by eq 10 is expressed as

6 R]
o) vt 1~ lo (18)

:—_r _ -
H KT 000770 ocno
6rnR

As observed, u increases with decreasing temperature; so must t,/n, do. In other

words, using egs 15 and 17, we may have fromeq 9

KT
—t 19
GEHORJ o X H (19)

d® =~ D,AT = Dyrg =(
which increases with decreasing temperature and is in agreement with eq 13. One
sees that the step length d that the segment or molecule jumps after a waiting
periodA7 =t as indicated by the analysis given in section 2 is equivalent to the
distance the molecule moves by diffusion in a fluidized domain over the domain’s
lifetime to in the SH two-state model .
While the SH fluidized domain model offers an explanation that is consistent
with our genera description, clearly the uniqueness of the SH model or any other
model which may turn out to be consistent with our general description needs to be

checked by various studies.
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5. Summary

In paper 1, it was shown that the basic mechanism for the TRC in polystyrene
should be also responsible for the BSE in OTP. It has been found as reported in
paper 3° that 75, s’ and K’ values of the three studied polystyrene samples plotted as a
function of individual AT=T-Ty fall on a common curve, indicating that TRC as
closely related with the glass transition behaves in a universal way within the
polystyrene system, entangled or not. Benefiting from this new understanding, we

have made a closer analysis and comparison of the TRC in polystyrene and BSE in

OTP. It is shown from the analysis that thes'(T) / s, values extracted from the J(t)

line shapes of the three polystyrene samples play the same role as the enhancement
parameter w(T) as calculated from the diffusion constant Dy and rotational relaxation
time 7o iIn OTPand TNB. Such an expectation is supported by the results obtained
for polystyrene, OTP and TNB as shown in Figure 1. This result is particularly
significant considering that the BSE in OTP or TNB is based on a set of
measurements that is very different from the creep measurement, in which the TRC in
polystyrene is observed. As they are observed in different ways, the BSE and TRC
had been treated as two totally different and unrelated phenomena until the study
reported in paper 1.

We have also compared our general description of the mechanism for the TRC in
polystyrene and BSE in OTP with the two-state model proposed by Stillinger and

Hodgdon for explaining the BSE in OTP, illustrating the similar ideas involved.
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Figure Caption:

Figure 1

Comparison of s'(T)/s,’ vaues (with s°=1500) of polystyrene samples. A
(My=46900; 0); B(M,=122000; <) and C (M,=16400; 1 from the J(t) line-shape
andysis, » from matching the steady-state compliance JJ vaues) with the
enhancement factors u(T) of OTP (eisotherma desorption; ANMR) and TNB (m
forward recoil spectrometry; vNMR) as a function of AT =T —T,. The solid line is

caculated from the modified FTH equation (eq 19 of ref 2) which best fits

thes'(T) /s, 'results of the three polystyrene samples collectively.
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Range of Universality
Regar ding the T4-Related Ther mor heological Complexity

in Polystyrene Melts. 5

Y.-H. Lin'®
Department of Applied Chemistry
National Chiao Tung University

Hsinchu, Taiwan

Abstract

The creep compliance J(t) curves over the whole time range of three nearly
monodisperse polystyrene samples have been previously quantitatively analyzed in
terms of the proposed scheme using the extended reptation theory as the reference
frame for the entangled system or the Rouse theory as the reference frame for the
entanglement-free system, yielding important Tg-related dynamic and structural
guantities: the structural-relaxation time ts, the structural-growth parameter s’ and the
frictional factor K'. These quantities individually fall on the same curves, if

expressed as a function of the temperature difference AT =T —T_ from the individua

glass transition points of the samples, which are defined as the temperatures where the

structura relaxation time 7s=1000 sec. These results covering the molecular-weight

120 E_mail:yhlin@mail.nctu.edu.tw
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range from 16400 to 122000 strongly indicate that universality associated with the
Ty-related dynamics occurs in the polystyrene system, entangled or not. In this
report, the viscoelastic spectra G (w) reported by Inoue et a** at molecular weights
just below the entanglement molecular weight M=13500 and well below M. are
guantitatively analyzed in terms of the same scheme. Quantities in both the glassy

region (A, B and 75 or(r) ) and entropic region (s’ and K’) extracted from the

analyses are consistent with those obtained previously from the analyses of the J(t)
results. It is shown that the AT dependences of s’, K’ and 7s merge into their
respective universal curves at around M,=12000. At the same time, the universa
curve of 7s is shown in agreement with the temperature dependences of the shift
factors obtained by Plazek from the recoverable compliance Ji(t) results, supporting
the expected extension of the Tg-related universality to higher molecular weights than

covered by the previous analyses.

97



Range of Universality
Regar ding the T4-Related Ther mor heological Complexity

in Polystyrene Melts. 5

Y.-H. Lin
Department of Applied Chemistry
National Chiao Tung University

Hsinchu, Taiwan

1. Introduction

It has recently been shown'?+122123

that the creep compliance J(t) curves over
the whole time range of three nearly monodisperse polystyrene samples (as denoted
by s-A, -B and -C in Table 1) measured by Plazek***'*>'®can be quantitatively and

profitably analyzed in terms of the scheme using the extended reptation theory

(ERT)*?"1?8 s the reference frame for the entangled system (s-A and s-B) and the

121 |in, Y.-H. J. Phys. Chem. B 2005, 109, 17654.
122 | in, Y.-H. J. Phys. Chem. B 2005, 109, 17670.
123 |in, Y.-H. J. Phys. Chem. B submitted. (paper 3)

124 Plazek, D. J. J. Phys. Chem. 1965, 69, 3480.

125

Plazek, D. J. J. Polym. &ci., Part A-2: Polym. Phys. 1968, 6, 621.

126

Plazek, D. J.; ORourke, V. M. J. Polym. Sci. A-2: Polym. Phys. 1971, 9, 209.

127

Lin, Y.-H. Macromolecules 1984, 17, 2846; 1986, 19, 159; 1987, 20, 885.

128 | in, Y.-H. Polymer \iscoelasticity: Basics, Molecular Theories, and Experiments;
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Rouse theory®'?1% as the reference frame for the entanglement-free system (s-C),
yielding important Tg-related dynamic and structural quantities. From the analyses,
it has been shown that the structural- or «-relaxation time 7s can be separated into two
decoupled factors. the structural-growth parameter s’ and the frictiona factor K’
(rs=18s'K") by a fundamentally clean-cut process. Firstly, s’, characterizing the
thermorheological complexity, is entirely determined by the line shape of J(t); then,
K’ is determined from the time-scale shift factor. It is found that all the three
guantities 7s, s’and K’ individually fall on the same curve if they are expressed as a

function of the temperature difference AT =T —T, from the individual glass transition

points of the samples, which are defined as the temperatures where 7s=1000 sec.
These results strongly indicate that the universality associated with the Tg-related
dynamics occurs in the polystyrene system, entangled or not. The details of the
studies are referred to the previous papers.’ ® As these studies represent a new way of
analyzing the creep compliance J(t) results, it is of importance and interest to compare
the results of these studies with other results of measurements and analyses. While
serving this purpose, this report also shows where deviations from the Tg-related
universality would begin to occur from analyzing the viscoelastic spectraG’ (w) of

low molecular weight polystyrene samples reported by Inoue et al.***

World Scientific: Singapore, 2003.

129 Rouse, P. E. Jr. J. Chem. Phys. 1953, 21, 1271.

%0 Bird, R. B.; Curtiss, C. F.; Armstrong, R. C.; Hassager, O. Dynamics of Polymeric
Liquids, Vol. 2, Kinetic Theory, 2™ ed.; Wiley: New York, 1987.

3! |noue, T.; Onogi, T.; Yao, M.-L.; Osaki, K. J. Polym. ci.: Part B: Polym. Phys.
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2. Viscoelastic Spectra asAnalyzed

As al the samples L10, A5000, A2500 and A1000, whose viscoelastic spectra
are anayzed in this study have M,, vaues, as listed in Table 1, below the
entanglement molecular weight Me=13500,2'3%13 the scheme of analysis is the one
using the Rouse theory as the reference frame, as detailed in paper 3.3 The technical
details of calculating the G (w) spectra have been described in the Appendix of paper
22 The comparisons of the measured spectra G () with the calculated including
the contribution of the Rouse (entropic) component for samples L10, A5000, and
A2500 at severa temperatures are shown in Figures 1-3, respectively. As the
contribution of the entropic component is negligible in A1000 because of its

extremely low molecular weight, only the glassy-relaxation function

G (1) = A’ expl—(t/75)") (1)

is used to fit its viscoelastic spectra as shown in Figure 4.  In these figures, the
spectrum at a certain temperature is chosen (105°C for L10; 100°C for A5000; 80°C
for A2500; and 25°C for A1000 as chosen by Inoue et a) as the reference to which the

line shape in the glassy region of the spectrum measured at different temperatures are

1999, 37, 389.

132 Lin, Y.-H. Macromolecules 1987, 20, 3080.

133 Fetters, L. J.; Lohse, D. J.; Richter, D.; Witten, T. A.; Zirkel, A. Macromolecules

1994, 27, 4639.
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superposed on it, forming a composite spectrum and yielding the time-scale shift

factors ag. With the average glassy-relaxation time denoted by(r)G, the structural

relaxation timeis defined as

Tg= 18<T>G 2

For each sample the average glassy-relaxation ti me<r> . d the reference temperature

can be determined from matching the calculated spectrum with the composite

spectrum over the glassy region.  With the thus obtained (r) . value, the 75 values at

different temperatures can be calculated from the shift factors ag for each sample.
At the same time the parameters A, and 8 are extracted from fitting to the line shapes
of the composite spectra over the glassy region. As listed in Table 1, the values
of AL and S obtained for L10, A5000 and A2500 are very consistent with the values

for s-A, -B and -C obtained previously, supporting the trustworthiness of the two sets
of data. In A1000, there are a large number of components having chain lengths as
short as or smaller than the length scale associated with the glassy-relaxation process;
as a result, its glassy-relaxation time distribution is directly broadened by its
molecular-weight distribution which is not particularly narrow, leading to a § value
smaller than for the other samples.

The structural-growth parameter s’ and the frictional factor K’ for L10, A5000
and A2500 can only be obtained from a spectrum that simultaneously covers both the

glassy and entropic regions; as a result, the s’ and K’ values are obtained from their
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spectra only at a few temperatures. As s’ decreases with increasing temperature, the
entropic region of the spectrum shifts more away from the glassy region as shown in

Figures 1-3 for L10, A5000 and A2500, respectively.

2. 75, 8’ and K’ Resultsin Comparison with the Universal Curves
The obtained ts values for the four samples, L10, A5000, A2500 and A1000, are
shown in Figure 5 along with the results obtained for s-A, -B and -C, which have been

collectively closdly fitted by the FTH equation:

b
(AT +c0)

log(rs) =a+ (©)

witha = —11.5045, b = 539.3497 and ¢ = 37.1827 .> For showing thers results of L10,
A5000, A2500 and A1000 as a function of AT in Figure 5, their glass transition
temperatures Ty defined as the point where 7s=1000 sec need to be determined
individualy first. As the longest s values for the samples, except for A1000, are
around 100~ 200 sec as extracted from the data of Inoue et a, the Ty values cannot be
determined by interpolation. Under the circumstance, one may do two things: one is
by doing extrapolation based on the FTH equation that best fits the available data; the
other is by superposing the longest s data point on the curve calculated from eq 3 by
shifting along the AT coordinate. The Ty values determined in these two ways differ
by less than 0.3°% either way does not lead to a difference in interpretation. The

Ty(7s=1000 sec) values as listed in Table 1 and used in calculating AT for plotting the
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75 points in Figure 5 are the results of the extrapolation way. As shown in Table 1,
these T, val ues are consistent with the values determined by DSC*** as much as those
of A, sB and s-C are. In the case of A1000, the temperature dependence of ts
results are fitted to the FTH equation, from which the Ty point where 7s=1000 sec is
determined by interpolation.

Therts results of L10, A5000 and A2500 shown in Figure 5 indicate that the small
deviations from the universal curve increase with decreasing molecular weight
towards the direction of the curve for A1000; the largest change occurs in the
molecular-weight range between A2500 and A1000. In particular, the data points of
L10 closely cling to the curve calculated from eq 3, indicating that the universality of
the AT dependence of 75 obtained previously should extend to a molecular weight
between those of s-C and L10. Similar closeness to the universal curves of s” and K’
(s=s’ and K=K’ when the molecular weight is below the entanglement molecular
weight, as explained in section 4 of paper 3; here we keep using the notations s” and
K’ as used in paper 3) as afunction of AT have been observed for the s’ and K’ values
of L10 as extracted from the line-shape analyses shown in Figures 1- 3.

Shown in Figures 6 and 7, respectively, are the s’ and K’ values obtained for L 10,
A5000 and A2500 in comparison with the results of s-A, -B and -C, which have been
closely fitted by a modified FTH equation (for s’) or FTH equation (for K°)
collectively,® as shown by the calculated curves in the figures. These curves of s’

and K’ together with that of 75 as a function of AT representing the coverage of the

134 Lin, Y.-H. Macromolecules 1990, 25, 5292.
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molecular-weight range of from 16400 to 122000 indicate that the Ty-related
dynamics behave in a universal way in the polystyrene system, entangled or not, as
discussed in detail in paper 3.  In the very low molecular-weight region as covered in
this study, with decreasing molecular weight, deviations from the calculated universal
curves increase in general. The K’ values are virtually on the universal curve, with
only dlightly noticeable deviation towards the lower side in the case of A2500. The
success of using AT to account for the change in Ty with molecular weight is indeed
extraordinary in the case of K’ considering the fact that the Ty values of L10, A5000
and A2500 have dropped from the maximum value by 10, 18 and 40 degrees,
respectively. Thus, ast, =18K's', the deviation of s’ to the higher side is mainly
correlated with s deviating towards the same side. As shown in Figure 6, being a
little beyond the fluctuation-of-errors range from the calculated curve, the s’ data
points of L10 appear on the verge of deviating from the universal curve. When
multiplied by a constant, the calculated universal curve can be shifted upwards to
superpose well on the s’ data points of L10, A5000 and A2500 individually as shown
by the dotted lines in Figure 6. By extrapolating the thus obtained multiplication
factors to the no-shift point, it is estimated that the deviation from the universal curve
begins around M,,=12000, which is between the M, value of L10 and the
entanglement molecular weight Me=13500. Thus, although as shown previously, the
universal curve is applicable in both the entangled and entanglement-free regions, the
range of the applicable entanglement-free region is quite narrow.  Note that although
the M,, value of s-C being a little higher than M¢=13500, its creep compliance J(t)

results can be best analyzed using the Rouse theory as the reference frame because its
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molecular-weight distribution is not extremely narrow, as explained in detail in paper
3. The My, value of s-C being higher than M, aso helps keep the system inside the

region where the universal AT dependence of s’ is applicable.

4. Sructural Relaxation Time as Embedded in the Recover able Compliance

The short-time/small-compliance region of the cregp compliance J(t) contains
the information of the glassy-relaxation process. Because of the convolution integra
involved in converting the relaxation modulus G(t) into creep compliance J(t), as
shown in section 4.1 of paper 1, the separate relaxation processes are “smeared” and

the J(t) * line shape is different from that of G(t). As a result, the extraction of the

glassy relaxation process—as characterized by the A, 8, and(r)  values—from J(t) is

not as direct as from G(t). Nevertheless, the time-scale shift factor with a
temperature change in the smal-compliance region reflects that of the
glassy-relaxation process. In Figure 8, the time-scale shift factors of s-A, s-C, P19
and P60 (see Table 1) obtained by Plazek from the recoverable compliance Ji(t)
results are compared with the curve calculated from eq 3; in making the superposition
the shift factors of these samples have been individually multiplied by a proper factor.
The comparison shown in Figure 8 is more extensive than shown for s-A only in
Figure 5 of ref 2. The close superposition supports that the creep compliance J(t)

results of s-A and s-C obtained by Plazek have been faithfully analyzed.™*> Although

%5 Note: For very good reasons, several shift factors listed by Plazek have to be

excluded: For s-C, the steady-state compliance Jg becomes much reduced at 96 and

105



the range of AT from 0 to 20, over which the universal curve calculated from eq 3 is
shown in agreement with the shift factor results, is not as wide as the full range of the
calculated curve, the maximum uncertainty of AT alowed is 1K; if ashift of 1K aong
the AT coordinate is made, even with the vertical-shift adjustment being permitted,
systematic deviations of the shift factors from the universal curve become very visible.
In other words, the shown agreement is actually quite unique. Thus, the agreement
of the calculated curve with the shift-factor results of P19 and P60 supports the

universality expected to cover molecular weights higher than that of s-B.

5. Discussion and Summary

As presented in papers 1-3,'3 the scheme of analysis using the extended
reptation theory (ERT) as the reference frame for the entangled system (s-A and s-B)
or the Rouse theory as the reference frame for the entanglement-free system (s-C)
allows us to convert the creep compliance J(t) faithfully into the form of relaxation
modulus G(t) or viscoelastic spectrumG’ (w) (seethe Appendix of ref 2). Here, we
have analyzed the viscoelastic spectra of very low molecular-weight polystyrene
samples (L10, A5000, A2500) in terms of the same scheme. From analyzing the two

sets of data, consistent results are obtained, including:

93°C, greatly limiting the range of the J,(t) curve (see Figure 2 of ref 6); as aresult,
the shift factors at these two temperatures are proneto large errors.  For s-A, the J,(t)
curves at 125° and 133.8°C only cover avery small time period in the “knee” region
(see Figure 3 of ref 4), which is most susceptible to the temporal -unevenness effect as

discussed in section 4 of ref 1.
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(@) Equally well characterized glassy-relaxation process as represented by the
closeness of the values of the glassy-relaxation strength A} and stretching parameter 8

extracted from J(t) and from G (w) aslisted in Table 1.

(b) The closeness of the values of the structural-relaxation time ts,
structural-growth parameter s’ and frictional factor K’ in the case of the L10 sample to
the universal curves obtained from analyzing the J(t) results previously’ 2 over the
molecular-weight region from 122000 to 16400, whose low end is higher than that of
L10 by about 6000. The small deviations in the case of L10 from the universal
curves are in the directions as expected from the larger deviations observed in the
other samples of even smaller molecular weights; in other words, the small deviations
in L10 should be caused by other effects that would set in when the molecular weight
is significantly lower than the entanglement molecular weight Me=13500. One
important factor may be the disappearing of the hindrance to segmental movement as
the chain connectivity is sufficiently diminished. Such a view is supported by the

constraint (see eq 7 of ref 16)**°

— = const 4

whereby, as s’ becomes larger with decreasing molecular weight, a larger jumping
step length d may be allowed.

Indicating that the experimental results of Plazek* ® and Inoue et al™* have been

36 | in, Y.-H. J. Phys. Chem. B submitted. (paper 4)
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linked in quantitative way, the agreements as summarized above further support the
validity and accuracy in practice of the analysis scheme. It is also shown in this
study that as the molecular weight of polystyrene is around M,,=12000, the AT
dependences of 15, s’ and K’ merge into the universal curves obtained previously.
Sinceit is hard to imagine that other factors could set in to interfere the universality as
the molecular weight increases beyond M,=122000, the observed universality is
expected to extend to higher molecular weights. This expectation is supported by
the agreement of the AT dependence of the shift factors obtained by Plazek from the

recoverable compliance J;(t) results with the universal curve of ts.
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Table 1: Characteristics My, Mw/M, and Ty (based on DSC and defined at
7s=1000 sec) and the Parameters Ag', 8 and Z Extracted from the Analyses of
Creep Compliance Curves J(t) or Viscoelastic Spectra G (w) of Samples Whose
Sructural-Relaxation Times s, Sructural-Growth parameters s’ and Frictional
Factors K’ (from ref 3 and from this report) Displayed in Figures 5-7 or Shift

Factors (SF; from refs 4 and 6) Displayed in Figure 8.
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Sample My Mu/M,  T¢(°C) T4(°C) Algx10 *° Ji} z Displayed in Displayed in

DSC  75=1000sec  dynes/cm? Figures 5-7 Figure8
137
SA 46900 1.05%% 97 97 1.295 041 20 75, S’, K’ from J(t) SF from Ji(t)
sB 122000 1.05° 100 99.6%° 0.9731%° 041 20 75, S’, K’ from J(t)
sC 16400 1.05° 934 93.8 0.993 0.42 20 75, S’, K’ from J(t) SF from Ji(t)
L10 10500 1.02 90 (90.03)* 0.993 0.42 50 75, 8’, K’ from G'(w)
A5000 5970 1.02 82 (81.64)° 1.09 0.42 50 75, 8’, K’ from G'(w)
A2500 2630 105  (596)  (59.43)° 1.09 042 20 155, K’ fromG (w)
142
A1000 1050 1.13 5)f 6.22 114 0.36 75, 8’, K’ from G'(w)
P19 189000 1.02 100 SF from Ji(t)
P60 600000 1.06 100 SF from Ji(t)

137 \alues based on the DSC results shown in Figure 3 of ref 14.

138 Calculated from the polydispersity parameter Z; seerefs 1 and 3 for details.

139 «Restored” to the uncontaminated state; see ref 3 for details.

140 Thisvalueislow due to contamination by residual plasticizersin the sample (seerefs 1 and 5).
141 Calculated by extrapolation from the FTH equation best fitted to the 75 val ues.

12 Estimated from the T, val ues determined by DSC as reported in ref 11 which appear to be greater
than the DSC values given by Figure 3 of ref 14 by 3.8° in average.
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Figure Captions:

Figure 1

Comparison of the viscoelastic spectra G (w) of L10 measured at different
temperatures (v a 92°C; A a 95°C; < a 99°C; @ a 105°C; a at 110°C; m at
120°C; and eat 130°C)™ with the calculated (— in the glassy region; in the entropic
region: — at 105°C; — — at 110°C; — — at 120°C; and --- at 130°C); the reference

temperature is 105°C.

Figure 2

Comparison of the viscoelastic spectra G (w) of A5000 measured at different
temperatures (v at 85°C; o at 88°C; ¢ a 92°C; e a 100°C; m 110°C; & a
120°C)™* with the calculated (— in the glassy region; in the entropic region: — at

100°C; — — at 110°C; and — — at 120°C); the reference temperature is 100°C.

Figure 3

Comparison of the viscoelastic spectra G (w) of A2500 measured at different
temperatures (v at 62°C; A a 65°C; < at 70°C; @ at 80°C; m at 90°C)™ with the
calculated (— in the glassy region; in the entropic region: — at 80°C; and — — at

90°C); the reference temperature is 80°C.

Figure 4
Comparison of the viscodlastic spectra G (w) of A1000 measured at different

temperatures (v at 5°C; A at 10°C; cat 15°C; (] at 20°C; @ at 25°C and mat
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30°C )™ with the calculated (—); the reference temperature is 25°C.

Figure5

The structural-relaxation time, 7s, of L10 (@), A5000 (m), A2500 (e; with the best
fitting FTH curve ----) and A1000 (a; with the best fitting FTH curve —) as afunction
of the temperature difference AT from individual Ty in comparison with the universal
curve (—) calculated from the FTH equation (eq 3) best fitted to the 75 values of s-A

(0), sB (¢) and s-C (1) collectively.

Figure 6

The structural-growth parameter, s’, of L10 (e), A5000 (m), A2500 (e) as afunction of
the temperature difference AT from each individual Ty in comparison with the
universal curve (—) calculated the modified FTH equation (eq 19 in ref 3) best fitted
to the s’ values of s-A (0), B (¢) and s-C (0 obtained from the Jy(t) line-shape
anaysis, a from the anaysis of J ;’p) collectively. The dotted lines each represent the
universal curve multiplied by a constant factor to superpose on the data points of L10

(x1.23), A5000 (x1.9) and A2500 (x2.2) individualy.

Figure7
The frictional factor, K’, of L10 (@), A5000 (m), A2500 (e¢) as a function of the
temperature difference AT from each individual Ty in comparison with the universal

curve (—) calculated from the FTH equation (eq 18 as explained in section 6 of ref 3)
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best fitted to the K’ values of s-A (0), s-B (¢) and s-C (1) collectively.

Figure 8

Comparison of the universal curve (—) calculated from eq 3 with the temperature
dependences of the shift factors (SF) obtained by Plazek from the recoverable
compliance J«(t) results of s-A (0), s-C (1), P19 (») and P60 (v/)*®(see Table 1 and

the text).

113



Figure 1

dynehs/cm2

G'(w), G'(@)

101 E T T 1T

108
107
10° |
105
10¢

103 k

102

100 ¢

109

1

0

10+

103

102

10

100

g

114

(rad/sec)

10t 10?

103

104

10°

108



Figure 2

1011 F LI D L) B L) B L L L) I L L L) B L] L] B L] B |
100 |
10°

108 |

dynehs/cm2

107
106 |

105 |

G'(w), G'(w)

104 L

10° |

10+ 103 1072 10? 10° 10t 10? 103 10* 10° 106

wa;  (rad/sec)

115



Figure 3

1011 é T T T T T TTTm T T T T T T T T T T T T T T T T T T T T T T IIIIII§
1010 ;
10°

108 ¢

dynes/cm?

107 ¢
108 ¢

10° ¢

G(w), G'(w)

104 ¢

108 ¢

102 I Ll |||||||I/ TR I RN T B I U111 BN T B I V11 N SO U I W W71 T N S I W U N 71 AN N N U0 11 B B W W W R 11 |||||||-
104 10° 102 101 100 10t 107 103 104 10° 106

wa;  (rad/sec)

116



Figure 4
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Figure5
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Monte Carlo Simulations
of Stress Relaxations of Entanglement-Free Fraenkel Chains. 1:

Linear Polymer Viscoelasticity

Y.-H. Linand A. K. Das
Department of Applied Chemistry
National Chiao Tung University

Hsinchu, Taiwan

Abstract

Shear-stress relaxation modulus Gs(t) curves of entanglement-free Fraenkel
chains have been calculated using Monte Carlo simulations based on the Langevin
eguation, carrying out both in the equilibrium state and following the application of a
step deformation. While the fluctuation-dissipation theorem is perfectly
demonstrated in the Rouse-chain model, only a quas version of the
fluctuation-dissipation theorem is observed in the Fraenkel-chain model. In both
types of simulations on the Fraenkel-chain model, two distinctive modes of dynamics
emerge in the relaxation modulus. a fast energetic interactions-derived mode and a
dow entropy-derived mode, giving a Gs(t) line shape typically observed
experimentally. It has been shown through analysis that the fast mode arises from the

segment-tension fluctuations or reflects the relaxation of the segment-tension arising
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from segments being stretched by the applied step strain; and the slow mode arises
from the fluctuating segmental -orientation anisotropy or represents the randomization
of the segmenta-orientation anisotropy induced by the step deformation.
Furthermore, it is demonstrated that the sslow mode is well described by the Rouse
theory in al aspects: the magnitude of modulus, the line shape of the relaxation curve
and the number-of-beads dependence of the relaxation times. In other words, with
one Fraenkel segment substituting for one Rouse segment, it has been shown that the
entropic-force constant on each segment is not a required element to give rise to the
Rouse modes of motion which have been typically observed in the long-time region
of the linear viscoelastic response of an entanglement-free polymer. This conclusion
provides an explanation resolving along-standing fundamental paradox in the success
of Rouse-segment-based molecular theories for polymer viscoelasticity—namely, the
paradox between the Rouse segment size being of the same order of magnitude as that
of the Kuhn segment and the meaning of the Rouse segment as defined in the Rouse
chain model. A comparison of the ssimulation result with experiment suggests that
the Fraenkel-chain model, while being still relatively ssimple, has captured the basic
element of the energetic interactions—the rigidity on the segment—in a polymer

system.
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Monte Carlo Simulations
of Stress Relaxations of Entanglement-Free Fraenkel Chains. 1:

Linear Polymer Viscoelasticity

Y.-H. Linand A. K. Das
Department of Applied Chemistry
National Chiao Tung University

Hsinchu, Taiwan

1. Introduction

It has been extensively shown that the linear viscoelastic response of an
entanglement-free polymer melt is well described by the Rouse theory,143144.145.146.147
However, the agreement between theory and experiment is limited to the region below

the modulus level corresponding to the molecular weight of a single Rouse segment

that can be assigned to the polymer system—for instance, below ~ pRT /m= 3.8x10’

143 Rouse, P E. Jr. J. Chem. Phys. 1953, 21, 1271.

144 Bird, R. B.; Curtiss, C. F.; Armstrong, R. C.; Hassager, O. Dynamics of Polymeric
Liquids, Vol. 2, Kinetic Theory, 2™ ed.; Wiley: New York, 1987.

15 |in, Y.-H. Polymer \Viscoelasticity: Basics, Molecular Theories, and Experiments;
World Scientific: Singapore, 2003.

¥ Lin, Y.-H. Macromolecules 1986, 19, 168.

147 Lin, Y.-H.; Juang, J.-H. Macromolecules 1999, 32, 181.
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dynes/cm? corresponding to the Rouse-segmental molecular weight m=850 in the case

of p ol yStyr ene: 148,149,150,151152,153,154,155,156,157,158

in other words, the agreement occurs
only in the time or frequency region slower than the motion associated with a single
Rouse segment or equivalently the relaxation rate of the highest Rouse mode.
Because of the entropic-force constant on the Rouse segment, this region may be
referred to as the entropic region and the relaxation processes in it as entropy-derived
dynamics. In the entropic region the entire viscoelastic response follows the same
temperature dependence indicating that thermorheological simplicity is followed, as
expected from the Rouse theory—the frictional factor associated with the Rouse

segment carries the temperature dependence of the viscoelastic response.  In thetime

or frequency region faster than the motion of a single Rouse segment, the modulus of

148 | noue T.; Okamoto, H.; Osaki, K. Macromolecules 1991, 24, 5670.

9 1noue, T.; Hayashihara,H.; Okamoto, H.; Osaki, K. J. Polym. Sci. Polym. Phys.

Ed.
1992, 30, 4009.

10 | noue, T.; Osaki, K. Macromolecules 1996, 29, 1595.

51 |noue, T.; Uematsu, T.; Osaki, K. Macromolecules 2002, 35, 820.

1521 in,Y.-H. J. Polym. Res. 1994, 1, 51.

153 Lin, Y.-H.; Lai, C. S. Macromolecules 1996, 29, 5200.
%% | &, C. S.; Juang, J-H.; Lin, Y.-H. J. Chem. Phys. 1999, 110, 9310.
%5 Lin, Y.-H. J. Chin. Chem. Soc.2002, 49, 629.

%6 | in,Y.-H.; Luo, Z.-H. J. Chem. Phys. 2000, 112, 7219.

37 i, Y.-H. J. Phys. Chem. B 2005, 109, 17654.

%8 Lin, Y.-H. J. Phys. Chem. B 2005, 109, 17670.
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the dynamic response is much higher—ranging from ~4x10” to ~10'dynes/cm? for
polystyrene. The high modulus is due to the strong energetic interactions among
segments, both intra-chain and inter-chain; the dynamics in this region may be
properly referred to as energetic interactions-derived dynamics, which has also been
referred to in the literature as the glassy relaxation or the structural relaxation or the o
relaxation. It has been widely observed that as the temperature approaches the glass
transition temperature, Ty, from above, the energetic interactions-derived dynamics
has a temperature  dependence  stronger  than  that of the
entropy-derived. 1>9-160. 161,162,163, 164,165,166 1,5 \vhen the whole range of the
viscoelastic response is included in the consideration, the thermorheological
simplicity does not hold. Recently, the basic mechanism for the thermorheological
complexity in polystyrene has been analyzed, showing that the effect as related to Ty

15,167

behaves in a universal way within the polystyrene system, entangled or not, and

that the same basic mechanism is also responsible for the break-down of the

159 plazek, D. J. J. Phys. Chem. 1965, 69, 3480.
180 prazek, D. J. J. Polym. Sci., Part A-2: Polym. Phys. 1968, 6, 621.

161 Plazek, D. J.; ORourke, V. M. J. Polym. Sci. A-2: Polym. Phys. 1971, 9, 209.

162 Plazek, D. J. J. Rheol. 1996, 40, 987.
163 Plazek, D. J. Polymer J. 1980, 12, 43.

164 Okamoto, H.; Inoue, T.; Osaki, K. J. Polym. Sci: Part B: Polym. Phys. 1995, 33,
417.

185 1noue, T.; Hwang, E. J.; Osaki, K. J. Rheol. 1992, 36, 1737.

188 Adachi, K.; Hirano, H. Macromolecules 1998, 31, 3958.

167 in, Y.-H. J. Phys. Chem. B, submitted.
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Stokes-Einstein equation in relating the trandational diffusion constant and viscosity

188 guch as

or molecular rotational relaxation time in fragile glass-forming liquids,
OTPIEOLTLITZIT and TNB.Y*1™ While it has been extensively demonstrated that
the molecular theories: the Rouse theory' > for the entanglement-free region of
molecular weight and the extended reptation theory (ERT)**"®1"1"8 for the entangled
region, describe the viscoelastic responses in the entropic region successfully in a
guantitative way, the glassy-relaxation process can only be anayzed
phenomenologically, often in terms of a stretched exponential form. In other words,
we have quite limited understanding about the glassy-relaxation process a the

molecular level. In this study, using the Monte Carlo simulation based on the

Langevin equation,>** we compute the relaxation modulus curves of the model

168 |in, Y.-H. J. Phys. Chem. B, submitted.

19 Fujara, F; Geil, B.; Sillescu, H.; Fleischer, G Z. Phys. B: Condens. Matter

1992, 88, 195.
10 Cicerone, M. T.; Ediger, M. D. J. Phys. Chem. 1993, 97, 10489.
1 Kind, R.; Liechti, N.; Korner, N.; Hulliger, J. Phys. Rev. B 1992, 45, 7697.

12 Chang, |.; Fujara, F.; Geil, B.; Heuberger, G; Mange!, T.; Sillescu, H. J.
Non-Cryst. Solids 1994, 172-174, 248.
3 Mapes, M. K ; Swallen, S. F.; Ediger, M. D. J. Phys. Chem. B 2006, 110, 507.

1 Chang, I.; Sillescu, H. J. Phys. Chem. B 1997, 101, 8794.; and references therein.
15 gwallen, S. F; Bonvallet, P A.; McMahon, R. J.; Ediger, M. D. Phys. Rev. Lett.

2003, 90, 015901.

176 Lin, Y.-H. Macromolecules 1984, 17, 2846.

Y7 Lin, Y.-H. Macromolecules 1986, 19, 159.
178 Lin, Y.-H. Lin Macromolecules 1987, 20, 885.
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systems which contain elements of energetic interactions—the Fraenkel chains,™
shedding light on the coexistence of and the interrelation between the energetic

interactions-derived and entropy-derived dynamic processes.

2. Monte Carlo Smulation Based on the Langevin Equation
In the Monte Carlo simulation, the continuous change in time, dt, in the Langevin
equation is replaced by a small time-step, At. For a chain with the positions of the
beads at time step i denoted by {Rn(i)}, the simulation form of the Langevin equation
is expressed by
. . d?(F () .
R.(i+)=R, (I)+—| —— [+d_(i 1
(i+1) =R, (i) z(ij NO) 1)
where F(i) is the force on the nth bead at the ith time step arising from the interaction
potential; the random step vector dy(i) is characterized by the following first and

second moments;

(d,(i)) =0 2

and

(d, (i) d (i) = d*16,,6; ©)

1 Fraenkel, G K. J. Chem. Phys., 1952, 20, 642.
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where| isaunit tensor.
Then the relaxation modulus can be calculated from the Monte Carlo simulation

after a step shear deformation

(4)

rn
I
O O -
o, ™
= O O

is applied to the polymer chain in an equilibrium state at t=0. Following the

application of the step deformation E, the evolution of {R, (i)} is calculated

according to eq 1; and the stress relaxation of a chain with N beadsis given by
- N - -
Sy (i) = 2 Fu ()Y, (i) ®)
n=1

For the simulation, a large number of identical relaxation processes following a step
deformation are repeated and accumulated for averaging. Before a new cycle is
repeated, the system must run for a sufficiently large number of time steps to reach an
equilibrium state. To prevent some residual memory from accumulating, the step
deformation may be applied in a cyclic manner, as done in this study; if the E given
by eq 4 is referred to as a deformation in the x direction and denoted by x, the
deformation cycle x—»>-x—>y—>-y—>2—>-2is repeated and following each
step deformation, the physically equivalent stress component is collected for

averaging. Although the cyclic scheme is used for averaging throughout the
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180 to

simulation study as reported in this paper and the companion paper,
conveniently discuss the anisotropy introduced by the deformation, the obtained
results will be discussed with respect to eq 4 as the chosen direction of
deformation—namely, in terms of the xy component. Denoting the thus averaged

stress relaxation as §(A,i), the relaxation modulus normalized to that corresponding to

asingle segment is given as

S(4,i)

T

(6)

In this study, we are mainly interested in the linear relaxation modulus. In
accordance with the fluctuation-dissipation theorem, the relaxation modulus
equivalent to that given by eq 6 in the linear region of A can be calculated

fr0m181'182’183

180 | in, Y.-H.; Das, A. K. J. Chem. Phys. (submitted; paper 2)

181 Doi, M.; Edwards, S. F. The Theory of Polymer Dynamics; Oxford Univ. Press:
Oxford, 1986.

182 McQuarie, D. A. Satistical Mechanics; Harper & Row: New York, 1976.

18 From applying the fluctuation-dissipation theorem, eq 7 is the expression for the
relaxation modulus based on the molecular expression for the stress tensor as given in
ref 39 (Namely, eq 5 here; the sign system used here for the stress tensor is
oppositeto that used in ref 39), which is aso in agreement with the expression for the
zero-shear viscosity as given in ref 40 (page 519). Note: In the Monte Carlo
simulation based on the Langevin equation, the velocity distribution is assumed to be
at equilibrium, namely, described by the Maxwellian distribution;** thus, the

momentum flux terms only contribute to the isotropic part of the normal stresses and
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. 1 . 1 —_—
Gs(i) = S(N_DKT Z<Jap 0)J, (')> WZ o (0)d,5 (1)

a#p a#p

()

J (1) (i, +i with a, 8 denoting X, v, z
= BIN 1)kT;; o5 (0)J 5 (g +1) ; a, B gx,y

where | represents a very large number of iteration (typicaly ~10°-10% depending

on the time window, namely the limit of i) and
- N - -
3 (1) =2 Fo )Y, (1) )
n=1

Although in the simulation we use all the six combinations of J ; (t) (with a = ) for

averaging in calculating the time-correlation function, in our discussion below, we
shall use the xy component as the representative of the shear stress. The simulation
result as obtained through eq 6 is referred to as the step strain-simulation Gg(t), as
opposed to the equilibrium-simulation Gs(t) obtained through eq 7.

For a Rouse chain, the force on an internal bead is given by??

F (i)=— <3:)(T>(2R ()-R,..()-R,,(0)) (9)

An equivaent equation can be written for the end beads: n=1 or N.  Throughout our

need not be included in the stress expressions in this paper.
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calculations we haveset<b2> =1.

The relaxation modulus of a Rouse chain with N beads or molecular weight M is

given by*?

p=1 Tp

N-1
KTt (t,M) = KT exp[— i] (10)
where the relaxation time of the pth normal mode, z , is given by

S 1 0 B ¢ Vs
P 24kTsin?(pz/2N)  24N2sin?(pz/2N)

(11)

with K =¢ <b2>/kT7r2m2 being the frictional factor associated with the Rouse

segment.® The frictional factor carries the temperature dependence of the relaxation
times of a polymer in the entropic region of its relaxation modulus, which is usually
described by the Fulcher and Tammann-Hesse (FTH) equation or the
Williams-Landel -Ferry (WLF) equation.’®*'®>1% |n the simulation the time-step
depends on the step-length d chosen; the relaxation time 7, can be expressed in terms

of the time-step as™

18 Fulcher, G. S. J. Am. Chem. Soc., 1925, 8, 339, 789; Tammann, G. and Hesse, G,
Z. Anorg. Allg. Chem. 1926, 156, 245.
% Williams, M. L.; Landel, R. F.; Ferry, J. D. J. Am. Chem. Soc. 1955, 77, 3701.

18 Ferry, J.D. \Miscoelastic Properties of Polymers, 3 ed.; Wiley: New York, 1980.
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LA ) (12)
At 12d*sin®*(pz/2N)

For a chain whose nearest neighboring beads interact through the Fraenkel

potential:

2
N-1 —
U|: — H|: Zprn r.n+l| _lj (13)

2 = b,

the force on an internal bead is given by

Fa) == (2R, () Rpa) - Ry )
He [ Ry =Rys() | Ry(0) =R ()
by | Ru®)—Rus )] [Ru(@)—Roa)

(14)

An equivalent equation can be written for the end beads. n=1 or N. Throughout our

calculation, we have set bp=1 andH . = 400KT .

3. Equilibrium-Simulation Gg(t)

3.1 Rouse chains. The relaxation time in terms of time steps as expressed by eq
12 adlows one to compare the simulation Gs(t) curve based on a Rouse chain with that
calculated from the analytical equation. In Figure 1, such a comparison is made for
two-bead, five-bead and ten-bead chains; in the comparison, both the simulated and

theoretical results are normalized to that as corresponding to one single segment with
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KT set as 1-namely, Gg(t) = g (t)/(N —12) (see eq 10). This way of normalization
will be adopted throughout this paper (Note: KT is shown in equations of this report to
indicate the relationship to entropy or average kinetic energy; however, throughout the
simulation as well as in the shown results, KT is set to be 1 or equivalently KT is the
unit of energy), except for the comparison between simulation and experiment, where
the experimental G(t) will be used. The close agreement in both the modulus and
time-step coordinates as shown in Figure 1 supports the validity of the ssmulation.

3.2 Chains consisting of Fraenkel Segments. When the entropic force in the
Rouse segment is replaced by that derived from the Fraenkel potential, the stiffness of
the segment is greatly enhanced. Because the Fraenkel force is a non-linear function
of the bead positions, an analytical solution cannot be obtained from the
corresponding Langevin equation. In this case, the Monte Carlo simulation becomes
very important and useful, illustrating how enhancing the stiffness of the segment will
affect the viscoel astic response.

The simulations based on chains consisting of Fraenkel segments (referred to as
Fraenkel chains below) give rise to two distinct modes in Gg(t) as shown in Figure 2
for a five-bead chain—the “bead,” as in the Rouse chain mode, is actudly a
volume-less point; with this understanding, we still refer to it asabead. In Figure 2,
the simulation results obtained with the step length d chosen a 0.01 and 0.03 are
compared, with each time step for the latter being treated as nine times—the expected
ratio—longer than the one for the former. The close agreement between the two
indicates that the step length d=0.03 is sufficiently short, causing virtually no

distortion to the obtained Gg(t) curve; at the same time, no additional information
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particularly significant can be gained from using the much more time-consuming
choice, d=0.01. Thus, al of our smulations reported in this study and in the
companion paper>® are based on d=0.03. In Figure 3, the Gg(t) curves for two-bead,
five-bead, ten-bead and twenty-bead Fraenkel chains are compared; their line shapes
are similar to what have been observed experimentally. We shall show below that
the fast mode is an energetic interactions-derived dynamic process while the slow
mode is an entropy-derived one.

In Figure 3, the results of simulation in the equilibrium state are compared with
the Rouse theoretical curves each for a chain with the corresponding number of beads.
To obtain the shown close superposition of the Rouse theoretical curves on the
simulation results in the long-time region, we need to apply small shifting factors to
the Rouse curves along the modulus coordinate. The multiplication factors
representing the shifts are 0.69, 0.85, 0.88, and 0.95 for the dumbbell, five-bead chain,
ten-bead chain and twenty-bead chain, respectively. The close agreement of the
slow modes with the Rouse Gg(t) curves as shown in Figure 3 with only a small
shifting factor in the modulus coordinate strongly indicates that the sslow mode is well
described by the Rouse theory; most significantly, N dependence of the relaxation
time as given by eq 12 iswell followed. Such agreements mean that the slow mode
is of entropic nature as the Rouse modes of motion. Considering the fact that potential
function on the Fraenekel segment represents a strong energetic interaction between
two beads—much stiffer than the Rouse segment, the emergence of the entropic slow
mode is indeed intriguing. The energetic nature of the fast mode and the entropic

nature of the slow mode are analyzed below in detail. For the sake of simplicity, we

135



will consider the Fraenkel dumbbell case; then, the extension of the anaysis to a
Fraenkel chain with more than two beads will be discussed.

If there is no attractive interaction potential between two beads, the thermal
fluctuations in an equilibrium state will eventually separate them far apart.
Therefore, at equilibrium the average distance between the two beads (or the average
distance over along period of time) is not that corresponding to the tensionless point
of the potential—namely, when the bond length is equal to by in the case of the
Fraenkel segment—but larger. There are different ways to define the average as will be
discussed below; however, thisis true in all cases. Hence, the two beads are each
more often than not under a tension to bring them closer. This is so with a Rouse
segment as well as with a Fraenkel segment. These tensile forces on the bonds play
important roles contributing to the stress tensor of the chain. Because the Fraenkel
potential rises up sharply with a deviation from the tensionless point, the average
bond length in the equilibrium state should be larger than by by only a small amount
o, inany way of averaging. Physically, the small §,is responsible for the existence
of the entropy-derived slow mode; in an approximate way, the small 5,alows the
tensile force on the segment to be expressed as a linear function of the bond vector as
occurring in the Rouse theory.

For the Fraenkel dumbbell, the Langevin equation in terms of the bond vector,

b(t) =R, (t) - R,(t), isgiven by

do(t) _ (2)\Hg|, by
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where the fluctuation term isgiven by g(t) =g, (t) —g,(t) with g,(t) and g, (t) being
the fluctuations on beads 1 and 2, respectively.
Eq 15 can be similarly expressed in the discrete form for simulation purpose as

described in Section 2. Defining

b, _5(t)

1— = 16
b(t) b, to
eg 15 isrewritten as
db(t) _ (2 |He
o) ( gJ A CLORECRNCD

Corresponding to eq 17, the xy shear stress component is given by

3, ==L F- 305, (b, 0 18)

Hence

Go(t) = = (3,003, ) ==+ (50, (OB, 5B MB,®) (19

0

As expected, the simulation results obtained for the Fraenkel dumbbell based on the
combination of eqs 7 and 8 and on eq 19 are identical. In the simulation, the

fluctuation iné (t) as defined by eq 16 can be monitored separately alowing the time
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correlation function (5(0)5(t)) to be calculated. Physically, 5(t) approximately

represents the deviation of [o(t)| fromb,. Any small change in|b(t)|leads to a large
relative change in4 (t) (for instance a change in |b(t)| from 1.005 to 1.01 doubles the
vaue of 5(t)); as a result, compared to the motion associated with the bond
vector b(t) itself, 5(t) represents fast fluctuations with large relative fluctuation
amplitude, giving rise to a fast relaxation process in Gs(t) as shown below.
Asd (t) originates from the particular form of Fraenkel potential, representing the
fluctuations in the tension on the Fraenkel segment, the fast relaxation mode may be
very well referred to as an energetic interactions-derived dynamic process. Because of

the large difference between the fluctuation rate of 6(t) and that associated

withb, (t)b, (t) , eq 19 may be approximated by

2

Gu(t) s (303 (b, 00, ©) b o, (1)

b
(20)
- k?gﬁ (a50)a5®)+52]{(b, (0, (0)) b, ®)b, 1))
where formally
S(t)=AS(t) +5, (1)
with
(AS(t))=0; and (5(t))=6, (22)
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As explained above, J,is aways greater than zero. Eq 20 suggests two distinct
relaxation processes inGg(t), as observed. At long times when (AS5(0)AS(t)) has

diminished, G4(t) transits into a slow relaxing region, which would be described by

1

Hz
E<ny(0)‘]xy(t)> -

KTb?

[52] ({6, (@b, (0) (b, ®)b, (©))) (23)

In the short-time region where the process (A5(0)AS(t)) is dominant, the
approximation as used in eq 20 is expected to be good. By contrast, over a long
period of time, as the non-vanishing residual fluctuations ind (t) are small and more
comparable in (relative) magnitude to the slow fluctuations inb,(t)b,(t) , the
separation into the product of 3Zand {(b,(0)b, (0))(b, (t)b, (t))) as done in eq 23
may not be well justified. Nevertheless, the approximate form, eq 20, helps us
understand the distinctive coexistence of the fast and slow modes of motion as
observed from the simulation. To somewhat make up for the deficiency of the

approximation as represented by eq 20 in the long-time region, we use three different

ways to calculate 6,, from which an approximateG,(t) curve in each case can be

obtained for comparison with the exact result, reflecting the key physical elements

affecting Gg(t) . One, denoted by o, , is caculated from the natural base line

of (5(0)5(t)) . The second, denoted by &, , is the value 0.0075 expected from
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considering the virial theorem.”®” As described in Appendix A the virial theorem is
well confirmed in our simulation. The third, denoted by 5., gives a close fitting to
theG4(t) curve obtained from simulation using the exact form, eq 19. In each case, the
definition of AJ(t)is changed accordingly with s, of eq 21 replaced by 6, , 6, or 6.
Regardless of the choice for§,for the time being, we shall first look at the
approximate G (t) functional form as given by eq 23 for the long-time region. Eq 23
represents the time-correlation function of the stress tensor component Jyy(t) in the

long-time region described by the Langevin equation:

do(t) __(2)He,
e ( gj o7 b(t) +9(t) (24)

which islinear and of the same form as that of the Rouse dumbbell:

db(t) kT
e §<b2>R b(t) +g(t) (25)

Thus, the slow mode is expected to behave very similarly to the single mode of
motion in the Rouse dumbbell. If thed, value as obtained from the virial theorem

(6, =3KTh,/H., as from eq Al) is used ford,, egs 24 and 25 are identical

withb, =<b2>1: —1as set in this study and will lead to the same time-correlation

187 Goldstein, H. Classical Mechanics, 2™ ed.; Addison-Wesley: Reading,

M assachusetts, 1980.
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function of the bond vector as given by the Rouse dumbbell model:®

(b(0)-b(®) = (b?)_ exp(— EJ (26)

T

| o), e
with TTekT  2H, (5, /by) @7)

(Note: Obtained from the simulation, the mean square bond length <b2>of the
Fraenekel dumbbell is greater than that of the Rouse dumbbell <b2>R by 1.3%; as this

difference is very smal, particularly, much smaller than the difference
betweend,, ,d, andd, it is neglected here.) As shown in Figure 4, the shape of the
(b(0)-b(t)) curve from the simulation is well described by the single exponential
form as that of the Rouse dumbbell model but with a relaxation time longer by about
45%. In other words, using the relaxation time of<b(0)-b(t)>as the criterion for
determiningd, , the value, denoted by & _, is obtained to be 0.0052.
In Figure 5, we show theG¢(t) simulation curves obtained in four different ways:

one uses the exact form, eq 19; the other three use the approximate form, eq 20,
with &, substituted by &, , 8, or 5. The corresponding(8(0)5(t)) curves calculated on
the basis of usingd,,d, ord. are shown in Figure 6. One can notice that the fast
dynamics occurring in the thus calculated Gg(t) and (5(0)5(t)) have the same

time-scale and that there is virtually no difference between the simulation results

based on usingdy , o, or 6. Clearly this is due to the fluctuation magnitude
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ind(t) or Ad(t) being much larger thand, ,d, andd.. For G4(t), the approximate
results are also virtually indistinguishable from the exact in the most part (the early
portion) of the fast-mode region. Clearly, these agreements occurring in the short-time
region are due to the dominant effect of (A5 (0)AS(t)) and indicates that the fast mode
in G4(t) arises from the segment-tension fluctuation o (t) —therefore, an energetic
interaction-derived dynamic process. In the long-time region, large divergences
between the curves based on usingd, ,d, ord. occur. Because of the separation
of 52from {(b, (0)b, (0)) (b, (t)b, (1)) is not awell-justified approximation as explained
above, using the natural base line of (§(0)5(t)), which is obtained to bes, =0.0022,
much smaller than the value of o, or 6. , leads to the poorest result.
Allowing 8, adjustable, simulation using the approximate form can givea Gg(t) curve

which is virtually indistinguishable from that obtained from using the exact form.
The very close fit shown in Figure 5 is obtained with 6.=0.01, which is larger
thano,, =0.0075by 33%. Hence, in this case the value from the virial theorem
underestimates by about 33%, as opposed to giving an overestimate of thes,value
when the relaxation time of the time correlation function (b(0)-b(t))is used as the
criterion.  On the other hand, the comparison of the Gg(t)relaxation time of the
Rouse dumbbell with that of the slow mode in theG,(t) simulated from the exact form
indicates that the virial theorem gives an accurate prediction of 5,. This is aso
indicated in Figure 3 by the agreements between the Rouse theory and the simulation
results in the slow-mode region for 5-bead, 10-bead and 20-bead chains.

Involving only a very small approximation (see eq A1) which is unrelated to the
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separation into two time-correlation functions as done in eq 20, 9, from the viria
theorem can be regarded as independent and trustworthy. As opposed to the
independence of 6,,, each of the equations (egs 20, 23 and 24) as involved in
estimating the different 5, values: 8,6, and 5 contains an element of approximation,
which naturaly distorts the real situation in different ways, the obtained values
of o, are not expected to be the same. Excluding thed, value, which is apparently
based on a bad approximation, the obtained §, values in various forms are within 40%
from their average, which is very close to the value from the viria theorem. The
closeness of these estimated §, values to the expectation based on the virial theorem
supports that the approximations involved in the above analyses are well justified and
that the physical picture they present—the fast mode in G4(t) is an energetic
interactions-derived dynamic process and the sslow mode is an entropy-derived one as
the Rouse modes of motion—is a valid description. The described basic natures
associated with the fast and slow modes, respectively, will be further shown in a
different way in the discussion of the step strain-simulation G4(t) below.

For a Fraenkel chain with more than two beads, the extension of the above
anaysis requires an examination. As opposed to eq 19 for a dumbbell, for an

N-bead chain, the relaxation modulusis given by

1
Gs(t)=W<ny(0)ny(t)>

(28)

SCE 1)ka6 <[z5 ()b, (O)b, (@j(zaj (t)b,, (t)b,, (t>j>
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As being dynamically correlated, the contributions of the cross terms in eq 28

toG,(t) are not zero; the dynamic correlation is aso expected in the Rouse-chain
model.»®  As a result, applying the above conclusions for a single segment to an

N-bead chain requires an analysis. Asit turns out, the self terms of eq 28 as given by

N-1

G (t) = (N_DRTEE 1)ka . 1<5i (0)b, (0)b, (05, ()b, (Db, (1))  (29)
are virtualy the solely-contributing terms toG(t) in the short-time region; in other
words, the cross terms only contribute to the long-time region. Thisis illustrated by
the comparison of the curves of G¢(t) andGZ" (t) for a five-bead chain in Figure 7.
As also shown in the same figure, virtually the same relative weight between the self
and cross terms in the long-time region occurs to the Rouse-chain model, further
supporting the Rouse-chain nature of the slow mode. Since there is virtually no
difference betweenG(t) andGZ' (t) in the short-time region for the Fraenkel chain,
we may use eq 29 to illustrate the effect of fluctuationsing, (t), which is dominant in
the short-time region. Since the summation in eq 29 just represents a multiple of the
single term in eg 19, the analysis based on the Fraenkel dumbbell as presented above

can be readily applied to a N-bead chain. Thus, the conclusions of the analysis based

18 Note: For the mean square end-to-end vector of a Fraenkel chain, whichisastatic
property, thereis no correlation between different segment, just asin the case of the
freely jointed chain. But just asin a Rouse chain, the dynamic coupling between
different segments cannot be neglected.
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on the Fraenkel dumbbell as to the energetic interactions-associated nature of the fast
mode inG¢(t) are basically equally applicable to the Fraenkel chains in general with
multiple beads. In the slow-mode region, the contributions of the cross terms clearly
cannot be neglected. This together with the lack of a good justification for
separating(5(0)5 (1)) from((b, ()b, (0)) (b, (t)b, (1)) in the long-time region makes an

analysis for the slow mode similar to that done to the Fraenkel dumbbell unwieldy.
Nevertheless, the entropic nature of the slow mode is clearly supported by the fact
that G5 (t) is well described by the Rouse theory in all aspects: the line shape, the
magnitude of modulus and the N dependence of relaxation times. Furthermore,
through the fluctuation-dissipation theorem, it is found from the step strain-simulation
of G4(t) as discussed below that the slow mode should arise from fluctuations in the

segmental -orientati on ani sotropy—an entropic origin.

4. Sep Srain-Simulation Gs(t)

Based on the fluctuation-dissipation theorem, the step strain-simulation Gg(t) in
the linear region of the applied strain is expected to be equivalent to the
equilibrium-simulation Gs(t). In Figure 1, the step strain-simulation Gs(t) curves
obtained at 4=0.5 for 2-bead, 5-bead and 10-bead Rouse chains are aso shown. As
expected from the theory, no non-linear effect can be observed between the Gg(t)
curves obtained from the simulations at 4=0.5 and 1 for the Rouse chain model; in
other words, the shown step strain-simulation Gg(t) curves are linear results. These

step strain-simulation results are in close agreement with the equilibrium-simulation
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Gs(t) results and the Rouse theoretical curves, illustrating the working of the
fluctuation-dissipation theorem and confirming the validity of the simulations as
presented in this study.

The equilibrium-simulation Gg(t) and the step strain-simulation Gg(t) curves
obtained at 4=0.2 and 0.5 for the 2-bead, 5-bead, 10-bead and 20-bead Fraenkel
chains are compared in Figure 8. There are clear differences between the
equilibrium-simulation Gg(t) and the step strain-simulation Gg(t) a 4=0.2 in the
2-bead chain case, indicating that the fluctuation-dissipation theorem is not fulfilled
totally. This may be due to 4=0.2 being not in the linear region yet as there is some
small difference between the Gg(t) results at 4=0.2 and 0.5 in the fast-mode region. In
fact, the numerically calculated Gg(0) as a function of the strain A as shown in Figure
6 of the companion paper indicates that the linear region should be below A=0.005.
However, further investigation by decreasing the A value indicates that this is not the
main cause. With the A value decreasing, the number of repeating cycles required to
obtain a well-averaged Ggs(t) curve increases greatly. Prevented by the
overwhelmingly long time involved, we limit our study to the Fraenkel dumbbell
system—where the difference from the equilibrium-simulation Gg(t) is also the most
obvious—in comparing the G¢(t) resultsat 4=0.004 and 0.2. Although there are some
difference between the results at 1=0.004 and 0.2, the Gg(t) result of the Fraenkel
dumbbell at 1=0.004 does not appear to be closer to the equilibrium-simulation result
as shown in Figure 9. As aso shown in Figure 8, the difference between the
equilibrium-simulation and step strain-simulation Gg(t) curves begins to appear in an

obvious way in the time region around the end of the fast mode and the early part of
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the slow mode, where an effect related to the coupling between &(t) andb, (t)b, (t) —a

subject discussed in section 3—is most likely to occur. Thus, the difference suggests

that the coupling between 5 (t) andb, (t)b, (t) may occur differently in the two types of

simulations. Furthermore, the comparison the results shown in Figure 8 and 9
indicates that the agreement between the equilibrium-simulation and step
strain-simulation Gs(t) curves in the dumbbell case is not as good as the agreement in
the 5-bead chain case, which in turn is not as successful as in the 10-bead chain and
20-bead chain cases. As the difference in coupling may be reduced by the decrease
in the coupling itself, this trend may be explained by what we have observed in Figure

3 suggesting that the coupling between s (t) andb, (t)b, (t) is reduced making the slow

mode better described by the Rouse theory as the number of modes of motion in the
slow mode region increases. In other words, as being more removed from the fast
mode, the lower modes (belonging to the slow mode) in an N-bead chain, may
improve the overall decoupling of the fast and slow modes as N increases. In spite
of the visible difference particularly when N is small, we ill see an overal
agreement between the equilibrium-simulation and step strain-simulation Gs(t) curves,
each revealing clearly two separate modes. We refer to such an overall agreement as a
guas version of the fluctuation-dissipation theorem.

In Figure 10, we show the mean sguare segment length (b(t)); and its
components: (bZ(t)) , (b(t)) and (bi(t)) of a fivebead Fraenkel chain as a

function of time following the application of the step shear strain A=0.5. Although

A=0.5 is not really in the linear region, we show these results at 1=0.5 because their
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changes with time are discernible and at the same time, the corresponding Gs(t) curve
does not differ from the one obtained from the equilibrium simulation very much.
Comparing these results can serve our purpose, as discussed below, better than
showing theresultsat A=0.2. As shown in Figure 10, the segment length is stretched
by the step strain and relaxes back to the equilibrium value, as opposed to the segment
length fluctuating around its mean value in the equilibrium simulation. From
comparing the time-scales of the dramatic changes in Gg(t) (Figure 8)

and<b2(t)>(Figures 10), it is clear that the fast mode occurring in the step-strain

simulation clearly reflects the large tension on the segments, arising from segments
being stretched by the step deformation, and that its relaxation reflects the decrease in
the average segment length back to the equilibrium value. This segment-tension

relaxation is equivalent to the time-correlation function of the segment-tension

fluctuation(s(0)5 (t)) as shown in Figure 6.

In the entropic region of the step strain-simulation Gg(t), the mean square segment
length has reached the equilibrium value as shown in Figure 10, same as that
occurring all the times in the equilibrium simulation; however, as the differences
between the time dependences of the components<bf(t)>, <b§(t)> and <by2(t)>
indicate, there is some net orientation anisotropy in the step-strain case as opposed to
maintaining isotropy in average in the equilibrium case. As orientation does not
cause a change in the potential energy on the segment, the anisotropy of the segmental
orientation is of entropic nature. According to the fluctuation-dissipation theorem,

corresponding to the randomization of segmental orientation anisotropy as occurring
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in the smulation following a step shear deformation, fluctuating
segmental-orientation anisotropy should be present al the time in the equilibrium
state; such fluctuations should be responsible for the entropic slow mode in the
equilibrium-simulation Gg(t). The close relationship between the sslow mode in Gg(t)
and the segmental orientation anisotropy as further revealed in the nonlinear region of

strain will be analyzed in great detail in the companion paper.

5. Comparison of Simulation with Experiment

Both the Rouse theory and the present Monte Carlo simulation using the Rouse
chain model or the Fraenkel chain model are a mean-field representation, meaning
that the bulk viscoelastic response of an entanglement-free polymer system
(concentrated solution or melt) is the sum of the contributions from all the chainsin a
unit volume, each is represented by its statistically averaged dynamic behavior. In
comparison with experimental results of polymer melts, the mean-field representation
works very well in the long-time or entropic region of the viscoelastic response, as
illustrated by the quantitative agreement of the measured viscoel astic spectra with the
Rouse theory. Since in the entropic region, there is basically no difference between
the Rouse theory and the simulation results based on the Fraenkel chains, we may
compare the simulation results with experiment over the whole time range, shedding
light on the viscoelastic response in the short-time or energetic-interactions region.
Intuitively, the mean-field Fraenkel chain model should be an over-simplified
representation for the viscoelastic behavior in the energetic-interactions region for a

polymer in its melt state. However, the Gg(t) results obtained from the Fraenkel
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chain-based simulations have basically reflected the main features in the G(t) curves
obtained experimentally in both the short-time and long-time regions, suggesting that
the simple model may have captured the key interactions in the real system.

The creep compliance J(t) can be converted to the relaxation modulus G(t)

through the basic equation of linear viscoel asticity:

t=] ;J(t')G(t —t)dt (30)

The convolution integral of eq 30 can be solved numerically by the method of
Hopkins and Hamming,'®¥'®° as detailed in Appendix A of ref 15. Recently, the
creep compliance J(t) results of nearly monodisperse polystyrene samples obtained by
Plazek,'™ two entangled and one entanglement-free, have been quantitatively
analyzed through eq 30 in terms of a G(t) functional form which incorporates a
stretched exponential form for the glassy-relaxation process into the extended

reptation theory for the entangled case™®

or into the Rouse theory for the
entanglement-free case.® From such quantitative analyses, it has been shown that

the thermorheological complexity as related to the glass transition behaves in a

universal way within the polystyrene system, entangled or not. The details of the

189 Hopkins, I. L.; Hamming, R. W. J. Appl. Phys. 1957, 28, 906; J. Appl. Phys.
1958, 29, 742.

190 Tschoegl, N. W. The Phenomenological Theory of Linear Viscoelastic Behavior;
Springer-Verlag: Berlin, 1989.
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studies are referred to refs 15 and 25. Here, we will only use the result of the
entanglement-free system—denoted by sample C in ref 25 and will also be so denoted
here. The G(t) functional form used for the entanglement-free case is expressed by

G() = Aa 0+ pRT [0 (¢, M)am (31)

where ugr(t,M) isgiven by eq 10; p, Rand T are the density, gas constant, and absolute

temperature, respectively; f (M) represents the molecular-weight distribution of the
sample; and Al is the full relaxation strength of the glassy-relaxation process u (t),
phenomenologically expressed by a stretched exponential. Note that eq 31 has a
general functional form basically equivalent to the approximation as given by eq 20

for decoupling the modes of motion associated with 4(t) and withb, ()b, (). As

shown in section 3, with Jy being allowed as an adjustabl e fitting parameter, eq 20 can
give rise to a result in close agreement with what is obtained from the exact
expression (eq 19). As opposed to the slow mode arising from the fluctuations

of b, (t)b, (t) in the simulation using eq 20, the Rouse theory is used to describe the

slow mode directly here.
In the quantitative J(t) line-shape analyses, the effect of the molecular-weight

distribution f (M) of the studied samples, even though very narrow, need be included

into the calculation. The molecular-weight distribution is assumed to be described
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by the Schulz function,®* whose distribution width is characterized by the single
parameter Z (M /M, =(Z+1)/Z). As a fitting parameter, the Z values obtained
from the quantitative line-shape analyses are typically within the expected range,
givingM, /M, <1.05;*>® for instance, M, /M, =1.05 is obtained for ssmple C.%°
As the Monte Carlo simulation carried out in the present study is for an ideally
monodisperse system, for making a comparison between experiment and simulation,
we use the parameters obtained for a nearly monodisperse sample—sample C—to
calculate the G(t) curve expected for an ideally monodisperse system.

Affecting the entropic region of the G(t) of a nearly monodisperse sample are Z
and the frictional factor K. Being phenomenologically described by the stretched

exponential form,

Ho(t/7e) =expl-(t/z. ) ) 0<p<1 (32)
the glassy-relaxation region of G(t) is affected by the three parameters: A, 7, and 3 .
The role of g can be equivaently represented by the average glassy-relaxation time

as given by

o = [ potite)dt =S (33)
=, Helt/ro)t =" T )

191 Schulz, G V. Z. Physik. Chem., Abst. B 1943, 43, 25; Tung, L. H. Polymer

Fractionation; Cantow, M. J. R Ed.; Academic: New York, 1967.
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where I is the gamma function. Much dynamic and structura information related to
the glass transition is contained in the shapes of the J(t) or G(t) curves, which change
with temperature—the thermorheological complexity. The scheme of analysisisto use
the Rouse theory as the reference frame in time, with respect to which the relative
position of the glassy relaxation process can be studied® (The same scheme is used
for the entangled system, where ERT is used as the reference frame instead of the

%) As the relaxation times of al the Rouse norma modes are

Rouse theory
proportional to the frictional factor K, the relative position of the glassy-relaxation

process can be conveniently characterized by the ratio of the average

glassy-relaxation time to the friction factor

o= 10 (34)

where K’ in the most general way includes K'=K for an entanglement-free system
whose entropic region of G(t) is described by the Rouse theory as well as represents
the frictional factor in the Rouse-Mooney normal modes of motion of an entangled
system.'®? |t has been shown that the uneven thermorheological complexity observed
in the J(t) results of polystyrene is fully described by a simple increase in s’ with
decreasing temperature. Furthermore, it has been shown that both s” and K’ values for

the three studied samples, two entangled and one entanglement-free, as a function of

192 Note: seeref 25 for the detalls.
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the temperature difference from individual Ty, AT =T -T_, individualy fal on the

same curve, indicating that the Tg-related effect behaves in a universal way within the
polystyrene system. s’ reaches a plateau value of about 1500 at AT > 40° and is about
40000 atAT =0or a Ty* It has been shown™'®® that the increase in s’ with
decreasing temperature is due to the formation of a structure, whose length scale
increases with decreasing temperature and greatly exceeds that of a single Rouse
segment a Ty The formation of the structure aso indicates that

non-ergodicity'>102>1%

gradualy becomes an important effect as the temperature
approaches Ty. The use of the Langevin equation in the present study implies that the
system hasto be ergodic.®>**  Thus, the high-temperature limit s'=1500 is the one that
should be used in calculating the G(t) curve for comparison with the simulation result.

For polystyrene, the molecular weight for a single Rouse segment, m, is about
850;° *° withM , =16400, sample C is equivalent to a chain with 20 beads in average
(see the note at ref 52).* Shown in Figure 11 is the comparison of the
equilibrium-simulation G(t) curve for a 20-bead Fraenkel chain with H.=400kT and

the expected “experimental” curve for an ideally monodisperse polystyrene with

molecular weight equal to theM , value of sample C at high temperatures—that is,

198 gjllescu, H. J. Non-Crystal. Solids 1999, 243, 81; and references therein.

% Note: The weight-average molecular weight of sample C, M, =16400, isalittle

higher than the entanglement molecular weight, M, = 13500, for polystyrene.

However, as explained in detail in ref 25, because the molecular weight distribution of
sample C is not extremely narrow, its viscoelastic behavior in the entropic region has

to be analyzed in terms of the Rouse theory rather than the extended reptation theory.
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calculated with s'=1500 for AT >40°. As shown, the “experimenta” curve is
caculated using an arbitrary K value: 10 % and the simulation curve has been
multiplied by a proper factor in both the modulus and time coordinates to obtain a
close superposition between the two curves. As the shift factor aong the time
coordinate depends on the K value used in the calculation and the step-length d
employed in the simulation, its value is of no particular meaning. However, the shift
factor aong the modulus coordinate is much related to the entropic nature of the slow
mode as discussed in section 3 regarding the results shown in Figure 3. The vertica
multiplication factor used for obtaining the close superposition is 4.2x10°, which is
very near the value 3.7x10 expected if the entropic region of the simulation G(t) isin
perfect agreement with the Rouse theory. Theratio of 3.7/4.2 also agree closely with
the value 0.95 used to superpose the Rouse theoretical curve on the simulation Gg(t)
curve of the 20-bead Fraenkel chain shown in Figure 3. The agreement in the general
shape between the two G(t) curves is indeed very encouraging, considering the
simplicity of the chain model used in the simulation. The discrepancy in the
short-time region between the two curves may have to do with the choice of the Hg
value. Although improving the agreement in the very short-time region, an increase
in He leads to a faster relaxation rate for the fast mode, causing some disagreement in
the lower part of the fast mode. As we don’t believe that a mean-field chain model can
really adequately describe the viscoelastic behavior of a polymer melt in the
energetic-interactions region, where some sorts of intermolecular interactions should
contribute to the modulus as well, we don’t think a fine tuning of the Hg value would

serve a particularly meaningful purpose.
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In Figure 11, the relaxation times of the 19 Rouse norma modes for a 20-bead
chain are also indicated. As contrasted with the positions in time of these relaxation
times, the relaxation of the tension on the Fraenkel segment as revealed by the
simulation has basically finished before the highest Rouse mode begins to relax in a
substantial way. As explained above, the simulation result is only applicable to a
polymer system at temperatures sufficiently above Ty As opposed to such a
gituation, the glassy-relaxation process as extracted from the measured creep
compliance J(t) at Ty extends to times much larger than the relaxation time of the

highest Rouse mode, indicating vitrification at the Rouse-segmental |evel 1>1%

6. Discussion

Two distinct relaxation modes of fundamentally different physical nature have
been observed in both the equilibrium-simulation and step strain-simulation Gg(t)
curves for the Fraenkel chains. The general agreements between the two sets of
results are basically in accordance with the fluctuation-dissipation theorem; the small

differences between the two may be due to the fact that the dynamic quantity J, (t)is

actually a product of two parts with very different time dependence and strain
dependence (opposite in sign, as clearly visible in the nonlinear region studied in the
companion paper) and the difference in coupling between the two kinds of dynamics.
Regarding the general agreement between the equilibrium-simulation and step
strain-simulation  Gg(t) curves as representing a quas version of the

fluctuation-dissipation theorem, we may conclude: While the fast mode arises from
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the segment-tension fluctuations or reflects the relaxation of the segment-tension
arising from segments being stretched by the applied step strain—thus, an energetic
interactions-derived dynamic process, the slow mode arises from the fluctuating
segmental-orientation anisotropy or represents the randomization of the
segmental-orientation anisotropy induced by the step deformation—thus, an
entropy-derived dynamic process. Segmental orientation anisotropy being
responsible for the entropic nature of the slow mode in the Fraenkel-chain case is an
important conclusion derived from this study, indicating that in modeling the polymer
viscoelastic behavior one does not need to put the entropic-force constant into the
segment to obtain the modes of motion as occurring in the Rouse theory, which is
well-known to describe very well the linear viscoelastic behavior in the long-time
(entropic) region of the entanglement-free polymer system.

The proper size that can be assigned to a Rouse segment of a particular polymer
has been studied in recent years by different techniques.® *® In the studies analyzing
the whole range of the viscoelastic response, covering both the glassy-relaxation and
entropic regions, it is in general assumed that G(t) is expressed as a sum of the
dynamic processes derived from energetic interactions and entropy. Using the
guantitatively successful description of the entropic region of the linear viscoelastic
response by ERT in the entangled case and by the Rouse theory in the
entanglement-free case as the reference frame in time, the incorporation of a stretched
exponential form (eq 32) into ERT or the Rouse theory (see eq 31) as detailed

15,25

previously and summarily described in the previous section has alowed us to

anayze the glassy-relaxation process occurring in the short-time region in a
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meaningful and profitable way, revealing the basic mechanism of the
thermorheological complexity and showing that the effect as related to the glass
transition behaves in a universal way within the polystyrene system, entangled or

nOt.15'16'25

As opposed to the incorporation of the glassy-relaxation process into ERT
or the Rouse theory being done phenomenologically, the segment-tension relaxation
process emerges naturally on the top of the slow mode in the simulated Gs(t) curve for
the entanglement-free Fraenkel chain as presented in this study. Very significantly,
the curves calculated from the Rouse theory, which describe the slow mode very well,
are each based on a chain with the same number of beads; the close agreement
between simulation and theory indicates that the size of the Fraenkel segment is the
same as that of the Rouse segment.  In other words, this result strongly suggests that
the size that can be properly assigned to a “Rouse segment” for describing the linear
entropic viscoelastic response actually has a considerable degree of rigidity. The
general agreement between the simulated and experimental G(t) curves as shown in
Figure 11 supports such apicture. Aswill be shown in the companion paper, in spite
of the rigidity in such a “Rouse segment,” the slow mode as occurring in the

nonlinear G4(t, 1) is as much of entropic nature as in the linear G4(t) .

7. Summary

In this study, based on the entanglement-free Rouse-chain and Fraenkel-chain
models, we have carried out Monte Carlo simulations of relaxation modulus in the
equilibrium state and following a step shear deformation. In the case of the Rouse

chain, the validity of the ssmulation is confirmed by the agreement with the analytical
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results; the fluctuation-dissipation theorem is aso perfectly illustrated by the
comparison of results from both kinds of simulations. In the case of the Fraenkel
chain, while a quasi version of the fluctuation-dissipation theorem is illustrated; two
distinct modes of relaxation in the relaxation modulus are revealed, describing the
basic features as typically observed in an experimentally measured G(t). The
physical natures of the two modes are analyzed in detail: The fast one corresponding
to the segment-tension fluctuation or relaxation is classified as an energetic
interactions-derived process; and the slow one well described by the Rouse theory is
classified as entropy-derived. A very important concept derived from this study is
that segmental-orientation anisotropy is responsible for the entropic nature of the slow
mode; in other words, in modeling one does not need to put the entropic-force
constant into the segments in order to obtain the modes of motion as occurring in the
Rouse theory. From the comparison of the Rouse theory with the slow mode
obtained from the simulation, it is shown that basically one Fraenkel segment
substitutes for one Rouse segment. This conclusion provides an explanation
resolving a long-standing fundamental paradox in the success of modern molecular
theories of polymer viscoelasticity devel oped based on the Rouse segment as the most
basic structural unit, as the entropic-force constant on the Rouse segment is generally
regarded as too soft from considering the persistence length or the Kuhn segment
length of a polymer chain—the Fraenkel chain is basically equivalent to the freely
jointed chain. As listed in Table 1 of ref 8, the Rouse segment size m for various
polymers is of the same order of magnitude as that of the Kuhn segment Mk. The

authors of ref 8 have particularly pointed out such a paradox between m~M, and

the definition of a Rouse segment based on the Gaussian probability distribution in
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the Rouse chain model.>™® Furthermore, the comparison of the simulation with the
experimental result strongly suggests that, even though still being a mean-field
single-chain model, the Fraenkel chain has captured the key interactions in a polymer
system, having the potential of serving as a more realistic substitute for the Rouse

mode!.
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Appendix A: TheApplication of theVirial Theorem to the Fraenkel Dumbbell.
The average kinetic energy for each degree of freedom being KT/2 is a built-in

element of the Langevin equation.** For simplicity, we consider the Fraenke

dumbbell case; however, the analysis as presented here can be extended to a Fraenkel

chain with any number of beads. For a dumbbell, according to the virid

He

20 o(t)b(t)-b(t) ; here T is the average interna

_ 2
theorem™ T :—%ZE ‘R, =
i=1
L . 3KT . . . . . .
kinetic energy and IST. This relation is confirmed by our simulation. Since as
indicted by the simulation b(t) - b(t) does not fluctuate more than 10% from its mean

value, which is only larger than b by less than 1.3%, the viria theorem for the

Fraenkel dumbbell can be well represented by

E—% = 3kT (A1)

0
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For H, = 400kT , §(t)=0.0075.
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Figure Captions

Figure 1

Comparison of the equilibrium-simulation G(t) curves of two-bead, five-bead and

ten-bead Rouse chains (A for N=2; for N=5; o for N=10) with the step

strain-simulation G¢(t) results (afor N=2; mfor N=5;@ for N=10) and the Rouse

theoretical curves (--- for N=2; — — —for N=5; — for N=100).

Figure 2

Comparison of the equilibrium-simulation G4(t) curves of the five-bead Fraenkel

chain using the step length d=0.01 (—) and d=0.03 (0).

Figure 3

Comparison of the equilibrium-simulation G(t) curves of two-bead, five-bead,
ten-bead and twenty-bead Fraenkel chains (A for N=2; < for N=5; 7 for N=10 and
o for N=20) with the Rouse theoretical curves (- --for N=2; — — —for N=5; — — for

N=10 and — for N=20). Seethetext.

Figure 4

Comparison of the time correlation function(b(O) . b(t)> obtained from the simulation

on the Fraenkel dumbbell (@) and multiplied by 1.45 along the time coordinate with the

theoretical curve of the Rouse dumbbell (—).
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Figure5
The equilibrium-simulation G4(t) curves of the Fraenkel dumbbell: exact (using eq
19; —) and approximations (using eq 20 withs,=6, =0.0022, »; &,=0, =0.0075,

; and 5,=5,.=0.01, 0).

Figure 6
Time-correlation functions <5 (0)s (t)) obtained from simulation on the Fraenkel
dumbbell withd (t) defined by eg 21: A withd, =5, =0.0022; 1 withs,=6, =0.0075;

and © withs,=5,=0.0L.

Figure7
Comparison of the equilibrium-simulation G4(t) (@ based on eq 28) andGS™ (t) (O
based on eg 29) for the five-bead Fraenkel chain; aso shown are the

equilibrium-simulation G4 (t) (—) and GZ" (t) (- - -) for the five-bead Rouse chain.

Figure 8

Comparison of the step strain-simulationGg(t) curves for the two-bead, five-bead,
ten-bead and twenty-bead Fraenkd chain at 4=0.2 (» for N=2; < for N=5; [ for
N=10; o for N=20) and 0.5 (afor N=2; & for N=5; m for N=10; @ for N=20) with
the equilibrium-simulation curve (- - -for N=2; — — — for N=5; — — for N=10; — for

N=20).
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Figure9

Comparison of the step strain-simulation G(t) curves for the Fraenkel dumbbell at

4=0.004 (0) and 0.2 (») with the equilibrium-simulation curve (—).

Figure 10

The time-step dependences of <b2(t)> and the components<bf(t)>, <by2(t)> and

(b} (1)) for the five-bead Fraenkel chain following a step strain A=0.5.

Figure 11
Comparison of the equilibrium-simulation G(t) curve (o) for the 20-bead Fraenkel

chain with H.=400kT and the expected “experimental” curve (—) for an “ideally
monodisperse polystyrene sample” with the molecular weight equivalent to N=20;
also shown are the points (+) representing the relaxation times of the 19 Rouse normal

modes. See the text.
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Figure 4
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Figure5
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Figure 6
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Figure 8

G,(t)

107

10! |

100 |

10 |

102 |

1 L1l 1 L1l 1 MR |£|||A0||| ql

103
100

10! 102 103 104
t (steps)

172



Figure9

10?

101 .
10° £ E
<
O
1071 .
102 .
10-3 L TR L TR A L TR I L TR A
100 101 102 103 104
t (steps)

173



Figure 10
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Figure 11
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Monte Carlo Simulations
of Stress Relaxations of Entanglement-Free Fraenkel Chains. 2:

Non-Linear Polymer Viscoelasticity

Y.-H. Linand A. K. Das
Department of Applied Chemistry
National Chiao Tung University

Hsinchu, Taiwan

Abstract

The non-linear viscoelastic behavior of the Fraenkel-chain model is studied with
respect to the constitutive equation of the Rouse model.  Distinctly different from the
results of the Rouse model, the Fraenkel-chain model gives the following
characteristic non-linear behavior: () The two modes of dynamics in the relaxation
modulusG¢(t, 1) —as observed in the linear region reported in paper 1—or in the first
normal-stress difference function G,,(t,A) are shown to have different strain
dependences. strain-hardening for the fast mode and strain-softening for the slow
mode. (b) The Lodge-Meissner relationG,(t, 1) = G, (t, 1) is shown both analytically
and by simulation to hold over the whole time of relaxation. (c) The second
normal-stress difference is nonzero, being positive in the fast-mode region and

becoming negative in the slow-mode region. Making detailed comparison between
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orientation and stress for all tensor components, the strong correlation of the slow
mode with the segmental-orientation anisotropy and its entropic nature are shown to
be the same as in the linear region studied in paper 1. A consequence of this
correlation is the expectation of the stress-optical rule in the slow-mode region.
Another consequence is the expectation that the damping function
h(1) =G4 (t,1)/Gs(t,2 — 0) and the ratio between the first and second normal-stress
differences— N, (t,4)/ N, (t, A1) are described by the orientation tensor which has the
same form as that of Doi and Edwards with independent alignment approximation; the
simulation results are in close agreement with the calculated in the former case while

roughly in the latter case.
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Monte Carlo Simulations
of Stress Relaxations of Entanglement-Free Fraenkel Chains. 2:

Non-Linear Polymer Viscoelasticity

Y.-H. Linand A. K. Das
Department of Applied Chemistry
National Chiao Tung University

Hsinchu, Taiwan

1. Introduction

In paper 1,*% the linear viscoelastic behavior for Fraenkel chains'® has been
studied by Monte Carlo simulations, revealing two modes of motion in the relaxation
modulusGq (t) : The fast mode arises from the segment-tension fluctuations or reflects
the relaxation of the segment tension arising from segments being stretched by the
applied step deformation—an energetic interactions-derived dynamic process; the slow
mode arises from the fluctuating segmental-orientation anisotropy or represents the
randomization of the induced segmental-orientation anisotropy—an entropy-derived
dynamic process. Very significantly the slow mode is well described by the Rouse

197,198,199

theory in all aspects. the magnitude of modulus, the line shape and the

1% | in, Y.-H.; A. K. Das, the companison paper.
1% Fraenkel, G K. J. Chem. Phys. 1952, 20, 642.
97 Rouse, P. E. Jr. J. Chem. Phys. 1953, 21, 1271.
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number-of-beads dependence of the relaxation time. This result means that as far as
the sslow mode is concerned, one Rouse segment may be replaced by one Fraenkel
segment, even though the latter is much stiffer than the former. Furthermore, the
comparison of the simulated relaxation modulus with experimental G(t) indicates that
the Fraenekel-chain model has captured the key energetic interactions in a polymer
melt, alowing the relative positions of the glassy-relaxation process (the fast mode)
and the entropy-derived Rouse relaxation (the slow mode) properly described. This
general agreement between simulation and experiment is consistent with the
well-confirmed success of the Rouse theory in explaining the linear viscoelastic
response of an entanglement-free polymer melt system in the long-time or entropic

3200201202 gince the Fraenkel-chain model provides improvements in linear

region.
viscoelasticity upon the Rouse model, its non-linear viscoelastic response obtained

from the Monte Carlo simulations may be profitably analyzed in comparison with the

constitutive equation of the Rouse model.

2. Congtitutive Equation of the Rouse M odel

1% Bird, R. B.; Curtiss, C. F.; Armstrong, R. C.; Hassager, O. Dynamics of Polymeric
Liquids, Vol. 2, Kinetic Theory, 2™ ed.; Wiley: New York, 1987.

199 | in, Y.-H. Polymer \iscoelasticity: Basics, Molecular Theories, and Experiments;
World Scientific: Singapore, 2003.

2% Lin, Y.-H. Macromolecules 1987, 20, 885.

21 in, Y.-H.; Juang, J.-H. Macromolecules 1999, 32, 181

22 | in, Y.-H. J. Phys. Chem. B
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The constitutive equation of the Rouse model with each chain having N beads

(corresponding to molecular weight M) is given by*®

c<t>=ckTJ;[ 1]”zlexp[— (t;t'ﬂy[o](t,t-)dt- )

Tp Jp1 p
where 7y, (t,t') =6 — E(t,t") - E(t,t') with E(t,t') being the deformation gradient
tensor between the present time t and a past timet’; c is the number of polymer chains

per unit volume; andr ,, the relaxation time of the p-th mode, is given by eq 11 of the

companion paper.’ For comparison with the Monte Carlo simulation of a single

chain in the mean field, both ¢ and KT are set to be 1; andr is expressed in terms of

the time-steps as given by eq 12 of the companion paper.

Following a step shear deformation E at time t=0 (eq 4 of the companion paper),
the relaxation modulus Gg(t) and the first normal-stress difference function Gy(t) of
the Rouse model, both normalized to that corresponding to a single segment, are

given, respectively, as

O-xy B 1 N-1 _L
GS(t):_l(N—l)_(N—l);eXplz r } @

and
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_ outA)-o,tA) 1 & |t
Gn(®=- 2(N-1) _(N—l);exp{ } o

The key results expected from the constitutive equation of the Rouse model may be

summarized asin the following:

(1) No non-linear effect in the shear stress relaxation; in other words, Gq(t) as given
by eg 2 isindependent of strain A.

3

(2) The observation of the Lodge- Meissner relation;?® namely, as indicated by egs 2

and 3, G4(t) =Gy, (t).
(3) The second normal-stress difference as defined by — (ny (t,A)—o,(t, A)) is zero.
These results of the Rouse model are exactly confirmed by our simulations; in Figure
1, the strain independence of Gg(t) andG,, (t)for a five-bead Rouse chain and the

agreements of the simulation results with the theoretical Rouse curve are shown.

3. Nonlinear Viscoelastic Behavior of the Fraenkel Chain

For the Fraenkel chain, the simulations of stress components as a function of
time-step following a step shear deformation are done in the same way as for
obtaining the relaxation modulus Gg(t) =-o,,(t) /Mn the companion paper. As
shown in Figure 2, theG4(t, 1) curves obtained for a five-bead chain at different

strains from A =0.5to 4indicate that the relaxation modulus of the Fraenkel-chain

model is strain-dependent as opposed to G4 (t) being independent of the strain in the

23 | odge, A. S.; Meissner, J. Rheol. Acta 1972, 11, 351.
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Rouse model. However, as aso shown in Figure 2, the Lodge-Meissner relation is
followed even though nonlinear effect occurs to bothG(t,A) and G, (t,A). As
shown in Figure 3, unlike in the Rouse model, the second normal-stress difference
N, (t,A) in the Fraenkel-chain model is not zero. Thus, the Fraenkel-chain model
exhibits significant deviations in the nonlinear viscoelastic behavior from the Rouse
model, even though its linear relaxation modulus in the long-time region is well
described by the Rouse theory. Below, we analyze these deviations as caused by the

particular form of the Fraenkel potential.

4. Effectsof the Nonlinear Tensile Force on the Fraenkel Segment

A large tensile force on the Fraenkel segment is created when it is significantly
stretched, which leads to the stress level showing up in the fast mode region. The
strain-hardening of the fast mode as shown in Figure 2 can be understood by

examining the tensile force Fr on a Fraenkel segment denoted by b:

H.. H.[b ()
Fo=—tEpy el 0y 00 4
m-bep M M 2 @

whereé (t) is defined by eq 16 of the companion paper. As shown in Figure 4, right
after the application of a step shear to the Fraenkel chain at equilibrium, a |b(t = 0)

value larger than b, (set equa to 1) in average is created; as a result, the second term

of eq 4 becomes smaller than the first term, leading to a tensile force that would pull

the two separated beads back to the equilibrium distance—a recoiling effect. In the
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equilibrium simulation as studied in paper 1, 5(t)is used to represent approximately
the deviation of the bond Iength|b|from theb, value. For the present study in the

nonlinear region, o (t)is treated more as a parameter, characterizing the nonlinear
enhancement of the tensile force on the segment as the segment is significantly
stretched.

As will be shown below (Figure 6), when the applied shear strainlis greater
than ~0.005, the average tensile force starts to increase in a nonlinear way, causing
the stress level of the fast mode region to increase nonlinearly as well. Besides this
obvious expectation, this effect leads to the emergence of the second normal-stress
difference. The second normal-stress difference is of significant magnitude in the
fast-mode region; as the time enters the slow-mode region, it declines towards the
zero line and beyond; and finaly relaxes as a negative tail.  This effect can be
understood from the following analysis:

The use of the Langevin equation has implied that our studied system is
ergodic.>?**?® Thus, we shall simply use the language of the ensemble averaging to
discuss the results obtained from averaging the behavior of asingle chain over timein
the equilibrium state or over the repeating cycles following the step deformation. As

obtained from the equilibrium simulation the mean squared bond length <b2>0 isonly

204 Doi, M.; Edwards, S. F. The Theory of Polymer Dynamics; Oxford Univ. Press:

New York, 1986.
25 McQuarrie, D. A. Satistical Mechanics, Harper & Row: New York, 1976.
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larger than b =1by 1.3%; the ensemble-averaged components of <b2>0 areidentical:
<bf>0 =<b§>0 =<b22>0 =0.3377. However, in the ensemble different segments have

different b, b7 andb; values. Among the segments with the sameb;, those with

larger bj are expected to have a smalerb?. Following the step shear deformation,
those segments with a larger b§ and asmaller b> will be stretched more, leading to
nonlinear enhancements in their tensile forces as characterized by the parameter 6 (t) ,

than those with a smaller bj and alargerb?.  Since the contribution of a segment to
the normal stress in the y direction is proportiona 5 (t)b, (t)*at time t, the average of
the initial valued (O)by(O)2 (right after the application of the step strain) is much

more weighted by those segments with larger bj ; the opposite can be said about the

normal stress in the z direction. As a result, the effect leads to a positive second
normal -stress difference, N, (t) > 0, in the short-time or fast-mode region, as shown in
Figure 3. Such an effect will not occur to a Rouse segment, whose tensile force
increases with bond length linearly.

As explained above, the segmental tensile force created by the step deformation
will shrink the segmental length back to its equilibrium value. Those segments with a
larger y component initially having larger tensile forces will be most affected by the
recoiling effect. Right after the step shear deformation, the average

(b,(0)?), (b, (0)*), and (b, (0)*) values in accordance with the affine deformation are

expected to be given, respectively, by<bf(t=O)>=<bf>o+lz<bj>0=O.3377(1+12);
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(b (t=0)) =<b§>0 =0.3377; and (b}(t=0)) :<b§>o =0.3377. The average values
of (b,(0)*), (b, (0)?), and (b, (0)*) obtained right after the step deformation from the
simulations are in close agreement with the expected values at different strains. Asthe
chain configuration evolves according to the Langevin equation, the recoiling effect
causes all the <bX (t)2>, <by (t)2>, and <bZ (t)2>value£ to decline, as shown in Figure 5.
Due to the nonlinearly enhanced tensile force associated with segments with
larger b initially, (b, (t)*) decreases faster than (b,(t)?) before (b(t)*) reaches
its equilibrium value at a time which is about the end of the fast mode, as shown in
Figure4.  As (b(t)*) reachesits equilibrium value, (b, (t)*) and (b, (t)*) aso
reach their respective minimum points, meaning no more recoiling effect. Dueto its
fast declining rate from the very beginning, <by (t)2> is smaller than <bZ (t)2> at the
end of the recoiling effect. At about this point the second normal-stress difference
crosses the zero line and becomes negative.  In thisregion of time, even though there
is still asignificant degree of segmental orientation anisotropy, the tensile force on the
segment is of the value in an equilibrium state.  As aresult the negative values of the
second normal stress difference in the region are of small magnitude as shown in
Figure 3. The above described mechanism of the chain dynamics as reveaed in the

results shown in Figures 2 to 5 becomes more prominently visible as the applied strain

A increases.

5. TheLodge-Meissner Relation for The Fraenkel Chain
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The relation G4(t,1) = G,,(t, 1) first proposed by Lodge and Meissner was
based on a phenomenological argument. However, the Lodge-Meissner relation
observed for the Fraenkel-chain model from the simulation as shown in Figure 2 can
be proved analytically. This is done from considering the configurations of all the
chains in a finite volume V as changed by the applied step deformation and their
subsequent evolution.

Consider a volume containing ¢ Fraenkel chains, each with N beads. Right after
the application of a step shear deformation E (eq 4 of the companion paper) to a

system at equilibrium, the shear stress,— o, (0, ), isgiven by (setting KT =1)

c(N-1

_ny(0+): Vv

(T,(0)b,(0,))
(5)

3 ot ()bt + b0k o)

S

_Hes
Vb Zk:

O w

whereT, denotes the x component of the tensile force Fr on a representative Fraenkel

segment in the ensemble; b

No4

(e =x,y) denotes specificaly the o component of
the s-th segment on the k-th chain of the system in an equilibrium state right before
the application of the deformation E. Because of the presence of 55(1), which
depends on the applied strain and the orientation of the segment, the summation of the

terms containing the products of b;’x" and b over al segments is not zero. In the

Y

Rouse model, ass¥(1) is a constant, the sum equals to zero. Because at

equilibri um<b2> =1.013b7, we may conveniently regard each segment as having a
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unit length before the initia step deformation is applied (the unit length is not a
required assumption to prove the Lodge-Meissner relation as given below for the
Fraenkel-chain model; see the note at ref 12)*® and the stress component as given by

eq 5 but normalized to that for a single segment (denoted by-s, (0,)) can be

expressed by

-5,(0,) = He(s(A)(ugug + Augus)) | (6)

where

1

S(A)=1-
Jug e P e (w ) + w2y

(7)

with uy,uy andu; denoting the x,yandz components of a unit vector u®

representing the orientation of a segment in the system at equilibrium right before the

step shear deformation is applied; and< f >u° denotes averaging f over al orientations

of u°.

Similarly the first normal-stress difference— (Uxx(0+) - GW(O+)) can be expressed

by

26 Note: In the ensemble, segments with a certain bond length are oriented in all

directions with equal probability; thisistrue with any bond length that can occur in an
equilibrium state.  Each “group” of segments with the same bond length can be

normalized the same way and averaged over all orientations as described in the text.
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c(N-1)

~(04(0.)-0,,(0,))= ((T,(0,)b,(0,))~ (T, (0,)b,(0,)))

(8)

| T

'3 St elees e o+ ) ]

S

<

In the same way as obtaining eq 6, the first normal-stress difference normalized to

that for a single segment can be expressed by

Nl(0+) = _(Sxx (0+) - Syy (O+))

=H F<5(A)(u‘x’ + Aug)(ug + Aus)— 6(1)(u§)2> ) ®)
which, as shown in the Appendix, can be rewritten as
N,(0.) = HeA(S(A)(ugul + Augug)) | =-2s,,(0,) (10)

As there is one-to-one correspondence between the orientation representation and the

segmental (molecular) representation—i.e. between egs 5 and 6 and between egs 8 and

c N-1
9, the contribution of > »" 5% (/1)[ b0 " b° " ? 4 Ab2*pY, "] corresponding to eq A1,
k s

S,X 7S,y

has to be zero; in other words, as corresponding to eq 10, eq 8 may be rewritten as

zi ) 15: (A) (b2 + Abk b2k ) (12)

S

H

~(0,.,(0,)-0,,(0,))= VS
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The comparison of egs 5 and 11 indicates that both the shear stress and the first
normal stress difference arise from the same molecular
source iilf;sk (A)(b2k + b2k b2k ) ;  therefore, the same evolutions of the
Kk s
corresponding  configurations are responsible for their relaxations. As
N,(0,)=-1s,(0,) (eq 10), the Lodge-Meissner relation is followed. The above
analysis can be more easily applied to the Rouse model, in which N, (0,) = 1°G(0,)
and-s,(0,) =1Gs(0,) . As opposed to Gg(t) and G,,(t) being independent of
strain as given by egs 2 and 3 for the Rouse chain model, G;(t,4) andG,, (t,A) as

defined by

Gyt = >0 (12)
Guu(t,2) =120 (13)

have the same strain dependence as shown in Figure 2. The initid

values G(t=0,4) or G,,(t=0,1) a different 4 may be calculated numericaly
using eq 6 or eq 10 for comparison with the values obtained from the simulations as
shown in Figure 6. As aso shown in the figure, the calculated curve may be further
improved by the multiplication of the correction factor<b2>0 / bi =1.013. Theclose

agreement between simulations and numerical calculations as shown in Figure 6 and

the agreement between the simulation results of G(t,A) and G,,(t, 1) as shown in
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Figure 2 confirm the above theoretical analysis.

Only after an averaging SO complete that
if&k(l)[b"k b°" +Ab°"b°"]—>0 eq 8 becomes the same as eq 11.

k s

Before this is fully realized, G,,(t,1)shows a higher noise level than Gg(t,4) as
indeed observed in the simulation. Thus, the Lodge-Meissner relation is shown only
followed within some noise by the Monte Carlo ssmulations.

The second normal stress difference as a function of time obtained from the
simulation of the Fraenkel chain is nonzero as shown in Figure 3. It is aso shown
anayticaly in the Appendix that the initia value of the second normal stress

difference

N0, = 5,0)-5,0))= He(sugf - F) . ae
is nonzero. In Figure 7, magnitudes of the initia first and second normal stress
differences at different strains: N, (0,)andN,(0,) are compared and each are shown
to be in close agreement with the numerical calculations based on averaging over all

orientations.

6. Sressand Segmental Orientation
It was pointed out in the companion paper studying the linear viscoelastic
response of the Fraenkel chain that the slow mode reflects the fluctuation or

randomization of the segmental orientation anisotropy, with the bond length being the
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same as in an equilibrium state—therefore, the slow mode is an entropy-derived

dynamic process. Here we show that, a the nonlinear strains studied

(fromA=0.5t04), the strong correlation between the stress and the segmental
orientation, responsible for the entropic nature, is well maintained in the slow mode

region. In Figure 8 we show the comparison of the time dependences of — s (t),
<bx(t)by(t)> and <ux(t)uy(t)> ; in Figure 9, the comparison of N,(t) ,
<bx(t)2>—<by(t)2> and <ux(t)2>—<uy(t)2>; and in Figure 10, the comparison of
IN @), (b, ®)?)-(b,®)?) and (u,(t)*)~(u,()?). The most important feature of

these resultsis that in the slow-mode region, the stress components are proportional to

the corresponding orientation components by about the same factor 4 in al cases,

which can be concisely denoted by

s(t,A) = 4<b(t,;t)b(t,/l)> (15)
or

S(t, 1) = &u(t, A)u(t, 1)) (16)

with the difference between (b(t)b(t)) and (u(t)u(t)) being negligibly small. In the

case of the Rouse theory, it is expected to have

s(t,4) =3(b(t,A)b(t, 1)) (17)
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Note thats,, (t) =s,,(t) =0 in both egs 15 (or 16) and 17; ands,, (t) # s, (t) in eq 15
(or 16), while s (t) =s,(t)in eq 17. The factor 4 in eq 15 being so close to the

value 3 expected from the entropic force constant of the Rouse segment as shown in
eq 17 strongly indicates the entropic nature of the slow mode. The difference
between 4 and 3 (eq 15 versus eq 17) here may be caused by the same reason as that
responsible for the best value of §,, viz. 6-=0.01, being about 33% higher than the
value obtained from the virial theorem, 5,, = 0.0075, as shown in the analysis
presented in section 3.2 of the companion paper. As an approximation isinvolved in
expressing eq 19 by eq 20 in the companion paper, a discrepancy should be expected.
The important point is the closeness of the two values: 0.01 versus 0.0075 for §,in the
companion paper and 4 versus 3 here.

The entropic nature of the slow mode as revealed in this study is very significant
considering that the Fraenkel segment is much stiffer than the Rouse segment and that
the segment has been greatly stretched by the application of a strain in the nonlinear
region. Of course, thisis made possible by the fast relaxation of the segment tension
allowing the segment length to reach its equilibrium value while the segmental
orientation anisotropy is still at ahigh level. In addition to providing an explanation
resolving the paradox between the Rouse segment size m being of the same order of
magnitude as that of the Rouse segment and the definition of the Rouse segment
based on the Gaussian probability distribution as pointed out in paper 1, the strong
correlation of the slow mode to the segmental orientation anisotropy strongly suggests

that the entropic viscoelastic behavior, as may be described by the Rouse theory, may
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exist or appear under a condition less restrictive than that previously thought—i.e.,
limited to aregion that the applied strain is not too large (weakly nonlinear).

With the unit vector u representing the bonding direction, we may denote the
polarizability of a Fraenkel segment at equilibrium length in the direction parallel to u
bya, and in the perpendicular direction by« . Then the anisotropic part of the

polarizability tensor of each Fraenkel segment may be expressed as'*?*"?%
1
aaﬁ = (all - aj_{ua uﬂ - 5 5aﬁ j (18)

With the polarizability anisotropy being given by eq 18, the relation as given by eq 16
means that the stress-optical law holds in the entropic region. The widely observed
stress-optical law in the entropic region has been explained by assuming that the
distribution of the distance between any two beads in a chain is Gaussian.’**®* The
Gaussian statistics applied to the segment is aso the source of the entropic force
constant. Here, we show that both the existence of an entropic region in the
viscoelastic response and its associated stress-optical law can be satisfied by the
Fraenkel chain model without invoking the Gaussian statistics for both the segment
and chain conformation.  In fact, the Gaussian statistics for the chain should not hold

in the nonlinear region of strain as covered in this study, even in the entropic

207 Kuhn, W. Kolloid Z. 1934, 68, 2; Kuhn, W.; Grun, F. Kolloid Z. 1942, 101, 248;
Kuhn, W. J. Polym. Sci. 1946, 1, 360.

28 Berne, B. J.; Pecora, R. Dynamic Light Scattering; John Wileys: New York, 1976.
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(long-time) region of G4(t, 1) .

In the entropic region where the stress-optical law is valid, the orientation
angle y' of the stress ellipsoid isidentical to the extinction angle y of the birefringence;
the stress relaxation corresponds to the reduction of the birefringence Anwith time.”®
Because the Lodge-Meissner relation holds over the whole time range of the stress
relaxation, the orientation angle y' remains the same in both the fast-mode and
slow-mode regions. While y = ' in the slow-mode region, it is not clear from the
present simulation, whether the same is true in the fast-mode region, as this would
require the knowledge of how the polarizability changes with the elongation of the
segment. However, it is very likely that the stress-optical coefficient will be quite
different if another stress-optical rule holds in the fast-mode region. Inoue et a*%?*
have analyzed the results of linear dynamic viscoeasticity and birefringence
measurements on different polymers by using a sum of two stress-optical rules, one
for the high-frequency region (glassy component as denoted by Inoue et a, occurring
in the energetic-interactions region) and the other for the low-frequency region
(rubbery component as denoted by Inoue et a, which occurs in the entropic region
and is equivaent to the kind ordinarily encountered). The two stress-optica

coefficients obtained by Inoue et a are in general of very different magnitude and

299 Janeschitz-Kriegl, H. Adv. Polym. Sci. 1969, 6, 170.

210 |noue T.; Okamoto, H.; Osaki, K. Macromolecules 1991, 24, 5670.

X 1noue, T.; Hayashihara,H.; Okamoto, H.; Osaki, K. J. Polym. Sci. Polym. Phys. Ed.

1992, 30, 409.
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some with opposite signs; for instance C, =-5x10"° versus C, =3x10" for

polystyrene melts.

7. Comparison of Nonlinear Relaxation Modulus between Entangled Polymer
System and Entanglement-Free Fraenkel-Chain System

a. Overall Line Shapes of G4(t, 1)

One may recal the two consecutive processes. the chain-tension
relaxation>'0#1%#1321 (theoretically denoted by uq(t,E)in ref 20) and the terminal
mode (theoretically denoted by x.(t) in refs 19 and 20) occurring in the non-linear
relaxation modulusGi(t, A )of an entanglement system (see Figures 4-7 of ref 20 or
Figures 12.4-12.7 of ref 5); there are some interesting similarities in these two
processes to the two relaxation modes in Gg(t,A) of the entanglement-free Fraenkel
chain as revealed in the present study. To draw an analogy between the two, we
regard each Fraenkel segment as corresponding to an entanglement strand and each
bead as corresponding to a slip-link (as in the Doi-Edwards model?’®). As what we
intend to discuss is mainly an analogy, there are significant differences between the
counterparts. For instance, a particularly strong chain tension on an entanglement

strand will draw segments from neighboring entanglement strands, slipping through

%2 Doj, M. J. Polym. Sci., Polym. Phys. Ed. 1980, 18, 1005.
#3 in, Y.-H. J. Rheol. 1985, 29, 605.

214 Lin, Y.-H. J. Non-Newtonian Fluid Mech. 1987, 23, 163.

15 Doi, M.; Edwards, S. F., J. Chem. Soc., Faraday Trans. 2 1978, 74, 1789; 1978,
74, 1802.
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the entanglement links, while the segment tension in the Fraenkel chainislocalized in
each segment. The tensile force on the Fraenkel segment is quite large—proportional
toH(see eq 4), which is much greater than3KT ; while the tensile force on an
entanglement strand is typically of the order ~ 3KT/a with a being the entanglement

510,21

distance. Thus, in applying the models to an experiment, the segment-tension

relaxation of the Fraenkel chain would occur in the short-time region of G(t,4) (in

the short-time region, G(t,A —0) has modulus values—4x10’~10"dynes/cm? for

2216

polystyrene, much larger than the plateau modulus, 10°~10" dynes/cm which is
related to the entanglement molecular weight: G = 4pRT/5M, ), while the
chain-tension relaxation u (t, E) with a modulus similar in magnitude to that of Gy
occurs in the time region corresponding to the plateau region of the linear G(t) (see
Figure 9 of ref 20 or Figure 12.8 of ref 5). In spite of these differences, there are
important similarities between these two different kinds of tension relaxation and their
respective following processes.  As both occur in viscoelastic responses of chain
molecules, a discussion of the analogy between them may shed light on the basic
nature of the physics affecting polymer viscoelasticity. An important common effect
following both the segment-tension relaxation and chain-tension relaxation process is
the randomization of orientation anisotropy, which is responsible for the relaxation of
the remaining stress. In the entanglement-free Fraenkel-chain case, the

randomization of the segmental orientation anisotropy is done directly by the

Brownian motion of the beads in the chain; while in the entangled polymer system,

%16 See chapter 13 of ref 5.
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the orientation associated with the entanglement strand (namely, orientation
associated with the primitive chain) is randomized by the reptation mechanism
moving the primitive chain back and forth and eventually out of the deformed (or
oriented) tube (of the Doi-Edwards model), with assistance from the chain

contour-length fluctuation process.>'%?#"#8

Either of the two different processes,
which randomizes orientation anisotropy, is an entropy-derived process. In the
Fraenkel-chain case, the process is well described by the Rouse model as shown
above, while in the case of an entangled system, the process is well described by

the 1., (t) process in the extended reptation model,>*92%234

with the strain dependence
of the modulus quantitatively described by the damping function of the Doi-Edwards
theory.>'921219220 As it turns out, the strain dependence of Gg(t,A)in the entropic
region of the Fraenkel chain also closely follows the Doi-Edwards damping function
for adifferent physical reason as anayzed in the following:
b.Damping Function in the Entropic Region of G4(t, 1)

As shown in Figure 11, the entropic region of the Fraenkel-chain G4(t, 1) curves

at different A values can be superposed on one another very well by a vertical shift,

allowing the damping factorsh(A) defined and determined from the simulation results.

That is,

27 Lin, Y.-H. Macromolecules 1984, 17, 2846.
218 in, Y.-H. Macromolecules 1986, 19, 159; 1987, 20, 885.

219 Osaki, K.; Kurata, M. Macromolecul es 1980,13, 671.

220 Osaki, K.; Nishizawa, K.; Kurata, M. Macromolecules 1982, 15, 1068.
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| Gs(t,2)
h(}“){es(t,z —>0)} 19)

with t spanning only the slow-mode region. At the same time, the damping function
is closely related to the strain-dependence of the orientation tensor (u(t, A)u(t,A))in
the entropic region as indicated by eq 16. As shown in Figures 8, 9 and 10,
<u(t,ﬂ,)u(t,),)> in the very early part of the entropic region remains basically the same
asitisinitialy at time zero (i.e., right after the application of the step strain); in other
words, the randomization of the segmental orientation has hardly taken place as the

fast mode completes its relaxation.  Thus the obtained damping factors h(4) should

be closely correlated with the functionh, (1) calculated from the initial orientation

caused by the step strain via affine deformation:

__9(4)
h (1) = 90 (20)

with

(u;’ + Au")ﬁ’ >
9(2) = " > (21)
<ﬂ((u Ml

0 0 2 [e] [e]
X+Auy) +(uy) +(uZ

From eq 21, one obtainsg(2 —0)=0.2. One can notice that egs 20 and 21 is
simply the damping function of the Doi-Edwards theory with the independent
alignment approximation, which is close to the exact one over the whole range of

strain A, both explaining very well the experimental results obtained in the terminal
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region of G(t,A)of a well-entangled nearly monodisperse system.>%9"21252 Note

that the unit vector u here represents the orientation of a Fraenkel segment as opposed
to representing the orientation associated with an entanglement strand in the
Doi-Edwards theory. While egs 20 and 21 is an approximation to the exact

expression in the Doi- Edwards theory, >1019 212526

using them here is based on the
observation (Figures 8, 9 and 10) that the relaxation strength of the slow-mode is
basicaly directly related to the initia orientation. In Figure 12, we compare
theh, (1) curve calculated numerically from egs 20 and 21 and theh(1) values—as
defined by eq 19—determined from the superposition of the G(t,A) curves as shown
in Figure 11. As there is virtually no difference between h(A =0.2)and h(1=0.5);
and the numerically calculated results indicate thath, (4 =0.2)is only smaller than
h, (1 — 0) by one percent, we have substitutedh(1 = 0.2) for therole of h(1 —0) in
determiningh(1) at different values of 4. Asshown, h (1) has basicaly described
the trend of change inh(1) with increasing strain.

It is interesting and important to note that, as opposed to the similarity between
their relationships to orientation as both can be characterized by the damping function
given by egs 20 and 21, the functional forms of the relaxation modulus in the
entanglement-free Fraenkel-chain case and in the entangled system are very different.
The relaxation strength in the former case receives equal contributions from all

norma modes (see eq 2) while in the latter case dominated by the lowest normal

mode (see eq 13 of ref 20 or eq 9.11 of ref 5).

In Figure 12, we also show the comparison of h, (4)with the damping factor

associated directly with the unit vector u in the entropy region, h, (1) , defined by
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(u, (t, Auy (t, ) /_/1
u, (6, A, (L A))/2)

h,(4) = K (22)

More directly representing the orientation, theh, (1) values appear to have a closer
agreement withh, (1) thanh(4). The small differences betweenh, (1) andh(4), less
than 10%, merely reflect the small deviations from being an exact constant as given in
eq 16 for all strains. These small differences, which may arise from the
fluctuations in simulations or hidden approximation that may be involved in the
interpretation, does not affect the basic picture that the sslow mode is closely related to

segmental orientation and is of entropic nature.

8.  Second Normal-Stress Difference versus First Normal-Stress Difference
Experimentally the second normal-stress difference is, in general, much smaller
than the first normal-stress difference; so indicated by the comparison of the two
obtained from the present simulation as shown in Figure 13. As pointed out above,
as opposed to the first normal-stress difference N, (t, 1) being positive over the whole
time range, the second normal-stress differenceN,(t,A) is negative in the entropic
region. If apolymer system can be described by the Fraenkel-chain model, one may
use birefringence measurements to determine the hard-to-obtain second normal-stress
differences in the entropic region experimentaly, as the stress-optica law is

applicable in this region as shown in the analysis given in section 6. Interestingly,
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this is very much the way in which Osaki et a®* have carried out a study on an
entangled system. By showing that the stress-optical law is followed in the terminal

region(an entropic region), Osaki et al have studied the first and second normal-stress
differences of an entangled nearly monodisperse polystyrene solution (M, = 6.7 x10°;

32.6% in Aroclor 1248) in the region by measuring the birefringence as a function of
time following a step shear deformation.  The second normal-stress difference in the
termina region as determined by them in comparison with the first normal-stress
difference are similar to the simulation results shown in Figure 13 in several aspects.
This may not be surprising as both the terminal relaxation of an entangled system and
the sow mode of an entanglement-free Fraenkel-chain system reflect the
randomization of orientation—of the primitive chain in the former case and of the
segment in the latter case; and the orientations in both cases can be described well by
the same shear damping function calculated from eqs 20 and 21. Thus, even though
the relaxation functional forms are very different as pointed out above, their first and
second normal-stress differences are of opposite sign in the same way and
their— N, (t,A)/ N, (t, 1) ratios have nearly the same values and A dependence. Just
as the shear damping functionh, (1) can be calculated from egs 20 and 21, the ratio
—N,(t,A)/ N,(t,A) can be calculated from the Doi-Edwards expression with the
independent-alignment approximation for comparing with the values determined from
the present ssimulations and the experimental values of the entangled system studied

by Osaki et a, as shown in Figure 14. The close agreement between the present

21 Osaki, K.; Kimura, S.; Kurata, M. J. Polym. Sci.: Polym. Phys. Ed. 1981, 19, 517.
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simulation results and Osaki’s results remains to be tested by experimenta studies.
Nevertheless, this agreement together with the agreement in the damping function
further supports that the close relationship of the entropic nature in the long-time
region of stress relaxation with orientation anisotropy as revealed in this study is a

generdly valid physical concept, whether entangled or not.

9. Summary

As shown in the companion paper, the relaxation of the sslow mode of the
Fraenkel chain in both the linear and nonlinear regions of strain is well described by
the relaxation functional form of the Rouse theory with the same number of beads.
However, in reference to the constitutive equation, the Fraenkel chain behaves very
differently from the Rouse chain in several important aspects. While the
Lodge-Meissner relation holds in the Fraenkel chain over the whole course of
relaxation as shown both analytically and by simulation,
bothG(t, 1) and G, (t, 1) are strain-dependent.  Furthermore, unlike being zero in
the Rouse theory, the second normal-stress difference of the Fraenkel chain has the
same sign as the first normal-stress difference in the fast-mode region and changes
sign as the time entering the slow-mode region.

That the strain dependence of G4(t, 1) and G, (t, 1) in the slow-mode region of
the Fraenkel chain basically follows the damping function of Doi and Edwards with
the independent-alignment approximation is explained and illustrated. As the stress

tensor in the slow-mode region is directly proportional to the orientation as expressed
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by<u(t)u(t)> , the validity of the stress-optical law in this region of time is indicated.
In the slow-mode region the obtained ratio —N,(t,A)/N,(t,A) and its strain
dependence are similar to those observed in an entangled system, which are roughly
explained by the Doi-Edwards expression with the independent-alignment
approximation.

In addition to the important nonlinear features summarized above, the Fraenkel
chain as a molecular model for the polymer viscoelastic behavior, while keeping the
entropic viscoelastic behavior of the Rouse model, in a natural way givesrise to afast
energetic interactions-derived mode, which, as also shown in the companion paper,
properly accounts for the well-known existence of the energetic interactions-derived

dynamic process, unexplainable by the Rouse theory.
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Appendix
The Proof of the Lodge-Meissner Relation and Nonzero Second Normal-Stress
Difference

If we can prove

<5(/1)((u3)2 (W) + lu§u§)>uo -0 (A1)
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then, eq 9 becomes eq 10. Considering the symmetry, we

y

have<((u§ )2 - (u")2 + lu§u§)>uo =0; thus, eqAlistrueif

(u°)2 - (u°)2 + AUQug

X y

Jug ) - (g +(uef

A1) = (A2)

is zero for al values of 4. Both the numerator and denominator of eq A2 contain

even and odd terms with respect to the transformationuy — —uy or uy — —u; . The

averaging over all orientations of u® isinvariant to arotation of the coordinate system.
The way to show A(4)=0 is to do an orthogona transformation to eq A2 make its
denominator contain only even terms. This can be done by finding the principal axes
for the quadratic form inside the square root of the denominator, which is simply

u® - C-u°with C being the Cauchy tensor. With C represented by a matrix C:

1 1 0
C=|4 1+4% 0 (A3)
o 0 1

and the unit vector u® represented by a column U:

(A4)
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we may write

u°-C-u’=UTcu (A5)

Expressing the unit vector u® with respects to the principal axes as

U'=|u (A6)

the orthogonal transformation is given by

U=sU' (A7)
with
V2 Y- 0
RN TR PN TE N
S A+\/; V2

\/EWOHM/; \//J—O/lx/ﬁ

1

where p=2*+4. Intermsof u,,u, andu,, eqA2isexpressed by

~Juuu,
Vol f +alu, f + o) /|

AL =
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where q,, g, and g, are the three eigenvalues of C:

:y—2+lJ;

G =" (A20)
-2-1

q, = Ju (A1)

G, =1 (A12)

While the denominator of eq A9 contains only even terms, the numerator is an odd
term. Thus, A(1)=0for al A; this leads to the result that the Lodge-Meissner
relation Gg(t,A) =G, (t,4) holds even though Gg(t,A) and G,,(t,1) are not
independent of strain and the second normal stress difference is not zero as shown
below.

For the second normal stress difference to be nonzero, we need to show

(up) —(ug)

B(1) =
Jwe ez (e ey /|

#0 (A13)

Carrying out the orthogonal transformation, one obtains
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uX
u'x)2 + qz(u'y)2 + qg(u'z)2

B(2) = 1-alu)) —b(u'y) +cu,u, (A14)
Ja .

with a:(y—z\/ﬁ)/zy, b:(u+lﬁ)/2u and c:2/\/Z.Theeventermspr@ent

in the numerator makeB(1) = 0.
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Figure Captions:
Figure 1

Comparison of the Rouse theory (——) and the results of Gg(t) (0at A=1; rat A=2)
and G,,(t) (e a A=1; aat A=2) obtained from simulations on the 5-bead Rouse

chain following the application of a step shear strain.

Figure 2

Comparison of the results of Gg(t,A) (— at 4=0.5; —— at A=1; — —at 4=2; and
---at A=4) andG,,,(t, 1) (0at 4=0.5; cat A=1;, sat A=2; and vati=4) obtained from
simulations on the 5-bead Fraenkel chain following the application of a step shear

strain.

Figure 3

Second normal stress N,(t,4) obtained from simulations on the 5-bead Fraenkel
chain following the application of astep shear strain © at 1=0.5; ¢ a A=1; A at A=2;

and v at A=4).

Figure 4

t top an t ottom) as afunction of time fo OWIﬂgt eapplcatlono a
b(t)?) (top) and (|b(t)|) (bottom) as a function of time following the application of

step shear strain (1=0.5, 1, 2 and 4) obtained from simulations on the 5-bead Fraenkel

chain.
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Figure5
(b,?) () (b,®7) (=) (b,®)7) (---) and (u,®)°) (©) (u,®)?) (»);
(u,(t)*) (v) as a function of time following the application of a step shear strain

(4=0.5, 1, 2 and 4) obtained from simulations on the 5-bead Fraenkel chain.

Figure 6

Comparison of the initial valuesG(t =0, 1) (0) andG,,,(t =0,1) (a) obtained from
simulations on the 5-bead Fraenkel chain with the A-dependent curve calculated
numerically using eq 6 or eq 10 (—); the (— —) line indicating the A-dependent curve

corrected for theratio (b*) /b§ =1.013.

Figure7

Comparison of the initial first and second normal stress differences N,(0,) (@)
and N, (0,) (0) obtained from simulations on the 5-bead Fraenkel chain at different
strains with the A-dependent curves (— for the former; — — for the latter) numerically

calculated based on averaging over all orientations.

Figure 8
Comparison of the time dependences of — s, (t,4) (0); 4x (b, (t)b, (1)) (—); and
4x(u,(t)u, (1)) (---) obtained from simulations on the 5-bead Fraenkel chain at

different 4 (0.5, 1, 2 and 4).
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Figure9

Comparison of the time dependences of N, (t,2) (0); 4x((b,®2)~(b,(t)?)) (—);
and 4x(<ux(t)2>—<uy(t)2>) (- --) obtained from simulations on the 5-bead Fraenkel

chain at different A4 (0.5, 1, 2 and 4).

Figure 10

Comparison of the time dependences of |N,(t, 1) (©); 4><(<by(t)2>—<bz(t)2>) (—);
and 4><(<uy(t)2>—<uz(t)2>) (---) obtained from simulations on the 5-bead Fraenkel

chain at different 4 (0.5 1, 2 and 4); the vertical lines indicate the points

whereN, (t, 1) changes sign.

Figure 11

Superposition of theGg(t, 1) curves at different strains obtained from simulations on
the 5-bead Fraenkel chain as shown in Figure 2 by an upward vertical shift (multiplied

by 1at1=0.2and 0.5; 1.1 at A=1; 1.5 at A=2; and 3.5 a 1=4)

Figure 12
Comparison of the damping factorsh(1) (e) determined using eq 19 from simulations
on the 5-bead Fraenkel chain at different A with the h (1) curve calculated

numerically from egs 20 and 21; also shown are the values of h, (1) (a) as defined by

eq 22 obtained from the simulations.
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Figure 13
Comparison of theN, (t,A) (—) and|N,(t, )| (—) results obtained from simulations

on the 5-bead Fraenkel chain at different strains (4=0.5, 1, 2 and 4); the vertical lines

indicate the points where N, (t, 1) changes sign.

Figure 14

Comparison of the simulation values (@) of —N,(t,A)/N,(t,1)in the slow-mode
region obtained from the present study and the experimental values (0) in the terminal
region of the entangled system studied by Osaki et a with the numerically calculated
curve (—) equivalent to the Doi-Edwards expression with the independent-alignment

approximation.
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Figure 2
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Figure 3
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Figure 4
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Figure5
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Figure 6

120

100

1 1 1
o o o
[e0] © <

(0=1V)"9 (0=1v)D

20 -

Strain 4

217



Figure7
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Figure 8
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Figure9
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Figure 10
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Figure 11
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Figure 12
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Figure 13
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Figure 14
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