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Progress Report (2004～2006) for the Research Project Supported by NSC

Studies of Complex Fluid Systems:

Interplay of Computer Simulation, Theory and Experiment (1/3, 2/3)

複雜流體系統之研究:電腦模擬,理論及實驗之互補互成(1/3, 2/3)

(NSC 93-2113-M-009-015; NSC 94-2113-M-009-002)

主持人: 林銀潢 教授, 國立交通大學應化系

Professor Yn-Hwang Lin,

Department of Applied Chemistry,

National Chiao Tung University

This progress report will be expressed in terms of the major accomplishments made from the

NSC-supported research, as summarized below in two parts: A and B (five preprints submitted to

or to be submitted to the Journal of Physical Chemistry B for publication are attached).

Part A: A series of five papers on the thermorheological complexity related to glass transition

in polystyrene have been published in or submitted to the Journal of Physical Chemistry B(listed

at the end of this report), reporting the following important contributions:

(1) Demonstrate the validity and accuracy in practice of using the successful description of the

entropic region (long-time region) in terms of the extended reptation theory (ERT) for the

entangled system or in terms of the Rouse theory for the entanglement-free system as the

reference frame for analyzing the whole range of viscoelastic response: creep compliance J(t) line

shapes and viscoelastic spectra G’() & G”(), yielding important dynamic and structural

information related to the glass transition of polystyrene (see Figures 1 and 2 of paper 1; Figure 1

of paper 3; and Figures 13 and Table 1 of paper 5).

(2) First quantitative analyses of the creep compliance J(t) line shapes of nearly monodisperse

polystyrene samples over 5 decades of dynamic range (or as wide as 9 decades in time; as far as I

know, this is a record-breaking span of time), yielding the frictional-factor value in close

agreement with the values obtained previously from other types of measurements: relaxation

modulus, viscosity and diffusion. (see Figure 1, Figure 2 and Table 1 of paper 1; and Figure 1 of
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paper 3).

(3) From the results obtained from analyzing the J(t) line shapes, it is shown that the

thermorheological complexity in polystyrene behaves in a universal way, entangled or not. (see

Figures 4, 5 and 6 of paper 3).

(4) The basic mechanism for the thermorheological complexity (TRC) in polystyrene is

analyzed and shown to be also responsible for the breakdown of the StokesEinstein relation

(BSE) in fragile glass-forming liquids, such as OTP and TNB. The equivalent quantities in the

two effects are shown to behave in a similar way. (see Figure 1 of paper 4). The importance of

this study can be reflected by the comments of the two reviewers of paper 4, who support the

publication of the paper with recommendations for minor changes: “TRC and BSE is an

important issue for polymer scientists and physical chemist.”and“…the manuscript addresses an

important issue in glass forming liquid.”

(5) It is shown how the length-scales associated with the RouseMoody normal modes (for the

entangled system) or the Rouse normal modes (for the entanglement-free system) may be used as

the internal yardstick for estimating the characteristic length-scale of relaxation at the glass

transition temperature, giving ～3 nm consistently for three different polystyrene systems, two

entangled and one entanglement-free, which is also in agreement with the value obtained by other

studies. (see Figures 8 of paper 3). The importance of this result can be reflected by the comment

of a reviewer of paper 3, who would like to support the publication of the paper after it is

properly shortened: “To my opinion a highlight is the possibility to determine the length scale of

relaxation around Tg which, in agreement with different experiments, turns out to be around

3nm.”

(6) The comparison of dynamic quantities as reported in paper 2 clearly differentiates for the

first time the motion associated with a single Rouse segment from the -relaxation) due to the

lack of clear definition in the past and the proximity of one to the other in the time scale, the two

modes could be easily confused.

The research accomplishments as listed above have resulted from analyzing or benefited from the
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published data of the following laboratories: D. J. Plazek at the University of Pittsburg; M. D.

Ediger at the University of Wisconsin and T. Inoue et al at the University of Kyoto.

Part B: A series of two papers studying the stress relaxations, linear and nonlinear, of

entanglement-free Fraenkel chains will soon be submitted to the Journal of Physical Chemistry B

for publication. The important contributions in these two papers are highlighted as in the

following:

(1) The characteristic viscoelastic behavior of the Fraenkel chain is revealed, including (a)

distinctive two modes of dynamics; (b) the holding of the LodgeMeissner relation over the

whole time of relaxation; (c) nonzero second normal-stress difference.

(2) It is shown through analysis that the fast mode arises from the segment-tension fluctuations

or reflects the relaxation of the segment-tension arising from segments being stretched by the

applied step strain)an energetic interactions-derived dynamic process; while the slow mode

arises from the fluctuating segmental-orientation anisotropy or represents the randomization of

the induced segmental-orientation anisotropy)an entropy-derived dynamic process. The physical

basis for the distinctive coexistence of the energetic interactions-derived dynamics and the

entropy-derived dynamics, as observed in experiment, is fully revealed.

(3) Very significantly the slow mode is well described by the Rouse theory in all aspects: the

magnitude of modulus, the line shape and the number-of-beads dependence of the relaxation time.

In other words, with one Fraenkel segment substituting for one Rouse segment, it has been shown

that the entropic-force constant on each segment is not a required element to give rise to the

Rouse modes of motion, which have been typically observed in the long-time region of the linear

viscoelastic response of an entanglement-free polymer. This conclusion provides an explanation

resolving a long-standing fundamental paradox in the success of modern molecular theories of

polymer viscoelasticity based on the Rouse segment as the most basic structural unit)namely, the

paradox between the Rouse segment size being of the same order of magnitude as that of the

Kuhn segment and the meaning of the Rouse segment as defined in the Rouse chain model.
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(4) The holding of the LodgeMeissner relation)which was originally proposed based on a

phenomenological argument)over the whole time of relaxation as observed in the simulation is

proven analytically.

(5) The workings of the fluctuationsdissipation theorem and virial theorem are, respectively,

illustrated by the simulation, which are valuable examples in the teaching of statistical

mechanics.

Reports from Part A:

(1) Lin, Y.-H. “Whole Range of Chain Dynamics in Entangled Polystyrene Melts Revealed

from Creep Compliance: Thermorheological Complexity between Glassy-Relaxation

Region and Rubber-Fluid Region. 1”J. Phys. Chem. B 2005, 109, 17654.

(2) Lin, Y.-H.“Motion Associated with a Single Rouse Segment versus the Relaxation. 2”

J. Phys. Chem. B 2005, 109, 17670.

(3) Lin, Y.-H. “Universality in Thermorheological Complexity Related to Glass Transition

in Polystyrene Melts. 3”J. Phys. Chem. B, revised and resubmitted.

(4) Lin, Y.-H. “Thermorheological Complexity in Polystyrene Melts and Breakdown of the

StokesEinstein Relation in o-Terphenyl. 4”J. Phys. Chem. B, revised and resubmitted.

(5) Lin, Y.-H. “Range of Universality Regarding the Tg-Related Thermorheological

Complexity in Polystyrene Melts. 5”J. Phys. Chem. B, submitted.

Reports from Part B:

(1) Lin, Y.-H.; Das, A. K. “Monte Carlo Simulations of Stress Relaxations of

Entanglement-Free Fraenkel Chains. 1: Linear Polymer Viscoelasticity”J. Phys. Chem. B, to

be submitted.

(2) Lin, Y.-H.; Das, A. K. “Monte Carlo Simulations of Stress Relaxations of

Entanglement-Free Fraenkel Chains. 2: Non-Linear Polymer Viscoelasticity”J. Phys. Chem.

B, to be submitted
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Universality in Thermorheological Complexity Related to

Glass Transition in Polystyrene Melts. 3

Y.-H. Lin1

Department of Applied Chemistry

National Chiao Tung University

Hsinchu, Taiwan

Abstract

In paper 1, using the successful description of the entropic region (long-time region) in terms of

the extended reptation theory (ERT) as the reference frame, the creep compliance J(t) curves over

the whole range of two entangled nearly monodisperse polystyrene melts: samples A and B, were

quantitatively analyzed, characterizing the energetic interactions-derived glassy-relaxation

process occurring in the short-time region in a perspective way. In this report, the J(t) curves

and steady-state compliance 0
eJ of an entanglement-free nearly monodisperse polystyrene melt,

sample C, are equally quantitatively analyzed in terms of an equivalent scheme using the Rouse

theory instead of ERT as the reference frame. These studies show that the uneven

thermorheological complexity in J(t) arises from the temperature dependence of the glassy

relaxation being stronger in a simple way than that of the entropy-derived dynamics, as carried by

the frictional factor K. The structural-relaxation times S of samples A, B and C extracted from

the glassy-relaxation process are equally well separated into two decoupled quantities: one, s’,

determined entirely by the line shape of J(t) and the other, K’, converted by the predetermined

molecular weight-dependent parameter RK(M) from the frictional factor K calculated from the

time-scale shifting factor (K’=RK(M)K and S=18s’K’). With decreasing temperature, the

1 E-mail:yhlin@mail.nctu.edu.tw
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increase in s’represents the structural growth and characterizes the thermorheological complexity

while the increase in K’represents the frictional slowdown. The effect due to the Tg difference

among samples on S, s’and K’can be accounted for by expressing them as a function T=TTg

where Tg is defined as the temperature at which the structural-relaxation time S=1000 sec.

From this it is shown that the glass transition together with the thermorheological complexity

behaves in a universal way within the polystyrene system, entangled or not. The observed

universality supports the previously obtained result that the frictional factor K in ERT is in

quantitative agreement with that in the Rouse theory indicating the same footing at the

Rouse-segmental level for both theories. Representing important physical features of the

universality, it is shown that vitrification at the Rouse-segmental level occurs gradually in the

same way as T diminishes and the length-scale at Tg (or T=0) has nearly the same value ～3

nm for all the three studied samples.
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Universality in Thermorheological Complexity Related to

Glass Transition in Polystyrene Melts. 3

Y.-H. Lin

Department of Applied Chemistry

National Chiao Tung University

Hsinchu, Taiwan

1. Introduction

About forty years ago thermorheological complexity in polystyrene melts was first observed

by Plazek as the temperature approaches the glass transition temperature.2,3 The effect is

directly observed as the change with temperature in the creep-compliance J(t) line shapes of

entangled polystyrene samples. As entanglement gives rise to distinct features in the observed J(t)

curve)three bending regions along the course of time, the difference in temperature dependence

between different zones of the J(t) curve can be discerned easily. As reported in papers 1 and

2,4,5 the J(t) curves over the whole range of two entangled nearly monodisperse polystyrene

samples A and B (or s-A and s-B as in Table 1) have been quantitatively analyzed using the

successful description of the rubber(like)-to-fluid region6 (or, simply but less accurately or

specifically, the entropic region or the long-time/large-compliance region) by the extended

reptation theory (ERT)7,8,9,10,11 as the reference frame. With respect to the reference frame, the

2 Plazek, D. J. J. Phys. Chem. 1965, 69, 3480.

3 Plazek, D. J. J. Polym. Sci., Part A-2: Polym. Phys. 1968, 6, 621.

4 Lin, Y.-H. J. Phys. Chem. B 2005, 109, 17654.

5 Lin, Y.-H. J. Phys. Chem. B 2005, 109, 17670.

6 See the note at ref. 9 of ref 3 for the definition of the term“rubber(like)-to-fluid.”

7 Lin, Y.-H. Macromolecules 1984, 17, 2846.
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glassy-relaxation process occurring in the short-time region of J(t) at different temperatures was

analyzed in a perspective way. The relaxation times of the various dynamic modes in ERT are

expressed as the products of the frictional factor K and a structural factor; thus, the time-scale of

the large-compliance region of J(t) is characterized by the frictional factor K. In ERT610 as well

as in the Rouse theory8,10,12,13 the frictional factor K is defined by

22

2

mkT

b
K




 (1)

where , b2and m are the frictional constant, mean square bond length and mass of the Rouse

segment, respectively. As obtained from the analyses of relaxation modulus G(t) line shapes of

a series of nearly monodisperse polystyrene samples of different molecular weights and

calculated from the viscosity and diffusion data in terms of ERT, it has been shown that the

frictional factor K is independent of molecular weight as expected from the theory.3,610 As the

logical consequence of K being independent of molecular weight, ERT explains the

molecular-weight dependences of the zero-shear viscosity and steady-state compliance; and their

respective transition points, Mc and Mc
’.610 The proven validity of ERT serves as the

foundation for the quantitative description of J(t) over the whole range. With the G(t) functional

8 Lin, Y.-H. Macromolecules 1986, 19, 159.

9 Lin, Y.-H. Macromolecules 1986, 19, 168.

10 Lin, Y.-H. Macromolecules 1987, 20, 885.

11 Lin, Y.-H. Polymer Viscoelasticity: Basics, Molecular Theories, and Experiments;

World Scientific: Singapore, 2003.

12 Rouse, P. E. Jr. J. Chem. Phys. 1953, 21, 1271.

13 Bird, R. B.; Curtiss, C. F.; Armstrong, R. C.; Hassager, O. Dynamics of Polymeric

Liquids, Vol. 2, Kinetic Theory, 2nd ed.; Wiley: New York, 1987.
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form known (see section 2), the line shape of J(t) can be calculated from the G(t) with K fixed at

a certain value through the basic equation of linear viscoelasticity:

 
t

dtttGtJt
0

')'()'( (2)

The calculation can be accurately done numerically using the HopkinsHamming3,14,15 method

(see Appendix A of ref. 3). Then the frictional factor K can be determined from the shifting

factor obtained in the superposition of the calculated and measured J(t) line shapes; the K value

(Table 1) obtained from analyzing the J(t) result of sample A is in close agreement with the

previously obtained values (4.9×109±10% at 127.5oC),3 confirming the unique importance of K

and the validity of ERT. While being independent of molecular weight, K carries the

temperature dependence)often described by the Fulcher and TammannHesse (FTH) equation or

the WilliamsLandelFerry (WLF) equation16,17,18)of all the relaxation times of the processes in

the rubber-to-fluid region.3,610 As opposed to the entropic nature of the dynamics in this region,

the glassy-relaxation process that occurs in the short-time region is derived from the energetic

interactions among segments. It has been shown that the thermorheological complexity with

temporal unevenness in J(t) arises from the temperature dependence of the energetic

14 Hopkins, I. L.; Hamming, R. W. J. Appl. Phys. 1957, 28, 906; J. Appl. Phys. 1958,

29, 742.

15 Tschoegl, N. W. The Phenomenological Theory of Linear Viscoelastic Behavior;

Springer-Verlag: Berlin, 1989.

16 Ferry, J. D. Viscoelastic Properties of Polymers, 3rd ed.; Wiley: New York, 1980.

17 Fulcher, G. S. J. Am. Chem. Soc., 1925, 8, 339, 789; Tammann, G. and Hesse, G., Z.

Anorg. Allg. Chem. 1926, 156, 245.

18 Williams, M. L.; Landel, R. F.; Ferry, J. D. J. Am. Chem. Soc. 1955, 77, 3701.
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interactions-derived process being stronger than that of the entropy-derived dynamics in a simple

way,3,4 as characterized by the parameter s defined by

K
s G


 (3)

where G is the average glassy-relaxation time. s increases about an order of magnitude with

decreasing temperature over the range studied just above Tg in s-A and s-B.

According to the analysis in terms of eq 3,3,4 the thermorheological complexity should

occur to a polystyrene melt as long as its molecular weight is greater than that of a Rouse

segment, which has been estimated to be about 850 by various methods.19,20,21,22,23,24,25,26,27

Below the entanglement molecular weight, the viscoelastic response of polystyrene in the

long-time/low-frequency region (or the entropic region) is described by the Rouse theory.8,10,28

19 Ballard, D. G. H.; Rayner, M. G.; Schelten, J. Polymer 1976, 17, 349.

20 Norisuye, T.; Fujita, H. Polymer J. 1982, 14, 143.
21 Inoue T.; Okamoto, H.; Osaki, K. Macromolecules 1991, 24, 5670.

22 Inoue, T.; Hayashihara,H.; Okamoto, H.; Osaki, K. J. Polym. Sci. Polym. Phys. Ed.

1992, 30, 409.

23 Inoue, T.; Osaki, K. Macromolecules 1996, 29, 1595; Inoue, T.; Uematsu, T.; Osaki,

K. Macromolecules 2002, 35, 820.

24 Lin,Y.-H. J. Polym. Res. 1994, 1, 51.

25 Lin, Y.-H.; Lai, C. S. Macromolecules 1996, 29, 5200.

26 Lai, C. S.; Juang, J.-H.; Lin, Y.-H. J. Chem. Phys. 1999, 110, 9310.

27 Lin, Y.-H.; Luo, Z.-H. J. Chem. Phys. 2000, 112, 7219; Lin, Y.-H. J. Chin. Chem.

Soc.2002, 49, 629.

28 Lin, Y.-H.; Juang, J.-H. Macromolecules 1999, 32, 181: Note: blend solutions as

studied in this reference denote blends consisting of two polystyrene components: one
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In an entanglement-free case, the time/frequency range covered by the viscoelastic response is

not as wide as in an entangled case and the line shape is much more monotonous. As a result, it is

not as obvious to identify a region in the viscoelastic response where the

time(frequency)temperature superposition principle can be applied, reflecting that another

region does not follow the same temperature dependence)i.e. the manifestation of the

thermorheological complexity. Instead, the viscoelastic response changes its line shape over the

whole range greatly with a change in temperature. We shall show in this report that the same

thermorheological complexity occurs in an entanglement-free sample and is reflected by the

decrease in its steady-state compliance 0
eJ with temperature decreasing towards Tg as observed by

Plazek.29

A scheme of analysis in terms of eq 3 equivalent to that for analyzing s-A and s-B is used

for analyzing the 0
eJ and J(t) results reported by Plazek28 of a low-molecular-weight polystyrene

sample, as denoted by s-C in Table 1, by replacing ERT with the Rouse theory)because the

molecular-weight distribution of s-C is not that narrow, the Rouse theory becomes applicable here

even thought its Mw value is slightly greater than Me=13500 as will be explained in section 3.

Tg is defined by the temperature at which the structural relaxation time S reaches 1000 sec

for all the samples. Using the thus defined Tg as the common reference point, the dynamic and

with molecular weight M2 (weight fraction denoted by W2) much greater than

entanglement molecular weight Me=13500 and the other with molecular weight M1

slightly below Me, serving as the“solvent”for the high molecular-weight component as

far as the“dilution”of entanglement is concerned; and the entanglement molecular

weight in the blend solution is given by 2e
'
e /WMM  . With the increase in W2 the

system transits from entanglement-free region to entangled region as M2 becomes greater

than '
eM .

29 Plazek, D. J.; ORourke, V. M. J. Polym. Sci. A-2: Polym. Phys. 1971, 9, 209.
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structural quantities as obtained from analyzing the J(t) results of s-A, -B and -C are compared,

revealing the fundamental universal relationships between viscoelasticity)particularly the glassy

relaxation)and the glass transition.

2. G(t) Functional Forms in the Entanglement and Entanglement-Free Regions

Incorporating the glassy-relaxation process into ERT, the stress relaxation modulus G(t) for a

nearly monodisperse entangled sample is expressed3,610 as

 dMtMGMftF
M
RT

tG ),()()(
5
4

)( E
e


(4)

with

       )(/1)(/)(/
4
1

1),( CCeBBeXXE MtMMMtMMMttMG  



 (5)

and

)/()/(1)( GGGAA  tAttF  (6)

where f(M) is the molecular-weight distribution of the sample under study, G(t) represents the

glassy-relaxation process and AG is its relaxation strength; A(t) represents the RouseMooney

normal modes of motion10,30,31 of an entanglement strand with both ends fixed; X(t), the chain

slippage through entanglement links to equilibrate the uneven tension along the primitive chain;

B(t), the primitive-chain contour-length fluctuation; and C(t), the reptation motion corrected for

30 Mooney, M. J. Polym. Sci. 1959, 34, 599.

31 Doi, M. J. Polym. Sci., Polym. Phys. Ed. 1980, 18, 1005.
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the chain length-fluctuation effect. The relaxation times of these different processes are each

expressed as a product of the frictional factor K and a structural factor)a functional form

containing Me and/or M. We refer the functional forms of the four processes and their respective

characteristic (relaxation) times to the previous publications610 but point out that, normalizing

(dividing) all the relaxation times by the relaxation time of the first mode of A(t), 1
A , the whole

G(t) can be expressed as a universal function of the normalized molecular weight M/Me)the

topological universality in polymer viscoelasticity. It has been found that the glassy-relaxation

process is well described by the Kohlrausch, Williams and Watts (KWW) equation:

  10;)/(exp)/( GGG   tt (7)

For a relaxation process as given by eq 7, the average relaxation time is defined by





0

G
GGG )/1()/( 




 dtt (8)

where is the gamma function. Eq 3 has been used to characterize the relative position of the

glassy-relaxation times with respect to those in the A(t)-X(t)-B(t)-C(t) region, which are all

proportional to the frictional factor K (note: the relaxation times in A(t) are proportional to

K’=RK(M)K; see section 4).610 The combination of eqs 3 and 48 has been used to analyze the J(t)

results of s-A and -B at different temperatures consistently and quantitatively, revealing the basic

mechanism for the thermorheological complexity.3

It has been shown that in an entanglement-free melt8 or blend solution27 (see the note at ref

27), the viscoelastic spectrum over the entropic region is well described by the Rouse theory. The
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onset molecular weight of entanglement as observed by monitoring the initial deviation

from the Rouse theory as the molecular weight or concentration (weight fraction W2 of

the high-molecular-weight component) increases is shown to be in close agreement

with the entanglement molecular weight, Me or Me
’(as defined by eq 17) as calculated

from the plateau modulus ( eN 54 MRTG  or '
e2

'
N 54 MRTWG  ). As reported

in ref 9,9,10 the G(t) and G’() line shapes of a series of entangled blend solutions have

been analyzed in terms of the linear combination of ERT and the Rouse theory weighed

by the weight fractions of the two components in the blend solution (see refs 9 and 10

for details). From the extensive line-shape analysis, it has been shown that the

frictional factor K in ERT is the same as that in the Rouse theory within a small

possible experimental error (< 20%); in other words, the two theories have the same

footing at the Rouse-segmental level. Furthermore, as mentioned above, the

thermorheological complexity should occur to a polystyrene melt as long as its

molecular weight is greater than that of a Rouse segment. Thus, corresponding to eqs

46 for an entangled polymer melt, the relaxation modulus for an entanglement-free

melt is expressed by

 dMMt
M
Mf

RTtAtG ),(
)(

)()( RG
f
G  (9)

where f
GA is the full relaxation strength of the glassy-relaxation process and is related
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to AG of eq 6 by NGeG
f
G )4/5( GAMRTAA   (see the note at ref 31)32 and

R(t,M) represents the Rouse relaxation for the component with molecular weight M

as given by8,1012

















1

1
R exp),(

N

p p

t
Mt


 (10)

with

1)/int(c  mMN (11)

and

   NpN
MK

NpkT

b
p 2sin242sin24 22

22

2

2







  (12)

32 Because the relaxation times of the X(t), B(t) and C(t) processes are much

greater than the slowest relaxation time in G(t), it makes no difference for a practical

purpose to express the glassy relaxation either as the )(GG tA  term inside F(t) (eq 6)

or as a separate term )(G
f
G tA  as used in eq 9; note that incorporating )(GG tA  into

ERT or )(G
f
G tA  into the Rouse theory is intended to be only a phenomenological

description.
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where the function cint(x) converts a number x to an integer by rounding the fractional

part of x. N as defined by eq 11 leads to the numerically calculated rubbery modulus

at zero time closest to the value RT/m=3.75×107 dynes/cm2 with =1.0286 at

T=373K.

3. Analysis of the , Je
0 and J(t) Results

The polydispersity of a nearly monodisperse polymer sample is often given in

terms of the Mw/Mn ratio, which as can be easily affected by a small tail in the

molecular-weight distribution of the sample, is in general difficult to determine

accurately by GPC. Thus, the Mw/Mn data coming with any standard sample in general

can only be used as a reference rather than be taken as rigorous. Under such a

situation, f(M) for a nearly monodisperse polystyrene sample as appearing in eqs 4

and 9 is assumed to be well described by the Schulz distribution33 characterized by

the polydispersity parameter Z, giving Mw/Mn=(Z+1)/Z. And the Z value of a studied

system is determined as an adjustable parameter giving the best fitting to the line

shape of the measured stress-relaxation modulus or viscoelastic spectrum. The

justification for such an approach is that the obtained Z values are well-behaving, all

giving Mw/Mn 1.03 in the series of the samples studied in ref 7, well within the range

expected for a nearly monodisperse distribution.

The viscoelastic properties of s-A, -B and -C as analyzed using ERT or the Rouse

33 Schulz, G. V. Z. Physik. Chem., Abst. B 1943, 43, 25; Tung, L. H. Polymer

Fractionation; Cantow, M. J. R Ed.; Academic: New York, 1967.
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theory as the reference will be compared in this study; their values of Mw, Z(Mw /Mn),

K (at127.5oC), AG
f×109 and as well as the reference theory used in the analysis are

listed in Table 1 for easy reference below. The studies of s-A and s-B have been

reported in detail in papers 1 and 2; mainly s-C will be studied in the following. In

Table 1, the results of sample E167 from a previous study is also listed for a latter

comparison.

To achieve quantitative agreements between the calculated and measured in both

0
eJ and J(t) of s-C, the proper choice of the functional form)i.e. either eq 4 or 9, and

the Z parameter for the molecular weight distribution f(M) as well as the AG (or f
GA )

and  values for the glassy relaxation matter. They can be best found by a

trial-and-error process until consistently quantitative agreements are obtained. The

functional form chosen must be well justified and consistent with other studies and

the obtained parameters must be within the expected range. A full discussion of the

uniqueness and significance of the involved fitting parameters and their

determinations can be found in section 3.4 of paper 1.3 For s-C, we have found that

the combination of eq 9 and Z20 gives the best result)the analysis does not have the

resolution to differentiate, say, between Z=20 and Z=21, while a slight improvement

of Z=20 over Z=25 can be noticed. In fact, the uses of eq 9 and Z=20 are closely

related. In view of s-C’s Mw value being slightly above Me (=13500),8,10,27 eq 4

instead of eq 9 should be used. However, s-C’s molecular-weight distribution,

though nearly monodisperse, is broad enough to have a sufficiently large amount of

components with molecular weights below Me, significantly diluting the entanglement.
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At Z=20, s-C has 21 wt% of the distribution below Me. The dilution increases the

entanglement molecular weight from Me to 17090'
e M based on 9,10

2

e'
e W

M
M  (13)

As w
'
e MM  , s-C immerses in an entanglement-free state. As opposed to this, the

stress-relaxation modulus and storage-modulus spectrum over the entropic region of

E167 with a similar molecular weight (see Table 1), were successfully analyzed in

terms of ERT with Z=120 corresponding to Mw/Mn<1.01 but could not be described

by the Rouse theory.7,8,10 See the Appendix for additional discussion of the

viscoelastic difference between s-C and E167.

With the explanation as given above, we shall use eq 9 as the chosen functional

form in discussing the analysis of the 0
eJ and J(t) results of s-C below. With G

being related to K by eq 3, an increase in s will lead to a decrease in 0
eJ . Thus, a

computer program can be set up to scan through a wide range of s to calculate a large

set of 0
eJ values, from which the best matching with the values measured at different

temperatures can be identified. In an entangled system, because of the broad

relaxation-time distribution in the rubber-to-fluid region, the 0
eJ value is not sensitive

to the change in s when the temperature is not close to Tg)here s is relatively small;

on the other hand, the 0
eJ value is difficult to measure when the temperature is close

to Tg. Thus, s for an entangled system can mainly be obtained from analyzing the line



19

shape of J(t). For s-C, s can be extracted from both the analyses of J(t) and 0
eJ .

The f
GA and values listed in Table 1 for s-C allow consistent and quantitative

matching of the calculated with the J(t) line shapes from 93 to 119.4oC and

the 0
eJ values from 93 to 134.1oC as obtained by Plazek. The f

GA and values are

very much uniquely dictated by the compliance values and line shapes, respectively,

of J(t) at 93 and 96oC)namely, the short-time region of J(t). Similarly as shown in

paper 1 for s-A and s-B, the time range covered by the available J(t) results of s-C at

higher temperatures is only affected by the product of f
GA and

G
 (or s with K

being fixed) and is virtually independent of . As shown in Table 1, the value of

s-C is basically consistent with those obtained for s-A and s-B. And the f
GA value for

s-C is between those for s-A (corresponding to AG=5482) and s-B (corresponding to

AG=4119). As explained in paper 1, the f
GA value of s-B being smaller is due to the

contamination by residual plasticizers in the sample (see ref 2 about the residual

plasticizers). That the f
GA value of s-C is smaller than that of s-A should be due to its

smaller molecular weight.

We use 100oC as the reference temperature at which the calculated and

measured 0
eJ values are matched; the same will be used for the compliance

coordinate in the comparison of the calculated and measured J(t) line shapes. Thus,

the 0
eJ values listed in Table II of ref. 28 are first adjusted by the multiplication with

the factor 00TT  where 0 is the density at T0=373K; the adjusted 0
eJ will be

denoted by 0
epJ . With the f

GA and  values as chosen, from matching the
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calculated 0
epJ values with the adjusted experimental values the s values at different

temperatures are obtained. These s values are then used to calculate the J(t) line

shapes for comparison with the measured ones. In general, the agreement between the

thus calculated J(t) and the measured is quite close.

The s values obtained from matching the calculated with the measured 0
epJ values

have been modified somewhat in some cases to obtain a better agreement between the

calculated and measured J(t) line shapes as shown in Figure 1. The experimental J(t)

results shown in Figure 1 are those shown in Figure 1 of ref. 28, which have all been

reduced to using 100oC as the reference temperature for the compliance)i.e.,

multiplied by 00TT  . Accordingly, all the theoretical J(t) curves are calculated

at 00TT  =1; following Plazek’s notation,28 the thus calculated J(t) is denoted by

Jp(t))as used above and will be used below, the corresponding viscoelastic quantities

G(t), 0
eJ and will be denoted by Gp(t), 0

epJ and p, respectively. In this study, each

of the theoretical Jp(t) curves is first calculated with K=104. In superposing the

calculated on the measured Jp(t) at a certain temperature, only shifting along the time

axis is allowed. From each superposition, a time-scale shifting factor, SF, is

obtained, which, when multiplied by 104, gives the K value at the corresponding

temperature. s values obtained from fitting to the Jp(t) line shapes and the

corresponding SF and K values at different temperatures are listed in Table 2. Using

the obtained s values, the viscosity values with K set at 0.0001 are also calculated, as

listed under the p(K=104) column in Table 2. Because the glassy relaxation

occurs in the short-time region, its contribution to the zero-shear viscosity, p, often
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referred to as the internal viscosity,12 is in general negligible if the molecular weight

of the sample is sufficiently large. The contribution of the internal viscosity to p in

s-C is in general significant because of its relatively low molecular weight. The

comparative importance of the contributions of the internal viscosity to p at different

temperatures and the associated changes in the Jp(t) line shape of s-C are clearly

illustrated in Figure 2, with all the curves calculated with K=104 corresponding to

those shown in real time in Figure 1. Numerically the contributions of the internal

viscosity can be obtained by comparing the p(K=104) values calculated without (i.e.,

setting f
GA =0; see the first row of Table 2) and with the glassy-relaxation process

using the s values determined at different temperatures. The enhancement by the

internal viscosity is expressed as the ratio, p(K=104)p(K=104; f
GA =0), as also

listed in Table 2. The contribution of the internal viscosity is about 11% at 134.1oC

and increases with decreasing temperature, enhancing the viscosity by a factor of 4.6

at 93oC. As shown in Figure 2, the large enhancement by the internal viscosity at a

low temperature is reflected by the large shift of the flow region in Jp(t) to the longer

normalized time from one at a high temperature)the term “normalized time”is used

because the time-scales of all the curves are on the same basis of K=104. While the

inclusion of the glassy relaxation process allows us to adjust the s values so that the

calculated Jp(t) line shapes are in close agreement with the measured at different

temperatures, whether the glassy-relaxation process contributes to the viscosity in the

right amount at different temperatures need be checked. Multiplying the p(K=104)

values by SF and the ratio 00TT  gives the theoretical viscosity values at the
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corresponding temperatures, as listed under the (calcd) column in Table 2. The

obtained (calcd) values are in close agreement with the measured as also listed under

the (exp) column in Table 2, further confirming the validity of the present analysis.

This is also illustrated by the agreement between the calculated and measured Jp(t)

long-time limit lines, tp, at different temperatures as also shown in Figure 1.

As the Jp(t) result of 134.1oC is not available, its SF and K values cannot be

obtained from the Jp(t) line shape analysis. However, with its s value obtained from

matching the calculated 0
epJ with the measured, the K value of 134.1oC can be

calculated from the K values at other temperatures by using the

temperature-dependence information of K that can be extracted from the viscosity

data. Dividing a measured viscosity value by both 00TT  and the viscosity

enhancement factor p(K=104)p(K=104; f
GA =0), a viscosity value, denoted by R,

is obtained, which is free from the contribution of the internal viscosity and, thus, is

only proportional to K. Then, the K value at 134.1oC can be calculated from

multiplying the K values at other temperatures by the ratios R(134.1oC)R(toC).

In this way, the average K value at 134.1oC obtained from the K values at other seven

temperatures is 1.06x109 with a standard deviation of only 3.5%. As any

substantial error in s)especially at low temperatures)can cause a large error in the

calculated R value, the small standard deviation supports that the s values are

correctly obtained from the Jp(t) line-shape analysis.

The two set of s values as a function of temperature: one obtained from the

analysis of 0
epJ and the other from that of Jp(t), are in good agreement as shown in
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Figure 2, indicating the consistency of the data analyses. The consistency is also

indicated by the close agreement of the measured 0
eJ values and those calculated based

on the s values obtained from the Jp(t) line-shape analysis, as listed in Table 2.

The K values shown in Table 2 can be well fitted to an equation of FTH form.

Using the FTH equation obtained from the fitting, the K values at 127.5 and 93.756
oC

are calculated and also listed in Table 2, with the former also listed in Table 1; the K

values of s-C at different temperatures will be compared with those of s-A in the

discussion section and the result of K (and S) at 93.756
oC will be used in sections 5

and 7 studying the molecular-weight dependence of Tg and the length-scale at Tg.

4. Dynamic Anisotropy in Entangled Systems

The K values obtained from analyzing the viscoelastic results at 127.5oC of 11

nearly monodisperse samples of different molecular weights ranging from 3.4x104 to

6x105 (see Appendix B of ref 3)3,7,10 in terms of ERT are independent of molecular

weight, giving an average value of 4.9×10910%. As listed in Table 1 the K value

of E167 at ew 24.1 MM  is only about 20% below the average value. While these

results of entangled systems indicate the molecular-weight independence of K

extending to a molecular weight virtually as low as just above Me, Tg starts to

decrease with decreasing molecular weight at around 10Me. From the view point of

the conventional concept of the relation between viscoelastic dynamics and Tg as

related to free volume,15,34,35,36 this contrast represents a paradox. The paradox has

34 Doolittle, A. K. J. Appl. Phys. 1951, 22, 1471; 1952, 23, 236; 1952, 23, 418.
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been explained by the physical picture710,37,38 that the free volume at both chain ends

is always available to the modes of motion along the primitive path (of the tube

model), whose relaxation times are all proportional to K. Such a mechanism may

allow K to be disengaged from a dependence on the free volume in the bulk and

become independent of molecular weight. Thus, as proposed previously,710,36,37 the

decrease in Tg with decreasing molecular weight in the entangled region should be

related to the molecular-weight dependence of the K’/K ratio as described by the

empirical equation:

   769.0
1567.4)(643.0exp

525.2
)(

'

e





MM

MR
K
K

K (14)

where K’is the frictional factor in the RouseMooney process A(t/A) (eq 9.B.20 of

ref 10 or eq 20 of ref 6 with K replaced by K’). RK(M) as given by eq 14 has been

obtained from fitting the empirical form of equation to the obtained K’/K values at

different molecular weights.7,9,10 K’/K>1 indicates the dynamics in an entangled

system is anisotropic in respect of the frictional factor. As the A(t/A) process is the

motion of an entanglement strand with both ends fixed, unlike K being for the modes

of motion along the primitive path that are always facilitated by the free volume at

35 Cohen, M. H.; Turnbull, D. J. Chem. Phys. 1959, 31, 1164; Turnbull, D.; Cohen, M.

H. J. Chem. Phys. 1961, 34, 120.

36 Berry, G. C.; Fox, T. G. Adv. Polym. Sci. 1968, 5, 261 and references therein.

37 Lin, Y.-H. Macromolecules 1990, 25, 5292.

38 Lin, Y.-H. Macromolecules 1991, 24, 5346.
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both chain ends, K’should be like Tg sensitive to the free volume in the bulk. The free

volume increases with increasing number of chain ends per unit volume, and thus

increases with decreasing molecular weight. RK(M) has a plateau value 3.3 in the

high-molecular-weight region and starts to decline with decreasing molecular weight

at around 10Me)where Tg also starts to decrease)to the limiting value 1 as M/Me1.

These results indicate that because of the tube (of the reptation model), the K value in

the entanglement region is not affected by the decline in Tg with decreasing molecular

weight. The tube is very much intact to a molecular weight as low as just above Me

as K has been rigorously shown independent of molecular weight to this point at and

above 127.5oC 39 . The molecular-weight independence of K is subjected to a

correction caused by the strong structural formation when the temperature is

significantly closer to Tg than 127.5oC as will be discussed in section 8.3.

The variations in s with temperature for s-A, -B, and -C are shown together in

Figure 3. The results of both the entangled (s-A and s-B) and entanglement-free (s-C)

systems are obtained through an equivalent analysis scheme, involving ERT as the

reference frame in the former and the Rouse theory in the latter. In the case of s-A

and s-B, the s values are obtained entirely from the Jp(t) line-shape analysis, while in

the case of s-C, the s values are obtained from both the analyses of the 0
epJ values and

Jp(t) line shapes. The s values for both the entangled and entanglement-free systems

39 As shown in Table 1 of ref 3, K is independent of molecular weight at 127.5 and

174oC. As pointed out in ref 4, it is also true that the temperature dependence of

viscosity at different molecular weights can be superposed on one another over the

temperature range covered by viscosity measurements as reported in ref 28.
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change in a similar way in a similar range of temperature above their individual Tg’s.

This similarity between the entangled and entanglement-free systems is significant,

considering that different molecular theories are involved. Yet, this similarity and the

consistency and relationships among them as will be further revealed from the

analysis given in section 6 should not be surprising, considering the two basic

conclusions derived from previous studies and listed below, on which the extraction

of s values is based:

(1) ERT and the Rouse theory have the same footing at the Rouse-segmental

level)the frictional factor K in both theories has been shown to be the same within a

small experimental error.9,10

(2) The thermorheological complexity should occur as long as the molecular

weight is greater than the Rouse segment size.3,4

Neglecting the small difference in Tg between s-A and s-B, it was pointed out3

that their s values at the same temperature follows the molecular-weight dependence

of K’/K, namely, RK(M) given by eq 14. This molecular-weight dependence of s is

also borne out by the analysis (including s-C’s results) taking the Tg difference into

account, which will be given in section 6. s and K’/K having the same

molecular-weight dependence should be closely related to the fact that the G(t) and

A(t) processes are next to each other in time-scale.3,4

To eliminate this molecular-weight dependence in s, we define

')/'(
' G

KKK
s

s


 (15)
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in which eq 3 has been used for the second equality. Although the s values of s-C

have been obtained from analyzing its Jp(t) and 0
eJ results by involving the Rouse

theory rather than ERT, we may regard its s to be the same as that of a sample at the

same molecular weight, but with a molecular-weight distribution sufficiently narrow

for ERT to be applicable. From the analyses of the relaxation modulus and

viscoelastic spectrum of E167 in terms of ERT as reported previously7,8,10 and

mentioned above, K’/K=1 was obtained within a small experimental error (<10%)

indicating, as eq 14 does, K’/K=1 as MwMe. When the tube (of the reptation model)

is disappearing and the Rouse theory becoming applicable at Me, K’=K is meaningful

physically as it indicates that the dynamics in the system becomes isotropic as it

should.810 As the molecular weights of both s-C and E167 are so close to Me, we may

regard the s values of s-C as corresponding to K’/K=1. In other words, s’=s for s-C.

Furthermore, in the entanglement-free region of molecular weight, there is only one

frictional factor K as the dynamics is isotropic; s’=s should always be applicable.

5. Tg Defined by Structural Relaxation Time S=1000 sec.

In paper 1, the structural-relaxation or -relaxation time S was defined by the

time when the ratio between the contribution of the glassy-relaxation process (G) to

the relaxation modulus and that from all the entropic processes (R), G/R, reaches 3.3

The structural relaxation time defined this way is basically equivalent physically to

that defined by3,4
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GS 18  (16)

which was shown, in the case of s-A, to be in close agreement with one of the two

traditional ways of defining the -relaxation time: the time at which the relaxation

modulus reaches 108 dynes/cm2 (see Figures 8 and 9).15 The detailed physical

meanings of the structural relaxation time as defined by these different but basically

equivalent criterions are referred to papers 1 and 2. As explained previously, the

structural relaxation time defined by eq 16, besides reflecting the effect of the glassy

relaxation on the bulk mechanical properties, has the virtue of following exactly the

temperature dependence of the involved dynamic process, unlike the other definitions

which are affected by the change in the line shape with temperature.

Using eq 15, the structural relaxation time given by eq 16 may be rewritten as

''1818S KssK  (17)

From the J(t) line-shape analysis at the calorimetric Tg (97oC) of s-A, it was shown3,4

that the structural-relaxation time S as defined by eq 17 reaches 1000sec and that the

length scale is about 3nm, which is of the same order of magnitude as estimated by

other methods.40,41,42,43,44 In the literature,45,46,47 S reaching 1001000 sec with

40 Sillescu, H. J. Non-Crystal. Solids 1999, 243, 81; and references therein.

41 Hempel, E.; Hempel, G.; Hensei, A.; Schick, C.; Donth, E. J. Phys. Chem. B 2000,

104, 2460.
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decreasing temperature has been used as the criterion for defining Tg. In view of theS

value for s-A at its calorimetric Tg, we shall use S=1000 sec for defining the Tg’s of

s-B and s-C as well in the analysis below; such a criterion will allow us to have a

common reference point equivalent for all the three samples. It will be shown that

the thus defined Tg’s are consistent with values expected from calorimetric

measurements. The dynamic and structural quantities: K, K’, s and S obtained at the

thus defined Tg and different temperatures from analyzing the creep results of s-A are

listed in Table 3.

By interpolation)using the FTH equation obtained from the least-squares fitting

to the S values listed in Table 2, we obtained S=1000 sec at 93.756
oC, which is then

regarded as Tg of s-C. Then, as also listed in Table 2, K and s values of s-C at this

temperature can be obtained from their values at different temperatures by

interpolation)using the FTH equation for K obtained from the least-squares fitting as

explained above and a modified FTH equation (the form as given by eq 19) for s.

s-B is contaminated by residual plasticizers;2 it has been shown that its frictional

factor K is smaller than that of a normal sample as expected.3 Because of the

42 Tracht, U.; Wilhelm, M.; Heuer, A.; Feng, H.; Schmidt-Rohr, K.; Spiess, H. W. Phys.

Rev. Lett. 1998, 81, 2727.

43 Cicerone, M. T.; Blackburn, F. R.; Ediger, M. D. J. Chem. Phys. 1995, 102, 471.

44 Arndt,M.; Stannarius, R.; Groothues, E.; Hempel, E.; Kremer, F. Phys. Rev.

Lett. 1997, 79, 2077.

45 Angell, C. A. Science 1995, 267, 1924; and references therein.

46 Sillescu, H. J. Non-Crystal. Solids 1999, 243, 81; and references therein.

47 Angell, C. A. J. Non-Cryst. Solids 1991, 131-133, 13.
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contamination, the Tg value of s-B is also somewhat smaller than that of a normal

sample at the same molecular weight.2 The Tg of s-C is smaller than that of s-A

because of its smaller molecular weight. Here we shall treat in a similar way the

contamination by residual plasticizers in s-B causing its Tg to become smaller. In

other words, we shall also use S=1000 sec to define the Tg of s-B as it is. From the s

and K values extracted from the Jp(t) of s-B available at the lowest temperature

(98.3oC), S=779 sec is obtained, which is somewhat smaller than the criterion

S=1000 sec. Because the difference is not large, we may calculate the temperature

at which S=1000 sec by extrapolation using the FTH equation that has been obtained

from fitting the S values at different temperatures. The Tg determined this way for

s-B is 98.025
oC. Then from the FTH equation best describing the K values of s-B at

different temperatures, the K at this temperature is obtained as listed in Table 3.

The s or s’value at Tg is then calculated from thus obtained S and K values, using eq

17. The K, K’, s and S values of s-B at different temperatures including those at Tg

as determined above are listed in Table 3.

As it is well-known and commonly observed that the structural-relaxation time

S increases sharply as the temperature approaches Tg from above. The temperature

dependence of s of s-A and s-B has been obtained in paper 1 and that of s-C above; as

shown in Figure 2, the s values of the three samples increase in a similar way as the

temperature decreasing toward Tg. The Tg as defined above allows us to have a

common reference point equivalent for the different samples, with respect to which

we may compare the obtained S and s or s’in a perspective way.
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6. Dependences of S, s’and K’on T=TTg

The results obtained from the Jp(t) line-shape analyses of s-A, -B and -C

strongly suggest that the S and s’values of the three samples depend in a universal

way within the polystyrene system on how far the temperature is away from each

individual Tg. Using the above defined Tg individually for each sample, we display

the S values of s-A, -B and -C as a function of the temperature difference from Tg:

T=TTg, as shown in Figure 4. In spite of the facts that s-C has a significantly

smaller Tg due to its smaller molecular weight and that s-B is contaminated by

residual plasticizers, the S values of the three samples fall closely on the same line.

Clearly, because the contamination in s-B by plasticizers is so low that s-B keeps the

Tg-related basic nature of polystyrene. And the residual plasticizers in s-B function

in a similar way as a low-molecular-weight polystyrene component would lower the

Tg of the host slightly. The close agreement among the three samples strongly

supports the way of using T to account for the Tg difference. The S values can be

collectively well fitted by the FTH equation of the form:

)(
)log( S






tT
b

a


 (18)

as shown by the calculated curve in Figure 4 with a=11.5045, b=539.3497 and

t=37.1827. The S values as shown in Figure 4 has the exactly same temperature

dependence as that of
G

 , purely reflecting that of the glassy-relaxation process

itself; in other words, free from the effect of the change in line shape of the
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viscoelastic spectrum. The consistency of the T dependence of S among the three

samples should make one prefer using eq 16 or 17 to define the structural-relaxation

time.

In Figure 5, the s’values of s-A, -B and -C are shown together as a function of

T. The consistency as revealed in the comparison indicates that the three sets of s’

values basically follow a universal curve for polystyrene; the thermorheological

complexity as analyzed in this study)i.e. expressed in terms of s’)is a general

phenomenon whether the system is entangled or not. This consistency supports the

validity of the two previously derived conclusions listed in section 4, upon which all

the analyses of s-A, -B and -C have been based. The T dependence of s’of the

three samples can be collectively well fitted by a modified FTH form:

s
s tT

c
tTccs


 3

21 )()'log( (19)

The curve shown in Figure 5 has been calculated with c1=4.2189, c2=0.0364,

c3=375.6136 and ts=55.0922.

The consistency of the T dependences of s’and S among the three samples

implies that the same consistency should occur to K’according to eq 17; indeed so as

illustrated in Figure 6. In s-C, the dynamics is isotropic; there is only one frictional

factor indicating K’=K in effect. Furthermore, K’/K1 when the molecular weight

approaches Me, as observed in E167. Indeed, when the dynamics is isotropic, it is K

itself that is sensitive to the free volume in the bulk, and thus related to Tg. Thus,
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whenever K’of s-C is indicated below, automatically its K is meant or used, just as s

and s’are the same in the case of s-C as explained in section 4. The T dependence of

K’of s-A, -B and -C can be collectively fitted by the FTH equation of the form given

by eq 18 with the notations S, a, band treplaced by K’, aK, bK, and tK, respectively.

Shown in Figure 6 is the curve calculated with aK=15.3931, bK=536.9037 and

tK=42.8976. As the molecular-weight dependence of Tg has been accounted for by

expressing the dynamic quantity in terms of T, the fact that the K’values of s-A, -B

and -C as a function of T fall on the same curve supports that the molecular-weight

dependence of Tg is directly related to the molecular-weight dependence of K’as

proposed previously710,36,37 and pointed out above. In the meanwhile, K is

independent of molecular weight at and above 127.5oC; therefore, as opposed to the

consistency in the T dependence of K’among s-A, -B and -C, their K values are not

expected to have a common T dependence, as shown in Figure 7. Further discussion

of K at temperatures very close to Tg will be made in section 8.3.

It is interesting to point out that the obtained best values t=37.1827, ts=55.0922

and tK=42.8976 imply that the S, s’and K’values become infinitely large each at a

temperature in the range 3560 degrees below Tg. The combination of

t=37.1827<tK=42.8976 and b=539.3497>bK=536.9037 is consistent with the fact that

S has a stronger temperature dependence than K’. For S being the product of s’and

K’(eq 17), as inherent in the procedure of analysis, an error in s’tends to be canceled

by an opposing one in K’. Because of such a mutual cancellation, the T

dependence of S has smaller fluctuations of data than that of either s’and K’. In

spite of some fluctuations in the data points, the consistency of the T dependences of
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s’and K’among the three samples as well as the implied universality is very clear.

Such a consistency is particularly significant considering the fact that s’values are

determined entirely by the line shapes of J(t) while K’values are converted from K

values which are determined from the shifting factors SF (see section 3). These

results indicate that the T dependence of K’serves as an intermediate between this

universality in thermorheological complexity occurring in the short-time region and

another universality of topological nature occurring in the long-time region: On the

one hand, just as for s’, it requires a Tg correction to show the consistency in K’; on

the other hand by the predetermined parameter RK(M) it is converted from K, which is

independent of molecular weight at and above 127.5oC.37 The importance of RK(M)

cannot be overemphasized; without it, the universal T dependences of s’and K’

cannot be obtained.

7. Information in G(t) as Extracted from the Analysis

7.1. Length-Scale at Tg

With the s (or s’) and K (or K’) values at Tg for s-A, -B and -C as determined in

section 5, the Gp(t) curves of the three samples at their individual Tg points may be

calculated, using eqs 48 for s-A and s-B and eqs 712 for s-C. The three calculated

Gp(t) curves are shown together in Figure 8 for a comparison that would be revealing.

In the figure, the curves calculated by setting AG (or f
GA )=0 are also shown; in each set

of curves, the area between the full curve and the curve with AG (or f
GA )=0 represents

the contribution of the glassy-relaxation process to the relaxation modulus. For s-A
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and s-B, the curves calculated without both the glassy-relaxation and RouseMooney

normal modes are also shown; the area between a thus calculated curve and that with

AG=0 represents the contribution of the RouseMooney normal modes to Gp(t).

Also indicated in the figure are the positions in time corresponding to the relaxation

times of the Rouse normal modes in s-C (calculated from its K value) and the

relaxation times of the RouseMooney normal modes in s-A and s-B (calculated from

their K’values; K’=1.61K in s-A and K’=3.16K in s-B3).

It has been proposed in paper 1 that the positions of the relaxation times of the

normal modes may be used as“graduations”of a yardstick for estimating the extent of

the influence of the glassy-relaxation process. The relaxation time of the p-th

normal mode, p
A (in the RouseMooney process of s-A and s-B) or p (in the Rouse

process of s-C), is associated with a length-scale given by10,48

5.02 )/( pap  (20)

with a standing for the entanglement distance in the entangled case (s-A and s-B) or

standing for the end-to-end distance in the entanglement-free case (s-C). The value a

may be calculated from the characteristic ratio C or equivalently K

48 Doi, M.; Edwards, S. F. The Theory of Polymer Dynamics; Oxford Univ. Press:
New

York, 1986.
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(=0.43x102nm2/Da for polystyrene);10,49,50 one obtains e
2 MKa  =58.1 nm2 for

s-A and s-B, and w
2 MKa  =70.5nm2 for s-C. One sees in Figure 8 that the

vertical dotted line at the time 1000 sec representing the structural-relaxation time S

at Tg passes through between the relaxation times of the seventh and the eighth normal

modes in all three cases. Using the relative position of S=1000 with respect to

8
A

7
A and (in s-A and s-B) or to 87 and (in s-C), we may calculate from the values

of 87 and  (eq 20) the length-scale at Tg by interpolation. The values so

obtained are 2.76, 2.87 and 3.0nm for s-A, -B and -C, respectively. These values are

consistent with one another, indicating the universality of the characteristic

length-scale at T0; at the same time, they are nearly the same as that estimated by

the calorimetric method.39,40

7.2. Change in Length-Scale with T

For illustrating the change in length-scale with T occurring in all the studied

samples in perspective, shown in Figure 9 is the comparison of the Gp(t) curves of the

three samples calculated at T=9.7o, where S=1 sec is expected according to the

calculated curve shown in Figure 4. The parameters: s’and K’(or s and K) used to

calculate the Gp(t) curve for each of the samples are obtained from the values

determined at different temperatures by interpolation through least-squares fitting. It

is shown in the figure that the vertical dotted line at 1 sec representing the

49 Lin, Y.-H. Macromolecules 1987, 20, 3080.

50 Fetters, L. J.; Lohse, D. J.; Richter, D.; Witten, T. A.; Zirkel, A. Macromolecules

1994, 27, 4639.
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structural-relaxation time occurs before the relaxation time of the highest Rouse or

RouseMooney mode by about an equal “distance”in all three cases)equivalent to

log1.9, log2.0 and log1.6 for s-C, -A and -B, respectively)indicating a universal effect.

S=1 sec being shorter than the motional time of a single Rouse segment means that

the length-scale associated with the structural-relaxation process is shorter than the

Rouse-segmental length, ～ 2nm, and indicates a rubbery state, as opposed to

vitrification at the Rouse-segmental level at Tg or T=0 as indicated by what is shown

in Figure 8.

Heuer and Okun51 have simulated the dynamics of entanglement-free chains

using the bond fluctuation model which contains the effect of intermolecular

interactions; based on the study, they have presented a sketch (Figure 12 of ref 50)

showing the encroaching of the heterogeneous dynamic mode on the homogeneous

dynamic modes at larger length-scales with decreasing temperature. As discussed in

paper 1,3 dynamic heterogeneity is enhanced as s’increases with temperature

decreasing towards Tg. Thus, with the homogeneous modes as corresponding to the

Rouse modes and a one-to-one correspondence between length-scale and time-scale,

the sketch given by Heuer and Okun may represent a rough picture of the actual

results of entanglement-free case shown in Figures 8 and 9.

8. Discussion

8.1. Structural Factor and Frictional Factor of Viscosity

51 Heuer A.; Okun, K J. Chem. Phys. 1997, 106, 6176.
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The free-volume theory together with the molecular-weight dependence of Tg

led to the notion that the friction constant decreases with decreasing molecular weight

below a certain point.15,3335 Traditionally the viscosity data are corrected to a

state with presumably the same friction constant for studying the structural factor of ;

after the correction, it is generally observed that M below Mc, which is about

2.4Me, and 4.3M above Mc.35 To isolate the information of the structural factor,

the viscosity values at different molecular weights may be compared at equal distance

from individual Tg’s rather than at the same temperature. As viscosity is dominated

by the slow modes of motion, the correction for the Tg difference implies that the

correction is mainly made to the modes of motion whose relaxation times are

proportional to K. This conventional notion of the relation between viscoelasticity

and Tg contradicts directly what have been revealed in our previous studies:610 K is

independent of molecular weight at and above 127.5oC to as low as just above Me;

and K’starts to decline from a plateau value of 3.3K around 10Me with decreasing

molecular weight to become identical to K when the molecular weight approaches Me.

Although, the conventional way of Tg correction for viscosity doesn’t contain an

element equivalent to the dynamic anisotropy (i.e., K’/K=RK(M)1), it was

proposed8,37 that the conventional way of correction may be equivalent in a practical

sense approximately to correcting for the molecular-weight dependence of K’/K.

Indeed, if the viscosity is calculated with K’/K fixed at its plateau value in the

high-molecular-weight region, 3.3, rather than following RK(M) given by eq 14, the

viscosity curve numerically calculated from ERT has an apparent M relation

below Mc and is closely approximated by 4.3M above Mc; and the transition point
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Mc that can be identified in the calculated curve is in close agreement with the

experimental value, 33000 (see Figures 1 and 2 of ref. 8). It has been shown that the

difference between the conventional correction and the molecular theoretical

correction is not great and may be easily buried in experimental errors.37 In other

words, the molecular theoretical correction has basically “explained”what has been

obtained through the conventional phenomenological way. Theoretically such a

molecular correction is valid when the contribution of the glassy-relaxation

process)i.e. the internal viscosity)is negligible as at temperatures sufficiently far

above Tg (Tg +20o), where s is small. Most likely due to the lack of viscosity data

in the temperature range close to Tg, the conventional Tg correction for viscosity is

typically done at a temperature quite far above Tg.35 More details are revealed and

clarified as the faster and directly Tg-related glassy-relaxation process is analyzed in

this study.

8.2. Frictional Slowdown and Structural Growth

The results shown in Figure 6 indicate that after the Tg correction is made

directly to the K’values of the three different samples, they fall on the same line; thus,

the molecular-weight dependence of K’and that of Tg are directly related as proposed

previously.710,36,37 The consistency of the T dependence of s’among the three

samples indicates that the molecular-weight dependence of K’extends into the time

domain of the glassy-relaxation process)see eqs 16 and 17. After the Tg correction

is made to both the A(t) (or R(t)) and G(t) processes by expressing K’and s’in

terms of T, they both become independent of molecular weight. This also means

that the molecular-weight dependence of Tg in the entanglement region is directly
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related to the fast dynamic processes: A(t) and G(t), both following the same

molecular-weight dependence.

While K’is a frictional factor, s’should be regarded as a structural factor;

indeed, s’has the unit of Da2. Thus the T dependence of s’shown in Figure 5 and

the T dependence of K’shown in Figure 6 are of different physical nature; with

decreasing T, the former reflects the growth of structure, while the latter represents

purely the frictional slowdown. The structural relaxation, with relaxation time

defined by eq 17, contains the effects of both the frictional slowdown and structural

growth while the A(t) process is only affected by the frictional slowdown. As a

result, the relative positions of S with respect to p
A or p in time-scale change

with T as can be observed by comparing Figures 8 and 9 (also see Figures 6 and 7 of

ref 3). This effect is further illustrated in Figure 10 by the comparison of S and the

Rouse-segmental motional time v over a wide T range. v is defined by

24

22

v
mK

  (21a)

for an entanglement-free case, or

24
' 22

v
mK 

  (21b)

for an entangled case, where m=850 is used for the mass of a Rouse segment. When

N=M/m or Ne=Me/m is sufficiently large for 1/)1(or1/)1( ee  NNNN to be
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valid as in the present study, eq 21 is a close approximation to the relaxation time of

the highest Rouse or RouseMooney normal mode as given by eq 12 (K in eq 12 is

replaced by K’for the RouseMooney modes). In Figure 10 one sees the crossing of

S over v as T decreases near zero, indicating vitrification at the Rouse-segmental

level. What is shown in Figure 10 is equivalent to that shown in Figure 5 of ref 4

for s-A; here the results are shown for s-A, -B and -C collectively, illustrating that the

crossing-over is a universal behavior as the correction for Tg difference is made by

expressing both S and v in terms of T. This universality and the consistency

among the three samples as observed in each of and between Figures 8 and 9 are

results logically expected from the universality of the T dependences of S, s’and K’

as shown in Figures 46, respectively.

In addition to the illustrations of universality as discussed above, it can be

observed that the Tg correction to the A(t) (or R(t)) and G(t) processes as a whole is

a nonlinear one. This is also clear from eq 17: S is proportional to the product s’

and K’, both changing with T. In other words, the glass transition together with the

closely related thermorheological complexity as a general phenomenon is a nonlinear

effect. The fact that both s’and K’individually change with T in a universal way

indicates that we have succeeded in separating the general nonlinear effect into two

decoupled effects: structural growth and frictional slowdown. The decoupling is

fundamentally a clean-cut process, as s’is first determined entirely by the line shape

of J(t) and then the time-scale shifting factor is obtained from which K’(=RK(M)K) is

calculated. In terms of the two decoupled quantities, important features associated

with the glass transition and thermorheological complexity are revealed or explained.
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A severe test of the scheme of analysis is of course the quantitative explanation of the

J(t) line shapes as a function of temperature)including explaining naturally in a

precise way the temporal unevenness in the thermorheological complexity of J(t) and

in the case of a low-molecular-weight polystyrene melt the dramatic decrease

in 0
eJ with temperature approaching Tg from above. Representing important features

revealed in this study are the physical picture of vitrification at the Rouse-segmental

level and the length-scale at Tg for all the three studied samples.

Because of the validity of the molecular theories used as the reference frame and

the precise physical picture they contain, the time-scale and length-scale of the

glassy-relaxation process can be characterized in detail as they increase with

temperature decreasing towards Tg. The universality covering both the entangled and

entanglement-free cases as revealed in this study signifies two important points: (1) It

supports the conclusion derived from the study of the blend-solution systems that ERT

and the Rouse theory share the same frictional factor K within a small experimental

error and thus have the same footing at the Rouse-segmental level. Putting it in

another way, if the previously derived conclusion weren’t true and thus couldn’t be a

valid premise, the universality as obtained in this study couldn’t have occurred at all.

(2) It strongly indicates the importance of the roles which the obtained time-scale and

length-scale may play. An example of such importance is the outcome that the basic

mechanism of the thermorheological complexity as analyzed and detailed in refs 3

and 5152 should be also responsible for the breakdown of the StokesEinstein

52 Lin, Y.-H. J. Phys. Chem. B (submitted).



43

equation in relating the translational diffusion constant with the shear viscosity, which

has been observed for glass-forming liquids, such as OTP (o-terphenyl)53,54,55 and

TNB56 (tris-napthylbenzene), when Tg is approached from above.

8.3. K Values in the Close Neighborhood of Tg

As pointed out above, the common length-scale at S=1000 or 1sec (at T=0

or 9.7) as shown in Figures 8 and 9, respectively, and the same relative position of S

with respect to the Rouse-segmental motional time v as shown in Figure 10 for the

three samples are direct results of the universal behavior of s’and K’as a function of

T. As Figures 810 are all displayed in real time, the positions or magnitudes of the

relaxation times are ultimately determined by the K values. Thus, although, as

expected, the K values as a function of T for the three samples as shown in Figure 7

do not fall on a universal line, the K value of a sample at a certain T does not occur

without following a certain “rule”as the somewhat “chaotic”look of the collective

display may suggest. As the temperature is approaching Tg (T 20; in this

temperature region S12), because K’=KRK(M) (K’=1.61K for s-A; K’=3.16K for

s-B; and K’=K for s-C) K has to change with T in such a way that the corresponding

53 Fujara, F.; Geil, B.; Sillescu, H.; Fleischer, G. Z. Phys. B: Condens. Matter 1992,

88, 195.

54 Cicerone, M. T.; Ediger, M. D. J. Phys. Chem. 1993, 97, 10489.

55 Kind, R.; Liechti, N.; Korner, N.; Hulliger, J. Phys. Rev. B 1992, 45, 7697.

56 Swallen, S. F.; Bonvallet, P. A.; McMahon, R. J.; Ediger, M. D. Phys. Rev. Lett.

2003, 90, 015901.
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K’values will behave in the universal way as shown in Figure 6. As the temperature

is very close to Tg, this effect becomes dominant; K becomes influenced through K’

by the Tg value, which declines with decreasing molecular weight below ～10Me for

polystyrene. This has to be reconciled with the fact that K is independent of

molecular weight at and above 127.5oC. As shown in Figure 11, the comparison of the

K values as a function of temperature between s-A, -B and -C illustrates such a

transition.

As s-C and E167 have very similar Mw values, their K values as a function of

temperature should not be very different. The physical difference in K between s-C

and E167 should be quite small even though the viscoelastic response in the entropic

region of the former is described by the Rouse theory while that of the latter by ERT.

See the Appendix for a detailed discussion of the viscoelastic difference between s-C

and E167. As described by the Rouse theory, the dynamics in s-C has only one

frictional factor K)dynamically isotropic. In the case of E167, because its molecular

weight is so close to Me, it has been found that K=K’within a small experimental

error)virtually isotropic dynamically. Thus, as far as the frictional factor K is

concerned, it is basically the same in both samples. The pattern that the K values of

s-A and s-C diverge as the temperature approaching Tg and merge at high

temperatures, 130oC, as shown in Figure 11, should similarly occur between s-A and

E167. The divergence in approaching Tg in the latter case should be smaller as E167

has a slightly higher Mw value and a much narrower molecular-weight

distribution)factors favoring a higher Tg. At 127.5oC the K values (Table 1) for s-C

and for E167 are both about 17～20% smaller than the average value K=4.9×
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10910% over the molecular weight range from 3.4×104 to 6.0×105. 3,7,10 The 17%

smaller in K for s-C may be due to the effect of a substantial Tg difference, while the

20% smaller in K for E167 is at least partly due to the likely effect that very small

amounts of components with molecular weight below Me in the sample system)as its

Mw is only 1.24Me)will reduce the obtained K value somewhat. In any case, as

these differences in K are so small, these results actually confirm that K at 127.5oC is

independent of molecular weight to a molecular weight virtually as low as Me and that

the Rouse theory and ERT have the same footing at the Rouse-segmental level.

Because s-B is contaminated by residual plasticizers, the K values of s-B cannot

be directly compared with those of s-A.2,3 To illustrate the point made above, we

show the curve calculated from the FTH equation that has been obtained from

least-squares fitting to the K values of s-B and shifted to the higher temperature side

by 1.5o. The temperature shift is to account for the decrease in Tg by the

contamination of residual plasticizers; after the shift, the curve superposes on the FTH

curve of s-A over the region of 118140oC very closely, including at 127.5oC, where

the K values of s-A and the “uncontaminated s-B”are expected to be in close

agreement. After such a shift, the FTH curve of s-B begins to rise above that of s-A

below～115oC, illustrating the divergence similar to, but smaller than, that between

s-A and s-C. If we use the value K’=1.35×103 expected at T=0 (see Figure 6), the

K value (=K’/3.16) at Tg should be around 4.3×104, which occurs at 99.55oC on the

shifted FTH curve of s-B. In other words, from such a “restoration”of s-B to its

uncontaminated state, its Tg is estimated to be about 99.5oC. Thus, we have the Tg

values for s-A, hypothetically uncontaminated s-B, and s-C to be 97, 99.5 and 93.8oC,
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respectively; these values are consistent with what may be expected from calorimetric

measurements (see the note at ref 56).57

The above discussion of the results shown in Figure 11 suggests that the glass

transition is a nonlinear effect not only in form as expressed by the product of s’and

K’(eq 17) but also in the interplay between the two variables: an increase in s’can

enhance a further increase in K’and vice versa. The sharper rise in both s’and K’as

the temperature is getting closer to Tg may be the manifestation of such an effect.

Such an effect is imposed through K’on the frictional factor K; consequently, as the

temperature decreases below ～ 120oC, K gradually deviates from its purely

topologically controlled behavior)namely, being independent of Tg and molecular

weight)which holds at higher temperatures. Below ～120oC, K becoming dependent

on molecular weight does not mean ERT ceases to be valid in describing the

topological effect on viscoelasticity; as shown in paper 1 (ref 3), in this

low-temperature range the line shapes of J(t) in the rubber(like)-to-fluid region

remains quantitatively described by ERT. Clearly, only the value of the frictional

factor K is affected; the functional forms of the entropy-derived dynamic modes and

the structural factors of their relaxation times as given in ERT are not affected. Thus,

using ERT as the reference frame in analyzing the J(t) line shapes remains valid

below ～120oC. On such a basis, it is no accident that the T dependences of s’and

K’are found to be universal; the result of analysis represents a real advancement in

57 Note: From Figure 3 of ref 36, one may obtain Tg=93.4, 97 and 100oC at Mw=16400,

46900 and 122000, respectively.
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understanding the glass transition of polystyrene, which may be generalized to

polymers in general.

9. Summary

The quantitative success of the Rouse theory and ERT in describing the entropic

region of relaxation modulus G(t) or creep compliance J(t) allows them to be used as

a reference frame)the former for an entanglement-free system (s-C) and the latter for

an entangled system (s-A and s-B))with respect to which the glassy-relaxation

process that occurs in the short-time region can be studied in a perspective way.

From the analyses of the J(t) results of three polystyrene samples: s-A, -B and -C, the

structural-growth parameter s’, the frictional factor K’for the RouseMooney process

A(t) in the entangled case or the frictional factor K (equivalent to K’; and also treated

as K’in notation as explained in section 6) for the Rouse process R(t) in the

entanglement-free case, and the structural-relaxation time ''18S Ks are extracted.

It has been shown that the thermorheological complexity occurring in J(t) of

polystyrene is due to the temperature dependence of the glassy-relaxation process G(t)

being stronger than that of the entropy-derived ones. The uneven thermorheological

complexity in J(t) is fully characterized by a simple increase of the structural-growth

parameter s’with decreasing temperature in both the entangled and entanglement-free

systems.

For all the three studied samples, Tg is defined by the temperature at which the

structural-relaxation time S=1000 sec. Thus defined Tg provides a common reference

point equivalent to all the samples, with respect to which the obtained S, s’and K’
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results may be compared in a proper perspective. When these values of s-A, -B and -C

are displayed as a function of T=TTg, universal behavior related to Tg is revealed.

A significant point of this study is that the universal T-dependence of S is

separated into two decoupled effects: structural-growth as represented by s’and

frictional-slowdown as represented by K’)by a clean-cut process: s’being first

determined entirely by the J(t) line shape; then K’determined from the time-scale

shifting factor)both changing with T individually in a universal way. Because of

the universality of s’and K’as a function of T, the G(t) process and the A(t) or

R(t) process in both their absolute positions and positions relative to each other in

time depend on T in the same way for all the three studied samples. In other words,

the thermorheological complexity is a universal effect within the polystyrene system,

entangled or not. Ultimately this conclusion supports the result from the study of

the blend-solution systems that ERT and the Rouse theory have the same footing at

the Rouse-segmental level.9,10 It also strongly indicates the importance of the roles

which the obtained time-scale and length-scale may play.

It has been shown that the relaxation times of the RouseMooney normal modes

(for s-A and s-B) or the Rouse normal modes (for s-C) may be used as the

“graduations”of an internal yardstick for estimating the extent of the influence of the

glassy relaxation at Tg. As a logical consequence of s’and K’depending on T in a

universal way, the length-scales at Tg obtained this way for the three samples agree

with each other closely)about 3nm for all the three samples. As pointed out

previously,3 this kind of analysis represents a new methodology for studying the

length-scale at Tg. As the characteristic ratio and entanglement molecular weight of
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various polymers have been well documented,10,48,49 this method would be of wide

application.

Key concepts: decoupling of the structural-growth and frictional-slowdown

effects; universality in the thermorheological complexity; and the time-scale and

length-scale in respect of the motion and size associated with the Rouse segment, as

developed, revealed and obtained in the previous and present studies represent a new

way to see and study the glass transition of a polymer.
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Appendix: Viscoelasticity at Molecular Weights Just Above Me: Comparison of

Samples C and E167.

As explained in section 3, because the molecular-weight distribution of s-C is not

that narrow, its viscoelastic results have to be analyzed in terms of the Rouse theory

(eqs 912) even though its Mw is 1.22Me. As also pointed out, the viscoelastic

results of E167, which with Mw=1.24Me has an extremely narrow molecular-weight

distribution, have been well analyzed in terms of ERT.7,8,10 The analysis of E167’s

results gives the K value at 127.5oC, very much the same as the value obtained for s-C,

(see Table 1) both being smaller than the average K value (4.9×10910%)3,7,10 in the

entanglement region of molecular weight by about 17～20%. The difference in
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viscoelastic behavior between E167 and s-C is structural: entangled and described by

ERT in the former; entanglement-free and described by the Rouse theory in the latter.

This difference in the structural aspect of viscoelasticity between the two samples has

already been indicated by the comparison of their viscosity results with the theoretical

curves of ERT and the Rouse theory in a previous report8)though the author has not

become aware of the subtlety involved until the present study of s-C: analysis of its

J(t) line shapes. As shown in Figure 3 of ref. 8, the viscosity of s-C is below the line

of the Rouse theory by a small amount corresponding to its K value being about 17%

smaller than the average value. As opposed to this and also shown in the same

figure, the viscosity of E167 is above the Rouse line because its viscoelastic behavior

is structurally described by ERT, even though its K value is also smaller than the

average value by ～20%. These discrepancies were displayed when the calculated

molecular-weight dependence of for ideal monodispersity was superposed on the

experimental results of nearly monodisperse samples over a wide molecular-weight

range)allowing the viscosity values over the whole range of molecular weights to

shift vertically in the superposition as implied by “relative viscosity”used for the

ordinate in Figure 3 of ref 8. Here, we take a closer examination by comparing the

absolute values of viscosity for ideal monodispersity calculated with K=4.9×109 and

the experimental values which have been corrected for the effect of molecular-weight

distribution and the contribution of the glassy-relaxation process)the contribution of

the internal viscosity is appreciable only in the low molecular-weight region, about 3

～10% from Mc to Me. It has been shown that the molecular-weight distribution of a

nearly monodisperse sample can enhance the viscosity by about 2030% depending
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on the polydispersity, if the Mw value of the sample is used as equivalent to the

molecular weight of a theoretically ideally monodisperse system in the comparison

between experiment and theory. As described in detail in ref 1058 and in Appendix

B of paper 1,3 the molecular-weight distribution for each individual sample as

described by the Schulz distribution can be extracted from matching the

calculated 0
eJ with the measured value. Using the obtained polydispersity parameter Z,

the bulk of correction for the molecular-weight-distribution effect on viscosity may be

made, which should reduce the systematic error of 2030% further to a basically

negligible level. As shown in Figure 12, the calculated absolute values of for ideal

monodispersity are in close agreement with the corrected values over the whole range,

excluding s-C and E167. The values of Z involved in the viscosity corrections for all

the samples are in the range expected for nearly monodisperse samples.59 In this

58 See pages 190191 of ref. 10.

59 Note: Because of the presence of a small tail in the molecular-weight distribution of

s-A on the high side (see ref 1), whose contribution is included in J(t) but has been

eliminated by Plazek from the listed 0
eJ values,1,28 the Z value involved in the viscosity

correction is larger than that obtained from the J(t) line-shape analysis as reported in

paper 1.3 The Z value from the J(t) line-shape analysis is 20 (equivalent to Mw/Mn=1.05);

that from matching the 0
eJ values is 60 (equivalent to Mw/Mn1.02).
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more exact comparison, the relative positions of the data points of s-C and E167 to the

Rouse line and the ERT line (calculated with K’/K =RK(M) given by eq 18) confirm

what have been shown in Figure 3 of ref. 8.
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Figure Captions:

Figure 1

Creep compliance Jp(t) data of s-C measured at 119.4 (○); 109.4 (●); 105.1 (△); 102.9

(▲); 100.6 (◇); 96 (◆); and 93 (□) oC in comparison with the theoretical curves ());

from left to right, respectively) calculated with the s and K values at different

temperatures as listed in Table 2; and the f
GA and values as explained and given in

the text. Also shown is the comparison between the experimental () )) and calculated

(+ + +) long-time Jp(t) limits, t/p, at each corresponding temperature.

Figure 2

Comparison of creep compliance Jp(t) curves of s-C calculated with K=104 and the s

values corresponding to the calculated curves shown in Figure 1; lines from left to

right corresponding to 119.4, 109.4, 105.1, 102.9, 100.6, 96 and 93 oC, respectively.

Figure 3

s values as a function of temperature of s-A (○), s-B (◇) and s-C (□ determined from

Jp(t) line-shape analysis; ▲ from the analysis of 0
epJ ).

Figure 4

The structural relaxation time, S, of s-A (○), s-B (◇) and s-C (□) as a function of the

temperature difference from each individual Tg, T. The solid line is calculated
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from the FTH equation which best fits the data of the three samples collectively.

Figure 5

s’values of s-A (○), s-B (◇) and s-C (□ obtained from the Jp(t) line-shape analysis;

▲ from the analysis of 0
epJ ) as a function of the temperature difference from each

individual Tg, T. The solid line is calculated from the modified FTH equation (eq

19) which best fits the data of the three samples collectively.

Figure 6

K’values of s-A (○), s-B (◇) and s-C (□) as a function of the temperature difference

from each individual Tg, T. The solid line is calculated from the FTH equation

which best fits the data of the three samples collectively.

Figure 7

K values of s-A (○), s-B (◇) and s-C (□) as a function of the temperature difference

from each individual Tg, T.

Figure 8

Comparison of the Gp(t) figures of s-A (middle figure), s-B (bottom one) and s-C (top

one) at individual Tg or T=0. In each figure, the relaxation times of the

RouseMoney normal modes (for s-A and s-B) or the Rouse normal modes (for s-C)

are indicated by (+); the () line is calculated with f
GA or AG=0; and the () )) line is

calculated with AG=0 as well as setting the contribution of the RouseMooney normal
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modes to zero. The common vertical dotted line represents the structural-relaxation

time S=1000 sec. The points where the Gp(t) curves cross the horizontal dotted lines

at 108 dynes/cm2 represent the traditionally defined structural- or -relaxation times.15

Figure 9

Comparison of the Gp(t) figures of s-A (middle figure), s-B (bottom one) and s-C (top

one) at T=9.7o. In each figure, the relaxation times of the RouseMoney normal

modes (for s-A and s-B) or the Rouse normal modes (for s-C) are indicated by (+); the

() line is calculated with f
GA or AG=0; and the () )) line is calculated with AG=0 as

well as setting the contribution of the RouseMooney normal modes to zero. The

common vertical dotted line represents the structural-relaxation time S=1 sec. The

points where the Gp(t) curves cross the horizontal dotted lines at 108 dynes/cm2

represent the traditionally defined structural- or -relaxation times.15

Figure 10

Collective comparison of the S and v values as a function of T of s-A, -B and -C

(S: ● for s-A, ◆ for s-B and ■ for s-C; v: ○ for s-A, ◇ for s-B and □ for s-C).

The lines are each calculated from the FTH equation which best fits the data of the

three samples collectively ()) for S; forv).

Figure 11

The comparison of K values as a function of temperature between s-A (○), s-C (●),
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and the hypothetically uncontaminated s-B (＋ ) (see the text). The lines are

calculated from the FTH equation best fitting the experimental data: ())) for s-A ,

() )) for s-C, and () for the hypothetically uncontaminated s-B.

Figure 12

Comparison of the theoretical viscosity curves of ERT (the upper solid line) and the

free Rouse theory (the lower solid line) both calculated with K=4.9×109 (and with

K’/K=RK(M) as given by eq 14 for the ERT curve) with the experimental values at

127.5oC corrected for the effect of molecular weight distribution and the

internal-viscosity contribution as explained in the Appendix (○ from ref. 8, with ◇

specifically representing the data point of E167; ● from ref. 28, with ◆ specifically

representing the data point of s-C).
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Table 1: Weight Average Molecular Weight of Samples A, B and C and E167; and

the Reference Theories and Key Parameters: Z, Me or Me
’, K (at 127.5oC), AG

f

and  (see the text) Used in or Obtained from the Creep Compliance J(t)

Analyses (for s-A, -B and -C) or the Relaxation Modulus G(t) Analysis (for E167)

Sample Mw Z

(Mw /Mn)

Entanglement

MW

Reference

Theory

K (s/Da2)

(127.5oC)

AG
f×109

dynes/cm2



s-A 46900 20(1.05) Me=13500 ERT 4.8×109 12.95 0.41

s-B 122000 20(1.05) Me=13500 ERT 60 9.73 0.41

s-C 16400 20(1.05) Me’=17090 Rouse 4.15×109 9.93 0.42

E167 16700 120(1.01) Me =13500 ERT 4.0×109

60 Because s-B is contaminated by residual plasticizers, the K value in its pure state is not obtained.
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Table 2: Structural and Dynamic Quantities Extracted from the J(t) Line-Shape
Analysis of Sample C

Temp

(oC)

s

(Da2)

SF K

(s/Da2)

logp

(K=104)

pp(AG=0)

(K=104)

T/0T0 log

exp.

log

calcd

logJe

exp.

logJe

calcd

S

(s)

AG=0 10.159 1

134.1 1640 (1.06×109) 10.205 1.111 1.072 5.257 (5.261) -6.75 -6.75 (3.13×10-5)

127.5 [ 4.15×109 ]a [1.28×104]a

119.4 1800 3.09×10-4 3.09×108 10.210 1.125 1.042 6.730 6.717 -6.79 -6.75 1.00×103

109.4 4400 6.89×10-3 6.89×107 10.275 1.306 1.021 8.116 8.122 -6.90 -6.87 5.46×102

105.1 7000 3.6×10-2 3.6×106 10.331 1.486 1.012 8.882 8.893 -6.96 -6.98 4.54×101

102.9 8990 8.33×10-2 8.33×10-6 10.370 1.626 1.008 9.270 9.294 -7.05 -7.05 1.35

100.6 13200 0.245 2.45×105 10.442 1.919 1.003 9.820 9.832 -7.16 -7.19 5.82

96 28500 2.89 2.89×10-4 10.633 2.979 0.993 11.088 11.090 -7.54 -7.57 1.48×102

93.756 [43960 ]

61

[1.19×103]a [1000]a

93 52300 20.8 2.08×10-3 10.825 4.635 0.987 12.156 12.138 -7.94 -7.94 1.96×103

a Calculated from the equations obtained from least-squares fittings to the values determined at
different temperatures (see the text)
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Table 3: Structural and Dynamic Quantities: s, K, K’and S Extracted from the
J(t) Line-Shape Analyses of Samples A and B

Sample A Sample B

Temp

(oC)

K

(s/Da2)

K’(1.61K)

(s/Da2)

s

(Da2)

S

(s)

Temp

(oC)

K

(s/Da2)

K’(3.16K)

(s/Da2)

s

(Da2)

S

(s)

97 9.84×104 1.58×103 56500 1000 [98.025]62 [4.403×104] [1.39×103] [126190] [1000]

100.6 9.7×105 1.56×104 28275 49.4 98.3 3.6×104 1.14×103 120258 779

104.5 1.2×105 1.93×105 16337 3.53 101 6.02×105 1.9×104 77426 83.9

109.6 1.2×106 1.93×106 10053 0.217 103.3 1.515×105 4.79×105 58900 16.06

114.5 1.96×107 3.16×107 6283 2.22×102 105.5 5.43×106 1.72×105 41184 4.03

113.8 1.49×107 4.71×107 17297 4.64×102

119.8 2.61×108 8.25×108 9060 4.26×103

62 Listed values at this temperature are calculated from the equations obtained from least-squares
fittings to the values determined at different temperatures (see the text)
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Figure 1
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Figure 2
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Figure 3
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Figure 4
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Figure 5
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Figure 6
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Figure 7
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Figure 8
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Figure 9

time (sec)

10-2 10-1 100 101 102 103 104 105 106 107 108
104

105

106

107

108

109

1010

Mw=122000; Mw/Mn=1.05

G
p(

t)
(d

yn
es

/c
m

2 )

104

105

106

107

108

109

1010

Mw=46900; Mw/Mn=1.05

104

105

106

107

108

109

1010

Mw=16400; Mw/Mn=1.05



69

Figure 10
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Figure 11
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Figure 12
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Thermorheological Complexity in Polystyrene Melts

and

Breakdown of the StokesEinstein Relation in o-Terphenyl. 4

Y.-H. Lin63

Department of Applied Chemistry

National Chiao Tung University

Hsinchu, Taiwan

Abstract

In paper 1,64 based on the structural-growth parameter s (or s’) which increases

with decreasing temperature as extracted from analyzing the creep compliance J(t)

line shapes of two nearly monodisperse entangled polystyrene melts, it was shown

that the basic mechanism for the thermorheological complexity (TRC) in polystyrene

should be also responsible for the breakdown of the StokesEinstein relation (BSE) in

o-Terphenyl (in tris-naphthylbenzene as well). It has been reported in paper 365 that

TRC as related to glass transition in polystyrene melts behaves in a universal way

within the polystyrene system, entangled or not. Benefiting from this new

63 E-mail: yhlin@mail.nctu.edu.tw

64 Lin, Y.-H. J. Phys. Chem. B 2005, 109, 17654.

65 Lin, Y.-H. J. Phys. Chem. B, submitted. (paper 3)
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understanding, we have made a closer analysis and comparison of the TRC in

polystyrene and BSE in o-Terphenyl. It is shown from the analysis that the ratio of the

structural-growth parameter s’at temperature T to its plateau value s0’at high

temperatures, s’(T)s0’, is equivalent to the enhancement parameter (T) in

o-Terphenyl as determined from the data of the diffusion constant Dg and rotational

relaxation time rot. The enhancement parameter being of different magnitude for

different materials, this conclusion is supported by the plotted curve of  ')('log 0sTs

versus the temperature difference )( gTTT  from the glass transition temperature

in polystyrene being similar in shape to those of  )(log T in o-Terphenyl and

tris-naphthylbenzene. Our general description of the mechanism for the TRC in

polystyrene and BSE in o-Terphenyl is compared with the two-state model proposed

by Stillinger and Hodgdon for explaining the BSE in o-Terphenyl, showing a

one-to-one correspondence and illustrating the similar ideas involved.
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Thermorheological Complexity in Polystyrene Melts

and

Breakdown of the StokesEinstein Relation in o-Terphenyl. 4

Y.-H. Lin

Department of Applied Chemistry

National Chiao Tung University

Hsinchu, Taiwan

1. Introduction

As the glass transition temperature Tg is approached from above, two interesting

effects occur in glass-forming fluids: the thermorheological complexity (TRC) in

glass-forming polymer melts and the breakdown of the StokesEinstein relation (BSE)

in fragile glass-forming liquids. The former is represented by the different

temperature dependence between the short-time and long-time regions in the creep

compliance J(t) of polystyrene melts as first observed by Plazek;1,2,66,67,68 the latter is

exemplified by the temperature dependence of translational diffusion being weaker

than that of viscosity  or rotational relaxation time rot in o-Terphenyl

(OTP) 69 , 70 , 71 , 72 , 73 (in tris-naphthylbenzene 74 , 75 as well). These two effects are

66 Plazek, D. J. J. Phys. Chem. 1965, 69, 3480.

67 Plazek, D. J. J. Polym. Sci., Part A-2: Polym. Phys. 1968, 6, 621.

68 Plazek, D. J.; ORourke, V. M. J. Polym. Sci. A-2: Polym. Phys. 1971, 9, 209.

69 Fujara, F.; Geil, B.; Sillescu, H.; Fleischer, G. Z. Phys. B: Condens. Matter
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interesting because the basic mechanisms for them should be much related to the glass

transition phenomenon, which still does not have a fully clear theoretical

interpretation, even though much understanding has been gained from various studies

on it for the past few decades.76,77,78,79,80 The BSE in glass-forming liquids has been

actively studied in the last decade, and various models81,82,83,84,85 have been proposed

to explain it. On the other hand, the TRC in polystyrene had been puzzling to

1992, 88, 195.

70 Cicerone, M. T.; Ediger, M. D. J. Phys. Chem. 1993, 97, 10489.

71 Kind, R.; Liechti, N.; Korner, N.; Hulliger, J. Phys. Rev. B 1992, 45, 7697.

72 Chang, I.; Fujara, F.; Geil, B.; Heuberger, G.; Mangel, T.; Sillescu, H. J. Non-Cryst.

Solids 1994, 172174, 248.

73 Mapes, M. K.; Swallen, S. F.; Ediger, M. D. J. Phys. Chem. B 2006, 110, 507.

74 Chang, I.; Sillescu, H. J. Phys. Chem. B 1997, 101, 8794.; and references therein.

75 Swallen, S. F.; Bonvallet, P. A.; McMahon, R. J.; Ediger, M. D. Phys. Rev. Lett.

2003, 90, 015901.

76 Angell, C. A. Science 1995, 267, 1924; and references therein.

77 Ediger M. D.; Angell, C. A.; Nagel, S. R. J. Phys. Chem. 1996, 100, 13200.

78 Sillescu, H. J. Non-Crystal. Solids 1999, 243, 81; and references therein.

79 Weeks, E. R.; Crocker, J. C.; Levitt, A. C.; Schofield, A.; Weitz, D. A. Science

2000, 287, 627.

80 Donati C.; Glotzer, S. C.; Poole, P. H.; Kob, W.; Plimpton, S. J. Phys. Rev.E 1999, 60, 3107.

81 Stillinger, F. H.; Hodgdon, J. A. Phys. Rev. E 1994, 50, 2064.

82 Tarjus, G.; Kivelson, D. J. Chem. Phys. 1995, 103, 3071.

83 Cicerone, M. T.; Wagner, P. A.; Ediger, M. D. J. Phys. Chem. B 1997, 101, 8727.

84 Xia, X.; Wolynes, P. G. J. Phys. Chem. 2001, 105, 6570.

85 Jung, Y. J.; Garrahan, J. P.; Chandler, D. Phys. Rev. E 2004, 69, 061205.
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polymer rheologists until quantitative analyses were made on the J(t) line shapes of

two entangled melts as reported in paper 1 (ref 1). Based on the length-scale and

time-scale (or equivalently the structural-growth parameter s) extracted from the J(t)

analyses, which increase with temperature approaching Tg from above, the basic

mechanism for the TRC was analyzed. It has been shown that the basic mechanism

should be also responsible for the BSE as occurring in OTP. In paper 3 (ref 2), it has

been found that TRC as related to Tg behaves in a universal way within the

polystyrene system, entangled or not, advancing our understanding of the

structural-growth parameter s (or s’) extracted from the analyses of the J(t) results.

Benefiting from this new understanding, we present a closer analysis and comparison

of the two effects in this paper. Viscoelastic and dynamic results of glass-forming

polymers86,87,88,89,90 in general indicate that the glassy-relaxation process (or the - or

structural-relaxation process) has a stronger temperature dependence than that of the

dynamics involving the whole molecule)namely, the terminal relaxation)suggesting

that the TRC is a general phenomenon. At the same time, the BSE occurs in

different fragile glass-forming liquids.612 Here, we shall use polystyrene and OTP as

the (representative) subjects under study, with the understanding that the analyses as

86 Plazek, D. J. J. Rheol. 1996, 40, 987.

87 Plazek, D. J. Polymer J. 1980, 12, 43.

88 Okamoto, H.; Inoue, T.; Osaki, K. J. Polym. Sci: Part B: Polym. Phys. 1995, 33,

417.

89 Inoue, T.; Hwang, E. J.; Osaki, K. J. Rheol. 1992, 36, 1737.

90 Adachi, K.; Hirano, H. Macromolecules 1998, 31, 3958.
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presented here may be generalized to other glass-forming polymers or liquids.

2. Basic Mechanism for TRC and BSE

In paper 1,1 using the successful description of the rubber(like)-to-fluid region of

the creep compliance J(t) in terms of the extended reptation theory (ERT)91,92,93,94,95,96

as the reference frame, the glassy-relaxation processes G(t) occurring in the

short-time/ small-compliance region of J(t) of two nearly monodisperse entangled

polystyrene melts (sample A with Mw=46900 and sample B with Mw=122000)3,4 have

been analyzed in a perspective way. In terms of a stretched exponential form for

G(t) incorporated into ERT, the J(t) line shapes over the whole range have been

quantitatively analyzed, indicating that the TRC occurring in J(t) of polystyrene is due

to the temperature dependence of the energetic interactions-derived glassy-relaxation

process being stronger than that of the entropy-derived dynamic processes as

described in ERT. The stronger temperature dependence is expressed by the increase

with decreasing temperature in the normalized glassy-relaxation time or

structural-growth parameter s, defined by

91 Lin, Y.-H. Macromolecules 1984, 17, 2846.

92 Lin, Y.-H. Macromolecules 1986, 19, 159.

93 Lin, Y.-H. Macromolecules 1986, 19, 168.

94 Lin, Y.-H. Macromolecules 1987, 20, 885.

95 Lin, Y.-H. Macromolecules 1989, 22, 1437.

96 Lin, Y.-H. Polymer Viscoelasticity: Basics, Molecular Theories, and

Experiments; World Scientific: Singapore, 2003.
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K
s G


 (1)

where
G

 is the average relaxation time of G(t) and K is the frictional factor,

22

2

22

2

mD

b

mkT

b
K




 (2)

associated with the Rouse segment with mass m, mean square length 2b and

diffusion constant D. In paper 3,2 the creep compliance J(t) and steady-state

compliance 0
eJ results of an entanglement-free nearly monodisperse polystyrene melt

(sample C with Mw=164005; as explained in detail in section 3 of paper 3, due to the

molecular-weight distribution of sample C being not extremely narrow, it has to be

treated as an entanglement-free case even though its Mw value is a little higher than

Me=13500) have been equally well analyzed in terms of an equivalent scheme using

the Rouse theory30,33,97,98,99 instead of ERT as the reference frame. Both ERT and

the Rouse theory use the Rouse segment as the most basic structural unit; theoretically

the frictional factor K carries the temperature dependence of all the entropy-derived

dynamics processes: A(t), X(t), B(t), and C(t) in ERT or R(t) of the Rouse theory

97 Lin, Y.-H.; Juang, J.-H. Macromolecules 1999, 32, 181.

98 Rouse, P. E. Jr. J. Chem. Phys. 1953, 21, 1271.

99 Bird, R. B.; Curtiss, C. F.; Armstrong, R. C.; Hassager, O. Dynamics of Polymeric

Liquids, Vol. 2, Kinetic Theory, 2nd ed.; Wiley: New York, 1987.
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(see the previous papers1,2,2832 or ref 33 for the physical meanings and functional

forms of the processes), which in general follows the Fulcher and TammannHesse

(FTH) equation or the WilliamsLandelFerry (WLF) equation.100 The frictional

factor has been studied in detail by extensive testing of the two theories with

experiments.2833,101 The obtained key behavior and relationships as to the frictional

factor are summarized in the following; we refer to the previous studies for the

details:

(1) At and above 127.5oC,29,33,38 it has been shown that the frictional factor K in the

X(t), B(t), and C(t) processes (as appearing in the expressions for X, B, and

C) for polystyrene melts in the entanglement region is independent of molecular

weight, as expected from the theory.

(2) However, the frictional factor in the RouseMooney process A(t) denoted by K’

(as appearing in the expression for 1
A ) is greater than the frictional factor K in the

X(t), B(t), and C(t) processes by the molecular weight-dependent

factor )(MRK (see eq 5 of ref 32 or eq 11.6 of ref 33),1,2,29,3133 which has a

plateau value 3.3 in the high-molecular-weight region; starts to decline with

decreasing molecular weight at around 10Me or 10 '
eM ( 2e

'
e WMM  with W2

being the weight faction of the entangled component in a blend solution); and

reaches 1 as the molecular weight reaches Me or '
eM .

(3) The K value in the X(t), B(t), and C(t) processes of ERT is in quantitative

100 Ferry, J. D. Viscoelastic Properties of Polymers, 3rd ed.; Wiley: New York, 1980.

101 See Table 1 and Appendix B of ref 1 and note at ref 38 of ref 2.
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agreement with the frictional factor K in the Rouse theory (as appearing in the

Rouse relaxation time 1
R ; see Figure 20 of ref 31 or Figure 11.1 of ref 33),

meaning that both theories have the same footing at the Rouse-segmental

level.2,31,33

As indicated by the observation '
ee oras1)( MMMMRK  , K’being greater

than K by the factor RK(M) is due to the topological constraint of entanglement. At

temperatures close to Tg, in the relatively short yet macroscopic time scales of

G
 and S (non-ergodic times; see Table 2 of paper 1) the strong energetic

interactions among segments keep many configurations from being explored, while in

the long time scales of 1
A , X, B, and C or 1

R (ergodic times) there is enough time to

explore the configurational space effectively, leading to entropy-derived modulus (as

represented by the entropy force constant; see the note at ref 39)102 and dynamics (as

described by the Langevin equation; see the note at ref 40).103 Thus, except for the

factor RK(M) due to the topological constraint effect of entanglement, there is not a

fundamental difference between K’and K. The expression for K (eq 2) is equally

102 This is indicated by the fact that no shift along the compliance coordinate is

required in the quantitative analyses of J(t) line shapes of polystyrene melts in the

expected entropic region using ERT (in paper 1)1 or the Rouse theory (in paper 3)2

as the reference frame, even when the temperature is very close to Tg.

103 The successful quantitative analyses of the J(t) line shapes of polystyrene melts

in the expected entropic region indicate that the functional forms for the relaxation

processes in the stress-relaxation modulus and the structural factors of the relaxation

times as given in ERT or in the Rouse theory remain valid, even when the

temperature is very close to Tg.
1,2
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applied to K’; namely
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2
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'

'
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mkT
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K




 (3)

where the diffusion constant D’is smaller than D by the factor RK(M).

As detailed in section 4 of paper 3,2 for more directly reflecting the close relation

between the G(t) and A(t) processes)the two processes occurring next to each other

in time, the normalized glassy-relaxation time s has been modified by introducing s’

as defined by

  '/'
'

KKK
s

s G


 (4)

Then the structural-relaxation time defined by
GS 18  (see ref 41 (paper 3) for a

detailed study of the structural-relaxation time)104 can be expressed by

''1818S KssK  (5)

eas1)( MMMRK  indicates that, when the tube (of the reptational model) is

disappearing and the Rouse theory becoming applicable, the dynamics in the system

has only one K and becomes isotropic as it should. As detailed in section 4 of paper

3,2 in an entanglement-free system (sample C), s can be regarded as s’and K as K’.

104 Lin, Y.-H. J. Phys. Chem. B 2005, 109, 17670.
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As far as sample C is concerned in the discussions below; s and s’, and K and K’will

be used interchangeably without further explanation. As s or s’decreases with

increasing temperature, the entropic region shifts more away from the glassy region as

can be observed in Figures 6 and 7 of ref 1 and in comparing Figures 8 and 9 of ref 2.

In the literature,1113,105, S reaching 100～1000 sec has often been used as the

criterion for defining Tg. Following this practice, the glass transition point Tg has

been defined as the temperature where S=1000 sec for all the three samples whose J(t)

results have been analyzed, two entangled and one entanglement-free. The thus

defined Tg provides a common reference point equivalent for all samples, with

respected to which the structural and dynamic quantities S, s’and K’obtained from

analyzing the J(t) results may be compared in a perspective way; the effect of the Tg

difference among samples on S, s’and K’can be accounted for by expressing them

as a function of the temperature difference from Tg, gTTT  . It has been found

that S, s’and K’values of the three samples plotted as a function of individual T

fall on a common curve, indicating that TRC as closely related with the glass

transition behaves in a universal way within the polystyrene system, entangled or not.

When the temperature is significantly closer to Tg than 127.5oC, the formation of

structure as related to the increase in s’starts to affect K through K’; in other words, K

behaves in such a way that K’values as a function of T fall on a universal curve)K’

differs from K by the factor RK(M). As a result, below ～120oC, K begins to deviate

from the behavior purely controlled by the topological constraint of

105 Angell, C. A. J. Non-Cryst. Solids 1991, 131-133, 13.
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entanglement)namely, being independent of molecular weight and thus the difference

in Tg)which holds at higher temperatures. However, below ～ 120oC, ERT remains

valid in describing the topological effect on the line shape of the viscoelastic

responses as explained in section 8 of paper 3 even though K becomes gradually

dependent on molecular weight as the temperature approaches Tg (see Figure 11 of

paper 3)2. Because the effect of the formation of structure becomes dominant in the

close proximity of Tg, we should use K’and its conjugate structural parameter s’to

discuss the Tg-related effects instead of K and s as used in paper 1. However, the

basic mechanism for the TRC developed in terms of K and s in paper 1 remains

equally valid as the only difference is a proportional constant. In an entangled case,

as the RouseMooney process occurs right after the glassy-relaxation process G(t),

using K’and s’instead of K and s also indicates the need to shift our focus to the

shorter-time region for studying the Tg-related effects.

Being Brownian motion, the diffusion constant of a Rouse segment can generally

be expressed as

t
lkT

D



2

'
'


(6)

where l is the step length that the Rouse segment has moved in a time interval t. The

only criterion for choosing t and l is that the steps are independent of one another;

then after sufficiently large number of steps of movement have taken place, the

central limit theorem ensures that the dynamic process becomes Gaussian as required
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by the Langevin equation being applicable.28,33,106,107 At high temperatures, there is

a wide range down to very small values to choose l and t to satisfy eq 6; the dynamic

process is often referred to as the continuous (small-step) or“free”diffusion.11,108 At

a temperature close to Tg, the structure is formed with a certain lifetime S which has

increased greatly with s’; then, the smallest independent time step that can be chosen

is of the order of the lifetime of the structure
GS 18   . We can choose as

the time step because it is still much shorter than 1
A , X, B, and C or 1

R (see Table 2

of paper 1 and Figure 8 of paper 3).1,2 Corresponding to being longer at lower

temperatures, a larger length-scale denoted by d is expected for the step length as

explained in the following: As K’(or K ) has been determined from the quantitative

line-shape analysis of J(t), so D’(or D) is defined. Due to eq 3, the following

constraint is imposed on the system






























'18

''''const
2

S

22

s
d

K
d

K
d

KD


(7)

where eq 5 has been used. To maintain D’K’being constant, d has to increase by

about 5 times as s’increases from about 1500 at temperatures higher than ～Tg+40o to

about 40000 at Tg (see Figure 5 of paper 3).

106 Mooney, M. J. Polym. Sci. 1959, 34, 599.

107 Doi, M. J. Polym. Sci., Polym. Phys. Ed. 1980, 18, 1005.

108 Thirumalai, D.; Mountain, R. D. Phys. Rev. E 1993, 47, 479.
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The relaxation times in the long-time region ( 1
A , X, B, and C or 1

R ) are

proportional to K /kT /d2 or K’’/kT /d2 while the structural

relaxation time is
GS   . With decreasing temperature, increases more

than /d2 as the structure is formed following the increase in s’. This difference in

temperature dependence is the basic mechanism for the TRC as concluded from the

analyses of the polystyrene J(t) curves reported in papers 1 and 3.

It was pointed out in paper 1 that this basic mechanism should be also the reason

for the breakdown of the StokesEinstein equation in relating the translational

diffusion constant Dg with the shear viscosity or rotational relaxation time rot as

observed in OTP, when Tg is approached from above. Without the entropy-derived

modes of motion)as described by ERT or by the Rouse theory)in OTP,

 


rotG0 G )( Sdtt (8)

What is explained above for the diffusion of the Rouse segment in polystyrene melts

can similarly be applied to the molecular diffusion Dg in OTP;




2

g
d

D (9)

Thus, from eqs 8 and 9, one sees that Dgrot increases with increasing d as Tg is

approached from above, meaning BSE.

To characterize the BSE, a translational diffusion enhancement parameter has
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been defined by

SE

g

D

D
 (10)

where DSE is the translational-diffusion constant expected when the StokesEinstein

relation holds. As the StokesEinstein relation holds at temperatures far above Tg in

OTP, its value at a temperature T close to Tg may be calculated from

)()(

)()(
)(

highrothighg

rotg

TTD

TTD
T




  (11)

where Thigh stands for a high temperature in the region where the StokesEinstein

relation holds.

As s’for the polystyrene system reaches a plateau value of about 1500 as the

temperature is more than 40o above Tg, under the constraint imposed by eq 7, d should

reach a lower limiting value at high temperatures, which is denoted by d0. Denoting

the plateau value of s’at high temperatures by '0s (1500 for polystyrene), then the s’

value at a temperature T close to Tg may be expressed by

2

0
0

)(
')(' 










d
Td

sTs (12)

Applying the same idea to the translational diffusion enhancement parameter in OTP

and substituting eqs 8 and 9 into eq 11, the value at a temperature T close to Tg may
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be expressed by
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
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d
Td

T (13)

On the basis of comparing eqs 12 and 13, we conclude that (T) for OTP is equivalent

to ')(' 0sTs for polystyrene melts, reflecting the same mechanism.

3. Comparison of the Results of (T) and s’(T)s0’

The data of (T) for OTP and tris-naphthylbenzene (TNB) as defined by eq 11

have recently been compiled by Mapes et al10 from diffusion results obtained by

NMR6 and isothermal desorption109 for the former and by NMR11 and forward recoil

spectrometry12 for the latter and the results of rotational relaxation time.6,11,110 In

Figure 1, we compare the (T) results of OTP and TNB with the ')(' 0sTs values of

the three polystyrene samples: A, B and C as a function of T=TTg. The

magnitude of the enhancement factor (T) is different for different materials. The

similarity in shape of the three sets of data plotted as a function of T in Figure 1

supports the conclusion of the analysis given above that (T) for OTP and TNB plays

the same role as ')(' 0sTs for polystyrene.

109 Mapes, M. K.; Swallen, S. F.; Kearns, K. L.; Ediger, M. D. J. Chem. Phys. 2005,

123, 1.

110 Zemke, K.; Schmidt-Rohr, K.; Magill, J. H.; Sillescu, H.; Spiess, H. W. Mol. Phys.

1993, 80, 1317.
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The magnitude of ')(' 0sTs in polystyrene is smaller than those of (T) in OTP

and TNB as well as (T) of smaller probe molecules: tetracene and

9,10-bis(phenylethynyl)anthracene, in polystyrene but is about the same as that of a

larger probe: rubrene, in polystyrene. 111 , 112 , 113 The magnitude of ')(' 0sTs in

polystyrene being in general smaller than those of (T) in the cases mentioned above

may have to do with the chain connectivity existing in a polymer, which has the effect

of keeping the translational motion of a segment from being as uninhibited as that of a

molecule in a glass-forming liquid)the translational motion takes place mainly when

the “window of opportunity”for the cooperative jumping motion opens up (see the

discussion below).

4. Discussion

In paper 1, we have pointed out that to satisfy the conditions imposed by eq 7 for

choosing and d, a likely dynamic process for the Rouse segment to take is by

cooperative large-step jumping involving more than one Rouse segment. Such a

general description is consistent with the picture that the molecular (or segmental)

motion becomes spatially heterogeneous and dynamically correlated as revealed by

molecular dynamics simulations for glass-forming LennardJones mixtures at low

temperatures17,114 and observed directly by confocal microscopy in the colloidal

111 Cicerone, M. T.; Blackburn, F. R.; Ediger, M. D. Macromolecules 1995, 28, 8224.

112 Cicerone, M. T.; Ediger, M. D. J. Chem. Phys. 1996, 104, 7210.

113 Wang, C.-Y.; Ediger, M. D. Macromolecules 1997, 30, 4770.

114 Thirumalai, D.; Mountain, R. D. Phys. Rev. E 1993, 47, 479.
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fluids near Tg.16 Dynamic heterogeneity in glass-forming liquids and polymers in the

vicinity of Tg has also been indicated by various studies using different

techniques.115,116,117,118,119 For explaining the enhancement of translational diffusion,

several models of spatially heterogeneous dynamics have been proposed. In

particular, one can find a one-to-one correspondence between the two-state model

proposed by Stillinger and Hodgdon (SH)18 for explaining BSE in OTP and the

analysis originally proposed in paper 1 and further elaborated above for explaining

TRC in polystyrene and BSE in OTP. Such a comparison is made in the following,

which may illustrate the similar ideas involved.

The two-state picture proposed by SH consists of flickering fluidized domains in

an essentially solid matrix; in the fluidized domains stress can be released quickly and

the molecule can move faster. The fluidized domains in the SH picture was described

in terms of four temperature-dependent average characteristics:

(1) domain volume v0;

(2) domain appearance rate per unit volume, r0;

(3) domain lifetime t0;

(4) domain internal viscosity 0.

115 Cicerone, M. T.; Ediger, M. D. J. Chem. Phys. 1995, 103, 5684.

116 Schiener,B.; Bohmer, R.; Loidl, A.; Chamberlin, R. V. Science 1996, 274, 752.

117 Richert, R. J. Phys. Chem. B 1997, 101, 6323.

118 Russell, E. V.; Israeloff, N. E. Nature 2000, 408, 695.

119 Tracht, U.; Wilhelm, M.; Heuer, A.; Feng, H.; Schmidt-Rohr, K.; Spiess, H. W.

Phys. Rev. Lett. 1998, 81, 2727.
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0 must reflect the fluidized nature of the domains, and thus its magnitude must be

substantially less than the macroscopically measured viscosity. Following SH, as the

volume fraction 0 of the system that is interior to the fluidized domains is given by

0000 tvr ; (14)

the structural relaxation time S is expressed as

 
0

0

00
rotS

1



t

vr
 (15)

and the viscosity as

00
S vr

G
G 

   (16)

A key assumption in the SH model is that the system’s overall translational diffusion

constant Dg is a simple volume average over fluidized domains and surrounding static

matrix; thus


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0000g 6
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where the StokesEinstein equation is assumed to hold in the fluidized domains; and
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R is the effective radius of the diffusing molecule. Then using eqs 14 and 16, the

enhancement parameter as defined by eq 10 is expressed as

0

0

0
000
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As observed, increases with decreasing temperature; so must 00 t do. In other

words, using eqs 15 and 17, we may have from eq 9




 







 0

0
Sgg

2

6
t

R
kT

DDd (19)

which increases with decreasing temperature and is in agreement with eq 13. One

sees that the step length d that the segment or molecule jumps after a waiting

period S as indicated by the analysis given in section 2 is equivalent to the

distance the molecule moves by diffusion in a fluidized domain over the domain’s

lifetime t0 in the SH two-state model.

While the SH fluidized domain model offers an explanation that is consistent

with our general description, clearly the uniqueness of the SH model or any other

model which may turn out to be consistent with our general description needs to be

checked by various studies.
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5. Summary

In paper 1,1 it was shown that the basic mechanism for the TRC in polystyrene

should be also responsible for the BSE in OTP. It has been found as reported in

paper 32 that S, s’and K’values of the three studied polystyrene samples plotted as a

function of individual T=TTg fall on a common curve, indicating that TRC as

closely related with the glass transition behaves in a universal way within the

polystyrene system, entangled or not. Benefiting from this new understanding, we

have made a closer analysis and comparison of the TRC in polystyrene and BSE in

OTP. It is shown from the analysis that the '
0)(' sTs values extracted from the J(t)

line shapes of the three polystyrene samples play the same role as the enhancement

parameter (T) as calculated from the diffusion constant Dg and rotational relaxation

time rot in OTP and TNB. Such an expectation is supported by the results obtained

for polystyrene, OTP and TNB as shown in Figure 1. This result is particularly

significant considering that the BSE in OTP or TNB is based on a set of

measurements that is very different from the creep measurement, in which the TRC in

polystyrene is observed. As they are observed in different ways, the BSE and TRC

had been treated as two totally different and unrelated phenomena until the study

reported in paper 1.

We have also compared our general description of the mechanism for the TRC in

polystyrene and BSE in OTP with the two-state model proposed by Stillinger and

Hodgdon for explaining the BSE in OTP, illustrating the similar ideas involved.
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Figure Caption:

Figure 1

Comparison of '/)(' 0sTs values (with s0’=1500) of polystyrene samples: A

(Mw=46900; ○); B(Mw=122000; ◇) and C (Mw=16400; □ from the J(t) line-shape

analysis; △ from matching the steady-state compliance 0
eJ values) with the

enhancement factors (T) of OTP (●isothermal desorption; ▲NMR) and TNB (■

forward recoil spectrometry; ▼NMR) as a function of gTTT  . The solid line is

calculated from the modified FTH equation (eq 19 of ref 2) which best fits

the '/)(' 0sTs results of the three polystyrene samples collectively.
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Range of Universality

Regarding the Tg-Related Thermorheological Complexity

in Polystyrene Melts. 5

Y.-H. Lin120

Department of Applied Chemistry

National Chiao Tung University

Hsinchu, Taiwan

Abstract

The creep compliance J(t) curves over the whole time range of three nearly

monodisperse polystyrene samples have been previously quantitatively analyzed in

terms of the proposed scheme using the extended reptation theory as the reference

frame for the entangled system or the Rouse theory as the reference frame for the

entanglement-free system, yielding important Tg-related dynamic and structural

quantities: the structural-relaxation time S, the structural-growth parameter s’and the

frictional factor K’. These quantities individually fall on the same curves, if

expressed as a function of the temperature difference gTTT  from the individual

glass transition points of the samples, which are defined as the temperatures where the

structural relaxation time S=1000 sec. These results covering the molecular-weight

120 E-mail:yhlin@mail.nctu.edu.tw
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range from 16400 to 122000 strongly indicate that universality associated with the

Tg-related dynamics occurs in the polystyrene system, entangled or not. In this

report, the viscoelastic spectra G*() reported by Inoue et al11 at molecular weights

just below the entanglement molecular weight Me=13500 and well below Me are

quantitatively analyzed in terms of the same scheme. Quantities in both the glassy

region ( f
GA , and S or

G
 ) and entropic region (s’and K’) extracted from the

analyses are consistent with those obtained previously from the analyses of the J(t)

results. It is shown that the T dependences of s’, K’and S merge into their

respective universal curves at around Mw=12000. At the same time, the universal

curve of S is shown in agreement with the temperature dependences of the shift

factors obtained by Plazek from the recoverable compliance Jr(t) results, supporting

the expected extension of the Tg-related universality to higher molecular weights than

covered by the previous analyses.
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Range of Universality

Regarding the Tg-Related Thermorheological Complexity

in Polystyrene Melts. 5

Y.-H. Lin

Department of Applied Chemistry

National Chiao Tung University

Hsinchu, Taiwan

1. Introduction

It has recently been shown121,122,123 that the creep compliance J(t) curves over

the whole time range of three nearly monodisperse polystyrene samples (as denoted

by s-A, -B and -C in Table 1) measured by Plazek124,125,126can be quantitatively and

profitably analyzed in terms of the scheme using the extended reptation theory

(ERT)127,128 as the reference frame for the entangled system (s-A and s-B) and the

121 Lin, Y.-H. J. Phys. Chem. B 2005, 109, 17654.

122 Lin, Y.-H. J. Phys. Chem. B 2005, 109, 17670.

123 Lin, Y.-H. J. Phys. Chem. B submitted. (paper 3)

124 Plazek, D. J. J. Phys. Chem. 1965, 69, 3480.

125 Plazek, D. J. J. Polym. Sci., Part A-2: Polym. Phys. 1968, 6, 621.

126 Plazek, D. J.; ORourke, V. M. J. Polym. Sci. A-2: Polym. Phys. 1971, 9, 209.

127 Lin, Y.-H. Macromolecules 1984, 17, 2846; 1986, 19, 159; 1987, 20, 885.

128 Lin, Y.-H. Polymer Viscoelasticity: Basics, Molecular Theories, and Experiments;
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Rouse theory8,129,130 as the reference frame for the entanglement-free system (s-C),

yielding important Tg-related dynamic and structural quantities. From the analyses,

it has been shown that the structural- or -relaxation time S can be separated into two

decoupled factors: the structural-growth parameter s’and the frictional factor K’

)''18( S Ks by a fundamentally clean-cut process: Firstly, s’, characterizing the

thermorheological complexity, is entirely determined by the line shape of J(t); then,

K’is determined from the time-scale shift factor. It is found that all the three

quantities S, s’and K’individually fall on the same curve if they are expressed as a

function of the temperature difference gTTT  from the individual glass transition

points of the samples, which are defined as the temperatures where S=1000 sec.

These results strongly indicate that the universality associated with the Tg-related

dynamics occurs in the polystyrene system, entangled or not. The details of the

studies are referred to the previous papers.13 As these studies represent a new way of

analyzing the creep compliance J(t) results, it is of importance and interest to compare

the results of these studies with other results of measurements and analyses. While

serving this purpose, this report also shows where deviations from the Tg-related

universality would begin to occur from analyzing the viscoelastic spectra )(* G of

low molecular weight polystyrene samples reported by Inoue et al.131

World Scientific: Singapore, 2003.

129 Rouse, P. E. Jr. J. Chem. Phys. 1953, 21, 1271.

130 Bird, R. B.; Curtiss, C. F.; Armstrong, R. C.; Hassager, O. Dynamics of Polymeric

Liquids, Vol. 2, Kinetic Theory, 2nd ed.; Wiley: New York, 1987.

131 Inoue, T.; Onogi, T.; Yao, M.-L.; Osaki, K. J. Polym. Sci.: Part B: Polym. Phys.
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2. Viscoelastic Spectra as Analyzed

As all the samples L10, A5000, A2500 and A1000, whose viscoelastic spectra

are analyzed in this study have Mw values, as listed in Table 1, below the

entanglement molecular weight Me=13500,8,132,133 the scheme of analysis is the one

using the Rouse theory as the reference frame, as detailed in paper 3.3 The technical

details of calculating the G*() spectra have been described in the Appendix of paper

2.2 The comparisons of the measured spectra )(* G with the calculated including

the contribution of the Rouse (entropic) component for samples L10, A5000, and

A2500 at several temperatures are shown in Figures 13, respectively. As the

contribution of the entropic component is negligible in A1000 because of its

extremely low molecular weight, only the glassy-relaxation function

  G
f
GG exp)( tAtG  (1)

is used to fit its viscoelastic spectra as shown in Figure 4. In these figures, the

spectrum at a certain temperature is chosen (105oC for L10; 100oC for A5000; 80oC

for A2500; and 25oC for A1000 as chosen by Inoue et al) as the reference to which the

line shape in the glassy region of the spectrum measured at different temperatures are

1999, 37, 389.

132 Lin, Y.-H. Macromolecules 1987, 20, 3080.

133 Fetters, L. J.; Lohse, D. J.; Richter, D.; Witten, T. A.; Zirkel, A. Macromolecules

1994, 27, 4639.
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superposed on it, forming a composite spectrum and yielding the time-scale shift

factors aG. With the average glassy-relaxation time denoted by
G

 , the structural

relaxation time is defined as

GS 18  (2)

For each sample the average glassy-relaxation time
G

 at the reference temperature

can be determined from matching the calculated spectrum with the composite

spectrum over the glassy region. With the thus obtained
G

 value, the S values at

different temperatures can be calculated from the shift factors aG for each sample.

At the same time the parameters f
GA and are extracted from fitting to the line shapes

of the composite spectra over the glassy region. As listed in Table 1, the values

of f
GA and obtained for L10, A5000 and A2500 are very consistent with the values

for s-A, -B and -C obtained previously, supporting the trustworthiness of the two sets

of data. In A1000, there are a large number of components having chain lengths as

short as or smaller than the length scale associated with the glassy-relaxation process;

as a result, its glassy-relaxation time distribution is directly broadened by its

molecular-weight distribution which is not particularly narrow, leading to a value

smaller than for the other samples.

The structural-growth parameter s’and the frictional factor K’for L10, A5000

and A2500 can only be obtained from a spectrum that simultaneously covers both the

glassy and entropic regions; as a result, the s’and K’values are obtained from their
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spectra only at a few temperatures. As s’decreases with increasing temperature, the

entropic region of the spectrum shifts more away from the glassy region as shown in

Figures 13 for L10, A5000 and A2500, respectively.

2. S, s’and K’Results in Comparison with the Universal Curves

The obtained S values for the four samples, L10, A5000, A2500 and A1000, are

shown in Figure 5 along with the results obtained for s-A, -B and -C, which have been

collectively closely fitted by the FTH equation:

)(
)log(

cT
b

aS 
 (3)

with 1827.37and3497.539,5045.11  cba .3 For showing theS results of L10,

A5000, A2500 and A1000 as a function of T in Figure 5, their glass transition

temperatures Tg defined as the point where S=1000 sec need to be determined

individually first. As the longest S values for the samples, except for A1000, are

around 100～200 sec as extracted from the data of Inoue et al, the Tg values cannot be

determined by interpolation. Under the circumstance, one may do two things: one is

by doing extrapolation based on the FTH equation that best fits the available data; the

other is by superposing the longest S data point on the curve calculated from eq 3 by

shifting along the T coordinate. The Tg values determined in these two ways differ

by less than 0.3o; either way does not lead to a difference in interpretation. The

Tg(S=1000 sec) values as listed in Table 1 and used in calculating T for plotting the
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S points in Figure 5 are the results of the extrapolation way. As shown in Table 1,

these Tg values are consistent with the values determined by DSC134 as much as those

of s-A, s-B and s-C are. In the case of A1000, the temperature dependence of S

results are fitted to the FTH equation, from which the Tg point where S=1000 sec is

determined by interpolation.

TheS results of L10, A5000 and A2500 shown in Figure 5 indicate that the small

deviations from the universal curve increase with decreasing molecular weight

towards the direction of the curve for A1000; the largest change occurs in the

molecular-weight range between A2500 and A1000. In particular, the data points of

L10 closely cling to the curve calculated from eq 3, indicating that the universality of

the T dependence of S obtained previously should extend to a molecular weight

between those of s-C and L10. Similar closeness to the universal curves of s’and K’

(s=s’and K=K’when the molecular weight is below the entanglement molecular

weight, as explained in section 4 of paper 3; here we keep using the notations s’and

K’as used in paper 3) as a function of T have been observed for the s’and K’values

of L10 as extracted from the line-shape analyses shown in Figures 13.

Shown in Figures 6 and 7, respectively, are the s’and K’values obtained for L10,

A5000 and A2500 in comparison with the results of s-A, -B and -C, which have been

closely fitted by a modified FTH equation (for s’) or FTH equation (for K’)

collectively,3 as shown by the calculated curves in the figures. These curves of s’

and K’together with that of S as a function of T representing the coverage of the

134 Lin, Y.-H. Macromolecules 1990, 25, 5292.
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molecular-weight range of from 16400 to 122000 indicate that the Tg-related

dynamics behave in a universal way in the polystyrene system, entangled or not, as

discussed in detail in paper 3. In the very low molecular-weight region as covered in

this study, with decreasing molecular weight, deviations from the calculated universal

curves increase in general. The K’values are virtually on the universal curve, with

only slightly noticeable deviation towards the lower side in the case of A2500. The

success of using T to account for the change in Tg with molecular weight is indeed

extraordinary in the case of K’considering the fact that the Tg values of L10, A5000

and A2500 have dropped from the maximum value by 10, 18 and 40 degrees,

respectively. Thus, as ''18S sK , the deviation of s’to the higher side is mainly

correlated with S deviating towards the same side. As shown in Figure 6, being a

little beyond the fluctuation-of-errors range from the calculated curve, the s’data

points of L10 appear on the verge of deviating from the universal curve. When

multiplied by a constant, the calculated universal curve can be shifted upwards to

superpose well on the s’data points of L10, A5000 and A2500 individually as shown

by the dotted lines in Figure 6. By extrapolating the thus obtained multiplication

factors to the no-shift point, it is estimated that the deviation from the universal curve

begins around Mw=12000, which is between the Mw value of L10 and the

entanglement molecular weight Me=13500. Thus, although as shown previously, the

universal curve is applicable in both the entangled and entanglement-free regions, the

range of the applicable entanglement-free region is quite narrow. Note that although

the Mw value of s-C being a little higher than Me=13500, its creep compliance J(t)

results can be best analyzed using the Rouse theory as the reference frame because its



105

molecular-weight distribution is not extremely narrow, as explained in detail in paper

3. The Mw value of s-C being higher than Me also helps keep the system inside the

region where the universal T dependence of s’is applicable.

4. Structural Relaxation Time as Embedded in the Recoverable Compliance

The short-time/small-compliance region of the creep compliance J(t) contains

the information of the glassy-relaxation process. Because of the convolution integral

involved in converting the relaxation modulus G(t) into creep compliance J(t), as

shown in section 4.1 of paper 1, the separate relaxation processes are “smeared”and

the J(t)1 line shape is different from that of G(t). As a result, the extraction of the

glassy relaxation process)as characterized by the f
GA , , and

G
 values)from J(t) is

not as direct as from G(t). Nevertheless, the time-scale shift factor with a

temperature change in the small-compliance region reflects that of the

glassy-relaxation process. In Figure 8, the time-scale shift factors of s-A, s-C, P19

and P60 (see Table 1) obtained by Plazek from the recoverable compliance Jr(t)

results are compared with the curve calculated from eq 3; in making the superposition

the shift factors of these samples have been individually multiplied by a proper factor.

The comparison shown in Figure 8 is more extensive than shown for s-A only in

Figure 5 of ref 2. The close superposition supports that the creep compliance J(t)

results of s-A and s-C obtained by Plazek have been faithfully analyzed.135 Although

135 Note: For very good reasons, several shift factors listed by Plazek have to be

excluded: For s-C, the steady-state compliance 0
eJ becomes much reduced at 96 and



106

the range of T from 0 to 20, over which the universal curve calculated from eq 3 is

shown in agreement with the shift factor results, is not as wide as the full range of the

calculated curve, the maximum uncertainty of T allowed is 1K; if a shift of 1K along

the T coordinate is made, even with the vertical-shift adjustment being permitted,

systematic deviations of the shift factors from the universal curve become very visible.

In other words, the shown agreement is actually quite unique. Thus, the agreement

of the calculated curve with the shift-factor results of P19 and P60 supports the

universality expected to cover molecular weights higher than that of s-B.

5. Discussion and Summary

As presented in papers 13,13 the scheme of analysis using the extended

reptation theory (ERT) as the reference frame for the entangled system (s-A and s-B)

or the Rouse theory as the reference frame for the entanglement-free system (s-C)

allows us to convert the creep compliance J(t) faithfully into the form of relaxation

modulus G(t) or viscoelastic spectrum )(* G (see the Appendix of ref 2). Here, we

have analyzed the viscoelastic spectra of very low molecular-weight polystyrene

samples (L10, A5000, A2500) in terms of the same scheme. From analyzing the two

sets of data, consistent results are obtained, including:

93oC, greatly limiting the range of the Jr(t) curve (see Figure 2 of ref 6); as a result,

the shift factors at these two temperatures are prone to large errors. For s-A, the Jr(t)

curves at 125o and 133.8oC only cover a very small time period in the“knee”region

(see Figure 3 of ref 4), which is most susceptible to the temporal-unevenness effect as

discussed in section 4 of ref 1.
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(a) Equally well characterized glassy-relaxation process as represented by the

closeness of the values of the glassy-relaxation strength f
GA and stretching parameter 

extracted from J(t) and from G*() as listed in Table 1.

(b) The closeness of the values of the structural-relaxation time S,

structural-growth parameter s’and frictional factor K’in the case of the L10 sample to

the universal curves obtained from analyzing the J(t) results previously13 over the

molecular-weight region from 122000 to 16400, whose low end is higher than that of

L10 by about 6000. The small deviations in the case of L10 from the universal

curves are in the directions as expected from the larger deviations observed in the

other samples of even smaller molecular weights; in other words, the small deviations

in L10 should be caused by other effects that would set in when the molecular weight

is significantly lower than the entanglement molecular weight Me=13500. One

important factor may be the disappearing of the hindrance to segmental movement as

the chain connectivity is sufficiently diminished. Such a view is supported by the

constraint (see eq 7 of ref 16)136

const
'

2


s

d
(4)

whereby, as s’becomes larger with decreasing molecular weight, a larger jumping

step length d may be allowed.

Indicating that the experimental results of Plazek46 and Inoue et al11 have been

136 Lin, Y.-H. J. Phys. Chem. B submitted. (paper 4)
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linked in quantitative way, the agreements as summarized above further support the

validity and accuracy in practice of the analysis scheme. It is also shown in this

study that as the molecular weight of polystyrene is around Mw=12000, the T

dependences of S, s’and K’merge into the universal curves obtained previously.

Since it is hard to imagine that other factors could set in to interfere the universality as

the molecular weight increases beyond Mw=122000, the observed universality is

expected to extend to higher molecular weights. This expectation is supported by

the agreement of the T dependence of the shift factors obtained by Plazek from the

recoverable compliance Jr(t) results with the universal curve of S.
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Table 1: Characteristics Mw, Mw/Mn and Tg (based on DSC and defined at

S=1000 sec) and the Parameters AG
f, and Z Extracted from the Analyses of

Creep Compliance Curves J(t) or Viscoelastic Spectra G*() of Samples Whose

Structural-Relaxation Times S, Structural-Growth parameters s’and Frictional

Factors K’(from ref 3 and from this report) Displayed in Figures 57 or Shift

Factors (SF; from refs 4 and 6) Displayed in Figure 8.
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Sample Mw Mw/Mn Tg(oC)

DSC

137

Tg(oC)

S=1000sec

Af
G×10﹣10

dynes/cm2

 Z Displayed in

Figures 57

Displayed in

Figure 8

s-A 46900 1.05138 97 97 1.295 0.41 20 S, s’, K’from J(t) SF from Jr(t)

s-B 122000 1.05b 100 99.6139 0.973140 0.41 20 S, s’, K’from J(t)

s-C 16400 1.05b 93.4 93.8 0.993 0.42 20 S, s’, K’from J(t) SF from Jr(t)

L10 10500 1.02 90 (90.03)141 0.993 0.42 50 S, s’, K’from G*()

A5000 5970 1.02 82 (81.64)e 1.09 0.42 50 S, s’, K’from G*()

A2500 2630 1.05 (59.6)

142

(59.43)e 1.09 0.42 20 S, s’, K’from G*()

A1000 1050 1.13 (5)f 6.22 1.14 0.36 S, s’, K’from G*()

P19 189000 1.02 100 SF from Jr(t)

P60 600000 1.06 100 SF from Jr(t)

137 Values based on the DSC results shown in Figure 3 of ref 14.
138 Calculated from the polydispersity parameter Z; see refs 1 and 3 for details.
139 “Restored”to the uncontaminated state; see ref 3 for details.
140 This value is low due to contamination by residual plasticizers in the sample (see refs 1 and 5).
141 Calculated by extrapolation from the FTH equation best fitted to the S values.
142 Estimated from the Tg values determined by DSC as reported in ref 11 which appear to be greater
than the DSC values given by Figure 3 of ref 14 by 3.8o in average.
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Figure Captions:

Figure 1

Comparison of the viscoelastic spectra G*() of L10 measured at different

temperatures (▽ at 92oC; △ at 95oC; ◇ at 99oC; ● at 105oC; ▲ at 110oC; ■ at

120oC; and ◆at 130oC)11 with the calculated ()) in the glassy region; in the entropic

region: )) at 105oC; ) ) at 110oC; at 120oC; and at 130oC); the reference

temperature is 105oC.

Figure 2

Comparison of the viscoelastic spectra G*() of A5000 measured at different

temperatures (▽ at 85oC; △ at 88oC; ◇ at 92oC; ● at 100oC; ■ 110oC; ◆ at

120oC)11 with the calculated ()) in the glassy region; in the entropic region: )) at

100oC; ) ) at 110oC; and at 120oC); the reference temperature is 100oC.

Figure 3

Comparison of the viscoelastic spectra G*() of A2500 measured at different

temperatures (▽ at 62oC; △ at 65oC; ◇ at 70oC; ● at 80oC; ■ at 90oC)11 with the

calculated ()) in the glassy region; in the entropic region: )) at 80oC; and ) ) at

90oC); the reference temperature is 80oC.

Figure 4

Comparison of the viscoelastic spectra G*() of A1000 measured at different

temperatures (▽ at 5oC; △ at 10oC; ◇at 15oC; □ at 20oC; ● at 25oC and ■at
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30oC )11 with the calculated ())); the reference temperature is 25oC.

Figure 5

The structural-relaxation time, S, of L10 (●), A5000 (■), A2500 (◆; with the best

fitting FTH curve ) and A1000 (▲; with the best fitting FTH curve ) as a function

of the temperature difference T from individual Tg in comparison with the universal

curve ())) calculated from the FTH equation (eq 3) best fitted to the S values of s-A

(○), s-B (◇) and s-C (□) collectively.

Figure 6

The structural-growth parameter, s’, of L10 (●), A5000 (■), A2500 (◆) as a function of

the temperature difference T from each individual Tg in comparison with the

universal curve ())) calculated the modified FTH equation (eq 19 in ref 3) best fitted

to the s’values of s-A (○), s-B (◇) and s-C (□ obtained from the Jp(t) line-shape

analysis; ▲ from the analysis of 0
epJ ) collectively. The dotted lines each represent the

universal curve multiplied by a constant factor to superpose on the data points of L10

(×1.23), A5000 (×1.9) and A2500 (×2.2) individually.

Figure 7

The frictional factor, K’, of L10 (●), A5000 (■), A2500 (◆) as a function of the

temperature difference T from each individual Tg in comparison with the universal

curve ())) calculated from the FTH equation (eq 18 as explained in section 6 of ref 3)
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best fitted to the K’values of s-A (○), s-B (◇) and s-C (□) collectively.

Figure 8

Comparison of the universal curve ())) calculated from eq 3 with the temperature

dependences of the shift factors (SF) obtained by Plazek from the recoverable

compliance Jr(t) results of s-A (○), s-C (□), P19 (△) and P60 (▽)4,6(see Table 1 and

the text).
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Figure 1
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Figure 2

aG (rad/sec)

10-4 10-3 10-2 10-1 100 101 102 103 104 105 106

G
' (

),
G

" (


)
dy

ne
s/

cm
2

102

103

104

105

106

107

108

109

1010

1011



116

Figure 3
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Figure 4
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Figure 5
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Figure 6
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Figure 7
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Figure 8
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Monte Carlo Simulations

of Stress Relaxations of Entanglement-Free Fraenkel Chains. 1:

Linear Polymer Viscoelasticity

Y.-H. Lin and A. K. Das

Department of Applied Chemistry

National Chiao Tung University

Hsinchu, Taiwan

Abstract

Shear-stress relaxation modulus GS(t) curves of entanglement-free Fraenkel

chains have been calculated using Monte Carlo simulations based on the Langevin

equation, carrying out both in the equilibrium state and following the application of a

step deformation. While the fluctuationdissipation theorem is perfectly

demonstrated in the Rouse-chain model, only a quasi version of the

fluctuationdissipation theorem is observed in the Fraenkel-chain model. In both

types of simulations on the Fraenkel-chain model, two distinctive modes of dynamics

emerge in the relaxation modulus: a fast energetic interactions-derived mode and a

slow entropy-derived mode, giving a GS(t) line shape typically observed

experimentally. It has been shown through analysis that the fast mode arises from the

segment-tension fluctuations or reflects the relaxation of the segment-tension arising
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from segments being stretched by the applied step strain; and the slow mode arises

from the fluctuating segmental-orientation anisotropy or represents the randomization

of the segmental-orientation anisotropy induced by the step deformation.

Furthermore, it is demonstrated that the slow mode is well described by the Rouse

theory in all aspects: the magnitude of modulus, the line shape of the relaxation curve

and the number-of-beads dependence of the relaxation times. In other words, with

one Fraenkel segment substituting for one Rouse segment, it has been shown that the

entropic-force constant on each segment is not a required element to give rise to the

Rouse modes of motion which have been typically observed in the long-time region

of the linear viscoelastic response of an entanglement-free polymer. This conclusion

provides an explanation resolving a long-standing fundamental paradox in the success

of Rouse-segment-based molecular theories for polymer viscoelasticity)namely, the

paradox between the Rouse segment size being of the same order of magnitude as that

of the Kuhn segment and the meaning of the Rouse segment as defined in the Rouse

chain model. A comparison of the simulation result with experiment suggests that

the Fraenkel-chain model, while being still relatively simple, has captured the basic

element of the energetic interactions)the rigidity on the segment)in a polymer

system.
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Monte Carlo Simulations

of Stress Relaxations of Entanglement-Free Fraenkel Chains. 1:

Linear Polymer Viscoelasticity

Y.-H. Lin and A. K. Das

Department of Applied Chemistry

National Chiao Tung University

Hsinchu, Taiwan

1. Introduction

It has been extensively shown that the linear viscoelastic response of an

entanglement-free polymer melt is well described by the Rouse theory.143,144,145,146,147

However, the agreement between theory and experiment is limited to the region below

the modulus level corresponding to the molecular weight of a single Rouse segment

that can be assigned to the polymer system)for instance, below ～ mRT 3.8×107

143 Rouse, P. E. Jr. J. Chem. Phys. 1953, 21, 1271.

144 Bird, R. B.; Curtiss, C. F.; Armstrong, R. C.; Hassager, O. Dynamics of Polymeric

Liquids, Vol. 2, Kinetic Theory, 2nd ed.; Wiley: New York, 1987.

145 Lin, Y.-H. Polymer Viscoelasticity: Basics, Molecular Theories, and Experiments;

World Scientific: Singapore, 2003.

146 Lin, Y.-H. Macromolecules 1986, 19, 168.

147 Lin, Y.-H.; Juang, J.-H. Macromolecules 1999, 32, 181.
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dynes/cm2 corresponding to the Rouse-segmental molecular weight m850 in the case

of polystyrene;148,149,150,151152,153,154,155,156,157,158 in other words, the agreement occurs

only in the time or frequency region slower than the motion associated with a single

Rouse segment or equivalently the relaxation rate of the highest Rouse mode.

Because of the entropic-force constant on the Rouse segment, this region may be

referred to as the entropic region and the relaxation processes in it as entropy-derived

dynamics. In the entropic region the entire viscoelastic response follows the same

temperature dependence indicating that thermorheological simplicity is followed, as

expected from the Rouse theory)the frictional factor associated with the Rouse

segment carries the temperature dependence of the viscoelastic response. In the time

or frequency region faster than the motion of a single Rouse segment, the modulus of

148 Inoue T.; Okamoto, H.; Osaki, K. Macromolecules 1991, 24, 5670.

149 Inoue, T.; Hayashihara,H.; Okamoto, H.; Osaki, K. J. Polym. Sci. Polym. Phys.

Ed.

1992, 30, 409.

150 Inoue, T.; Osaki, K. Macromolecules 1996, 29, 1595.

151 Inoue, T.; Uematsu, T.; Osaki, K. Macromolecules 2002, 35, 820.

152 Lin,Y.-H. J. Polym. Res. 1994, 1, 51.

153 Lin, Y.-H.; Lai, C. S. Macromolecules 1996, 29, 5200.
154 Lai, C. S.; Juang, J.-H.; Lin, Y.-H. J. Chem. Phys. 1999, 110, 9310.
155 Lin, Y.-H. J. Chin. Chem. Soc.2002, 49, 629.
156 Lin,Y.-H.; Luo, Z.-H. J. Chem. Phys. 2000, 112, 7219.

157 Lin, Y.-H. J. Phys. Chem. B 2005, 109, 17654.

158 Lin, Y.-H. J. Phys. Chem. B 2005, 109, 17670.
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the dynamic response is much higher)ranging from ～4×107 to ～1010dynes/cm2 for

polystyrene. The high modulus is due to the strong energetic interactions among

segments, both intra-chain and inter-chain; the dynamics in this region may be

properly referred to as energetic interactions-derived dynamics, which has also been

referred to in the literature as the glassy relaxation or the structural relaxation or the 

relaxation. It has been widely observed that as the temperature approaches the glass

transition temperature, Tg, from above, the energetic interactions-derived dynamics

has a temperature dependence stronger than that of the

entropy-derived. 159 , 160 , 161 , 162 , 163 , 164 , 165 , 166 Thus, when the whole range of the

viscoelastic response is included in the consideration, the thermorheological

simplicity does not hold. Recently, the basic mechanism for the thermorheological

complexity in polystyrene has been analyzed, showing that the effect as related to Tg

behaves in a universal way within the polystyrene system, entangled or not,15,167 and

that the same basic mechanism is also responsible for the break-down of the

159 Plazek, D. J. J. Phys. Chem. 1965, 69, 3480.

160 Plazek, D. J. J. Polym. Sci., Part A-2: Polym. Phys. 1968, 6, 621.

161 Plazek, D. J.; ORourke, V. M. J. Polym. Sci. A-2: Polym. Phys. 1971, 9, 209.

162 Plazek, D. J. J. Rheol. 1996, 40, 987.
163 Plazek, D. J. Polymer J. 1980, 12, 43.

164 Okamoto, H.; Inoue, T.; Osaki, K. J. Polym. Sci: Part B: Polym. Phys. 1995, 33,

417.

165 Inoue, T.; Hwang, E. J.; Osaki, K. J. Rheol. 1992, 36, 1737.

166 Adachi, K.; Hirano, H. Macromolecules 1998, 31, 3958.

167 Lin, Y.-H. J. Phys. Chem. B, submitted.
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StokesEinstein equation in relating the translational diffusion constant and viscosity

or molecular rotational relaxation time in fragile glass-forming liquids,168 such as

OTP169,170,171,172,173 and TNB.174,175 While it has been extensively demonstrated that

the molecular theories: the Rouse theory15 for the entanglement-free region of

molecular weight and the extended reptation theory (ERT)3,176,177,178 for the entangled

region, describe the viscoelastic responses in the entropic region successfully in a

quantitative way, the glassy-relaxation process can only be analyzed

phenomenologically, often in terms of a stretched exponential form. In other words,

we have quite limited understanding about the glassy-relaxation process at the

molecular level. In this study, using the Monte Carlo simulation based on the

Langevin equation,3,14 we compute the relaxation modulus curves of the model

168 Lin, Y.-H. J. Phys. Chem. B, submitted.

169 Fujara, F.; Geil, B.; Sillescu, H.; Fleischer, G. Z. Phys. B: Condens. Matter

1992, 88, 195.
170 Cicerone, M. T.; Ediger, M. D. J. Phys. Chem. 1993, 97, 10489.
171 Kind, R.; Liechti, N.; Korner, N.; Hulliger, J. Phys. Rev. B 1992, 45, 7697.

172 Chang, I.; Fujara, F.; Geil, B.; Heuberger, G.; Mangel, T.; Sillescu, H. J.

Non-Cryst. Solids 1994, 172174, 248.

173 Mapes, M. K.; Swallen, S. F.; Ediger, M. D. J. Phys. Chem. B 2006, 110, 507.

174 Chang, I.; Sillescu, H. J. Phys. Chem. B 1997, 101, 8794.; and references therein.

175 Swallen, S. F.; Bonvallet, P. A.; McMahon, R. J.; Ediger, M. D. Phys. Rev. Lett.

2003, 90, 015901.

176 Lin, Y.-H. Macromolecules 1984, 17, 2846.

177 Lin, Y.-H. Macromolecules 1986, 19, 159.
178 Lin, Y.-H. Lin Macromolecules 1987, 20, 885.
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systems which contain elements of energetic interactions)the Fraenkel chains,179

shedding light on the coexistence of and the interrelation between the energetic

interactions-derived and entropy-derived dynamic processes.

2. Monte Carlo Simulation Based on the Langevin Equation

In the Monte Carlo simulation, the continuous change in time, dt, in the Langevin

equation is replaced by a small time-step, t. For a chain with the positions of the

beads at time step i denoted by {Rn(i)}, the simulation form of the Langevin equation

is expressed by

)(
)(

2
)()1(

2

i
kT

id
ii n

n
nn d

F
RR 







 (1)

where Fn(i) is the force on the nth bead at the ith time step arising from the interaction

potential; the random step vector dn(i) is characterized by the following first and

second moments:

0)(  ind (2)

and

ijnmmn dji Idd 2)()(  (3)

179 Fraenkel, G. K. J. Chem. Phys., 1952, 20, 642.
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where I is a unit tensor.

Then the relaxation modulus can be calculated from the Monte Carlo simulation

after a step shear deformation
















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100
010
01 

E (4)

is applied to the polymer chain in an equilibrium state at t=0. Following the

application of the step deformation E, the evolution of  )(inR is calculated

according to eq 1; and the stress relaxation of a chain with N beads is given by





N

n
nnxxy iYiFiS

1

)()(),( (5)

For the simulation, a large number of identical relaxation processes following a step

deformation are repeated and accumulated for averaging. Before a new cycle is

repeated, the system must run for a sufficiently large number of time steps to reach an

equilibrium state. To prevent some residual memory from accumulating, the step

deformation may be applied in a cyclic manner, as done in this study; if the E given

by eq 4 is referred to as a deformation in the x direction and denoted by x, the

deformation cycle: zzyyxx  is repeated and following each

step deformation, the physically equivalent stress component is collected for

averaging. Although the cyclic scheme is used for averaging throughout the
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simulation study as reported in this paper and the companion paper, 180 to

conveniently discuss the anisotropy introduced by the deformation, the obtained

results will be discussed with respect to eq 4 as the chosen direction of

deformation)namely, in terms of the xy component. Denoting the thus averaged

stress relaxation as S(,i), the relaxation modulus normalized to that corresponding to

a single segment is given as

)1(
),(

)(S 


N
iS

iG



(6)

In this study, we are mainly interested in the linear relaxation modulus. In

accordance with the fluctuation-dissipation theorem, the relaxation modulus

equivalent to that given by eq 6 in the linear region of  can be calculated

from181,182,183

180 Lin, Y.-H.; Das, A. K. J. Chem. Phys. (submitted; paper 2)

181 Doi, M.; Edwards, S. F. The Theory of Polymer Dynamics; Oxford Univ. Press:

Oxford, 1986.

182 McQuarie, D. A. Statistical Mechanics; Harper & Row: New York, 1976.

183 From applying the fluctuation-dissipation theorem, eq 7 is the expression for the

relaxation modulus based on the molecular expression for the stress tensor as given in

ref 39 (Namely, eq 5 here; the sign system used here for the stress tensor is

opposite to that used in ref 39), which is also in agreement with the expression for the

zero-shear viscosity as given in ref 40 (page 519). Note: In the Monte Carlo

simulation based on the Langevin equation, the velocity distribution is assumed to be

at equilibrium, namely, described by the Maxwellian distribution;2,3 thus, the

momentum flux terms only contribute to the isotropic part of the normal stresses and
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where I represents a very large number of iteration (typically ～103104, depending

on the time window, namely the limit of i) and





N

n
nnxxy iYiFiJ

1

)()()( (8)

Although in the simulation we use all the six combinations of )with()(  tJ for

averaging in calculating the time-correlation function, in our discussion below, we

shall use the xy component as the representative of the shear stress. The simulation

result as obtained through eq 6 is referred to as the step strain-simulation GS(t), as

opposed to the equilibrium-simulation GS(t) obtained through eq 7.

For a Rouse chain, the force on an internal bead is given by2,3

 )()()(2
3

)( 112
iii

b
kT

i nnnn   RRRF (9)

An equivalent equation can be written for the end beads: n=1 or N. Throughout our

need not be included in the stress expressions in this paper.
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calculations we have set 12 b .

The relaxation modulus of a Rouse chain with N beads or molecular weight M is

given by2,3


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
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where the relaxation time of the pth normal mode, p , is given by
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with 222 mkTbK  being the frictional factor associated with the Rouse

segment.3 The frictional factor carries the temperature dependence of the relaxation

times of a polymer in the entropic region of its relaxation modulus, which is usually

described by the Fulcher and TammannHesse (FTH) equation or the

WilliamsLandelFerry (WLF) equation.184,185,186 In the simulation the time-step

depends on the step-length d chosen; the relaxation time p can be expressed in terms

of the time-step as14

184 Fulcher, G. S. J. Am. Chem. Soc., 1925, 8, 339, 789; Tammann, G. and Hesse, G.,

Z. Anorg. Allg. Chem. 1926, 156, 245.

185 Williams, M. L.; Landel, R. F.; Ferry, J. D. J. Am. Chem. Soc. 1955, 77, 3701.

186 Ferry, J. D. Viscoelastic Properties of Polymers, 3rd ed.; Wiley: New York, 1980.
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For a chain whose nearest neighboring beads interact through the Fraenkel

potential:
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the force on an internal bead is given by
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An equivalent equation can be written for the end beads: n=1 or N. Throughout our

calculation, we have set b0=1 and kTH 400F  .

3. Equilibrium-Simulation GS(t)

3.1 Rouse chains. The relaxation time in terms of time steps as expressed by eq

12 allows one to compare the simulation GS(t) curve based on a Rouse chain with that

calculated from the analytical equation. In Figure 1, such a comparison is made for

two-bead, five-bead and ten-bead chains; in the comparison, both the simulated and

theoretical results are normalized to that as corresponding to one single segment with
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kT set as 1)namely, )1()()( RS  NttG  (see eq 10). This way of normalization

will be adopted throughout this paper (Note: kT is shown in equations of this report to

indicate the relationship to entropy or average kinetic energy; however, throughout the

simulation as well as in the shown results, kT is set to be 1 or equivalently kT is the

unit of energy), except for the comparison between simulation and experiment, where

the experimental G(t) will be used. The close agreement in both the modulus and

time-step coordinates as shown in Figure 1 supports the validity of the simulation.

3.2 Chains consisting of Fraenkel Segments. When the entropic force in the

Rouse segment is replaced by that derived from the Fraenkel potential, the stiffness of

the segment is greatly enhanced. Because the Fraenkel force is a non-linear function

of the bead positions, an analytical solution cannot be obtained from the

corresponding Langevin equation. In this case, the Monte Carlo simulation becomes

very important and useful, illustrating how enhancing the stiffness of the segment will

affect the viscoelastic response.

The simulations based on chains consisting of Fraenkel segments (referred to as

Fraenkel chains below) give rise to two distinct modes in GS(t) as shown in Figure 2

for a five-bead chain)the “bead,”as in the Rouse chain model, is actually a

volume-less point; with this understanding, we still refer to it as a bead. In Figure 2,

the simulation results obtained with the step length d chosen at 0.01 and 0.03 are

compared, with each time step for the latter being treated as nine times)the expected

ratio)longer than the one for the former. The close agreement between the two

indicates that the step length d=0.03 is sufficiently short, causing virtually no

distortion to the obtained GS(t) curve; at the same time, no additional information
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particularly significant can be gained from using the much more time-consuming

choice, d=0.01. Thus, all of our simulations reported in this study and in the

companion paper38 are based on d=0.03. In Figure 3, the GS(t) curves for two-bead,

five-bead, ten-bead and twenty-bead Fraenkel chains are compared; their line shapes

are similar to what have been observed experimentally. We shall show below that

the fast mode is an energetic interactions-derived dynamic process while the slow

mode is an entropy-derived one.

In Figure 3, the results of simulation in the equilibrium state are compared with

the Rouse theoretical curves each for a chain with the corresponding number of beads.

To obtain the shown close superposition of the Rouse theoretical curves on the

simulation results in the long-time region, we need to apply small shifting factors to

the Rouse curves along the modulus coordinate. The multiplication factors

representing the shifts are 0.69, 0.85, 0.88, and 0.95 for the dumbbell, five-bead chain,

ten-bead chain and twenty-bead chain, respectively. The close agreement of the

slow modes with the Rouse GS(t) curves as shown in Figure 3 with only a small

shifting factor in the modulus coordinate strongly indicates that the slow mode is well

described by the Rouse theory; most significantly, N dependence of the relaxation

time as given by eq 12 is well followed. Such agreements mean that the slow mode

is of entropic nature as the Rouse modes of motion. Considering the fact that potential

function on the Fraenekel segment represents a strong energetic interaction between

two beads)much stiffer than the Rouse segment, the emergence of the entropic slow

mode is indeed intriguing. The energetic nature of the fast mode and the entropic

nature of the slow mode are analyzed below in detail. For the sake of simplicity, we
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will consider the Fraenkel dumbbell case; then, the extension of the analysis to a

Fraenkel chain with more than two beads will be discussed.

If there is no attractive interaction potential between two beads, the thermal

fluctuations in an equilibrium state will eventually separate them far apart.

Therefore, at equilibrium the average distance between the two beads (or the average

distance over a long period of time) is not that corresponding to the tensionless point

of the potential)namely, when the bond length is equal to b0 in the case of the

Fraenkel segment)but larger. There are different ways to define the average as will be

discussed below; however, this is true in all cases. Hence, the two beads are each

more often than not under a tension to bring them closer. This is so with a Rouse

segment as well as with a Fraenkel segment. These tensile forces on the bonds play

important roles contributing to the stress tensor of the chain. Because the Fraenkel

potential rises up sharply with a deviation from the tensionless point, the average

bond length in the equilibrium state should be larger than b0 by only a small amount

0 in any way of averaging. Physically, the small 0is responsible for the existence

of the entropy-derived slow mode; in an approximate way, the small 0allows the

tensile force on the segment to be expressed as a linear function of the bond vector as

occurring in the Rouse theory.

For the Fraenkel dumbbell, the Langevin equation in terms of the bond vector,

)()()( 12 ttt RRb  , is given by
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where the fluctuation term is given by )(and)(with)()()( 2112 ttttt ggggg  being

the fluctuations on beads 1 and 2, respectively.

Eq 15 can be similarly expressed in the discrete form for simulation purpose as

described in Section 2. Defining

0

0 )(
)(

1
b

t
t

b 
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b
(16)

eq 15 is rewritten as
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Corresponding to eq 17, the xy shear stress component is given by

)()()()( 3
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Hence
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F
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As expected, the simulation results obtained for the Fraenkel dumbbell based on the

combination of eqs 7 and 8 and on eq 19 are identical. In the simulation, the

fluctuation in )(t as defined by eq 16 can be monitored separately allowing the time
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correlation function )()0( t to be calculated. Physically, )(t approximately

represents the deviation of 0from)( btb . Any small change inb(t)leads to a large

relative change in )(t (for instance a change in b(t)from 1.005 to 1.01 doubles the

value of )(t ); as a result, compared to the motion associated with the bond

vector )(tb itself, )(t represents fast fluctuations with large relative fluctuation

amplitude, giving rise to a fast relaxation process in GS(t) as shown below.

As )(t originates from the particular form of Fraenkel potential, representing the

fluctuations in the tension on the Fraenkel segment, the fast relaxation mode may be

very well referred to as an energetic interactions-derived dynamic process. Because of

the large difference between the fluctuation rate of )(t and that associated

with )()( tbtb yx , eq 19 may be approximated by
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where formally

0)()(   tt (21)

with

0)(and;0)(   tt (22)
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As explained above, 0is always greater than zero. Eq 20 suggests two distinct

relaxation processes in )(S tG , as observed. At long times when )()0( t  has

diminished, )(S tG transits into a slow relaxing region, which would be described by

   )()()0()0()()0(
1 2

06
0

2

tbtbbb
kTb
H

tJJ
kT yxyx

F
xyxy  (23)

In the short-time region where the process )()0( t  is dominant, the

approximation as used in eq 20 is expected to be good. By contrast, over a long

period of time, as the non-vanishing residual fluctuations in )(t are small and more

comparable in (relative) magnitude to the slow fluctuations in )()( tbtb yx , the

separation into the product of 2
0 and   )()()0()0( tbtbbb yxyx as done in eq 23

may not be well justified. Nevertheless, the approximate form, eq 20, helps us

understand the distinctive coexistence of the fast and slow modes of motion as

observed from the simulation. To somewhat make up for the deficiency of the

approximation as represented by eq 20 in the long-time region, we use three different

ways to calculate 0, from which an approximate )(S tG curve in each case can be

obtained for comparison with the exact result, reflecting the key physical elements

affecting )(S tG . One, denoted by N , is calculated from the natural base line

of )()0( t . The second, denoted by V , is the value 0.0075 expected from
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considering the virial theorem.187 As described in Appendix A the virial theorem is

well confirmed in our simulation. The third, denoted by F, gives a close fitting to

the )(S tG curve obtained from simulation using the exact form, eq 19. In each case, the

definition of )(t is changed accordingly with 0of eq 21 replaced by N , V or F.

Regardless of the choice for 0for the time being, we shall first look at the

approximate )(S tG functional form as given by eq 23 for the long-time region. Eq 23

represents the time-correlation function of the stress tensor component Jxy(t) in the

long-time region described by the Langevin equation:
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which is linear and of the same form as that of the Rouse dumbbell:
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Thus, the slow mode is expected to behave very similarly to the single mode of

motion in the Rouse dumbbell. If the V value as obtained from the virial theorem

( F0V /3 HkTb , as from eq A1) is used for 0 , eqs 24 and 25 are identical

with 1
2/1

R

2
0 bb as set in this study and will lead to the same time-correlation

187 Goldstein, H. Classical Mechanics, 2nd ed.; AddisonWesley: Reading,

Massachusetts, 1980.
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function of the bond vector as given by the Rouse dumbbell model:3


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(Note: Obtained from the simulation, the mean square bond length 2b of the

Fraenekel dumbbell is greater than that of the Rouse dumbbell
R

2b by 1.3%; as this

difference is very small, particularly, much smaller than the difference

between N , V and F, it is neglected here.) As shown in Figure 4, the shape of the

)()0( tbb  curve from the simulation is well described by the single exponential

form as that of the Rouse dumbbell model but with a relaxation time longer by about

45%. In other words, using the relaxation time of )()0( tbb  as the criterion for

determining 0, the value, denoted by , is obtained to be 0.0052.

In Figure 5, we show the )(S tG simulation curves obtained in four different ways:

one uses the exact form, eq 19; the other three use the approximate form, eq 20,

with 0substituted by N , V or F. The corresponding )()0( t curves calculated on

the basis of using N , V or F are shown in Figure 6. One can notice that the fast

dynamics occurring in the thus calculated )(S tG and )()0( t have the same

time-scale and that there is virtually no difference between the simulation results

based on using N , V or F . Clearly this is due to the fluctuation magnitude
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in )(t or )(t being much larger than N , V and F . For )(S tG , the approximate

results are also virtually indistinguishable from the exact in the most part (the early

portion) of the fast-mode region. Clearly, these agreements occurring in the short-time

region are due to the dominant effect of )()0( t  and indicates that the fast mode

in )(S tG arises from the segment-tension fluctuation )(t )therefore, an energetic

interaction-derived dynamic process. In the long-time region, large divergences

between the curves based on using N , V or F occur. Because of the separation

of 2
0 from   )()()0()0( tbtbbb yxyx is not a well-justified approximation as explained

above, using the natural base line of ,)()0( t which is obtained to be N =0.0022,

much smaller than the value of V or F , leads to the poorest result.

Allowing 0adjustable, simulation using the approximate form can give a )(S tG curve

which is virtually indistinguishable from that obtained from using the exact form.

The very close fit shown in Figure 5 is obtained with F=0.01, which is larger

than 0075.0V  by 33%. Hence, in this case the value from the virial theorem

underestimates by about 33%, as opposed to giving an overestimate of the 0value

when the relaxation time of the time correlation function )()0( tbb  is used as the

criterion. On the other hand, the comparison of the )(S tG relaxation time of the

Rouse dumbbell with that of the slow mode in the )(S tG simulated from the exact form

indicates that the virial theorem gives an accurate prediction of 0 . This is also

indicated in Figure 3 by the agreements between the Rouse theory and the simulation

results in the slow-mode region for 5-bead, 10-bead and 20-bead chains.

Involving only a very small approximation (see eq A1) which is unrelated to the
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separation into two time-correlation functions as done in eq 20, V from the virial

theorem can be regarded as independent and trustworthy. As opposed to the

independence of V , each of the equations (eqs 20, 23 and 24) as involved in

estimating the different 0values: N , and Fcontains an element of approximation,

which naturally distorts the real situation in different ways, the obtained values

of 0are not expected to be the same. Excluding the N value, which is apparently

based on a bad approximation, the obtained 0values in various forms are within 40%

from their average, which is very close to the value from the virial theorem. The

closeness of these estimated 0values to the expectation based on the virial theorem

supports that the approximations involved in the above analyses are well justified and

that the physical picture they present)the fast mode in )(S tG is an energetic

interactions-derived dynamic process and the slow mode is an entropy-derived one as

the Rouse modes of motion)is a valid description. The described basic natures

associated with the fast and slow modes, respectively, will be further shown in a

different way in the discussion of the step strain-simulation )(S tG below.

For a Fraenkel chain with more than two beads, the extension of the above

analysis requires an examination. As opposed to eq 19 for a dumbbell, for an

N-bead chain, the relaxation modulus is given by
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As being dynamically correlated, the contributions of the cross terms in eq 28

to )(S tG are not zero; the dynamic correlation is also expected in the Rouse-chain

model.188 As a result, applying the above conclusions for a single segment to an

N-bead chain requires an analysis. As it turns out, the self terms of eq 28 as given by







1

1
6
0

2
self
S )()()()0()0()0(

)1(
)(

N

i
iyixiiyixi

F tbtbtbb
kTbN

H
tG  (29)

are virtually the solely-contributing terms to )(S tG in the short-time region; in other

words, the cross terms only contribute to the long-time region. This is illustrated by

the comparison of the curves of )(S tG and )(self
S tG for a five-bead chain in Figure 7.

As also shown in the same figure, virtually the same relative weight between the self

and cross terms in the long-time region occurs to the Rouse-chain model, further

supporting the Rouse-chain nature of the slow mode. Since there is virtually no

difference between )(S tG and )(self
S tG in the short-time region for the Fraenkel chain,

we may use eq 29 to illustrate the effect of fluctuations in )(ti , which is dominant in

the short-time region. Since the summation in eq 29 just represents a multiple of the

single term in eq 19, the analysis based on the Fraenkel dumbbell as presented above

can be readily applied to a N-bead chain. Thus, the conclusions of the analysis based

188 Note: For the mean square end-to-end vector of a Fraenkel chain, which is a static

property, there is no correlation between different segment, just as in the case of the

freely jointed chain. But just as in a Rouse chain, the dynamic coupling between

different segments cannot be neglected.



145

on the Fraenkel dumbbell as to the energetic interactions-associated nature of the fast

mode in )(S tG are basically equally applicable to the Fraenkel chains in general with

multiple beads. In the slow-mode region, the contributions of the cross terms clearly

cannot be neglected. This together with the lack of a good justification for

separating )()0( t from   )()()0()0( tbtbbb yxyx in the long-time region makes an

analysis for the slow mode similar to that done to the Fraenkel dumbbell unwieldy.

Nevertheless, the entropic nature of the slow mode is clearly supported by the fact

that )(S tG is well described by the Rouse theory in all aspects: the line shape, the

magnitude of modulus and the N dependence of relaxation times. Furthermore,

through the fluctuation-dissipation theorem, it is found from the step strain-simulation

of )(S tG as discussed below that the slow mode should arise from fluctuations in the

segmental-orientation anisotropy)an entropic origin.

4. Step Strain-Simulation GS(t)

Based on the fluctuation-dissipation theorem, the step strain-simulation GS(t) in

the linear region of the applied strain is expected to be equivalent to the

equilibrium-simulation GS(t). In Figure 1, the step strain-simulation GS(t) curves

obtained at =0.5 for 2-bead, 5-bead and 10-bead Rouse chains are also shown. As

expected from the theory, no non-linear effect can be observed between the GS(t)

curves obtained from the simulations at =0.5 and 1 for the Rouse chain model; in

other words, the shown step strain-simulation GS(t) curves are linear results. These

step strain-simulation results are in close agreement with the equilibrium-simulation
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GS(t) results and the Rouse theoretical curves, illustrating the working of the

fluctuation-dissipation theorem and confirming the validity of the simulations as

presented in this study.

The equilibrium-simulation GS(t) and the step strain-simulation GS(t) curves

obtained at =0.2 and 0.5 for the 2-bead, 5-bead, 10-bead and 20-bead Fraenkel

chains are compared in Figure 8. There are clear differences between the

equilibrium-simulation GS(t) and the step strain-simulation GS(t) at =0.2 in the

2-bead chain case, indicating that the fluctuation-dissipation theorem is not fulfilled

totally. This may be due to =0.2 being not in the linear region yet as there is some

small difference between the GS(t) results at =0.2 and 0.5 in the fast-mode region. In

fact, the numerically calculated GS(0) as a function of the strain as shown in Figure

6 of the companion paper indicates that the linear region should be below =0.005.

However, further investigation by decreasing the value indicates that this is not the

main cause. With the value decreasing, the number of repeating cycles required to

obtain a well-averaged GS(t) curve increases greatly. Prevented by the

overwhelmingly long time involved, we limit our study to the Fraenkel dumbbell

system)where the difference from the equilibrium-simulation GS(t) is also the most

obvious)in comparing the GS(t) results at =0.004 and 0.2. Although there are some

difference between the results at =0.004 and 0.2, the GS(t) result of the Fraenkel

dumbbell at =0.004 does not appear to be closer to the equilibrium-simulation result

as shown in Figure 9. As also shown in Figure 8, the difference between the

equilibrium-simulation and step strain-simulation GS(t) curves begins to appear in an

obvious way in the time region around the end of the fast mode and the early part of
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the slow mode, where an effect related to the coupling between )(t and )()( tbtb yx )a

subject discussed in section 3)is most likely to occur. Thus, the difference suggests

that the coupling between )(t and )()( tbtb yx may occur differently in the two types of

simulations. Furthermore, the comparison the results shown in Figure 8 and 9

indicates that the agreement between the equilibrium-simulation and step

strain-simulation GS(t) curves in the dumbbell case is not as good as the agreement in

the 5-bead chain case, which in turn is not as successful as in the 10-bead chain and

20-bead chain cases. As the difference in coupling may be reduced by the decrease

in the coupling itself, this trend may be explained by what we have observed in Figure

3 suggesting that the coupling between )(t and )()( tbtb yx is reduced making the slow

mode better described by the Rouse theory as the number of modes of motion in the

slow mode region increases. In other words, as being more removed from the fast

mode, the lower modes (belonging to the slow mode) in an N-bead chain, may

improve the overall decoupling of the fast and slow modes as N increases. In spite

of the visible difference particularly when N is small, we still see an overall

agreement between the equilibrium-simulation and step strain-simulation GS(t) curves,

each revealing clearly two separate modes. We refer to such an overall agreement as a

quasi version of the fluctuation-dissipation theorem.

In Figure 10, we show the mean square segment length )(2 tb ; and its

components: )(2 tbx , )(2 tby and )(2 tby of a five-bead Fraenkel chain as a

function of time following the application of the step shear strain =0.5. Although

=0.5 is not really in the linear region, we show these results at =0.5 because their
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changes with time are discernible and at the same time, the corresponding GS(t) curve

does not differ from the one obtained from the equilibrium simulation very much.

Comparing these results can serve our purpose, as discussed below, better than

showing the results at =0.2. As shown in Figure 10, the segment length is stretched

by the step strain and relaxes back to the equilibrium value, as opposed to the segment

length fluctuating around its mean value in the equilibrium simulation. From

comparing the time-scales of the dramatic changes in GS(t) (Figure 8)

and )(2 tb (Figures 10), it is clear that the fast mode occurring in the step-strain

simulation clearly reflects the large tension on the segments, arising from segments

being stretched by the step deformation, and that its relaxation reflects the decrease in

the average segment length back to the equilibrium value. This segment-tension

relaxation is equivalent to the time-correlation function of the segment-tension

fluctuation )()0( t as shown in Figure 6.

In the entropic region of the step strain-simulation GS(t), the mean square segment

length has reached the equilibrium value as shown in Figure 10, same as that

occurring all the times in the equilibrium simulation; however, as the differences

between the time dependences of the components )(2 tbx , )(2 tby and )(2 tby

indicate, there is some net orientation anisotropy in the step-strain case as opposed to

maintaining isotropy in average in the equilibrium case. As orientation does not

cause a change in the potential energy on the segment, the anisotropy of the segmental

orientation is of entropic nature. According to the fluctuation-dissipation theorem,

corresponding to the randomization of segmental orientation anisotropy as occurring
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in the simulation following a step shear deformation, fluctuating

segmental-orientation anisotropy should be present all the time in the equilibrium

state; such fluctuations should be responsible for the entropic slow mode in the

equilibrium-simulation GS(t). The close relationship between the slow mode in GS(t)

and the segmental orientation anisotropy as further revealed in the nonlinear region of

strain will be analyzed in great detail in the companion paper.

5. Comparison of Simulation with Experiment

Both the Rouse theory and the present Monte Carlo simulation using the Rouse

chain model or the Fraenkel chain model are a mean-field representation, meaning

that the bulk viscoelastic response of an entanglement-free polymer system

(concentrated solution or melt) is the sum of the contributions from all the chains in a

unit volume, each is represented by its statistically averaged dynamic behavior. In

comparison with experimental results of polymer melts, the mean-field representation

works very well in the long-time or entropic region of the viscoelastic response, as

illustrated by the quantitative agreement of the measured viscoelastic spectra with the

Rouse theory. Since in the entropic region, there is basically no difference between

the Rouse theory and the simulation results based on the Fraenkel chains, we may

compare the simulation results with experiment over the whole time range, shedding

light on the viscoelastic response in the short-time or energetic-interactions region.

Intuitively, the mean-field Fraenkel chain model should be an over-simplified

representation for the viscoelastic behavior in the energetic-interactions region for a

polymer in its melt state. However, the GS(t) results obtained from the Fraenkel
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chain-based simulations have basically reflected the main features in the G(t) curves

obtained experimentally in both the short-time and long-time regions, suggesting that

the simple model may have captured the key interactions in the real system.

The creep compliance J(t) can be converted to the relaxation modulus G(t)

through the basic equation of linear viscoelasticity:

 
t

dtttGtJt
0

')'()'( (30)

The convolution integral of eq 30 can be solved numerically by the method of

Hopkins and Hamming,189,190 as detailed in Appendix A of ref 15. Recently, the

creep compliance J(t) results of nearly monodisperse polystyrene samples obtained by

Plazek,17-19 two entangled and one entanglement-free, have been quantitatively

analyzed through eq 30 in terms of a G(t) functional form which incorporates a

stretched exponential form for the glassy-relaxation process into the extended

reptation theory for the entangled case15,16 or into the Rouse theory for the

entanglement-free case.25 From such quantitative analyses, it has been shown that

the thermorheological complexity as related to the glass transition behaves in a

universal way within the polystyrene system, entangled or not. The details of the

189 Hopkins, I. L.; Hamming, R. W. J. Appl. Phys. 1957, 28, 906; J. Appl. Phys.

1958, 29, 742.

190 Tschoegl, N. W. The Phenomenological Theory of Linear Viscoelastic Behavior;

Springer-Verlag: Berlin, 1989.
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studies are referred to refs 15 and 25. Here, we will only use the result of the

entanglement-free system)denoted by sample C in ref 25 and will also be so denoted

here. The G(t) functional form used for the entanglement-free case is expressed by

 dMMt
M
Mf

RTtAtG ),(
)(

)()( RG
f
G  (31)

where R(t,M) is given by eq 10; , R and T are the density, gas constant, and absolute

temperature, respectively; )(Mf represents the molecular-weight distribution of the

sample; and f
GA is the full relaxation strength of the glassy-relaxation process )(G t ,

phenomenologically expressed by a stretched exponential. Note that eq 31 has a

general functional form basically equivalent to the approximation as given by eq 20

for decoupling the modes of motion associated with (t) and with )()( tbtb yx . As

shown in section 3, with 0 being allowed as an adjustable fitting parameter, eq 20 can

give rise to a result in close agreement with what is obtained from the exact

expression (eq 19). As opposed to the slow mode arising from the fluctuations

of )()( tbtb yx in the simulation using eq 20, the Rouse theory is used to describe the

slow mode directly here.

In the quantitative J(t) line-shape analyses, the effect of the molecular-weight

distribution )(Mf of the studied samples, even though very narrow, need be included

into the calculation. The molecular-weight distribution is assumed to be described
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by the Schulz function,191 whose distribution width is characterized by the single

parameter Z ( ZZMM nw )1(  ). As a fitting parameter, the Z values obtained

from the quantitative line-shape analyses are typically within the expected range,

giving 05.1nw MM ;35,25 for instance, 05.1nw MM is obtained for sample C.25

As the Monte Carlo simulation carried out in the present study is for an ideally

monodisperse system, for making a comparison between experiment and simulation,

we use the parameters obtained for a nearly monodisperse sample)sample C)to

calculate the G(t) curve expected for an ideally monodisperse system.

Affecting the entropic region of the G(t) of a nearly monodisperse sample are Z

and the frictional factor K. Being phenomenologically described by the stretched

exponential form,

   10;exp)/( GGG   tt (32)

the glassy-relaxation region of G(t) is affected by the three parameters:  and, G
f
GA .

The role of G can be equivalently represented by the average glassy-relaxation time

as given by





0

G
GGG )/1()/( 




 dtt (33)

191 Schulz, G. V. Z. Physik. Chem., Abst. B 1943, 43, 25; Tung, L. H. Polymer

Fractionation; Cantow, M. J. R Ed.; Academic: New York, 1967.
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where is the gamma function. Much dynamic and structural information related to

the glass transition is contained in the shapes of the J(t) or G(t) curves, which change

with temperature)the thermorheological complexity. The scheme of analysis is to use

the Rouse theory as the reference frame in time, with respect to which the relative

position of the glassy relaxation process can be studied25 (The same scheme is used

for the entangled system, where ERT is used as the reference frame instead of the

Rouse theory15). As the relaxation times of all the Rouse normal modes are

proportional to the frictional factor K, the relative position of the glassy-relaxation

process can be conveniently characterized by the ratio of the average

glassy-relaxation time to the friction factor

'
' G

K
s


 (34)

where K’in the most general way includes KK ' for an entanglement-free system

whose entropic region of G(t) is described by the Rouse theory as well as represents

the frictional factor in the RouseMooney normal modes of motion of an entangled

system.192 It has been shown that the uneven thermorheological complexity observed

in the J(t) results of polystyrene is fully described by a simple increase in s’with

decreasing temperature. Furthermore, it has been shown that both s’and K’values for

the three studied samples, two entangled and one entanglement-free, as a function of

192 Note: see ref 25 for the details.
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the temperature difference from individual Tg, gTTT  , individually fall on the

same curve, indicating that the Tg-related effect behaves in a universal way within the

polystyrene system. s’reaches a plateau value of about 1500 at o40T and is about

40000 at 0T or at Tg.25 It has been shown15,16,25 that the increase in s’with

decreasing temperature is due to the formation of a structure, whose length scale

increases with decreasing temperature and greatly exceeds that of a single Rouse

segment at Tg. The formation of the structure also indicates that

non-ergodicity15,16,25,193 gradually becomes an important effect as the temperature

approaches Tg. The use of the Langevin equation in the present study implies that the

system has to be ergodic.3,34 Thus, the high-temperature limit s’=1500 is the one that

should be used in calculating the G(t) curve for comparison with the simulation result.

For polystyrene, the molecular weight for a single Rouse segment, m, is about

850;616 with 16400w M , sample C is equivalent to a chain with 20 beads in average

(see the note at ref 52). 194 Shown in Figure 11 is the comparison of the

equilibrium-simulation G(t) curve for a 20-bead Fraenkel chain with HF=400kT and

the expected “experimental”curve for an ideally monodisperse polystyrene with

molecular weight equal to the wM value of sample C at high temperatures)that is,

193 Sillescu, H. J. Non-Crystal. Solids 1999, 243, 81; and references therein.

194 Note: The weight-average molecular weight of sample C, 16400W M , is a little

higher than the entanglement molecular weight, 13500e M , for polystyrene.

However, as explained in detail in ref 25, because the molecular weight distribution of

sample C is not extremely narrow, its viscoelastic behavior in the entropic region has

to be analyzed in terms of the Rouse theory rather than the extended reptation theory.
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calculated with s’=1500 for o40T . As shown, the “experimental”curve is

calculated using an arbitrary K value: 104; and the simulation curve has been

multiplied by a proper factor in both the modulus and time coordinates to obtain a

close superposition between the two curves. As the shift factor along the time

coordinate depends on the K value used in the calculation and the step-length d

employed in the simulation, its value is of no particular meaning. However, the shift

factor along the modulus coordinate is much related to the entropic nature of the slow

mode as discussed in section 3 regarding the results shown in Figure 3. The vertical

multiplication factor used for obtaining the close superposition is 4.2×107, which is

very near the value 3.7×107 expected if the entropic region of the simulation G(t) is in

perfect agreement with the Rouse theory. The ratio of 3.7/4.2 also agree closely with

the value 0.95 used to superpose the Rouse theoretical curve on the simulation GS(t)

curve of the 20-bead Fraenkel chain shown in Figure 3. The agreement in the general

shape between the two G(t) curves is indeed very encouraging, considering the

simplicity of the chain model used in the simulation. The discrepancy in the

short-time region between the two curves may have to do with the choice of the HF

value. Although improving the agreement in the very short-time region, an increase

in HF leads to a faster relaxation rate for the fast mode, causing some disagreement in

the lower part of the fast mode. As we don’t believe that a mean-field chain model can

really adequately describe the viscoelastic behavior of a polymer melt in the

energetic-interactions region, where some sorts of intermolecular interactions should

contribute to the modulus as well, we don’t think a fine tuning of the HF value would

serve a particularly meaningful purpose.
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In Figure 11, the relaxation times of the 19 Rouse normal modes for a 20-bead

chain are also indicated. As contrasted with the positions in time of these relaxation

times, the relaxation of the tension on the Fraenkel segment as revealed by the

simulation has basically finished before the highest Rouse mode begins to relax in a

substantial way. As explained above, the simulation result is only applicable to a

polymer system at temperatures sufficiently above Tg. As opposed to such a

situation, the glassy-relaxation process as extracted from the measured creep

compliance J(t) at Tg extends to times much larger than the relaxation time of the

highest Rouse mode, indicating vitrification at the Rouse-segmental level.15,16,25

6. Discussion

Two distinct relaxation modes of fundamentally different physical nature have

been observed in both the equilibrium-simulation and step strain-simulation GS(t)

curves for the Fraenkel chains. The general agreements between the two sets of

results are basically in accordance with the fluctuation-dissipation theorem; the small

differences between the two may be due to the fact that the dynamic quantity )(tJ xy is

actually a product of two parts with very different time dependence and strain

dependence (opposite in sign, as clearly visible in the nonlinear region studied in the

companion paper) and the difference in coupling between the two kinds of dynamics.

Regarding the general agreement between the equilibrium-simulation and step

strain-simulation GS(t) curves as representing a quasi version of the

fluctuation-dissipation theorem, we may conclude: While the fast mode arises from
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the segment-tension fluctuations or reflects the relaxation of the segment-tension

arising from segments being stretched by the applied step strain)thus, an energetic

interactions-derived dynamic process, the slow mode arises from the fluctuating

segmental-orientation anisotropy or represents the randomization of the

segmental-orientation anisotropy induced by the step deformation)thus, an

entropy-derived dynamic process. Segmental orientation anisotropy being

responsible for the entropic nature of the slow mode in the Fraenkel-chain case is an

important conclusion derived from this study, indicating that in modeling the polymer

viscoelastic behavior one does not need to put the entropic-force constant into the

segment to obtain the modes of motion as occurring in the Rouse theory, which is

well-known to describe very well the linear viscoelastic behavior in the long-time

(entropic) region of the entanglement-free polymer system.

The proper size that can be assigned to a Rouse segment of a particular polymer

has been studied in recent years by different techniques.616 In the studies analyzing

the whole range of the viscoelastic response, covering both the glassy-relaxation and

entropic regions, it is in general assumed that G(t) is expressed as a sum of the

dynamic processes derived from energetic interactions and entropy. Using the

quantitatively successful description of the entropic region of the linear viscoelastic

response by ERT in the entangled case and by the Rouse theory in the

entanglement-free case as the reference frame in time, the incorporation of a stretched

exponential form (eq 32) into ERT or the Rouse theory (see eq 31) as detailed

previously15,25 and summarily described in the previous section has allowed us to

analyze the glassy-relaxation process occurring in the short-time region in a
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meaningful and profitable way, revealing the basic mechanism of the

thermorheological complexity and showing that the effect as related to the glass

transition behaves in a universal way within the polystyrene system, entangled or

not.15,16,25 As opposed to the incorporation of the glassy-relaxation process into ERT

or the Rouse theory being done phenomenologically, the segment-tension relaxation

process emerges naturally on the top of the slow mode in the simulated GS(t) curve for

the entanglement-free Fraenkel chain as presented in this study. Very significantly,

the curves calculated from the Rouse theory, which describe the slow mode very well,

are each based on a chain with the same number of beads; the close agreement

between simulation and theory indicates that the size of the Fraenkel segment is the

same as that of the Rouse segment. In other words, this result strongly suggests that

the size that can be properly assigned to a “Rouse segment”for describing the linear

entropic viscoelastic response actually has a considerable degree of rigidity. The

general agreement between the simulated and experimental G(t) curves as shown in

Figure 11 supports such a picture. As will be shown in the companion paper, in spite

of the rigidity in such a “Rouse segment,”the slow mode as occurring in the

nonlinear ),(S tG is as much of entropic nature as in the linear )(S tG .

7. Summary

In this study, based on the entanglement-free Rouse-chain and Fraenkel-chain

models, we have carried out Monte Carlo simulations of relaxation modulus in the

equilibrium state and following a step shear deformation. In the case of the Rouse

chain, the validity of the simulation is confirmed by the agreement with the analytical
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results; the fluctuation-dissipation theorem is also perfectly illustrated by the

comparison of results from both kinds of simulations. In the case of the Fraenkel

chain, while a quasi version of the fluctuation-dissipation theorem is illustrated; two

distinct modes of relaxation in the relaxation modulus are revealed, describing the

basic features as typically observed in an experimentally measured G(t). The

physical natures of the two modes are analyzed in detail: The fast one corresponding

to the segment-tension fluctuation or relaxation is classified as an energetic

interactions-derived process; and the slow one well described by the Rouse theory is

classified as entropy-derived. A very important concept derived from this study is

that segmental-orientation anisotropy is responsible for the entropic nature of the slow

mode; in other words, in modeling one does not need to put the entropic-force

constant into the segments in order to obtain the modes of motion as occurring in the

Rouse theory. From the comparison of the Rouse theory with the slow mode

obtained from the simulation, it is shown that basically one Fraenkel segment

substitutes for one Rouse segment. This conclusion provides an explanation

resolving a long-standing fundamental paradox in the success of modern molecular

theories of polymer viscoelasticity developed based on the Rouse segment as the most

basic structural unit, as the entropic-force constant on the Rouse segment is generally

regarded as too soft from considering the persistence length or the Kuhn segment

length of a polymer chain)the Fraenkel chain is basically equivalent to the freely

jointed chain. As listed in Table 1 of ref 8, the Rouse segment size m for various

polymers is of the same order of magnitude as that of the Kuhn segment MK. The

authors of ref 8 have particularly pointed out such a paradox between KMm  and

the definition of a Rouse segment based on the Gaussian probability distribution in
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the Rouse chain model.13 Furthermore, the comparison of the simulation with the

experimental result strongly suggests that, even though still being a mean-field

single-chain model, the Fraenkel chain has captured the key interactions in a polymer

system, having the potential of serving as a more realistic substitute for the Rouse

model.
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Appendix A: The Application of the Virial Theorem to the Fraenkel Dumbbell.

The average kinetic energy for each degree of freedom being kT/2 is a built-in

element of the Langevin equation.40 For simplicity, we consider the Fraenkel

dumbbell case; however, the analysis as presented here can be extended to a Fraenkel

chain with any number of beads. For a dumbbell, according to the virial

theorem45 )()()(
22

1
3
0

2

1

ttt
b

H
T F

i
ii bbRF  



 ; here T is the average internal

kinetic energy and is
2

3kT
. This relation is confirmed by our simulation. Since as

indicted by the simulation )()( tt bb  does not fluctuate more than 10% from its mean

value, which is only larger than 2
0b by less than 1.3%, the virial theorem for the

Fraenkel dumbbell can be well represented by

kTt
b
H

3)(
0

F  (A1)
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For kTH 400F  , )(t =0.0075.
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Figure Captions

Figure 1

Comparison of the equilibrium-simulation )(S tG curves of two-bead, five-bead and

ten-bead Rouse chains ( △ for N=2; □ for N=5; ○ for N=10) with the step

strain-simulation )(S tG results (▲for N=2; ■for N=5;● for N=10) and the Rouse

theoretical curves (for N=2; for N=5; )) for N=100).

Figure 2

Comparison of the equilibrium-simulation )(S tG curves of the five-bead Fraenkel

chain using the step length d=0.01 ())) and d=0.03 (○).

Figure 3

Comparison of the equilibrium-simulation )(S tG curves of two-bead, five-bead,

ten-bead and twenty-bead Fraenkel chains (△ for N=2; ◇ for N=5; □ for N=10 and

○ for N=20) with the Rouse theoretical curves (for N=2; for N=5; ) ) for

N=10 and )) for N=20). See the text.

Figure 4

Comparison of the time correlation function )()0( tbb  obtained from the simulation

on the Fraenkel dumbbell (●) and multiplied by 1.45 along the time coordinate with the

theoretical curve of the Rouse dumbbell ())).
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Figure 5

The equilibrium-simulation )(S tG curves of the Fraenkel dumbbell: exact (using eq

19; )))) and approximations (using eq 20 with 0= N =0.0022, △; 0= V =0.0075,

□; and 0= F=0.01, ○).

Figure 6

Time-correlation functions )()0( t obtained from simulation on the Fraenkel

dumbbell with )(t defined by eq 21: △ with 0= N =0.0022; □ with 0= V =0.0075;

and ○ with 0= F=0.01.

Figure 7

Comparison of the equilibrium-simulation )(S tG (● based on eq 28) and )(self
S tG (○

based on eq 29) for the five-bead Fraenkel chain; also shown are the

equilibrium-simulation )(S tG ())) and )(self
S tG () for the five-bead Rouse chain.

Figure 8

Comparison of the step strain-simulation )(S tG curves for the two-bead, five-bead,

ten-bead and twenty-bead Fraenkel chain at =0.2 (△ for N=2; ◇ for N=5; □ for

N=10; ○ for N=20) and 0.5 (▲for N=2; ◆ for N=5; ■ for N=10; ● for N=20) with

the equilibrium-simulation curve (for N=2; for N=5; ) ) for N=10; ))) for

N=20).
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Figure 9

Comparison of the step strain-simulation )(S tG curves for the Fraenkel dumbbell at

=0.004 (○) and 0.2 (△) with the equilibrium-simulation curve ())).

Figure 10

The time-step dependences of )(2 tb and the components )(2 tbx , )(2 tby and

)(2 tby for the five-bead Fraenkel chain following a step strain =0.5.

Figure 11

Comparison of the equilibrium-simulation G(t) curve (o) for the 20-bead Fraenkel

chain with HF=400kT and the expected “experimental”curve ())) for an “ideally

monodisperse polystyrene sample”with the molecular weight equivalent to N=20;

also shown are the points (+) representing the relaxation times of the 19 Rouse normal

modes. See the text.
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Figure 2
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Figure 3
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Figure 4
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Figure 5
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Figure 6
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Figure 7
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Figure 8
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Figure 9
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Figure 10
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Figure 11
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Monte Carlo Simulations

of Stress Relaxations of Entanglement-Free Fraenkel Chains. 2:

Non-Linear Polymer Viscoelasticity

Y.-H. Lin and A. K. Das

Department of Applied Chemistry

National Chiao Tung University

Hsinchu, Taiwan

Abstract

The non-linear viscoelastic behavior of the Fraenkel-chain model is studied with

respect to the constitutive equation of the Rouse model. Distinctly different from the

results of the Rouse model, the Fraenkel-chain model gives the following

characteristic non-linear behavior: (a) The two modes of dynamics in the relaxation

modulus ),(S tG )as observed in the linear region reported in paper 1)or in the first

normal-stress difference function ),(1 tG are shown to have different strain

dependences: strain-hardening for the fast mode and strain-softening for the slow

mode. (b) The LodgeMeissner relation ),(),( 1S  tGtG  is shown both analytically

and by simulation to hold over the whole time of relaxation. (c) The second

normal-stress difference is nonzero, being positive in the fast-mode region and

becoming negative in the slow-mode region. Making detailed comparison between
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orientation and stress for all tensor components, the strong correlation of the slow

mode with the segmental-orientation anisotropy and its entropic nature are shown to

be the same as in the linear region studied in paper 1. A consequence of this

correlation is the expectation of the stress-optical rule in the slow-mode region.

Another consequence is the expectation that the damping function

)0,(),()(   tGtGh SS and the ratio between the first and second normal-stress

differences ),(/),( 12  tNtN are described by the orientation tensor which has the

same form as that of Doi and Edwards with independent alignment approximation; the

simulation results are in close agreement with the calculated in the former case while

roughly in the latter case.
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Monte Carlo Simulations

of Stress Relaxations of Entanglement-Free Fraenkel Chains. 2:

Non-Linear Polymer Viscoelasticity

Y.-H. Lin and A. K. Das

Department of Applied Chemistry

National Chiao Tung University

Hsinchu, Taiwan

1. Introduction

In paper 1,195 the linear viscoelastic behavior for Fraenkel chains196 has been

studied by Monte Carlo simulations, revealing two modes of motion in the relaxation

modulus )(S tG : The fast mode arises from the segment-tension fluctuations or reflects

the relaxation of the segment tension arising from segments being stretched by the

applied step deformation)an energetic interactions-derived dynamic process; the slow

mode arises from the fluctuating segmental-orientation anisotropy or represents the

randomization of the induced segmental-orientation anisotropy)an entropy-derived

dynamic process. Very significantly the slow mode is well described by the Rouse

theory197,198,199 in all aspects: the magnitude of modulus, the line shape and the

195 Lin, Y.-H.; A. K. Das, the companison paper.

196 Fraenkel, G. K. J. Chem. Phys. 1952, 20, 642.

197 Rouse, P. E. Jr. J. Chem. Phys. 1953, 21, 1271.
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number-of-beads dependence of the relaxation time. This result means that as far as

the slow mode is concerned, one Rouse segment may be replaced by one Fraenkel

segment, even though the latter is much stiffer than the former. Furthermore, the

comparison of the simulated relaxation modulus with experimental )(tG indicates that

the Fraenekel-chain model has captured the key energetic interactions in a polymer

melt, allowing the relative positions of the glassy-relaxation process (the fast mode)

and the entropy-derived Rouse relaxation (the slow mode) properly described. This

general agreement between simulation and experiment is consistent with the

well-confirmed success of the Rouse theory in explaining the linear viscoelastic

response of an entanglement-free polymer melt system in the long-time or entropic

region.5,200,201,202 Since the Fraenkel-chain model provides improvements in linear

viscoelasticity upon the Rouse model, its non-linear viscoelastic response obtained

from the Monte Carlo simulations may be profitably analyzed in comparison with the

constitutive equation of the Rouse model.

2. Constitutive Equation of the Rouse Model

198 Bird, R. B.; Curtiss, C. F.; Armstrong, R. C.; Hassager, O. Dynamics of Polymeric

Liquids, Vol. 2, Kinetic Theory, 2nd ed.; Wiley: New York, 1987.

199 Lin, Y.-H. Polymer Viscoelasticity: Basics, Molecular Theories, and Experiments;

World Scientific: Singapore, 2003.

200 Lin, Y.-H. Macromolecules 1987, 20, 885.

201 Lin, Y.-H.; Juang, J.-H. Macromolecules 1999, 32, 181

202 Lin, Y.-H. J. Phys. Chem. B
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The constitutive equation of the Rouse model with each chain having N beads

(corresponding to molecular weight M) is given by4,5

  '',
)'(

exp
1

)( 0

1

1

dttt
tt

ckTt
t N

p pp

γσ  



 









 














(1)

where  )',()',()',(0 tttttt EEδγ  with )',( ttE being the deformation gradient

tensor between the present time t and a past time t’; c is the number of polymer chains

per unit volume; and p , the relaxation time of the p-th mode, is given by eq 11 of the

companion paper.1 For comparison with the Monte Carlo simulation of a single

chain in the mean field, both c and kT are set to be 1; and p is expressed in terms of

the time-steps as given by eq 12 of the companion paper.

Following a step shear deformation E at time t=0 (eq 4 of the companion paper),

the relaxation modulus GS(t) and the first normal-stress difference function G1(t) of

the Rouse model, both normalized to that corresponding to a single segment, are

given, respectively, as
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The key results expected from the constitutive equation of the Rouse model may be

summarized as in the following:

(1) No non-linear effect in the shear stress relaxation; in other words, )(S tG as given

by eq 2 is independent of strain .

(2) The observation of the LodgeMeissner relation;203 namely, as indicated by eqs 2

and 3, )()( 1S tGtG  .

(3) The second normal-stress difference as defined by  ),(),(  tt zzyy  is zero.

These results of the Rouse model are exactly confirmed by our simulations; in Figure

1, the strain independence of )(S tG and )(1 tG for a five-bead Rouse chain and the

agreements of the simulation results with the theoretical Rouse curve are shown.

3. Nonlinear Viscoelastic Behavior of the Fraenkel Chain

For the Fraenkel chain, the simulations of stress components as a function of

time-step following a step shear deformation are done in the same way as for

obtaining the relaxation modulus  )()(S ttG xy in the companion paper. As

shown in Figure 2, the ),(S tG curves obtained for a five-bead chain at different

strains from 4to5.0 indicate that the relaxation modulus of the Fraenkel-chain

model is strain-dependent as opposed to )(S tG being independent of the strain in the

203 Lodge, A. S.; Meissner, J. Rheol. Acta 1972, 11, 351.
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Rouse model. However, as also shown in Figure 2, the LodgeMeissner relation is

followed even though nonlinear effect occurs to both ),(and),( 1S  tGtG  . As

shown in Figure 3, unlike in the Rouse model, the second normal-stress difference

),(2 tN in the Fraenkel-chain model is not zero. Thus, the Fraenkel-chain model

exhibits significant deviations in the nonlinear viscoelastic behavior from the Rouse

model, even though its linear relaxation modulus in the long-time region is well

described by the Rouse theory. Below, we analyze these deviations as caused by the

particular form of the Fraenkel potential.

4. Effects of the Nonlinear Tensile Force on the Fraenkel Segment

A large tensile force on the Fraenkel segment is created when it is significantly

stretched, which leads to the stress level showing up in the fast mode region. The

strain-hardening of the fast mode as shown in Figure 2 can be understood by

examining the tensile force FF on a Fraenkel segment denoted by b:

b
b
b

bF 3
0

F
0

F
2
0

F
F

)(
b

t
H

b
H

b
H 
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










 (4)

where )(t is defined by eq 16 of the companion paper. As shown in Figure 4, right

after the application of a step shear to the Fraenkel chain at equilibrium, a )0( tb

value larger than 0b (set equal to 1) in average is created; as a result, the second term

of eq 4 becomes smaller than the first term, leading to a tensile force that would pull

the two separated beads back to the equilibrium distance)a recoiling effect. In the
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equilibrium simulation as studied in paper 1, )(t is used to represent approximately

the deviation of the bond length b from the 0b value. For the present study in the

nonlinear region, )(t is treated more as a parameter, characterizing the nonlinear

enhancement of the tensile force on the segment as the segment is significantly

stretched.

As will be shown below (Figure 6), when the applied shear strainis greater

than ～0.005, the average tensile force starts to increase in a nonlinear way, causing

the stress level of the fast mode region to increase nonlinearly as well. Besides this

obvious expectation, this effect leads to the emergence of the second normal-stress

difference. The second normal-stress difference is of significant magnitude in the

fast-mode region; as the time enters the slow-mode region, it declines towards the

zero line and beyond; and finally relaxes as a negative tail. This effect can be

understood from the following analysis:

The use of the Langevin equation has implied that our studied system is

ergodic.5,204,205 Thus, we shall simply use the language of the ensemble averaging to

discuss the results obtained from averaging the behavior of a single chain over time in

the equilibrium state or over the repeating cycles following the step deformation. As

obtained from the equilibrium simulation the mean squared bond length
0

2b is only

204 Doi, M.; Edwards, S. F. The Theory of Polymer Dynamics; Oxford Univ. Press:

New York, 1986.
205 McQuarrie, D. A. Statistical Mechanics; Harper & Row: New York, 1976.
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larger than 12
0 b by 1.3%; the ensemble-averaged components of

0

2b are identical:

3377.0
0

2

0

2

0

2  zyx bbb . However, in the ensemble different segments have

different 222 and, zyx bbb values. Among the segments with the same 2
xb , those with

larger 2
yb are expected to have a smaller 2

zb . Following the step shear deformation,

those segments with a larger 2
yb and a smaller 2

zb will be stretched more, leading to

nonlinear enhancements in their tensile forces as characterized by the parameter )(t ,

than those with a smaller 2
yb and a larger 2

zb . Since the contribution of a segment to

the normal stress in the y direction is proportional 2)()( tbt y at time t, the average of

the initial value 2)0()0( yb (right after the application of the step strain) is much

more weighted by those segments with larger 2
yb ; the opposite can be said about the

normal stress in the z direction. As a result, the effect leads to a positive second

normal-stress difference, 0)(2 tN , in the short-time or fast-mode region, as shown in

Figure 3. Such an effect will not occur to a Rouse segment, whose tensile force

increases with bond length linearly.

As explained above, the segmental tensile force created by the step deformation

will shrink the segmental length back to its equilibrium value. Those segments with a

larger y component initially having larger tensile forces will be most affected by the

recoiling effect. Right after the step shear deformation, the average

222 )0(and,)0(,)0( zyx bbb values in accordance with the affine deformation are

expected to be given, respectively, by  2

0

22

0

22 13377.0)0(   yxx bbtb ;
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3377.0)0(
0

22  yy btb ; and 3377.0)0(
0

22  zz btb . The average values

of 222 )0(and,)0(,)0( zyx bbb obtained right after the step deformation from the

simulations are in close agreement with the expected values at different strains. As the

chain configuration evolves according to the Langevin equation, the recoiling effect

causes all the 222 )(and,)(,)( tbtbtb zyx values to decline, as shown in Figure 5.

Due to the nonlinearly enhanced tensile force associated with segments with

larger 2
yb initially, 2)(tby decreases faster than 2)(tbz before 2)(tb reaches

its equilibrium value at a time which is about the end of the fast mode, as shown in

Figure 4. As 2)(tb reaches its equilibrium value, 2)(tby and 2)(tbz also

reach their respective minimum points, meaning no more recoiling effect. Due to its

fast declining rate from the very beginning, 2)(tby is smaller than 2)(tbz at the

end of the recoiling effect. At about this point the second normal-stress difference

crosses the zero line and becomes negative. In this region of time, even though there

is still a significant degree of segmental orientation anisotropy, the tensile force on the

segment is of the value in an equilibrium state. As a result the negative values of the

second normal stress difference in the region are of small magnitude as shown in

Figure 3. The above described mechanism of the chain dynamics as revealed in the

results shown in Figures 2 to 5 becomes more prominently visible as the applied strain

increases.

5. The LodgeMeissner Relation for The Fraenkel Chain
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The relation ),(),( 1S  tGtG  first proposed by Lodge and Meissner was

based on a phenomenological argument. However, the LodgeMeissner relation

observed for the Fraenkel-chain model from the simulation as shown in Figure 2 can

be proved analytically. This is done from considering the configurations of all the

chains in a finite volume V as changed by the applied step deformation and their

subsequent evolution.

Consider a volume containing c Fraenkel chains, each with N beads. Right after

the application of a step shear deformation E (eq 4 of the companion paper) to a

system at equilibrium, the shear stress, )0(  xy , is given by (setting 1kT )
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where xT denotes the x component of the tensile force FF on a representative Fraenkel

segment in the ensemble; ),(,o
, yxb k

s  denotes specifically the component of

the s-th segment on the k-th chain of the system in an equilibrium state right before

the application of the deformation E. Because of the presence of )(k
s , which

depends on the applied strain and the orientation of the segment, the summation of the

terms containing the products of k
ys

k
xs bb ,o

,
,o
, and over all segments is not zero. In the

Rouse model, as )(k
s is a constant, the sum equals to zero. Because at

equilibrium 2
0

2 013.1 bb , we may conveniently regard each segment as having a
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unit length before the initial step deformation is applied (the unit length is not a

required assumption to prove the LodgeMeissner relation as given below for the

Fraenkel-chain model; see the note at ref 12)206 and the stress component as given by

eq 5 but normalized to that for a single segment (denoted by )0(  xys ) can be

expressed by

 
o

ooo
F )()0(

uyy
o
yxxy uuuuHs    (6)

where

     2o2o2oo

1
1)(

zyyx uuuu 



 (7)

with ooo and, zyx uuu denoting the zyx and, components of a unit vector uo

representing the orientation of a segment in the system at equilibrium right before the

step shear deformation is applied; and ou
f denotes averaging f over all orientations

of uo.

Similarly the first normal-stress difference  )0()0(   yyxx  can be expressed

by

206 Note: In the ensemble, segments with a certain bond length are oriented in all

directions with equal probability; this is true with any bond length that can occur in an

equilibrium state. Each“group”of segments with the same bond length can be

normalized the same way and averaged over all orientations as described in the text.
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In the same way as obtaining eq 6, the first normal-stress difference normalized to

that for a single segment can be expressed by

 
    

o

2ooooo
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1
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)0()0()0(
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ssN

 
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(9)

which, as shown in the Appendix, can be rewritten as

  )0()()0(
o

oooo
F1   xyyyyx suuuuHN 

u
(10)

As there is one-to-one correspondence between the orientation representation and the

segmental (molecular) representation)i.e. between eqs 5 and 6 and between eqs 8 and

9, the contribution of     

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,)(  , corresponding to eq A1,

has to be zero; in other words, as corresponding to eq 10, eq 8 may be rewritten as
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The comparison of eqs 5 and 11 indicates that both the shear stress and the first

normal stress difference arise from the same molecular

source   



c

k

N

s

k
ys

k
ys

k
xs

k
s bbb

1
,o
,

,o
,

,o
,)(  ; therefore, the same evolutions of the

corresponding configurations are responsible for their relaxations. As

)0()0(1   xysN  (eq 10), the LodgeMeissner relation is followed. The above

analysis can be more easily applied to the Rouse model, in which )0()0( S
2

1   GN 

and )0()0( S   Gsxy  . As opposed to )(S tG and )(1 tG being independent of

strain as given by eqs 2 and 3 for the Rouse chain model, ),(S tG and ),(1 tG as

defined by




)(
),(S

ts
tG xy (12)

2
1

1
)(

),(



tN

tG  (13)

have the same strain dependence as shown in Figure 2. The initial

values: ),0(S tG or ),0(1  tG at different may be calculated numerically

using eq 6 or eq 10 for comparison with the values obtained from the simulations as

shown in Figure 6. As also shown in the figure, the calculated curve may be further

improved by the multiplication of the correction factor 013.12
00

2 bb . The close

agreement between simulations and numerical calculations as shown in Figure 6 and

the agreement between the simulation results of ),(S tG and ),(1 tG as shown in
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Figure 2 confirm the above theoretical analysis.

Only after an averaging so complete that

     0)(
1

,o
,

,o
,

2,o
,

2,o
, 

c

k

N

s

k
ys

k
xs

k
ys

k
xs

k
s bbbb  , eq 8 becomes the same as eq 11.

Before this is fully realized, ),(1 tG shows a higher noise level than ),(S tG as

indeed observed in the simulation. Thus, the LodgeMeissner relation is shown only

followed within some noise by the Monte Carlo simulations.

The second normal stress difference as a function of time obtained from the

simulation of the Fraenkel chain is nonzero as shown in Figure 3. It is also shown

analytically in the Appendix that the initial value of the second normal stress

difference

      
o

2o2o
F2 )()0()0()0(

u
zyzzyy uuHssN    , (14)

is nonzero. In Figure 7, magnitudes of the initial first and second normal stress

differences at different strains: )0(1 N and )0(2 N are compared and each are shown

to be in close agreement with the numerical calculations based on averaging over all

orientations.

6. Stress and Segmental Orientation

It was pointed out in the companion paper studying the linear viscoelastic

response of the Fraenkel chain that the slow mode reflects the fluctuation or

randomization of the segmental orientation anisotropy, with the bond length being the
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same as in an equilibrium state)therefore, the slow mode is an entropy-derived

dynamic process. Here we show that, at the nonlinear strains studied

(from 4to5.0 ), the strong correlation between the stress and the segmental

orientation, responsible for the entropic nature, is well maintained in the slow mode

region. In Figure 8 we show the comparison of the time dependences of )(tsxy ,

)()( tbtb yx and )()( tutu yx ; in Figure 9, the comparison of )(1 tN ,

22 )()( tbtb yx  and 22 )()( tutu yx  ; and in Figure 10, the comparison of

)(2 tN , 22 )()( tbtb zy  and 22 )()( tutu zy  . The most important feature of

these results is that in the slow-mode region, the stress components are proportional to

the corresponding orientation components by about the same factor 4 in all cases,

which can be concisely denoted by

),(),(4),(  ttt bbs  (15)

or

),(),(4),(  ttt uus  (16)

with the difference between )()(and)()( tttt uubb being negligibly small. In the

case of the Rouse theory, it is expected to have

),(),(3),(  ttt bbs  (17)
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Note that 0)()(  tsts yzxz in both eqs 15 (or 16) and 17; and )()( tsts zzyy  in eq 15

(or 16), while )()( tsts zzyy  in eq 17. The factor 4 in eq 15 being so close to the

value 3 expected from the entropic force constant of the Rouse segment as shown in

eq 17 strongly indicates the entropic nature of the slow mode. The difference

between 4 and 3 (eq 15 versus eq 17) here may be caused by the same reason as that

responsible for the best value of 0, viz. F=0.01, being about 33% higher than the

value obtained from the virial theorem, 0075.0V  , as shown in the analysis

presented in section 3.2 of the companion paper. As an approximation is involved in

expressing eq 19 by eq 20 in the companion paper, a discrepancy should be expected.

The important point is the closeness of the two values: 0.01 versus 0.0075 for 0in the

companion paper and 4 versus 3 here.

The entropic nature of the slow mode as revealed in this study is very significant

considering that the Fraenkel segment is much stiffer than the Rouse segment and that

the segment has been greatly stretched by the application of a strain in the nonlinear

region. Of course, this is made possible by the fast relaxation of the segment tension

allowing the segment length to reach its equilibrium value while the segmental

orientation anisotropy is still at a high level. In addition to providing an explanation

resolving the paradox between the Rouse segment size m being of the same order of

magnitude as that of the Rouse segment and the definition of the Rouse segment

based on the Gaussian probability distribution as pointed out in paper 1, the strong

correlation of the slow mode to the segmental orientation anisotropy strongly suggests

that the entropic viscoelastic behavior, as may be described by the Rouse theory, may
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exist or appear under a condition less restrictive than that previously thought)i.e.,

limited to a region that the applied strain is not too large (weakly nonlinear).

With the unit vector u representing the bonding direction, we may denote the

polarizability of a Fraenkel segment at equilibrium length in the direction parallel to u

by ll and in the perpendicular direction by  . Then the anisotropic part of the

polarizability tensor of each Fraenkel segment may be expressed as10,207,208

  





    

3
1

ll uu (18)

With the polarizability anisotropy being given by eq 18, the relation as given by eq 16

means that the stress-optical law holds in the entropic region. The widely observed

stress-optical law in the entropic region has been explained by assuming that the

distribution of the distance between any two beads in a chain is Gaussian.10,13 The

Gaussian statistics applied to the segment is also the source of the entropic force

constant. Here, we show that both the existence of an entropic region in the

viscoelastic response and its associated stress-optical law can be satisfied by the

Fraenkel chain model without invoking the Gaussian statistics for both the segment

and chain conformation. In fact, the Gaussian statistics for the chain should not hold

in the nonlinear region of strain as covered in this study, even in the entropic

207 Kuhn, W. Kolloid Z. 1934, 68, 2; Kuhn, W.; Grun, F. Kolloid Z. 1942, 101, 248;

Kuhn, W. J. Polym. Sci. 1946, 1, 360.

208 Berne, B. J.; Pecora, R. Dynamic Light Scattering; John Wileys: New York, 1976.
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(long-time) region of ),(S tG .

In the entropic region where the stress-optical law is valid, the orientation

angle 'of the stress ellipsoid is identical to the extinction angleof the birefringence;

the stress relaxation corresponds to the reduction of the birefringence n with time.209

Because the LodgeMeissner relation holds over the whole time range of the stress

relaxation, the orientation angle 'remains the same in both the fast-mode and

slow-mode regions. While ' in the slow-mode region, it is not clear from the

present simulation, whether the same is true in the fast-mode region, as this would

require the knowledge of how the polarizability changes with the elongation of the

segment. However, it is very likely that the stress-optical coefficient will be quite

different if another stress-optical rule holds in the fast-mode region. Inoue et al210,211

have analyzed the results of linear dynamic viscoelasticity and birefringence

measurements on different polymers by using a sum of two stress-optical rules, one

for the high-frequency region (glassy component as denoted by Inoue et al, occurring

in the energetic-interactions region) and the other for the low-frequency region

(rubbery component as denoted by Inoue et al, which occurs in the entropic region

and is equivalent to the kind ordinarily encountered). The two stress-optical

coefficients obtained by Inoue et al are in general of very different magnitude and

209 Janeschitz-Kriegl, H. Adv. Polym. Sci. 1969, 6, 170.

210 Inoue T.; Okamoto, H.; Osaki, K. Macromolecules 1991, 24, 5670.

211 Inoue, T.; Hayashihara,H.; Okamoto, H.; Osaki, K. J. Polym. Sci. Polym. Phys. Ed.

1992, 30, 409.
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some with opposite signs; for instance 9
R 105 C versus 11

G 103 C for

polystyrene melts.

7. Comparison of Nonlinear Relaxation Modulus between Entangled Polymer

System and Entanglement-Free Fraenkel-Chain System

a. Overall Line Shapes of ),(S tG

One may recall the two consecutive processes: the chain-tension

relaxation5,10,212,213,214 (theoretically denoted by ),(*
B Et in ref 20) and the terminal

mode (theoretically denoted by )(C t in refs 19 and 20) occurring in the non-linear

relaxation modulus  ,tG of an entanglement system (see Figures 47 of ref 20 or

Figures 12.412.7 of ref 5); there are some interesting similarities in these two

processes to the two relaxation modes in GS(t,) of the entanglement-free Fraenkel

chain as revealed in the present study. To draw an analogy between the two, we

regard each Fraenkel segment as corresponding to an entanglement strand and each

bead as corresponding to a slip-link (as in the Doi-Edwards model215). As what we

intend to discuss is mainly an analogy, there are significant differences between the

counterparts: For instance, a particularly strong chain tension on an entanglement

strand will draw segments from neighboring entanglement strands, slipping through

212 Doi, M. J. Polym. Sci., Polym. Phys. Ed. 1980, 18, 1005.

213 Lin, Y.-H. J. Rheol. 1985, 29, 605.

214 Lin, Y.-H. J. Non-Newtonian Fluid Mech. 1987, 23, 163.

215 Doi, M.; Edwards, S. F., J. Chem. Soc., Faraday Trans. 2 1978, 74, 1789; 1978,

74, 1802.
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the entanglement links, while the segment tension in the Fraenkel chain is localized in

each segment. The tensile force on the Fraenkel segment is quite large)proportional

to FH (see eq 4), which is much greater than kT3 ; while the tensile force on an

entanglement strand is typically of the order aakT with3 being the entanglement

distance.5,10,21 Thus, in applying the models to an experiment, the segment-tension

relaxation of the Fraenkel chain would occur in the short-time region of ),( tG (in

the short-time region, )0,( tG has modulus values)4×107
～1010dynes/cm2 for

polystyrene, much larger than the plateau modulus, 106
～107 dynes/cm2

,
216 which is

related to the entanglement molecular weight: eN 54 MRTG  ), while the

chain-tension relaxation ),(*
B Et with a modulus similar in magnitude to that of GN

occurs in the time region corresponding to the plateau region of the linear G(t) (see

Figure 9 of ref 20 or Figure 12.8 of ref 5). In spite of these differences, there are

important similarities between these two different kinds of tension relaxation and their

respective following processes. As both occur in viscoelastic responses of chain

molecules, a discussion of the analogy between them may shed light on the basic

nature of the physics affecting polymer viscoelasticity. An important common effect

following both the segment-tension relaxation and chain-tension relaxation process is

the randomization of orientation anisotropy, which is responsible for the relaxation of

the remaining stress. In the entanglement-free Fraenkel-chain case, the

randomization of the segmental orientation anisotropy is done directly by the

Brownian motion of the beads in the chain; while in the entangled polymer system,

216 See chapter 13 of ref 5.
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the orientation associated with the entanglement strand (namely, orientation

associated with the primitive chain) is randomized by the reptation mechanism

moving the primitive chain back and forth and eventually out of the deformed (or

oriented) tube (of the DoiEdwards model), with assistance from the chain

contour-length fluctuation process.5,19,20,217,218 Either of the two different processes,

which randomizes orientation anisotropy, is an entropy-derived process: In the

Fraenkel-chain case, the process is well described by the Rouse model as shown

above, while in the case of an entangled system, the process is well described by

the )(tC process in the extended reptation model,5,19,20,23,24 with the strain dependence

of the modulus quantitatively described by the damping function of the Doi-Edwards

theory.5,1921,219,220 As it turns out, the strain dependence of ),( tGS in the entropic

region of the Fraenkel chain also closely follows the Doi-Edwards damping function

for a different physical reason as analyzed in the following:

b.Damping Function in the Entropic Region of ),(S tG

As shown in Figure 11, the entropic region of the Fraenkel-chain ),(S tG curves

at different values can be superposed on one another very well by a vertical shift,

allowing the damping factors )(h defined and determined from the simulation results.

That is,

217 Lin, Y.-H. Macromolecules 1984, 17, 2846.
218 Lin, Y.-H. Macromolecules 1986, 19, 159; 1987, 20, 885.

219 Osaki, K.; Kurata, M. Macromolecules 1980,13, 671.

220 Osaki, K.; Nishizawa, K.; Kurata, M. Macromolecules 1982, 15, 1068.
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with t spanning only the slow-mode region. At the same time, the damping function

is closely related to the strain-dependence of the orientation tensor ),(),(  tt uu in

the entropic region as indicated by eq 16. As shown in Figures 8, 9 and 10,

),(),(  tt uu in the very early part of the entropic region remains basically the same

as it is initially at time zero (i.e., right after the application of the step strain); in other

words, the randomization of the segmental orientation has hardly taken place as the

fast mode completes its relaxation. Thus the obtained damping factors )(h should

be closely correlated with the function )(o h calculated from the initial orientation

caused by the step strain via affine deformation:
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
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g
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h (20)
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From eq 21, one obtains 2.0)0( g . One can notice that eqs 20 and 21 is

simply the damping function of the DoiEdwards theory with the independent

alignment approximation, which is close to the exact one over the whole range of

strain , both explaining very well the experimental results obtained in the terminal
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region of ),( tG of a well-entangled nearly monodisperse system.5,10,1921,25,26 Note

that the unit vector u here represents the orientation of a Fraenkel segment as opposed

to representing the orientation associated with an entanglement strand in the

DoiEdwards theory. While eqs 20 and 21 is an approximation to the exact

expression in the DoiEdwards theory, 5,10,1921,25,26 using them here is based on the

observation (Figures 8, 9 and 10) that the relaxation strength of the slow-mode is

basically directly related to the initial orientation. In Figure 12, we compare

the )(o h curve calculated numerically from eqs 20 and 21 and the )(h values)as

defined by eq 19)determined from the superposition of the ),( tG curves as shown

in Figure 11. As there is virtually no difference between )2.0( h and )5.0( h ;

and the numerically calculated results indicate that )2.0(o h is only smaller than

)0(o h by one percent, we have substituted )2.0( h for the role of )0( h in

determining )(h at different values of . As shown, )(o h has basically described

the trend of change in )(h with increasing strain.

It is interesting and important to note that, as opposed to the similarity between

their relationships to orientation as both can be characterized by the damping function

given by eqs 20 and 21, the functional forms of the relaxation modulus in the

entanglement-free Fraenkel-chain case and in the entangled system are very different.

The relaxation strength in the former case receives equal contributions from all

normal modes (see eq 2) while in the latter case dominated by the lowest normal

mode (see eq 13 of ref 20 or eq 9.11 of ref 5).

In Figure 12, we also show the comparison of )(o h with the damping factor

associated directly with the unit vector u in the entropy region, )(uh , defined by
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More directly representing the orientation, the )(uh values appear to have a closer

agreement with )(o h than )(h . The small differences between )(uh and )(h , less

than 10%, merely reflect the small deviations from being an exact constant as given in

eq 16 for all strains. These small differences, which may arise from the

fluctuations in simulations or hidden approximation that may be involved in the

interpretation, does not affect the basic picture that the slow mode is closely related to

segmental orientation and is of entropic nature.

8. Second Normal-Stress Difference versus First Normal-Stress Difference

Experimentally the second normal-stress difference is, in general, much smaller

than the first normal-stress difference; so indicated by the comparison of the two

obtained from the present simulation as shown in Figure 13. As pointed out above,

as opposed to the first normal-stress difference ),(1 tN being positive over the whole

time range, the second normal-stress difference ),(2 tN is negative in the entropic

region. If a polymer system can be described by the Fraenkel-chain model, one may

use birefringence measurements to determine the hard-to-obtain second normal-stress

differences in the entropic region experimentally, as the stress-optical law is

applicable in this region as shown in the analysis given in section 6. Interestingly,
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this is very much the way in which Osaki et al221 have carried out a study on an

entangled system. By showing that the stress-optical law is followed in the terminal

region(an entropic region), Osaki et al have studied the first and second normal-stress

differences of an entangled nearly monodisperse polystyrene solution ( 5107.6 wM ;

32.6% in Aroclor 1248) in the region by measuring the birefringence as a function of

time following a step shear deformation. The second normal-stress difference in the

terminal region as determined by them in comparison with the first normal-stress

difference are similar to the simulation results shown in Figure 13 in several aspects.

This may not be surprising as both the terminal relaxation of an entangled system and

the slow mode of an entanglement-free Fraenkel-chain system reflect the

randomization of orientation)of the primitive chain in the former case and of the

segment in the latter case; and the orientations in both cases can be described well by

the same shear damping function calculated from eqs 20 and 21. Thus, even though

the relaxation functional forms are very different as pointed out above, their first and

second normal-stress differences are of opposite sign in the same way and

their ),(/),( 12  tNtN ratios have nearly the same values and dependence. Just

as the shear damping function )(o h can be calculated from eqs 20 and 21, the ratio

),(/),( 12  tNtN can be calculated from the DoiEdwards expression with the

independent-alignment approximation for comparing with the values determined from

the present simulations and the experimental values of the entangled system studied

by Osaki et al, as shown in Figure 14. The close agreement between the present

221 Osaki, K.; Kimura, S.; Kurata, M. J. Polym. Sci.: Polym. Phys. Ed. 1981, 19, 517.
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simulation results and Osaki’s results remains to be tested by experimental studies.

Nevertheless, this agreement together with the agreement in the damping function

further supports that the close relationship of the entropic nature in the long-time

region of stress relaxation with orientation anisotropy as revealed in this study is a

generally valid physical concept, whether entangled or not.

9. Summary

As shown in the companion paper, the relaxation of the slow mode of the

Fraenkel chain in both the linear and nonlinear regions of strain is well described by

the relaxation functional form of the Rouse theory with the same number of beads.

However, in reference to the constitutive equation, the Fraenkel chain behaves very

differently from the Rouse chain in several important aspects. While the

LodgeMeissner relation holds in the Fraenkel chain over the whole course of

relaxation as shown both analytically and by simulation,

both ),(and),( 1S  tGtG  are strain-dependent. Furthermore, unlike being zero in

the Rouse theory, the second normal-stress difference of the Fraenkel chain has the

same sign as the first normal-stress difference in the fast-mode region and changes

sign as the time entering the slow-mode region.

That the strain dependence of ),(and),( 1S  tGtG  in the slow-mode region of

the Fraenkel chain basically follows the damping function of Doi and Edwards with

the independent-alignment approximation is explained and illustrated. As the stress

tensor in the slow-mode region is directly proportional to the orientation as expressed
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by )()( tt uu , the validity of the stress-optical law in this region of time is indicated.

In the slow-mode region the obtained ratio ),(/),( 12  tNtN and its strain

dependence are similar to those observed in an entangled system, which are roughly

explained by the DoiEdwards expression with the independent-alignment

approximation.

In addition to the important nonlinear features summarized above, the Fraenkel

chain as a molecular model for the polymer viscoelastic behavior, while keeping the

entropic viscoelastic behavior of the Rouse model, in a natural way gives rise to a fast

energetic interactions-derived mode, which, as also shown in the companion paper,

properly accounts for the well-known existence of the energetic interactions-derived

dynamic process, unexplainable by the Rouse theory.
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Appendix

The Proof of the LodgeMeissner Relation and Nonzero Second Normal-Stress

Difference

If we can prove

     0)(
o

oo2o2o 
u

yxyx uuuu  (A1)
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then, eq 9 becomes eq 10. Considering the symmetry, we

have      0
o

oo2o2o 
u

yxyx uuuu  ; thus, eq A1 is true if

   
   

o

2o2o2oo

oo2o2o

)(
)(

uzyyx

yxyx

uuuu

uuuu
A









 (A2)

is zero for all values of . Both the numerator and denominator of eq A2 contain

even and odd terms with respect to the transformation oooo or yyxx uuuu  . The

averaging over all orientations of uo is invariant to a rotation of the coordinate system.

The way to show A()=0 is to do an orthogonal transformation to eq A2 make its

denominator contain only even terms. This can be done by finding the principal axes

for the quadratic form inside the square root of the denominator, which is simply

oo uCu  with C being the Cauchy tensor. With C represented by a matrix C:


















100
01
01

2


C (A3)

and the unit vector uo represented by a column U:


















o

o

o

z

y

x

u
u
u

U (A4)
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we may write

CUU T oo uCu (A5)

Expressing the unit vector uo with respects to the principal axes as


















'

'

'

'

z

y

x

u
u
u

U (A6)

the orthogonal transformation is given by

'SUU  (A7)

with






































100

0
2

2

0
2

2










S (A8)

where 42  . In terms of ''' and, zyx uuu , eq A2 is expressed by

   
o

2'
3

2'
2

2'
1

''

)(

uzyx

yx

uququq

uu
A







 (A9)
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where 321 and, qqq are the three eigenvalues of C:

2
2

1

 
q (A10)

2
2

2

 
q (A11)

13 q (A12)

While the denominator of eq A9 contains only even terms, the numerator is an odd

term. Thus, 0)( A for all ; this leads to the result that the LodgeMeissner

relation ),(),( 1S  tGtG  holds even though ),(S tG and ),(1 tG are not

independent of strain and the second normal stress difference is not zero as shown

below.

For the second normal stress difference to be nonzero, we need to show

   
   

0
)(

)(
o

2o2o2oo

2o2o







uzyyx

zy

uuuu

uu
B


 (A13)

Carrying out the orthogonal transformation, one obtains
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  
   

o

2'
3

2'
2

2'
1

''2'2'1
)(

uzyx

yxyx

uququq

ucuubua
B




 (A14)

with   2a ,   2b and 2c . The even terms present

in the numerator make 0)( B .



208

Figure Captions:

Figure 1

Comparison of the Rouse theory ()))) and the results of )(S tG (○at =1; △at =2)

and )(1 tG (● at =1; ▲at =2) obtained from simulations on the 5-bead Rouse

chain following the application of a step shear strain.

Figure 2

Comparison of the results of ),(S tG ())) at =0.5; —— at =1; ) ) at =2; and

at =4) and ),(1 tG (○at =0.5; ◇at =1; △at =2; and ▽at=4) obtained from

simulations on the 5-bead Fraenkel chain following the application of a step shear

strain.

Figure 3

Second normal stress ),(2 tN obtained from simulations on the 5-bead Fraenkel

chain following the application of a step shear strain ○ at =0.5; ◇ at =1; △ at =2;

and ▽ at =4).

Figure 4

2)(tb (top) and )(tb (bottom) as a function of time following the application of a

step shear strain (=0.5, 1, 2 and 4) obtained from simulations on the 5-bead Fraenkel

chain.
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Figure 5

2)(tbx ())); 2)(tby () )); 2)(tbz () and 2)(tux (○); 2)(tu y (△);

2)(tuz (▽) as a function of time following the application of a step shear strain

(=0.5, 1, 2 and 4) obtained from simulations on the 5-bead Fraenkel chain.

Figure 6

Comparison of the initial values ),0(S tG (○) and ),0(1  tG (▲) obtained from

simulations on the 5-bead Fraenkel chain with the -dependent curve calculated

numerically using eq 6 or eq 10 ())); the () )) line indicating the -dependent curve

corrected for the ratio 013.12
00

2 bb .

Figure 7

Comparison of the initial first and second normal stress differences )0(1 N (●)

and )0(2 N (○) obtained from simulations on the 5-bead Fraenkel chain at different

strains with the -dependent curves ()) for the former; ) ) for the latter) numerically

calculated based on averaging over all orientations.

Figure 8

Comparison of the time dependences of ),( tsxy (○); )()(4 tbtb yx ())); and

)()(4 tutu yx () obtained from simulations on the 5-bead Fraenkel chain at

different (0.5, 1, 2 and 4).
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Figure 9

Comparison of the time dependences of ),(1 tN (○);  22 )()(4 tbtb yx  ()));

and  22 )()(4 tutu yx  () obtained from simulations on the 5-bead Fraenkel

chain at different (0.5, 1, 2 and 4).

Figure 10

Comparison of the time dependences of ),(2 tN (○);  22 )()(4 tbtb zy  ()));

and  22 )()(4 tutu zy  () obtained from simulations on the 5-bead Fraenkel

chain at different  (0.5, 1, 2 and 4); the vertical lines indicate the points

where ),(2 tN changes sign.

Figure 11

Superposition of the ),(S tG curves at different strains obtained from simulations on

the 5-bead Fraenkel chain as shown in Figure 2 by an upward vertical shift (multiplied

by 1 at=0.2 and 0.5; 1.1 at =1; 1.5 at =2; and 3.5 at =4)

Figure 12

Comparison of the damping factors )(h (●) determined using eq 19 from simulations

on the 5-bead Fraenkel chain at different  with the )(o h curve calculated

numerically from eqs 20 and 21; also shown are the values of )(u h (▲) as defined by

eq 22 obtained from the simulations.
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Figure 13

Comparison of the ),(1 tN ())) and ),(2 tN () results obtained from simulations

on the 5-bead Fraenkel chain at different strains (=0.5, 1, 2 and 4); the vertical lines

indicate the points where ),(2 tN changes sign.

Figure 14

Comparison of the simulation values (●) of ),(),( 12  tNtN in the slow-mode

region obtained from the present study and the experimental values (○) in the terminal

region of the entangled system studied by Osaki et al with the numerically calculated

curve ())) equivalent to the Doi-Edwards expression with the independent-alignment

approximation.



212

Figure 1

t (steps)

100 101 102 103 104 105

G
s(

t)
,

G

(

t)

10-3

10-2

10-1

100

101

102



213

Figure 2
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Figure 3
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Figure 4
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Figure 5
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Figure 6
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Figure 7
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Figure 8
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Figure 9
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Figure 10
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Figure 11
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Figure 12
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Figure 13
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Figure 14
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