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ABSTRACT

The nonlinear behaviors of dynamic system have been of continual concern to both
engineers and system designers. In most applications, the designs — based on a static model
and obtained by traditional optimization methods — can never work perfectly in dynamic cases.
Therefore, researchers have devoted themselves to find an optimal design that is able to meet
dynamic requirements. This project focuses on developing a general-purpose optimization
method, based on optimization and optimal control theory, one that integrates dynamic system
analysis with numerical technology to deal with dynamic system design problems.

A dynamic system optimal design problem can be transformed into an optimal control
problem (OCP). Many scholars have proposed methods to solve optimal control problems and
have outlined discretization techniques to convert the optimal control problem into a
nonlinear programming problem that can then be solved using extant optimization solvers.
This project applies this method to develop a direct optimal control analysis module that is
then integrated into the optimization solver, MOST. The numerical results of the study
indicate that the solver produces quite accurate results and performs even better than those
reported in the earlier literatures. Therefore, the capability and accuracy of the optimal control
problem solver is indisputable, as is its suitability for engineering applications.

A second theme of this project is the development of a novel method for solving
discrete-valued optimal control problems arisen in many practical designs; for example, the
bang-bang type control that is a common problem in time-optimal control problems.
Mixed-integer nonlinear programming methods are applied to deal with those problems in this
project. When the controls are assumed to be of the bang-bang type, the time-optimal control
problem becomes one of determining the switching times. Whereas several methods for
determining the time-optimal control problem (TOCP) switching times have been studied

extensively in the literature, these methods require that the number of switching times be



known before their algorithms can be applied. Thus, they cannot meet practical demands
because the number of switching times is usually unknown before the control problems are
solved. To address this weakness, this project focuses on developing a computational method
to solve discrete-valued optimal control problems that consists of two computational phases:
first, switching times are calculated using existing continuous optimal control methods; and
second, the information obtained in the first phase is used to compute the discrete-valued
control strategy. The proposed algorithm combines the proposed OCP solver with an
enhanced branch-and-bound method and hence can deal with both continuous and discrete
optimal control problems.

Finally, two highly nonlinear engineering problems — the flight level control problem and
the vehicle suspension design problem — are used to demonstrate the capability and accuracy
of the proposed solver. The mathematical models for these two problems can be successfully
established and solved by using the procedure suggested in this project. The results show that
the proposed solver allows engineers to solve their control problems in a systematic and

efficient manner.
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1. INTRODUCTION

Two typical methods are usually used to solve optimal control problems: the indirect and
direct approaches. The indirect approach bases on the solution of the first order necessary
conditions for optimality. Pontryagin Minimum Principle (Pontryagin et al. 1962) and the
dynamic programming method (Bellman 1957) are two common methods for indirect
approach. The direct method (Jaddu and Shimemura 1999, Hu ef al. 2002, Huang and Tseng
2004) based on nonlinear programming (NLP) approaches that transcribe optimal control
problems into NLP problems and apply existed NLP techniques to solve them. In most of
practical applications, the control problems are described by strongly nonlinear differential
equations that the solutions is hard to be solved by indirect methods. For those cases, the
direct methods can provide another choice to find the solutions.

In spite of extensive use of direct and indirect methods to solve optimal control problems,
engineers still spend much effort on reformulating problems and implementing corresponding
programs for different control problems. For engineers, this routine job will be tedious and
time-consuming. Therefore, a systematic computational procedure for various optimal
control problems has become an imperative for engineers, particularly for those who are
inexperienced in optimal control theory or numerical techniques. Hence, the purpose of this
project is to apply NLP techniques to implement an OCP solver that facilitates engineers in
solving optimal control problems with a systematic and efficient procedure. To illustrate the
practicability and convenience of propose solver, a flight control problem with two different
cases is chosen to illustrate the capability for solving optimal control problem of proposed
solver. The results demonstrate the proposed solver can get the solution correctly and the
procedure suggested in this project can facilitate engineers to deal with their problems.

In many practical engineering applications, the control action is restricted to a set of

discrete values that forms a discrete-valued control problem. These systems can be classified



as switched systems consisting of several subsystems and switching laws that orchestrate the
active subsystem at each time instant. Optimal control problems (OCPs) for switched systems,
which require solution of both the optimal switching sequences and the optimal continuous
inputs, have recently drawn the attention of many researchers. The primary difficulty with
these switched systems is that the range set of the control is discrete and hence not convex.
Moreover, choosing the appropriate elements from the control set in an appropriate order is a
nonlinear combinatorial optimization problem. In the context of time optimal control
problems, as pointed out by Lee et al. (1997), serious numerical difficulties may arise in the
process of identifying the exact switching points. Therefore, an efficient numerical method is
still needed to determine the exact control switching times in many practical engineering
problems.

This study focuses on developing a numerical method to solve discrete-valued optimal
control problems and the time-optimal control problem that is one of their special cases. The
proposed algorithm, which integrates the admissible optimal control problem formulation
(AOCP) with an enhanced branch-and-bound method (Tseng et al., 1995), is implemented and

applied to some example systems.

2. Literature Review and Objectives

Methods for Optimal Control Problems

Optimal control problems can be solved by a variational method (Pontryagin et al., 1962)
or by nonlinear programming approaches (Huang and Tseng, 2003, 2004; Hu et al., 2002;
Jaddu and Shimemura, 1999). The variational or indirect method is based on the solution of
first-order necessary conditions for optimality obtained from Pontryagin’s maximum principle
(Pontryagin et al., 1962). For problems without inequality constraints, the optimality

conditions can be formulated as a set of differential-algebraic equations, often in the form of a



two-point boundary value problem (TPBVP). The TPBVP can be addressed using many
approaches, including single shooting, multiple shooting, invariant embedding, or a
discretization method such as collocation on finite elements. On the other hand, if the problem
requires that active inequality constraints be handled, finding the correct switching structure,
as well as suitable initial guesses for the state and costate variables, is often very difficult.

Much attention has been paid in the literature to the development of numerical methods
for solving optimal control problems (Hu et al., 2002; Pytlak, 1999; Jaddu and Shimemura,
1999; Teo, and Wu, 1984; Polak, 1971), the most popular approach in this field is the
reduction of the original problem to a NLP problem. Nevertheless, in spite of extensive use of
nonlinear programming methods to solve optimal control problems, engineers still spend
much effort reformulating nonlinear programming problems for different control problems.
Moreover, implementing the corresponding programs for the nonlinear programming problem
is tedious and time consuming. Therefore, a general OCP solver coupled with a systematic
computational procedure for various optimal control problems has become an imperative for
engineers, particularly for those who are inexperienced in optimal control theory or numerical
techniques.

Additionally, in many practical engineering applications, the control action is restricted to
a set of discrete values. These systems can be classified as switched systems consisting of
several subsystems and switching laws that orchestrate the active subsystem at each time
instant. Optimal control problems for switched systems, which require solution of both the
optimal switching sequences and the optimal continuous inputs, have recently drawn the
attention of many researchers. The primary difficulty with these switched systems is that the
range set of the control is discrete and hence not convex. Moreover, choosing the appropriate
elements from the control set in an appropriate order is a nonlinear combinatorial optimization

problem. In the context of time optimal control problems, as pointed out by Lee et al. (1997),
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serious numerical difficulties may arise in the process of identifying the exact switching
points. Therefore, an efficient numerical method is still needed to determine the exact control

switching times in many practical engineering problems.

Time-Optimal Control Problems

The TOCP is one of most common types of OCP, one in which only time is minimized
and the control is bounded. In a TOCP, a TPBVP is usually derived by applying Pontryagin’s
maximum principle (PMP). In general, time-optimal control solutions are difficult to obtain
(Pinch, 1993) because, unless the system is of low order and is time invariant and linear, there
is little hope of solving the TPBVP analytically (Kirk, 1970). Therefore, in recent research,
many numerical techniques have been developed and adopted to solve time-optimal control
problems.

One of the most common types of control function in time-optimal control problems is the
piecewise-constant function by which a sequence of constant inputs is used to control a given
system with suitable switching times. Additionally, when the control is bounded, a very
commonly encountered type of piecewise-constant control is the bang-bang type, which
switches between the upper and lower bounds of the control input. When the controls are
assumed to be of the bang-bang type, the time-optimal control problem becomes one of
determining the switching times, several methods for which have been studied extensively in
the literature (see, e.g., Kaya and Noakes, 1996; Bertrand and Epenoy, 2002; Simakov et al.,
2002). However, as already mentioned, in contrast to practical reality, these methods require
that the number of switching times be known before their algorithms can be applied. To
overcome the numerical difficulties arising during the process of finding the exact switching
points, Lee et al. (1997) proposed the control parameterization enhancing transform (CPET),
which they also extended to handle the optimal discrete-valued control problems (Lee et al.,

1999) and applied to solve the sensor-scheduling problem (Lee et al., 2001).
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In similar manner, this project focuses on developing a numerical method to solve
time-optimal control problems. This method consists of the two-phase scheme: first,
switching times are calculated using existing optimal control methods; and second, the
resulting information is used to compute the discrete-valued control strategy. The proposed
algorithm, which integrates the admissible optimal control problem formulation with an
enhanced branch-and-bound method (Tseng et al., 1995), is then implemented and applied to

some examples.

Objectives

The major purpose of this project is to develop a computational method to solve the
time-optimal control problems and find the corresponding discrete-valued optimal control
laws. The other purpose of this project is to implement a general OCP solver and provide a
systematic procedure for solving OCPs that provides engineers with a systematic and efficient

procedure to solve their optimal control problems.

3. METHODS

3.1 Developing Process of an Multi-Function OCP Solver

The developing processes of a general purpose solver for dynamical optimization can be

described as follows.

3.1.1 Problem formulation
A dynamical optimization problem can be described by a generalized Bolza problem
formulation: Find the design variables b, the control functions u(t) and terminal time tf which

minimize the object function
Jo = (b,x(t,), )+ [ ' Fy(b,u(e), x(0), 1)t ®

12



subject to the system equations

x=f(b,u(?),x(s),2), t,<t<t, (2)
with initial conditions

X(t5) = % (b) 3
functional constraints

J. =y, (b, X(tf)' tf)
O:i=1,....... 7 (4)

_|_J-: E(b’u(t),X(f),t)dt{ZO;i = r’+1,----’r

and dynamic point-wise constraints

¢.(b,u(?),x(1),1)<0; j=1,....q (5)

where b € R* is a vector of the design variables, u(?) € R™ is a vector of the control functions,
and x(7) € R" is a vector of the state variables. The functions f, ¥, F,, ¥, F; and ¢ are

assumed to be at least twice differentiable.

3.1.2 NLP Methods for dynamical optimization

By applying modeling and optimization technologies, a dynamic system optimization
problem can be re-formulated as an optimal control problem (OCP). Hence, many approaches
used to deal with the OCPs can be also applied to solve the dynamical optimization problems.
Most popular approach in this field turned to be reduction of the original problem to a NLP.

Sequential Quadratic Programming (SQP), one of the best NLP methods for solving
large-scale nonlinear optimization, is applied to solve optimal control problems (see, e.g., Gill
et al. 2002, Betts 2000). Before applying the SQP methods, optimal control problems in
which the dynamics are determined by a system of ordinary differential equations (ODESs) are
usually transcribed into nonlinear programming (NLP) problems by discretization strategies.
Due to the consideration of efficiency, the sequential discretization strategy which only the

control variables are discretized is applied. The resulting formulation is then called the
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admissible optimal control problem (AOCP) formulation (Huang and Tseng 2003).

3.1.3 Computational Algorithm
The computational algorithm of the OCP solver which integrates AOCP with SQP is
illustrated in Figure 1 and can be described as the following steps:
Given: Initial values of the design variables vector P© = [b©®, U@ T©] and Number of time
intervals, N.
Initialize iteration counter & :=0 and Hessian Matrix H® := Identity I.
1. Current design variable vector, P is passed to CTRLMF module of AOCP.
2. Evaluate the values of state variable, x(k), by solving the IVP by substituting P® into the

system equation.

X(k) — f(b(k) ’ u(k) ’ X(k) ’ t),

(6)
X(t,) =X, (b¥)
3. Compute the values of performance indexes, Jo®.
Jo" =y (0" x(b™,U® TW 1 ),¢))
(7)

[ Fy(0®,U® X9, )dr
fo

4. Substitute x(k) into Egs. (4) and (5) to evaluate the values of functional and dynamic

constraints.
5. Evaluate VJ,*, vJ,®, and Vg® by using the finite difference method.
6. Find the descent direction, d®, by solving the QP subproblem.
7. Check convergence criteria, d® < ¢. If satisfied, stop and show the results.
8. Compute the step size, a®.
9. Update Hessian Matrix H* by applying BFGS method.

10. Update design variables

14



pU+D) _ pk) o . d® (8)

11. Increase iteration counter, k « k+1, go back to step 1.

3.1.4 Systematic Procedure for Solving OCP

The following steps describe a systematic procedure for solving the OCP with the proposed

OCP solver:

1. Program formulation: The original optimal control problem must be formulated according
to the extended Bolza formulation.

2. Preparing two parameter files: One of the parameter files describes the numerical schemes
used to solve the OCP and also the relationships between performance index, constraint
functions, dynamic functions, state variables and control variables. The other parameter
file includes the information on SQP parameters, such as convergence parameter,
upper/lower bound and initial guess of design variables, etc.

3. Implementing user-defined subroutines.

4. Execute the optimization: The user defined subroutines are compiled and then linked with
the SQP solver, MOST (Tseng et al., 1996).

5. Execute the optimization.

With the proposed OCP solver, engineers can focus their efforts on formulating their problems

and then follow an efficient and systematic procedure to solve their optimal control problems.

3.2 Mixed-Integer NLP Algorithm for Solving Discrete-valued OCPs

The algorithm developed in this study consists of three major processes: branching, the
AOCP, and bounding. Initially, all discrete-valued restrictions are relaxed and the resulting
continuous NLP problem is solved using the AOCP. If the solution of continuous optimum
design problem occurs when all discrete-valued variable values are in the discrete set Uy,

which is preset by the user to meet practical requirements, then an optimal solution is
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determined and the procedure ends. Otherwise, the algorithm selects one of the

discrete-valued variables whose value is not in the discrete set Uy — for example, the j-th

N

design variable, P;, with value F_ and branches on it.

Branching process: In the branching process, the original design domain is divided into
three subdomains by two allowable discrete values, #; and i;.;, that are nearest to the
continuous optimum, as shown in Figure 2. Among the three subdomains, subdomain II,
included in the continuous solution but not in the feasible discontinuous solution, is dropped.

In the other two subdomains, called nodes, two new NLP problems are formed by adding

>
>

. <u > . .
simple bounds, "/ =W ang’ =t respectively, to the continuous NLP problems. One of

the two new NLP problems is selected and solved next. Many search methods based on tree
searching — including depth-first search, breadth-first search and best-first search — can be
applied to choose the next branching node. The branching process is repeated in each of the
subdomains until the feasible optimal solution is found in which all the discrete variables have
allowable discrete values. Obviously, the number of subdomains may grow exponentially so
that a great deal of computing time is required. Thus in the enhanced branch-and-bound
method (Tseng et al., 1995), multiple branching and unbalanced branching strategies have
been developed to improve the efficiency of the method.

Bounding process: In discrete optimization, the minimum cost is always greater than or
equal to the cost of the original regular optimal design that was originally branched. This fact
provides a guideline for when branching should be stopped. If the branching process yields a
feasible discontinuous solution, then the corresponding cost value can be considered a bound.
Any other subdomain that imposes a continuous minimum cost larger than this bound need
not be branched further. This bounding strategy can be used to select the branching route

intelligently and avoid the need for a complete search over all the branches.
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3.3 Algorithm for Solving Discrete-valued OCPs

In this study, the AOCP algorithm is used as the core iterative routine of the enhanced
branch-and-bound method. All candidates will be evaluated and finally an optimal solution
can be found. Here, symbol S is used to represent the discretized control variable set and the P
is the design variable vector. Assuming that the problem at least has one feasible solution, it
can then be proven that an optimal solution exists and can be found by the proposed method.
The details of the proposed algorithm are as follows and Figure 3 presents a schematic flow

chart of the algorithm for solving discrete-valued optimal control problems.

Initialization:
Relax all discrete-valued restrictions and then place the resulting continuous NLP problem on
the branching tree.
Set the cost bound J,,4x = 0.
while (there are pending nodes in the branching tree) do
1. Select an unexplored node from the branching tree.
2. Control discretization.
3. Repeat (for k-th AOCP iteration )
(1).Solve the initial value problem for state variable x* of AOCP.
(2).Calculate the values of the cost function, Jy, and the constraints.
(3).Solve the QP” problem by applying the BFGS method to obtain the descent
direction d.
(4).if (QP™ is feasible and convergent) then exit AOCP.
(5).Find the step size o of the SQP method by using the line search method.
(6). Update the design variable vector: P** = p¥+ o® d®
4. if (NLP is optimal) and (Jy<J,..x) then

17



if (S“*is feasible ) then
Update the current best point by setting the cost bound J,,,., = Jy.
Add this node to the feasible node matrix.

else

Evaluate the values of criteria for selecting the branch node.

Choose a discrete-valued variable S;M) ¢ M and branch it.

Add two new NLP problems into the branching tree.
Drop this node.
endif
else
Stop branching on this node.
endif

end while.

3.4 Two-Phase Scheme for Solving TOCP

The mixed integer NLP algorithm developed in this dissertation is one type of switching
time computation (STC) method. Most switching time computation methods (see, e.g., Kaya
and Noakes, 1996; Lucas and Kaya, 2001; Simakov et al., 2002) assume that the structure of
the control is bang-bang and the number of switching times is known. Unfortunately, the
information on the switchings of several practical time-optimal control problems is unknown
and hard to compute using analytical methods. Hence, to overcome this difficulty, this
dissertation proposes a two-phase Scheme that consists of the AOCP plus the mixed-integer
NLP method. In Phase I, the AOCP is used to calculate the information on switching times
with rough time grids so that the information can be used in Phase 1l as the feasible initial

design of the mixed integer NLP method. This scheme is described briefly below.
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Phase I: Find the information about the switching times and terminal time.

1. Solve the time-optimal control problem using continuous controls by following the
steps of the AOCP method.

2. Based on the numerical results, extract information about the switching times and
terminal time, ¢

Phase I1: Calculate the exact solutions

3. Based on the information about switching times obtained in Phase I, treat the
switchings as design variables and add them into the time grid vector T. It should be
noted that each interval between the upper and lower bounds on each of those design
variables must include one switching.

4. Insert the terminal time, #, into the design variable vector P.

5. Discretize each control variable into the number of switchings plus one. Then the
discrete control vector, S, can be added to the design variable vector P and the
corresponding upper and lower bounds be limited by the original bounds of the
controls.

6. Solve the problem by applying the mixed integer NLP method, and then find the
optimal discrete-type control trajectories.

A third-order system shown in following section is used to demonstrate the processes of this

numerical scheme.
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4. Ilustrative Examples

The numerical results for the following examples are obtained on an Intel Celeron 1.2
GHz computer with 512 MB of RAM memory. The AOCP is coded in FORTRAN, and C
language is used to implement the enhanced branch-and-bound method. The Visual C++ 5.0
and Visual FORTRAN 5.0 installed in a Windows 2000 operating system are adopted to
compile the corresponding programs. The total CPU times for solving the F-8 fighter craft

problem in Phase | and Phase Il are 3.605 and 1.782 seconds, respectively.

4.1 Third-Order System
The following system of differential equations is a model of the third-order system

dynamics taken from Wu (1999).

X =X, ©)
X, = X3, (10)
X, =—10x, +10u . (11)

The problem here is to find the control |u| < 10 in order to bring the system from the initial
state [-10, 0, 0]" to the final state [0, 0, 0]" in minimum time.

First, this problem is solved directly by the mixed integer NLP method. Assuming four
switching times (73, T», T3, T4) and five control arcs have values in the discrete set, Ug: {-10,
10}, the terminal time, #; is treated as a design variable, so the design variable vector P can be
expressed as [T1, T», T3, Ta, ts Uar, Uaz, Uas, Uy, U,s]". Most notably, the final conditions of
the state variables are transferred to the equality constraints. Thus, the TOCP problem
becomes one of determining the switching times. Figure 4(a) presents the continuous solution
obtained by using the AOCP and the discrete solution determined by applying the mixed
integer NLP method proposed herein. The results indicate that the control trajectory

determined by the mixed integer NLP method is of the bang-bang type and the solution
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consistent with the results obtained by Wu (1999).

As stated in previous section, several assumptions must be made when the mixed integer
NLP method is applied to solving TOCP directly. Unfortunately, these assumptions cannot be
guaranteed to hold in practical cases. Consequently, the two-phase scheme proposed in this
project is needed. For illustration, the third-order system is again solved using this two-phase
scheme. In Phase 1, the two switching times are found to be [0.330, 0.725]" and the terminal
time #is 0.7864. In the first phase, these switching data need not be accurate because they are
only used to help users decide on the number of switching times, the control arcs and their
corresponding boundaries. Thus, in Phase Il, the design variable vector P is re-formed as [ 71,
Ty, ty, Uar, Ug, Uz]™: the numerical result obtained by applying the mixed integer NLP
method is as presented in Figure 4(b). In Phase 11, the switching times of the discrete control
input are [0.323, 0.713]", and the terminal time # is 0.7813 seconds. The control trajectory

also agrees with that obtained by Wu (1999).

4.2 F-8 Fighter Aircraft
The F-8 fighter aircraft has been considered in several pioneering studies (e.g., Kaya and
Noakes, 1996; Banks and Mhana, 1992; Simakov et al., 2002) and has become a standard for
testing various optimal control strategies. A nonlinear dynamic model of the F-8 fighter
aircraft is considered below. The model is represented in state space by the following

differential equations:

X, =—0.877x, + x, —0.088x,x, + 0.47x” —0.019x5 — x/x, +3.846x,

(15)

~0.215u +0.28x/u — 0.47x,u* +0.63u°
X, =X, (16)
%, = —4.208x, —0.396x, — 0.47x} —3.564x. — 20.967u (17)
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+6.265x7u + 46xu” +61.4u°,

where x; is the angle of attack in radians, x; is the pitch angle, x3 is the pitch rate and the
control input « represents the tail deflection angle. For convenience of comparison, the

standard settings (Kaya and Noakes, 1996; Lee et al., 1997) are used. A control [u| < 0.05236

must be found that brings the system from its initial state [26.77:/180, 0, O]T to the final

state [0, O, O]T in minimum time.

When the two-phase scheme is applied, as described in Section 5.4, the switching times
computed in Phase I are 0.115, 2.067, 2.239, 4.995, and 5.282, and the terminal time is ¢ =
5.7417. These switching data are used to set the design variables and their corresponding
bounds, and then the problem is solved by the mixed integer NLP method. Finally, the
switching times for the discrete control input are 0.098, 2.027, 2.199, 4.944, and 5.265, and
the terminal time # is 5.74216. Figure 5 shows the comparison of the controls between Phase |
and Phase I1, while Figure 6 shows the trajectories of the states and the control of Phase | and
Phase 1. This example is also solved by Kaya and Noakes (1996) using the switching time
computation method and by Lee e al. (1997) using the Control Parameterization Enhancing
Transform (CPET) method. Table 1 shows the terminal time #, switching times and the
accuracy of terminal constraints computed by various methods for this problem. According to
the numerical results, the two-phase scheme provides a better solution, and the accuracy of
the terminal constraints is acceptable.

5. Conclusions

In this project an optimal control problem solver, the OCP solver, based on the
Sequential Quadratic Programming (SQP) method and integrated with many well-developed
numerical routines is implemented. A systematic procedure for solving optimal control

problems is also offered in this project.
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This project also presents a novel method for solving discrete-valued optimal control
problems. Most traditional methods focus on the continuous optimal control problems and fail
when applied to a discrete-valued optimal control problem. One common type of such
problems is the bang-bang type control problem arising from time-optimal control problems.
When the controls are assumed to be of the bang-bang type, the time-optimal control problem
becomes one of determining the TOCP switching times. Several methods for such
determination have been studied extensively in the literature; however, these methods require
that the number of switching times be known before their algorithms can be applied. As a
result, they cannot meet practical situations in which the number of switching times is usually
unknown before the control problem is solved. Therefore, to solve discrete-valued optimal
control problems, this dissertation has focused on developing a computational method
consisting of two phases: (a) the calculation of switching times using existing optimal control
methods and (b) the use of the information obtained in the first phase to compute the
discrete-valued control strategy.

The proposed algorithm combines the proposed OCP solver with an enhanced
branch-and-bound method. To demonstrate the proposed computational scheme, the study
applied third-order systems and an F-8 fighter aircraft control problem considered in several
pioneering studies. Comparing the results of this study with the results from the literature
indicates that the proposed method provides a better solution and the accuracy of the terminal

constraints is acceptable.
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Table 1 Results of various methods for the F-8 fight aircraft problem.

Accuracy of
Method tr Switching Times Terminal

Constraints

STC
6.3867 0.0761, 5.4672, 5.8241, 6.3867 <10°
(Kaya and Noakes, 1996)
CPET
6.0350 2.188, 2.352, 5.233, 5.563 <100
(Lee et al., 1997)
Two-phase scheme  5.7422 0.098, 2.027, 2.199, 4.944, 5.265 <100
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Figure 1 flow chart of the NLP method for solving OCP
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Figure 3 Flow chart of the algorithm for solving discrete-valued optimal control problems.
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Short Paper

A CONVENIENT SOLVER FOR SOLVING OPTIMAL CONTROL

PROBLEMS

Chih-Hung Huang and Ching-Huan Tseng*

ABSTRACT

This paper focuses on the development of a solver for solving optimal control
problems. A developed numerical optimal control module integrated with the Se-
quential Quadratic Programming method is introduced. An optimal control problem
solver based on the proposed method is implemented to solve optimal control prob-
lems efficiently in engineering applications. In addition, a systematic procedure for
solving optimal control problems by using the optimal control problem solver is also
proposed. A time-optimal benchmark problem presented in the literature is used to
illustrate for the capability and facility of solving optimal control problems. The
numerical results demonstrate the proposed method and the procedure suggested in
this paper are helpful to engineers in solving optimal control problems in a systematic
and efficient manner.

Key Words: nonlinear programming (NLP), optimal control problem (OCP), sequential
quadratic programming (SQP).

I. INTRODUCTION

Two typical methods are usually used to solve
optimal control problems: the indirect and direct
approaches. The indirect approach is based on the so-
lution of the first order necessary conditions for
optimality. Pontryagin Minimum Principle (Pontryagin
et al., 1962) and the dynamic programming method
(Bellman 1957) are two common methods utilizing the
indirect approach. The direct method (Jaddu and
Shimemura 1999; Hu et al., 2002) is based on nonlin-
ear programming (NLP) approaches that transcribe op-
timal control problems into NLP problems and apply
existing NLP techniques to solve them. In most of prac-
tical applications, the control problems are described
by strongly nonlinear differential equations hard to be
solved by indirect methods. For those cases, direct
methods can provide another choice to find the solutions.

In spite of extensive use of direct and indirect

*Corresponding author. (Tel: 886-3-5726111 ext. 55155; Fax:
886-3-5717243; Email: chtseng @cc.nctu.edu.tw)

The authors are with the Department of Mechanical Engineering,
National Chiao Tung University, Hsinchu, Taiwan 300, R.O.C.

methods to solve optimal control problems, engineers
still spend much effort on reformulating problems and
implementing corresponding programs for different
control problems. For engineers, this routine job will
be tedious and time-consuming. Therefore, a sys-
tematic computational procedure for various optimal
control problems has become an imperative for
engineers, particularly for those who are inexperi-
enced in optimal control theory or numerical
techniques. Hence, the purpose of this paper is to
apply NLP techniques to implement an OCP solver
that assists engineers in solving optimal control prob-
lems with a systematic and efficient procedure. To
illustrate the practicality and convenience of the pro-
posed solver, a benchmark problem presented in the
literature is chosen to illustrate the capability for solv-
ing optimal control problems. The results demon-
strate the proposed solver can get the solution cor-
rectly and the procedure suggested in this paper can
help engineers to deal with their problems.

The paper is organized as follows. In Section
I1, a general formulation of optimal control problems
is given. The proposed NLP method and computa-
tional architecture for solving OCP are discussed in



728 Journal of the Chinese Institute of Engineers, Vol. 28, No. 4 (2005)

Section III. The systematic procedure by applying
proposed solver to solve the OCP is described in Sec-
tion IV. A benchmark problem presented in the lit-
erature is described and the numerical results obtained
by applying the OCP solver are also demonstrated in
Section V. Conclusions are drawn in Section VI.

II. GENERAL FORMULATION OF OPTIMAL
CONTROL PROBLEMS

The generalized Bolza problem formulation for
optimal control problems can be defined as follows:
Find the design variables b, the control functions

u(t) and terminal time #; which minimize the perfor-
mance index

t
Jo= vatb, 3, 1)+ [ Fob,uo, xo, e (1)
Jigy
subject to the state (or system) equations
Xx=fb,ul),x@®),0, t0<t<ty 2)
with initial conditions

x(t9) = xo(b) (3)

functional constraints

Ji=yb.x(1), 1))

"t =0 i=1. . F
+ J%’ Fib, u(t), x(t), t)dr{ p 8 . ’1+ l’ .
(4)
and dynamic point-wise constraints
(b, u(t), x(1), ) £0;j=1, -, g (5)

where b € R* is a vector of the design variables, u(?)
e R"is a vector of the control functions, and x(¢) €
R" is a vector of the state variables. The functions f,
Yo, Fo, ¥, F;yand ¢; are assumed to be at least twice
differentiable.

The preceding definition extends the original
Bolza problem to account for inequality constraints,
as the original Bolza formulation containing only
equality constraints is not general for the OCP. It
also does not treat the design variables b, which may
serve a variety of useful purposes apart from obvious
design parameters; e.g., weight and velocity of a
vehicle. Also, when the terminal time #; is uncon-
strained (for optimization), a free time problem is
obtained. Otherwise a fixed time problem is given.
In addition, the initial conditions are separated from

the functional constraints in Eq. (4) for practical con-
siderations and the terminal conditions are treated as
equality constraints in the first term of Eq. (4). The
differential equations for the system in Eq. (2) are
written in general first-order form. Eq. (5) represents
the mixed state and control inequality dynamic
constraints.

III. NLP METHODS FOR SOLVING OCP

As mentioned in Section I, two common
methods, the indirect and direct approaches, used to
solve optimal control problems can be found in the
literature. Each method has its fitness and difficul-
ties for solving OCP. In this paper, a direct approach
based on nonlinear programming (NLP) is adopted
to develop an OCP solver. According to the strate-
gies of discretization, NLP methods for solving OCP
can be separated into two groups: the simultaneous
and sequential strategies. In the simultaneous
methods, the state and control variables are fully
discretized and led to large-scale NLP problems that
usually require special solution strategies (Cervantes
and Biegler 2000) to obtain the solutions. In sequen-
tial NLP methods, only the control variables are
discretized. Obviously, the sequential NLP method
has smaller design spaces and is more efficient than
simultaneous NLP methods. Therefore, this paper is
focused on the sequential NLP method and applies it
to develop the OCP solver.

Sequential Quadratic Programming (SQP) is one
of the best NLP methods for solving large-scale non-
linear optimization and is frequently applied to solve
optimal control problems (see, e.g., Gill et al., 2002,
Betts 2000). Before applying the SQP methods, op-
timal control problems in which the dynamics are de-
termined by a system of ordinary differential equa-
tions (ODEs) are usually transcribed into nonlinear
programming (NLP) problems by discretization
strategies.

1. Discretizing the Control Functions
The entire time interval [#y, #] is subdivided into

N general unequal time intervals and the grid is des-
ignated as

fo, 11, I3, =+, tN~17tN:tf (6)

The time intervals between the grid points are defined
in a vector form as

T= [Tla TZ’ Tt TN]T (7)

N
where T;=1t;—t;_; and 2, T, = t;— t, which generate
the parameter set =1
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Discretize the control variables ||

CTRLMF module
(1) Calculate the state variables |
by solving the IVP with P®) 1
(2) Calculate the values of
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Fig. 1 Conceptual flow chart of the SQP method for solving OCP

U= [u(l) u(Z) u(N)]T
= [u(tg), -+, upm(to), ui(ty), -, up(ty), -,
u(ty 1)y s Uty - D17

= [Ula ] U,", Um+ 15 77 UZma U2m+ Is °°7%

U(N - Dm+1> "7 UmN]T (8)
where u® € R" is the vector of control variables at
the k-th time grid point. The continuity of the u®
and their derivatives at the time grids are enforced
by means of appropriate linear equality constraints.
Any bounds on the u® at the nodes imply additional
linear inequalities on the coefficients of the polynomial.

2. Admissible Optimal Control Problem Formula-
tion

In this paper, the Admissible Optimal Control
Problem (AOCP) formulation, which is based on se-
quential NLP methods, is developed and implemented.
With AOCP, the system equation in Eq. (2) with
initial condition in Eq. (3) is formed as an initial value
problem (IVP) and the corresponding values of state

variables can be calculated by solving the problem
with the initial conditions x( and the values of design
variables in each iteration. As mentioned before, the
values of control can be approximated by a piecewise
polynomial function, in which the coefficients are treated
as design variables and determined in each iteration
of SQP. Hence, Egs. (2) and (3) form an IVP of state
variables. Some good first order differential equa-
tion methods having variable step size and error con-
trol are available to solve the IVP, e.g. Adam’s method
and the Runge-Kutta-Fehlberg method. These solv-
ers can give accurate results with user-defined error
control. The state trajectories are internally approxi-
mated using interpolation functions in the differen-
tial equation solvers. Values of the state and control
variables between the grid points can be also obtained
with different kinds of interpolation schemes.

3. Computational Algorithm of AOCP

The architectural framework of the OCP solver,
illustrated in Fig. 1, is composed of SQP and AOCP
algorithms. The AOCP algorithm contains three ma-
jor modules: discretization, CTRLMF and CTRLCF.
The discretization module, which is mentioned in Sec-
tion III.1, discretizes the control inputs according to
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specified time intervals. The computational algorithm

of the OCP solver which integrates AOCP with SQP

can be described as the following steps:

Given: Initial values of the design variables vector
PO = [, UQ, T and Number of time
intervals, N. Initialize iteration counter k: =
0 and Hessian Matrix H®: = Identity I.

1. Current design variable vector, P, is passed
to CTRLMF module of AOCP.

2. Evaluate the values of state variable, x©,
by solving the IVP by substituting P* into
the system equation.

= fb, u, X, 0, x(10) = %@ (9)

3. Compute the values of performance indexes,

Jo(k)

JE =y @, 00, U0, T, 1), 1))
I
+ f "E®®, UM, x®, s (10)
o

4. Substitute x® into Egs. (4) and (5) to evalu-
ate the values of functional and dynamic
constraints.

5. Evaluate VJ'¥, VJ9, and V¢;* by using
the finite difference method.

6. Find the descent direction, d*', by solving
the QP subproblem.

7. Check convergence criteria, d* < e. If
satisfied, stop and show the results.

8. Compute the step size, .

9. Update Hessian Matrix H* by applying
BFGS method.

10. Update design variables

PED — pB 4 o g (11)

11. Increase iteration counter, k < k + 1, go
back to step 1.

IV. SYSTEMATIC PROCEDURE FOR OCP

In this paper, the OCP is converted into an NLP
problem by a discretization process and an admissible
optimal control formulation mentioned in Section III.
Then the optimizer based on the SQP method is used
to solve the NLP problem numerically. In this paper
the discretization process and the numerical schemes
discussed in the previous section are implemented in
the OCP solver. All of the complicated details of the
transformation and numerical algorithms have been
implemented in the OCP solver. The optimal control
and state trajectories will be obtained and recorded
in the output files. With the proposed OCP solver,

engineers can focus their efforts on formulating their

problems and then follow an efficient and systematic

procedure to solve their optimal control problems.

The following steps describe a systematic procedure

for solving the OCP with the proposed OCP solver:

1. Program formulation: The original optimal control
problem must be formulated according to the ex-
tended Bolza formulation.

2. Preparing two parameter files: One of the parameter
files describes the numerical schemes used to solve
the OCP and also the relationships between perfor-
mance index, constraint functions, dynamic functions,
state variables and control variables. The other pa-
rameter file includes the information on SQP
parameters, such as convergence parameter, upper/
lower bound and initial guess of design variables, etc.

. Implementing user-defined subroutines.

4. Execute the optimization: The user-defined sub-
routines are compiled and then linked with the SQP
solver, MOST (Tseng et al., 1996). Then, execute
the optimization.

Obviously, the proposed OCP solver simplifies
the computational procedure for solving OCP and aids
engineers and students in solving optimal control
problems.

w

V. NUMERICAL EXAMPLES
Time-Optimal Rest-to-Rest Maneuvering Problem

A single-axis, rest-to-rest maneuvering problem
of flexible spacecraft used as a benchmark problem
in many studies (Driessen 2000, Pao 1996, Liu and
Wie 1992, Wie et al., 1993) is chosen as an example
of the time-optimal control problem in this section.
The system model, shown in Fig. 2(a), only with a
scalar control input u,(t) is considered here. Follow-
ing the NLP formulation described in Section III, the
optimal control can be defined as follows.

Minimize Jo= [ di=t1, (12)
Subject to

X =X3

Xy =Xy

u
=4k
x3_m, ml('

Xj = X;)
%y = %(x1 —x) (13)
with initial states

x"(0) = [0, 0, 0, 0]" (14)

where x; and x, are the positions of body 1 and body
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(a) Two-mass-spring system model (Liu and Wie 1992)
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Fig. 2 Time-optimal rest-to-rest maneuvering problem

2, respectively, the nominal parameters are m| = m;
= k = 1 with appropriate units, and time is in seconds.
The terminal state constraints and saturation con-
straints on control are described as:

vi=x()-1=0 (15)
Yo =x(t) -1=0 (16)
w3 = x3(t) =0 (17)
Wy =x4(tp) = 0 (18)
ws=luy| - 1<0 (19)

Time-optimal control problems often occur in
many practical control problems. In this case, the
derivation of the PMP is complex and thus the de-
tails are skipped. Following the procedure described
in Section IV, users only need prepare two parameter
files and user routines. Table 1 shows the user rou-
tines of this problem. By applying the proposed method
and suggested procedure, a solution as ;= 4.2178746
is obtained and the trajectories of the states and con-
trol input are shown in Fig. 2(b). In this problem, the
proposed solver also obtains three switching times
of input control as 1.00266823, 2.10892571 and

3.21518969. Those results agree with the results ob-
tained by Liu and Wie (1992).

As the numerical results show, OCP is success-
fully converted into an NLP problem with the admis-
sible control formulation and solved with the pro-
posed method. The results show that the proposed
method is applicable. According to the procedure
suggested in this paper, users need not spend a vast
amount of effort on programming in order to obtain
solutions to problems. After formulating the prob-
lems and writing the user-defined routines, the pro-
posed solver can solve the problems easily.

VI. CONCLUSIONS

An optimal control problem solver, the OCP
solver, based on the Sequential Quadratic Program-
ming (SQP) method and integrated with many well-
developed numerical routines is implemented in this
paper. A systematic procedure for solving optimal
control problems is also offered in this paper. A high-
order nonlinear time-optimal control problem is used
to demonstrate the capability of the OCP solver. The
results show that the OCP solver can help engineers
in solving optimal control problems with a system-
atic and efficient procedure.
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Table 1 User routines for solving the Benchmark problem

// Parameters for numerical examples
#define m1 1.0
#define m2 1.0
#define k 1.0
//Routine to calculate the integral term of the performance index or functional constraint.
void ffn(double *B, double *U, double *Z, double *T, double *F, int NV, int NU, int NEQ, int N, int NBJ)
i :
*F = 0.0,
}
// Routine to calculate the first term of the performance index or functional constraint
// or dynamic constraint.
void gfn(double *B, double *U, double *Z, double *T, double *G, int NV, int NU, int NEQ, int N, int NBJ)
{
switch (N) {

case 0:
*G = B[3]; /* B[3]:terminate time tf */
break;
case 1:
*G = Z[0] - 1.0; /* terminal constraints */
break;
case 2:
*G=7[1] - 1.0
break;
case 3:
*G=1Z[2];
break;
case 4:
*G =7Z[3];
break;

B
}
/! Routine to calculate the state trajectory.
void hfn(double *B, double *U, double *Z, double *DZ, double *T, int NV, int NU, int NEQ)
{
DZ[0] = Z[2];
DZ[1] = Z[3];
DZ[2] = (U[0)/m1)-(k/m1)*(Z[0]-Z[1]);
DZ[3] = (k/m2)*(Z[0]-Z[1]);
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ABSTRACT

The optimal control theory can be applied to solve
the optimization problems of dynamic system. Two major
approaches which are used commonly to solve optimal
control problems (OCP) are discussed in this paper. A
numerical method based on discretization and nonlinear
programming techniques is proposed and implemented an
OCP solver. In addition, a systematic procedure for
solving optimal control problems by using the OCP solver
is suggested. Two various types of OCP, A flight level
tracking problem and minimum time problem, are
modeled according the proposed NLP formulation and
solved by applying the OCP solver. The results reveal that
the proposed method constitutes a viable method for
solving optimal control problems.

KEY WORDS

optimal control problem, nonlinear programming, flight
level tracking problem, minimum time problem, SQP,
AOCP.

1. INTRODUCTION

Over the past decade, applications in dynamic
system have increased significantly in the engineering.
Most of the engineering applications are modeled
dynamically using differential-algebraic  equations
(DAEs). The DAE formulation consists of differential
equations that describe the dynamic behavior of the
system, such as mass and energy balances, and algebraic
equations that ensure physical and dynamic relations. By
applying modeling and optimization technologies, a
dynamic system optimization problem can be re-
formulated as an optimal control problem (OCP). There
are many approaches can be used to deal with these OCPs.
In particular, OCPs can be solved by a variational method
[1, 2] or by Nonlinear Programming (NLP) approaches
[3-5].

The indirect or variational method is based on the
solution of the first order necessary conditions for
optimality that are obtained from Pontryagin’s Maximum
Principle (PMP) [1]. For problems without inequality
constraints, the optimality conditions can be formulated as

42 62

a set of differential-algebraic equations which is often in
the form of two-point boundary value problem (TPBVP).
The TPBVP can be addressed with many approaches,
including single shooting, multiple shooting, invariant
embedding, or some discretization method such as
collocation on finite elements. On the other hand, if the
problem requires the handling of active inequality
constraints, finding the correct switching structure as well
as suitable initial guesses for state and co-state variable is
often very difficult.

Much attention has been paid to the development of
numerical methods for solving optimal control problems
[6, 7]. Most popular approach in this field turned to be
reduction of the original problem to a NLP. A NLP
consists of a multivariable function subject to multiple
inequality and equality constraints. The solution of the
nonlinear programming problem is to find the Kuhn-
Tucker points of equalities by the first-order necessary
conditions. This is the conceptual analogy in solving the
optimal control problem by the PMP. NLP approaches for
OCPs can be classified into two groups: the sequential
and the simultaneous strategies. In simultaneous strategy
the state and control variable are fully discretized, but in
the sequential strategy only discretizes the control
variables. The simultaneous strategy often leads the
optimization problems to large-scale NLP problems
which usually require special strategies to solve them
efficiently. On the other hand, instability questions will
arise if the discretizations of control and state profiles are
applied inappropriately. Comparing to the simultaneous
NLP, the sequential NLP is more efficient and robust
when the system contains stable modes. Therefore, the
admissible optimal control problems which bases on the
sequential NLP strategy is propose to solve the dynamic
optimization problems in this paper. To facilitate
engineers to solve their optimal control problems, a
general optimal control problem solver which integrates
proposed method with SQP algorithm is developed.

In spite of extensive use of nonlinear programming
methods to solve optimal control problems, engineers still
spend much effort reformulating nonlinear programming
problems for different control problems. Moreover,
implementing the corresponding programs of the
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nonlinear programming problem is tedious and time-
consuming.  Therefore, a systematic computational
procedure for various optimal control problems has
become an imperative for engineers, particularly for those
who are inexperienced in optimal control theory or
numerical techniques. Hence, the other purpose of this
paper is to apply nonlinear mathematical programming
techniques to implement a general optimal control
problem solver that facilitates engineers in solving
optimal control problems with a systematic and efficient
procedure.

Flight level tracking plays an important role in
autopilot systems receives considerable attentions in
many researches [8-12]. For a commercial aircraft, its
cruising altitude is typically assigned a flight level by Air
Traffic Control (ATC). To ensure aircraft separation, each
aircraft has its own flight level and the flight level is
separated by a few hundred feet. Changes in the flight
level happen occasionally and have to be cleared by ATC.
At all other times the aircraft have to ensure that they
remain within allow bounds of their assigned level. At the
same time, they also have to maintain limits on their
speed, flight path angle, acceleration, etc. imposed by
limitations of the airframe and engine, passenger comfort
requirements, or to avoid dangerous situations such as
aerodynamic stall. In this paper, the flight level tracking
problem is formulated into an optimal control problem.
For safety reasons, the speed of the aircraft and the flight
path angle has to be kept in a safe “aerodynamic
envelope” [9] and the envelope can be translated into the
dynamic constraints of the optimal control problem. A
flight level tracking problem and a minimum time
problem are shown in Section 5 and then solved by the
proposed method.

2. NLP FORMULATION

The formulation of admissible optimal control
problems (AOCP) which bases on the sequential strategy
is derived by Huang and Tseng [3]. Various types of
OCPs are solved successfully by applying AOCP and the
formulation is melded with SQP algorithm to develop a
general optimal control solver, the OCP solver. Because
the NLP formulation based on the AOCP will be applied
to solve aircraft flight control problems, a brief
description of the NLP formulation and AOCP algorithm
is helpful to understand.
Find the design variables P = [b", T', U']" to minimize a
performance index

Jo =y, [b,x(b,U,T,?,),t,]

)
+[" F[b,K(U, T, ),x(b, U, T, ), £]dt

subject to state equations

x =f[b,1(U, T,0),x(b, U, T,0),1dt, 1, <1 <1, (2)

with initial conditions

x(t,) = h(b) 3)

functional constraints as

J =y [bx(b,U,Tt)).1/]

v = 03i =1y | (4
+[" F[b,(U, T,5),x(b, U, T,1), )t o
’ sOi=r+l..,r
and dynamic constraints as
¢ [b,I(U,T,?),x(b,U,T,1),t] =0,/ =1L, .q S
L0, ,1,7),X(b,U, 1,7),
J SO;qu'ﬁ-l,....,q ( )

This NLP formulation presents a general form that
includes equality/inequality, functional and dynamic
constraints and can be applied to a variety of control
problems of engineering applications.

AOCP ALGORITHM

The architectural framework of the OCP solver
illustrated in Fig. 1 is composed of SQP and AOCP
algorithms. The AOCP algorithm contains three major
modules: discretization, CTRLMF and CTRLCF. Each
SQP iteration the values of design variable vector P% is
passed into the CTRLMF module to compute the values
of state variables by solving the initial value problem and
then the values of performance indexes can be evaluated.
After the CTRLMF module, the CTRLCF module uses
the values of state variables calculated by CTRLMF
module to compute the values of constraints. The values
of the performance indexes and constraints are also
passed back to the SQP algorithm and used to calculate
the gradient information. In SQP algorithm, the gradient
information will be used to evaluate the convergence and
update the design variable vector P*. If the
convergence criteria are satisfied, the algorithm be
stopped and shows the results. SQP is a robust and
popular optimization solver and the details can be found
in many literatures. Because SQP is the computational
foundation of proposed method and hence the
convergence and sensitivity of proposed method is same
as the convergence and sensitivity of SQP algorithm. The
convergence of SQP algorithm has been proposed in
many literatures (e.g. [15]). Biiskens and Maurer [16]
provide a detail description of the sensitivity analysis of
SQP method for solving OCP. In this paper, a general
optimization solver, MOST [13], which bases on SQP is
chosen to develop a general OCP solver.

With admissible optimal control, some good first
order differential equation methods having variable step
size and error control are available to solve the DAE
which is composed of Egs. (12) and (13), e.g. Adams
method and Runge-Kutta-Fehlberg method [14]. These
solvers can give accurate results with user desired error
control. The state trajectories are internally approximated
using interpolation functions in the differential equation
solvers. Values of the state and control variables between
the grid points can be also obtained with different kinds of
interpolation schemes. These numerical schemes are also
included and implemented in the proposed OCP solver.



SYSTEMATIC PROCEDURE FOR SOLVING OCP

In this paper, the OCP is converted into NLP
problem with admissible optimal control formulation and
then the optimizer based on SQP method is used to solve
the NLP problem numerically. Most of the numerical
schemes are implemented in the OCP solver and the
complicated details of the transformation and
programming will be completed in the OCP solver
automatically. The optimal control and state trajectories
will be obtained and recorded in the output files.
Therefore, engineers can follow an efficient and
systematic procedure to solve various optimal control
problems. The procedure for solving the OCP with the
OCP solver is described as follows.

1. Program formulation: The original optimal control
problem must be formulated according to the
extended Bolza formulation.

2. Preparing two parameter files: One of the parameter
files describes the numerical schemes used to solve
the OCP and also the relationships between
performance index, constraint functions, dynamic
functions, state variables and control variables. The
other parameter file includes the information on SQP
parameters, such as convergence parameter,
upper/lower bound and initial guess of design
variables, etc.

. Implementing two user-defined subroutines.

4. Execute the optimization: The user-defined
subroutines are compiled and then linked with the
SQP solver, MOST. Then, execute the optimization.

Obviously, the proposed OCP solver simplifies the
computational procedure for solving OCP and facilitates
engineers and students in solving optimal control
problems.

W

AOCP
Initialization
Guess an initial P® k=0 Discretization Module
Hessian matrix HO=Identity Discretize the control variables
Time intervals: N
l PO
CTRLMF Module
Update design variables | k=k+1 (1) Calculate the state variables

PED=ph +q B « g0 by solving the IVP with P®.,
(2) Calculate the values of

performance indexes.

Update Hessian matrix H Jo ‘ X4
Finite difference method
le—1
T CTRLCF Module
Line search l Calculates the values of functional
Searching the step size and dynamic constraints.
a® Gradients of cost functions and

constraints

l Jisd;

QP subproblem
«— Searching the descent direction
d®

Check convergence
%)< e ?

Show results

Fig.1 Conceptual flow chart of the AOCP method

3. AIRCRAFT MODEL

Many ATC researches [11, 12] apply a point mass
model to describe the aircraft motion and only the
movement of the aircraft in the lateral-directional is
considered. In Figure 2, three coordinate frames are used
to describe the motion of the aircraft: X,-Y, denotes the
ground frame, the body frame denoted by X,-Y, and the
XwYy denotes the wind frame. Besides, 0, v, and «
denote the rotation angle between the frames. V' e R
represents the speed of the aircraft which is aligned with
the positive X, direction and h is the altitude of the
aircraft.

e

Xy
Fig. 2 The aircraft model (Lygeros 2003).

The equations of the motion can be derived from force
balance relationships:
mV =T cosa—D—mgsiny

. . (16)
mVy =L+Tsino —mgcosy
Herein, T is the thrust exerted by the engine, D is the
aerodynamic drag, and L is the aerodynamic lift. By
applying basic aerodynamics, the lift (L) and drag (D) can
be approximated by
C,SpV’?

2

L= (I+ca)=a,V’(1+ca)

amn
D= C,SpV? _

a DV2

where C;, Cp, and c¢ are dimension-less lift and drag
coefficients, S is the wing surface area, p is the air density.
According to the admissible optimal control formulation
described in Section 3, the air model can be formulated by
a three state model with state variable vector x(t) =[xy, Xa,
x3]" = [V, v, h]" and control input vector u(t) = [u;, u,]" =
[T, 0]". By approximating o with a small angle, the
equations of the motion (system equations) can be written
as



a . 1
——L x, —gsinx, — 0
m m
. |a COS X a u
x=|Ltx(l-cx,)-g—2 |+ 0 —Ltx [ 1} (18)
m X, m u,
X, sin x, 0 0

This model proposed by Lygeros [10] which extends
the three dimensions of an aerodynamic envelope
protection problem is adopted. Considering the safety
conditions, speed of aircraft and flight path angle are
bounded in a rectangular limitations called “safe
aerodynamic envelop”. Lygeros [8] proposed a simplified
aerodynamic envelope which is referred to Tomlin et al.
[9] is adopted in this paper and translated into the
following dynamic constraints.

Vi SX <V

min
7/min s x2 = ymax
h

‘min

(19)
= x3 < hmax

Following the NLP formulation described in Section 2,
those constraints can be treated as dynamic constraints
and rewritten as follows.

¢ :—x,+V . <0,
¢, ix, =V . <0,
Gy =X, + Y pin <0,
By =Y e <0,
s :—x;+h, <0,

(20)

¢6 : x3 _hmax < O’
To illustrate the capabilities of the proposed method, the

flight level tracking problem and minimum time problem
are chosen in this paper.

Case I: Flight level tracking problem

A tracking problem is to find the controls to maintain the
system state x(t) as close as possible to desired state r(t)
in the interval [to, t¢]. The performance index for tracking
problem can be written as

J = j’ [x@)-r ()t @1

where Q(t) is a real symmetric n x n matrix that is
positive semi-definite for all t € [ty,t]. A flight level
tracking problem is to keep the aircraft as possible to
desire level and aircraft speed. Therefore, the performance
index can be represented as
1 ¢ 2 2 2

JZEL [(xl—xld) +(x2—x2d) +(x3—x3d) }dt (22)
where x4 is the desired aircraft speed, x,4 is desired flight
path angle and x34 is the assigned altitude.

Case II: Minimum time problem
A minimum time problem is to transfer a system from an
arbitrary initial state x(tp) = X, to a specified target set S in

52

minimum time. The performance index for minimum time

problem can be written as
t/~

J=t,—t,=|" dt

(23)
ly

where t; is the first instant of time when x(t) and S

intersect. In some emergencies, the aircraft is asked to

change their level as soon as possible.

4. NUMERICAL EXAMPLES

The following parameters are used in both cases:
ap = 65.3 Kg/m, ap=3.18Kg/m, m= 160x10° Kg,
g=9.81 m/s’, Omin = -20°, Yimin = 20,
c=6, Omax = 25°, Ymax = 25,
Tiin = 60x10° N,  Tpin = 120x10° N,  Vipin = 92 m/s,
Vimax = 170 m/s, hppin = -150 m, hppax = 150 m

Case I: Flight level tracking problem

The initial values of state variables are
X0 =[100, 20, -1201" (24)
and the purpose of this problem is to find a suitable
control to maintain the flight level and keep the aircraft
altitude in assign altitude. Thus, the desired states are set
with following values.
r(t) =[150, 0, 00]" (25)
In addition to the dynamic constraints proposed in Eq.
(20), the control inputs are also limited as following
bounds:
T.<u<T

0. <u,<0__

Substitute parameters into Eqgs. (18) and (22), the
flight tracking problem is solved by the proposed OCP
solver. The numerical results are shown in Figure 3. From
Figure 3(a), all of the states meet the constraints and the
flight level and aircraft speed return to the desired states.
Table 1 shows the user subroutines of this case.
Obviously, the proposed OCP solver provides an easier
tool to solve dynamic optimization problems.

(26)

Case II: Minimum time problem

The aircraft is asked to increase their altitude in a
minimum time. The initial and final altitude are hy = 0 m
and hy = 500 m respectively. All of the constraints
imposed on Case I are also imposed on this case. The
initial state X, = [100, 0, 0]". The final time, t; obtained
by using the AOCP is 73.98 seconds and the final altitude
is 499.928 m. The control histories are shown in the Fig.
4(a) and Fig. 4(b) represent the state trajectories. From
Fig.4, all of the trajectories meet the safe “aerodynamic
envelope” (dynamic constraints).

5. CONCLUSIONS

In this study an optimal control problem solver, the
OCP solver, based on the Sequential Quadratic
Programming (SQP) method and integrated with many
well-developed numerical routines is implemented. A
systematic procedure for solving optimal control
problems is also offered in this paper. Two common types



of optimal control problems for flight level control are
presented and solved by proposed method successfully.
Numerical results show the proposed method can
facilitate engineers in solving optimal control problems
with a systematic and efficient procedure.
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Table 1. User subroutines for flight level tracking problem

[]-====-- Program parameters

//B: Discrete design parameters of design variable vector. (INPUT)

//'U: Admissible control function vector. (INPUT)

/] Z: State variable vector. (INPUT)

// T: Given time grid point. (INPUT)

// G: First term of performance index or functional constraint or

// dynamic constraint. (OUTPUT)

// NV: Number of design variables for optimizer (INPUT)

// NU: Number of control functions. (INPUT)

// NEQ: Number of state equations (INPUT)

// N: Index of current number of function evaluation. INPUT)

//

1 FFN()

// Routine to calculate the integral term of the performance index

// or functional constraint

void ffn(double *B, double *U, double *Z, double *T, double *F,
int NV, int NU, int NEQ, int N, int NBJ)

if (N==0)
*F = 0.5*%((Z[0]-150.0)*(Z[0]-150.0)) + (Z[1]*P1/180.0) *
(Z[1] * P1/180.0 ) + (Z[2]*Z[2]);
else
*F =0.0,
}
1/ GFN()
// Routine to calculate the first term of the performance index or
// functional constraint or dynamic constraint
void gfn(double *B, double *U, double *Z, double *T, double *G,
int NV, int NU, int NEQ, int N, int NBJ)

switch (N)
{
case 0:
*G=0.0; break;
case 1:
*G=-1*Z[0] + 92.0; break;
case 2:
*G =Z[0]- 170.0; break;
case 3:
*G=-1*Z[1]-20.0; break;
case 4:
*G =Z[1]-25.0; break;
case 5:
*G =-1*Z[2] -150.0; break;
case 6:
*G =Z[2] - 150.0; break;
b
}
// HEN()

//Routine to calculate the state trajectory.
void hfn(double *B, double *U, double *Z, double *DZ, double *T,
int NV, int NU, int NEQ )

DZ[0] = -1*((aD*Z[0]*Z[0])/m) + (g*sin(Z[1]*P1/180.0))) + U[0] *
10000 / m;
DZ[1] = (aL*Z[0]*(1-c*Z[1])/m) - (g*cos(Z[1]*P1/180.0)/Z[0]) +
al*c*Z[0]*U[1]/m;
DZ[2] = Z[0]*sin(Z[1]*P1/180.0);




} 30
/! ZOFN()
// Routine to calculate the initial state vector.
void z0fn(double *B, double *ZINT, int NV, int NEQ ) 25—
————— thrust (x10,000 N)
ZINT[O] =100.0; 20 — pitch angle (deg.)
ZINT[1] =20.0;
ZINT[2] = -120.0;
}
100
80 — X
60 —
40 —
0 —
20— Xy _15 1 | 1 | 1 | 1
40 0 20 40 60
Time (Sec.)
-60 — (a) Control input trajectories
-80 — —— X1: Aircraft Speed (m/s) : . . - -
X2: Flight Path Anglo (dog) Fig. 4 Trajectories of the minimum time problem
-100 — — X3: Altitude distance(m)
600
-120 L l L l L l L l L — - — XI: Aircraft Speed (m/s)
0 2 4 6 8 o | ———-- X2: Flight Path Angle (deg.)
Time(Sec.) —— X3: Altitude distance(m)
(a) State trajectories 400

77777 ul: the thrust ( x 10000 N)
u2: the pitch angle (deg.)

200

200 1 | 1 | 1 | 1

Time(Sec.)

(b) State trajectories

Fig. 4 Trajectories of the minimum time problem.

Time(Sec.)
(b) The thrust trajectory

Fig. 3 Numerical results of the tracking problem.
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ABSTRACT

This paper focuses on the numerical methods for solving
the optimal control problems. An optimal control problem
(OCP) solver is proposed to solve efficiently the optimal
control problems in the engineering applications. In last
two decades, discretization and parameterization
techniques had been used to convert the optimal control
problem into the nonlinear programming problem and
then it can be solved it by using the standard optimization
software. In this paper, a developed optimal control
analytical module, an OCP solver, is integrated with the
optimization software, MOST. A systematic procedure for
solving optimal control problem by using the OCP solver
is also proposed. Two various types of the optimal control
problems presented in the literatures are chosen to verify
the accuracy and efficiently for the OCP solver. From the
numerical results in this paper, the trajectories for state
and control variables agree with literatures’ results.
Therefore, the capability and accuracy of the OCP solver
is demonstrated and it can facilitate engineers to solve
various optimal control problems with a systematic and
efficient procedure.

KEY WORDS

optimal control problem, nonlinear programming,
discretization and parameterization techniques, admissible
optimal control formulation.

1. INTRODUCTION

Optimal control problems (OCP) have a large number of
applications in many different fields, e.g. mechanical
system [1], automotive vehicle design [2,3] and
manufacturing process [4]. However, finding the solution
is often a difficult and time-consuming task, particularly
for nonlinear and state constrained problems. The optimal
control problems can be solved by the classical calculus
of variations approach or by the dynamic programming
method. On the other hand, many practical problems are
described by strongly nonlinear differential equations and
cannot easily get the analytical solutions. Hence, many
approximation methods [5-8] based on nonlinear
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programming method are used to solve the nonlinear
optimal control problem.

A nonlinear programming problem consists of a
multivariable function subject to multiple inequality and
equality constraints. The solution of the nonlinear
programming problem is to find the Kuhn-Tucker points
of equalities by the first-order necessary conditions. This
is the conceptual analogy in solving the optimal control
problem by the Pontryagin maximum principle [18].
Various discretization and parameterization techniques for
state and control variables allow having an optimal
solution for the OCP via the nonlinear programming.
Jaddu and Shimemura [7] used the quasilinearization and
state parameterization by using Chebyshev polynomials to
solve constrained nonlinear optimal control problems. Hu
et al. [8] applied an enhanced scheme based on the Direct
Collocation and Nonlinear Programming Problem
(DCNLP) to transform the system dynamics into
constraints of the nonlinear programming. Many
numerical examples are solved successfully by those
methods.

In this paper, a different approach for solving the OCP is
proposed and integrated with various numerical schemes
to implement a general optimal control problem solver
that facilitate engineers to solve their optimal control
problems with a systematic and efficient procedure. With
the solver, the OCP can be converted into the nonlinear
programming problem automatically and then be solved
by a general constrained optimization solver-MOST. The
OCP solver allows the designer to control both of the
optimization process and the analysis as well as design
sensitivity analysis using his owning experience and
intuition. Two numerical examples in the recent
literatures will be used to demonstrate and verify the OCP
solver in this paper. The numerical results show the OCP
solver is effective and accurate for solving the optimal
control problem.

2. PROBLEM FORMULATION

A general problem of continuous time optimal control
system can be defined as follows:


melissa

melissa


Find the design variables b, the control functions u and
terminal time t; which minimize performance index

o =walb,x(t,),t, 1+ [ Fy[b,u(0),x(2), 1de (1)

subject to the state (or dynamic) equations
x=f[b,u(t),x(¢),t]dt, t,<t<t, )
with the initial conditions

x(t,) =h(b) (3)
functional constraints

J, =y [b, x(t_/.),tf]

i =0;i=1,......... N 4)
+J‘n. E[b’u(t)’x(t)’t]dt{ﬁ 0;i=r"+ 1,....,r}

and dynamic point-wise constraints

=0;j =L’
¢j[bzu(t)7x(l)’t] <0;j=4"+1 q ®

where b € R* is a vector of design variables, u eR™ is a
vector of control functions, and x eR" is a vector of state
variables. The functions o, Foy, y;, f, Fi and ¢; are
assumed two at least twice differentiable. The preceding
definition extends the original Bolza problem to account
for inequality constraints. The original Bolza formulation
containing only equality constraints is not general for the
OCP. It also does not treat design variables b which may
serve a variety of useful purposes apart from obvious
design parameters; e.g., weight, area, velocity. Also, when
the terminal time t; allows be free (for optimization), the
free time problem is obtained, otherwise the fixed time
problem is given. In addition, the initial conditions are
separated from the functional constraints in Eq. (4) for
practical considerations. The differential equations for the
system in Eq. (2) are written in general first-order form.

3. DISCRETIZATION MODEL

The general continuous time optimal control problem can
be transferred into NLP problem by introducing a
parametric control and state model. To treat this
continuous model as the discrete model, it must represent
the infinite-dimensional control function u and state
variable x by a finite set of parameters. At first
discretization of the control function is considered. The
entire time interval [t, t¢] is subdivided into N general
unequal time intervals and the grid is designated as

to, t1, t2,. ., tnon, tNTEE (6)
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The time intervals between the grid points are defined in a
vector form as

T:[Tla T29'-'7 TN ]T (7)
N
Where T, =¢, —¢,_,and 27: =t,—1, which generate the

i=1
parameter set

U= [ul(to)s- IEE) ul(tN)a uZ(t0)5~ [EX) um(tO)s- (X un%(tN)]T (8)
= [U]s---a UN+1: UN+25---9 UmN+ls---UmN+m] (9)

This can be treated as design variable vector. This results
in a total number of k+N+mN+m design variables as
P=[bi,...56 Tisee ., Taseee Upyevr JUnniem 1" (10)
The coefficients of the interpolation function for the
control function u may be considered as design variables
instead of Ti and U; in Eq. (10). For example, if time grid
is not considered as design variable, the interpolation
function based on third-order polynomial, u,(t) = U; + U,
x t+ U; x £+ Uy % t> can be used to represent the first
component of the control forces in u; and Uy, U,, U;, Uy
can be treated as design variables. Besides, in some
control problems, the initial conditions on the state
variables are unknown. For example, the number of the
initial conditions is not enough for integrating or the
initial conditions cannot be separated from the functional
constraints in Eq. (4). The artificial variables are added as
design variables to treat the problem that expand the size
of design variable vector P. Two discretization techniques
for the state variables in Eq. (2) can be used to evaluate
the state trajectories. The first method discretizes both the
control and the state wvariables and enforces the
compliance of the state equations by introducing them as
constraint equations in the nonlinear programming (NLP)
problem. This method approximates both the states and
the controls in discrete intervals and uses them as
variables of the resulting NLP problem. This method is
known as the Direct Collocation and Nonlinear
Programming Problem (DCNLP) [8]. The next method is
a straightforward approach that the control variables u(t)
are approximated by some interpolation functions I(t) in
each time interval, where I(t): [t,, t]eR™. The
approximate trajectories of state variables x are generated
by solving the initial value problem defined in Egs. (2)
and (3). This method is commonly called the direct
shooting method [9]. With the direct shooting method, the
problem is called an admissible optimal problem [10].

In the DCNLP, the states and controls are discretized and
used as the design variables of the NLP problem. In
practical problems, a fine interval of discretization is
necessary for an accurate solution. On the other hand, a
huge amount of state and control variables are needed to
describe the dynamic behavior in a large-scale problem,
e.g. structure control problems. In those situations, the
number of design variables of the NLP problem will be
increase rapidly. The influence of the number of design



variables on the performance of the NLP problem is self-
evident. Furthermore, many well-developed subroutines
exist for numerical integration that is needed in the
admissible optimal control problems. Therefore, the
admissible optimal control problem is more efficient and
easy implementation than DCNLP and it has been
adopted in this paper.

4. ADMISSIBLE OPTIMAL CONTROL
FORMULATION

Consider now a typical functional that may be the
performance index or a functional constraint:

J =ylb,x(t,),1,]+ j FIb,u(?),x(¢),]dt (11)

where the first term involves only design variables and the
state of the system at terminal time and the second term
contains mean behavior over entire interval of motion. As
noted earlier, the control functions u are treated as a
subset of the vector P. The terminal time t; can be treated
as one of the design variables in T, for example,

t, = i]; +1, - The dependence on design variable in Eq.
i=1

(11) arises both explicitly and implicitly through the
control and state variables. The admissible control
function is represented in the form u(t) = I(U, T, t) and
the state variable is written the form x(b, U, T, t) to
emphasize that it is a function of design variables P.
Therefore, equation (11) can be rewritten as follows:

J = l//[bax(bn U: Tn tf)a tf]

t (12)
+[" FIb,1(U, T,1),x(b,U, T, 1), {]dt
lo
The state equation in Eq. (2) is transformed as
<t<
x =£[b,I(U, T, 1), x(b, U, T, ), c]dr, 0 == (13)

and a typical dynamic constraint function in Eq. (5) as
¢[b,I(U,T,?),x(b,U,T,?),t] (14)
Now, it can express the admissible optimal control
problem in an NLP formulation as follows:

Find the design variables P =[b", T, U']" to minimize a
performance index

Jo = Wo[b,x(b,U, T,t,),1,]

, (15)
+[ " F[b,1(U,T,0),x(b, U, T,0),11dt
subject to state equations
._ t,<t<t, 16
x =f[b,I(U,T,?),x(b,U,T,1),t]dt, : (16)
with initial conditions
x(z,) =h(b) (17)
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functional constraints as

J; =§//i[b,X(b,U,T,l‘f),l‘f]

Iy =0;i=1,........ ,F (18)
+I, E[b,1(U,T,£),x(b,U,T,?),]dt

L0i=r+1,..,r

and dynamic constraints as

=0;/=1,.... ,q
¢,[b,1(U, T,t),x(b,U,T,t),t]{ o }

<0;j=qg"+1,...
With admissible optimal control, some good first order
differential equation methods having variable step size
and error control are available to integrate the state
equations in Egs. (16) and (17), e.g. Adams method and
Runge-Kutta-Fehlberg method [11]. These solvers can
give accurate results with user desired error control. The
state trajectories are internally approximated using
interpolation functions in the differential equation solvers.
Values of the state and control variables between the grid
points can be also obtained with different kinds of
interpolation schemes.

5. NUMERICAL SCHEMES

Ordinary Differential equation (ODE) solver: With the
admissible optimal control formulation, the state
equations (13) and design sensitivity equations need to be
integrated by the ODE solver. In this paper, DDERKF,
DDEABM and DDEBDF that developed by Sandia
Laboratory are selected to integrate state or design
sensitivity equations [12]. DDEBDF is based on the
variable-order (1-5) backward-differention formula.
DDERKF is a fifth-order Runge-Kutta code and
DDEABM is a variable-order (1-12) Adams-Bashforth
code. Those equation solvers use variable-step-size
algorithms and have good error control.

Numerical Integration Scheme: Two integration schemes,
Simpson’s rule and Gaussian quadrature formula, are
adopted in this paper. Those schemes are used to integrate
the integral part of the functional constraints.

Interpolation Schemes: For the admissible optimal control
formulation, interpolation schemes are needed at several
places. The zero-order, first-order and piecewise cubic-
spline interpolation functions can be used in this paper.

Optimization Solver: In the admissible optimal control
formulation, the optimal control problem is converted into
a NLP program and then a standard optimization solver
can solve the NLP problem numerically. A great deal of
attention has been paid to the NLP problems by using the
Sequential Quadratic Programming (SQP) method [7, 13].
In this paper, an optimization solver-MOST [14] based on
the SQP method is chosen to solve the NLP problem.



Design sensitivity analysis: Base on SQP method used in
numerical methods of optimization, one must perform
design sensitivity analysis; i.e., calculate design gradients
of problem functions. In general, two approaches are
applied to calculate these gradients. A first approach is to
use a finite-difference approximation. The other method is
to differentiate implicit functions analytically. There are
two methods for calculating analytical derivatives of a
constraint with respect to the design variables P: the direct
differentiation method (DDM) and the adjoint variable
method (AVM) [15].

6. SYSTEMATIC PROCEDURE FOR
SOLVING THE OCP PROBLEMS

In this paper, the OCP is converted into NLP problem
with admissible optimal control formulation and then the
optimizer based on SQP method is used to solve the NLP
problem numerically. Now, those procedures are
implemented in the OCP solver and the complicated
details of the transformation and programming will be
completed in the OCP solver automatically. The optimal
control and state trajectories will be obtained and
recorded in the output files. Therefore, engineers can
follow an efficient and systematic procedure to solve
various optimal control problems. The procedure for
solving the OCP with the OCP solver is described as
follows.
1) Define the OCP problem following the formulation
defined in Section 2.
2) According to the formulation, prepare the
parameter files and user-defined subroutines.
3) Compile the user’s subroutines and link with OCP
solver.
4) Execute the OCP solver and get the optimal results.

7. NUMERICAL EXAMPLES

Two various types of optimal control problems have been
used in literatures as test problems to evaluate the
performance of the proposed method. Both the acceptable
violation of constraints for feasible designs and acceptable
tolerance for the convergence parameter are 1.0E-3 in
SQP method.

Case 1: The van der Pol oscillator problem

The van der Pol oscillator problem was given and solved
by Bullock and Franklin [16] with second variation
method. Also, Jaddu and Shimemura [7] used this
problem to verify their computational method. In this
work, it is also used to evaluate the performance and
capabilities of the OCP solver. The van der Pol oscillator
problem can be formulated as follows:

Minimize

o loes o, 2 2
J = 5'[0 (x7 + x5 +u”)dt (20)

Subject to
X, =X, ey
%, =—x, +(1=x")x, +u (22)

with initial states x"(0) = [1, 0]".

Table 1 shows the performance comparison of various
numerical schemes for the OCP solver. The finite-
difference method (DSA=FDM) and direct differentiation
method (DDM) for sensitivity analysis are selected to
evaluate their performance. The Simpson’s rule
(INTG=SIMPSN) and Gaussian quadrature formula
(INTG=GAUSS) are used to carry out the numerical
integration over the time interval. DDERKF and
DDEABM with an option to switch to DDEBDF are
selected for solving first-order differential equations. The
number of time grid points for the control function is
selected as 21. The numerical results include the number
of iterations (NIT) for the SQP method, optimal value of
performance index (J*), CPU time for the entire iterative
process. The numerical results for all example problems
were obtained on an Intel Celeron 1.2 GHz computer with
384 MB of RAM memory.

This optimal value of performance index for this problem
was found by Bullock and Franklin [16] to be J* =
1.433508 using second variation method. Also Jaddu and
Shimemura [7] found the optimal value J* = 1.433487
using a Chebyshev series of ninth order to approximate
xi(t). In this case, the numerical results for various
numerical schemes of the OCP solver are listed in Table 1
and the optimal control and state trajectories is shown in
Figs. 1. As the numerical results show, the performance
with all of the numerical schemes of the OCP solver is
quite accurate. Owing to the efficiency the finite-
difference approach for sensitivity analysis and Gaussian
quadrature formula for the numerical integration are
selected to solving the following problem.

Case 2: Fourth-Order Systems: A Flexible Mechanism

A flexible mechanism was proposed and solved by Wu
[17]. The OCP formulation of this problem can be
described as follows.

Minimize
J = tf (23)
Subject to
X (1) =x,
u
X, =——( —x)+—
' ' 24)
X, =X,
X, =—(x—x)
2
Control constraints
¢ =u(n|< M (25)



with boundary conditions x'(0) = [0, 0, 0, 0]" and x"(t;)
=[1, 0, 1, 0]".

With admissible control formulation, the control variables
are converted into the design variables and the control
constraints are treated as the dynamic constraint. In this
work, the system is solved by the OCP solver with
following parameters: k = IN-m-rad”, m; = m,= 1kg-m’,
and M = IN-m. The numbers of time grid points for the
control function (NGP) are selected as 5, 11 and 51 to
study the effect of coarser or finer mesh. Two initial
guesses, u (t) = 0.0 and u (t) = 1.0, for the control function
with three piecewise interpolation schemes — zero order,
first order, and cubic spline are used in this problem. The
hybrid method that combines the DDM and AVM for
design sensitivity analysis is used to calculate the design
sensitivity coefficients.

The optimal solution for this problem is given in Table 2
and the trajectories of state variables are shown in Fig.2.
All the 18 test runs are successfully solved with the
proposed method, but the runs with small number of
control grid points (NGP) give higher optimum values
and less CPU time. The terminal time, t; and the
trajectories obtained in this work are agreed with the
results, tr = 4.3, obtained by Wu [17]. The numerical
results also show that the proposed method has the
capability to deal with the high order time-optimal control
problem.

8. CONCLUSIONS

The admissible control formulation combines with SQP
method used to solve the optimal control problem is
presented. The theoretical basis of nonlinear programming

approach for the optimal control problem is also described.

An optimal control problem solver, the OCP solver, based
on the nonlinear mathematical programming techniques
and integrated with many well-developed numerical
routines is implemented. A systematic procedure for
solving optimal control problem is also proposed. Two
various types of optimal control problems are used to
evaluate the capability and accuracy of the OCP solver.
The results show that the OCP solver can facilitate
engineers to solve the optimal control problems with a
systematic and efficient procedure.
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Table 1 Performance comparison of various numerical 1.2
schemes for the oscillator problem.

DSA INTG DIFF INTP NIT J* Conv.Par. CPU

DDM SIMPSN DDERKF Zero 11 1.4530 4.9577¢-4 19.639
First 21 1.4333 7.6480e-4 6.069
Cubic 20 1.4334 5.4521e-4 18.146

DDEABM Zero 11 1.4530 4.9577e-4 18.455
First 21 1.4333 7.6480e-4 19.147
Cubic 20 1.4334 5.4521e-4 15.202

GAUSS DDERKF Zero 12 1.4422 9.7245e-4 20.499
First 21 1.4328 8.4954e-4 4.665
Cubic 20 1.4334 5.4616e-4 14.392

DDEABM Zero 12 1.4422 9.7245e-4 19.078
First 21 1.4328 8.4954e-4 17.686
Cubic 20 1.4334 5.4616e-4 11.776

FDM SIMPSN DDERKF Zero 13 1.4530 3.6313e-4 3.615
First 21 1.4333 7.6261e-4 1382 .
Cubic 20 1.4334 5.4124e-4 1.542 0.0 1.0 20 3.0 4.0 5.0

Time(sec.)
DDEABM Zero 13 1.4530 3.6306¢-4 3.615
First 21 14333 7.5959¢-4 3.244 . . . .
Cubic 20 14334 5.4139e-4 2.333 Fig. 1 State trajectories for the van der Pol oscillator
GAUSS DDERKF Zero 14 14422 5382le4 3.445 problem.
First 21 14328 8.4715¢-4 0.752 10
Cubic 20 14334 54218¢-4 0.871 “E
DDEABM Zero 14 14422 53905e-4 3.555 09
First 21 14328 8.3944e-4 2754 F
Cubic 20 14334 54269e-4 1.603 08
Bullock and Franklin (1967) J* =1.433508 0.7F
Jaddu and Shimemura (1999) J* =1.433487 0.6 E_
Table 2 Optimal results for the fourth-order system. 05
u(t) NGP INTP NIT J* Conv.Par.  CPU 04
0.0 5 Zero 5 433196  1.04E-05  0.131 03 =3
First 5 486764  5.69E-06 0.07 -
02F
Cubic 5 490565  4.67E-07 0.06 c
11 Zero 15 430699  571E-09 1382 01
First 7 428066  5.65E-06 035 0.0 & RN S VI
0.0 1.0 2.0 3.0 4.0 5.0
Cubic 10 430041  1.52E-08 0.34 (a)
51 Zero 50 426239  1.38E-07  43.803 080F
Fist 44 422087  3.50E-07  18.596 070
0.60
Cubic 40 422187  1.10E-08  12.659 050 E-
1.0 5 Zero 6 433197  6.16E-07 0.12 0.40 E_
First 7 486765  225E-07  0.091 030
Cubic 9 490560  3.72E-05 0.12 020
11 Zero 7 436249  351E-08  0.651 g';g
First 8 428064  1.09E-05 0.43 _0' 1wE
Cubic 10 430041  3.50E-07 0.39 _0_205_
51 Zero 49 426229  721E-08  42.872 -0.30 -
First 42 422087  220E-06 17315 040
Cubic 38 422187  2.88E-06  11.847 030 | |
_0-60—IIIIIIII | NN T N S N N A N |
0.0 1.0 2.0 3.0 40 5.0
Time(sec.)
(b)

Fig. 2 State trajectories for the fourth-order system.
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