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摘 要 

動態系統所引發的特性一直困擾著工程設計人員，而只在靜態系統模式下，採用最佳

化設計方法所求得的設計，則往往在實際的應用上有所不足。本研究計畫主要依據最佳

設計與最佳控制理論基礎，結合動態分析與數值分析求解技巧，發展一套通用之動態系

統最佳設計方法與軟體。 

一般動態系統之最佳化問題可以轉換成標準的最佳控制問題，再透過離散技術轉換成

非線性規劃問題，如此便可利用現有之最佳化軟體進行求解。在本研究計畫中，首先將

動態系統的解題方法與流程發展為最佳控制分析模組，再將該模組與最佳化分析軟體 

(MOST) 整合得到整合最佳控制軟體，可以用來解決各種類型的最佳控制問題。為驗證

軟體的效能與準確性，利用本研究計畫所發展之整合最佳控制軟體求解文獻資料中所提

出之各類型最佳控制問題。藉由分析結果之數值與控制軌跡曲線的比對，整合最佳控制

軟體所求出之數值解，在效能與準確性上都能與文獻資料所獲得的最佳解吻合，確認該

整合最佳控制軟體的確可以用來解決我們工程應用上的最佳控制問題。 

另外，針對工程設計中存在的離散（整數）最佳控制問題，本研究計畫依據混合整數

非線性規劃法(mixed integer nonlinear programming) 做進一步的研究。猛撞型控制 

(bang-bang type control) 是常見的離散最佳控制問題，其複雜與難解的特性更是吸引諸

多文獻探討的主因。許多文獻針對此一問題所提出的方法多在控制函數的切換點數量為

已知的假設條件下所推導，但這並不符合實際工程上的應用需求，因為控制函數的切換

點數量大多在求解完成後才會得知。因此，本研究計畫針對此類型問題發展出兩階段求

解的方法，第一階段先粗略求解該問題在連續空間下的解，並藉此求得控制函數可能的

切換點資訊，第二階段再利用混合整數非線性規劃法求解該問題的真實解。發展過程

中，加強型的分支界定演算法 (enhanced branch-and-bound method)被實際應用並且納入
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前一階段所開發的整合最佳控制軟體中，這也使得這個軟體可以同時處理實際動態系統

中最常見的連續及離散最佳控制問題。 

最後，本研究計畫將所發展的整合最佳控制軟體用來求解兩個實際的工程應用問題：

飛航高度控制問題與車輛避震系統設計問題。兩個問題都屬於高階非線性控制問題，首

先利用本研究計畫中所建議的解題步驟建構完成這兩個問題的數學模型，接著直接利用

本研究所發展的軟體求解符合問題要求的最佳解。經由這些實際應用案例的驗證，顯示

本研究計畫所發展的方法與軟體的確可以提供工程師、學者與學生一個便利可靠的動態

系統設計工具。 
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ABSTRACT 

The nonlinear behaviors of dynamic system have been of continual concern to both 

engineers and system designers. In most applications, the designs – based on a static model 

and obtained by traditional optimization methods – can never work perfectly in dynamic cases. 

Therefore, researchers have devoted themselves to find an optimal design that is able to meet 

dynamic requirements. This project focuses on developing a general-purpose optimization 

method, based on optimization and optimal control theory, one that integrates dynamic system 

analysis with numerical technology to deal with dynamic system design problems. 

A dynamic system optimal design problem can be transformed into an optimal control 

problem (OCP). Many scholars have proposed methods to solve optimal control problems and 

have outlined discretization techniques to convert the optimal control problem into a 

nonlinear programming problem that can then be solved using extant optimization solvers. 

This project applies this method to develop a direct optimal control analysis module that is 

then integrated into the optimization solver, MOST. The numerical results of the study 

indicate that the solver produces quite accurate results and performs even better than those 

reported in the earlier literatures. Therefore, the capability and accuracy of the optimal control 

problem solver is indisputable, as is its suitability for engineering applications.  

A second theme of this project is the development of a novel method for solving 

discrete-valued optimal control problems arisen in many practical designs; for example, the 

bang-bang type control that is a common problem in time-optimal control problems. 

Mixed-integer nonlinear programming methods are applied to deal with those problems in this 

project. When the controls are assumed to be of the bang-bang type, the time-optimal control 

problem becomes one of determining the switching times. Whereas several methods for 

determining the time-optimal control problem (TOCP) switching times have been studied 

extensively in the literature, these methods require that the number of switching times be 
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known before their algorithms can be applied. Thus, they cannot meet practical demands 

because the number of switching times is usually unknown before the control problems are 

solved. To address this weakness, this project focuses on developing a computational method 

to solve discrete-valued optimal control problems that consists of two computational phases: 

first, switching times are calculated using existing continuous optimal control methods; and 

second, the information obtained in the first phase is used to compute the discrete-valued 

control strategy. The proposed algorithm combines the proposed OCP solver with an 

enhanced branch-and-bound method and hence can deal with both continuous and discrete 

optimal control problems. 

Finally, two highly nonlinear engineering problems – the flight level control problem and 

the vehicle suspension design problem – are used to demonstrate the capability and accuracy 

of the proposed solver. The mathematical models for these two problems can be successfully 

established and solved by using the procedure suggested in this project. The results show that 

the proposed solver allows engineers to solve their control problems in a systematic and 

efficient manner. 
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1. INTRODUCTION 

Two typical methods are usually used to solve optimal control problems: the indirect and 

direct approaches. The indirect approach bases on the solution of the first order necessary 

conditions for optimality. Pontryagin Minimum Principle (Pontryagin et al. 1962) and the 

dynamic programming method (Bellman 1957) are two common methods for indirect 

approach. The direct method (Jaddu and Shimemura 1999, Hu et al. 2002, Huang and Tseng 

2004) based on nonlinear programming (NLP) approaches that transcribe optimal control 

problems into NLP problems and apply existed NLP techniques to solve them. In most of 

practical applications, the control problems are described by strongly nonlinear differential 

equations that the solutions is hard to be solved by indirect methods. For those cases, the 

direct methods can provide another choice to find the solutions. 

In spite of extensive use of direct and indirect methods to solve optimal control problems, 

engineers still spend much effort on reformulating problems and implementing corresponding 

programs for different control problems. For engineers, this routine job will be tedious and 

time-consuming.  Therefore, a systematic computational procedure for various optimal 

control problems has become an imperative for engineers, particularly for those who are 

inexperienced in optimal control theory or numerical techniques. Hence, the purpose of this 

project is to apply NLP techniques to implement an OCP solver that facilitates engineers in 

solving optimal control problems with a systematic and efficient procedure. To illustrate the 

practicability and convenience of propose solver, a flight control problem with two different 

cases is chosen to illustrate the capability for solving optimal control problem of proposed 

solver. The results demonstrate the proposed solver can get the solution correctly and the 

procedure suggested in this project can facilitate engineers to deal with their problems. 

In many practical engineering applications, the control action is restricted to a set of 

discrete values that forms a discrete-valued control problem. These systems can be classified 
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as switched systems consisting of several subsystems and switching laws that orchestrate the 

active subsystem at each time instant. Optimal control problems (OCPs) for switched systems, 

which require solution of both the optimal switching sequences and the optimal continuous 

inputs, have recently drawn the attention of many researchers. The primary difficulty with 

these switched systems is that the range set of the control is discrete and hence not convex. 

Moreover, choosing the appropriate elements from the control set in an appropriate order is a 

nonlinear combinatorial optimization problem. In the context of time optimal control 

problems, as pointed out by Lee et al. (1997), serious numerical difficulties may arise in the 

process of identifying the exact switching points. Therefore, an efficient numerical method is 

still needed to determine the exact control switching times in many practical engineering 

problems. 

This study focuses on developing a numerical method to solve discrete-valued optimal 

control problems and the time-optimal control problem that is one of their special cases. The 

proposed algorithm, which integrates the admissible optimal control problem formulation 

(AOCP) with an enhanced branch-and-bound method (Tseng et al., 1995), is implemented and 

applied to some example systems. 

 

2. Literature Review and Objectives 

 Methods for Optimal Control Problems 

Optimal control problems can be solved by a variational method (Pontryagin et al., 1962) 

or by nonlinear programming approaches (Huang and Tseng, 2003, 2004; Hu et al., 2002; 

Jaddu and Shimemura, 1999). The variational or indirect method is based on the solution of 

first-order necessary conditions for optimality obtained from Pontryagin’s maximum principle 

(Pontryagin et al., 1962). For problems without inequality constraints, the optimality 

conditions can be formulated as a set of differential-algebraic equations, often in the form of a 

9 



two-point boundary value problem (TPBVP). The TPBVP can be addressed using many 

approaches, including single shooting, multiple shooting, invariant embedding, or a 

discretization method such as collocation on finite elements. On the other hand, if the problem 

requires that active inequality constraints be handled, finding the correct switching structure, 

as well as suitable initial guesses for the state and costate variables, is often very difficult.  

Much attention has been paid in the literature to the development of numerical methods 

for solving optimal control problems (Hu et al., 2002; Pytlak, 1999; Jaddu and Shimemura, 

1999; Teo, and Wu, 1984; Polak, 1971), the most popular approach in this field is the 

reduction of the original problem to a NLP problem. Nevertheless, in spite of extensive use of 

nonlinear programming methods to solve optimal control problems, engineers still spend 

much effort reformulating nonlinear programming problems for different control problems. 

Moreover, implementing the corresponding programs for the nonlinear programming problem 

is tedious and time consuming. Therefore, a general OCP solver coupled with a systematic 

computational procedure for various optimal control problems has become an imperative for 

engineers, particularly for those who are inexperienced in optimal control theory or numerical 

techniques. 

Additionally, in many practical engineering applications, the control action is restricted to 

a set of discrete values. These systems can be classified as switched systems consisting of 

several subsystems and switching laws that orchestrate the active subsystem at each time 

instant. Optimal control problems for switched systems, which require solution of both the 

optimal switching sequences and the optimal continuous inputs, have recently drawn the 

attention of many researchers. The primary difficulty with these switched systems is that the 

range set of the control is discrete and hence not convex. Moreover, choosing the appropriate 

elements from the control set in an appropriate order is a nonlinear combinatorial optimization 

problem. In the context of time optimal control problems, as pointed out by Lee et al. (1997), 
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serious numerical difficulties may arise in the process of identifying the exact switching 

points. Therefore, an efficient numerical method is still needed to determine the exact control 

switching times in many practical engineering problems. 

 Time-Optimal Control Problems 

The TOCP is one of most common types of OCP, one in which only time is minimized 

and the control is bounded. In a TOCP, a TPBVP is usually derived by applying Pontryagin’s 

maximum principle (PMP). In general, time-optimal control solutions are difficult to obtain 

(Pinch, 1993) because, unless the system is of low order and is time invariant and linear, there 

is little hope of solving the TPBVP analytically (Kirk, 1970). Therefore, in recent research, 

many numerical techniques have been developed and adopted to solve time-optimal control 

problems. 

One of the most common types of control function in time-optimal control problems is the 

piecewise-constant function by which a sequence of constant inputs is used to control a given 

system with suitable switching times. Additionally, when the control is bounded, a very 

commonly encountered type of piecewise-constant control is the bang-bang type, which 

switches between the upper and lower bounds of the control input. When the controls are 

assumed to be of the bang-bang type, the time-optimal control problem becomes one of 

determining the switching times, several methods for which have been studied extensively in 

the literature (see, e.g., Kaya and Noakes, 1996; Bertrand and Epenoy, 2002; Simakov et al., 

2002). However, as already mentioned, in contrast to practical reality, these methods require 

that the number of switching times be known before their algorithms can be applied. To 

overcome the numerical difficulties arising during the process of finding the exact switching 

points, Lee et al. (1997) proposed the control parameterization enhancing transform (CPET), 

which they also extended to handle the optimal discrete-valued control problems (Lee et al., 

1999) and applied to solve the sensor-scheduling problem (Lee et al., 2001). 
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In similar manner, this project focuses on developing a numerical method to solve 

time-optimal control problems. This method consists of the two-phase scheme: first, 

switching times are calculated using existing optimal control methods; and second, the 

resulting information is used to compute the discrete-valued control strategy. The proposed 

algorithm, which integrates the admissible optimal control problem formulation with an 

enhanced branch-and-bound method (Tseng et al., 1995), is then implemented and applied to 

some examples. 

 Objectives 

The major purpose of this project is to develop a computational method to solve the 

time-optimal control problems and find the corresponding discrete-valued optimal control 

laws. The other purpose of this project is to implement a general OCP solver and provide a 

systematic procedure for solving OCPs that provides engineers with a systematic and efficient 

procedure to solve their optimal control problems. 

 

3. METHODS 

3.1 Developing Process of an Multi-Function OCP Solver 

The developing processes of a general purpose solver for dynamical optimization can be 

described as follows. 

3.1.1 Problem formulation 

A dynamical optimization problem can be described by a generalized Bolza problem 

formulation: Find the design variables b, the control functions u(t) and terminal time tf which 

minimize the object function 

0
0 0 0( , ( ), ) ( , ( ), ( ), )ft

f f t
J t t F t tψ= + ∫b x b u x t dt

 
(1)
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subject to the system equations 

( , ( ), ( ), ),t t t=x f b u x&  fttt ≤≤0  (2)
with initial conditions 

0 0( ) ( )t =x x b , (3)
functional constraints 

0

( , ( ), )

0; 1,.........,
( , ( ), ( ), )

0; 1,....,
f

i i f f

t

it

J t t

i r
F t t t dt

i r r

ψ=

′= =⎧
+ ⎨ ′≤ = +⎩
∫

b x

b u x  (4)

and dynamic point-wise constraints 

( , ( ), ( ), ) 0; 1,....,j t t t j qφ ≤ =b u x
 

(5)

where b ∈ Rk is a vector of the design variables, u(t) ∈ Rm is a vector of the control functions, 

and x(t) ∈ Rn is a vector of the state variables. The functions f, Ψ0, F0, Ψi, Fi and φj are 

assumed to be at least twice differentiable. 

3.1.2 NLP Methods for dynamical optimization 

By applying modeling and optimization technologies, a dynamic system optimization 

problem can be re-formulated as an optimal control problem (OCP). Hence, many approaches 

used to deal with the OCPs can be also applied to solve the dynamical optimization problems. 

Most popular approach in this field turned to be reduction of the original problem to a NLP. 

Sequential Quadratic Programming (SQP), one of the best NLP methods for solving 

large-scale nonlinear optimization, is applied to solve optimal control problems (see, e.g., Gill 

et al. 2002, Betts 2000). Before applying the SQP methods, optimal control problems in 

which the dynamics are determined by a system of ordinary differential equations (ODEs) are 

usually transcribed into nonlinear programming (NLP) problems by discretization strategies. 

Due to the consideration of efficiency, the sequential discretization strategy which only the 

control variables are discretized is applied. The resulting formulation is then called the 
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admissible optimal control problem (AOCP) formulation (Huang and Tseng 2003). 

3.1.3 Computational Algorithm 

The computational algorithm of the OCP solver which integrates AOCP with SQP is 

illustrated in Figure 1 and can be described as the following steps: 

Given: Initial values of the design variables vector PP

(0) = [b(0), U(0), T(0)] and Number of time 

intervals, N. 

Initialize iteration counter k :=0 and Hessian Matrix H(0) := Identity I. 

1. Current design variable vector, PP

(k), is passed to CTRLMF module of AOCP. 

2. Evaluate the values of state variable, x(k), by solving the IVP by substituting PP

 

)

(k) into the 

system equation. 

( ) ( ) ( ) ( )

( )
0 0

( , , , ),
( ) ( )

k k k k

k

t
t

=  

=

x f b u x
x x b

&
 (6)

3. Compute the values of performance indexes, J0
(k). 

0

( ) ( ) ( ) ( ) ( )
0 0

( ) ( ) ( )
0

( , ( , , , ),

( , , , )f

k k k k k
f f

t k k k

t

J t t

F t dt

ψ=

+∫

b x b U T

b U x
 (7)

4. Substitute x(k) into Eqs. (4) and (5) to evaluate the values of functional and dynamic 

constraints. 

5. Evaluate ∇J0
(k), ∇Ji

(k), and ∇φj
(k) by using the finite difference method. 

6. Find the descent direction, d(k), by solving the QP subproblem. 

7. Check convergence criteria, d(k) ≤ ε. If satisfied, stop and show the results. 

8. Compute the step size, α(k). 

9. Update Hessian Matrix H(k) by applying BFGS method. 

10. Update design variables 
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( 1) ( ) ( )k k α+ = + ⋅P P d k
 (8)

11. Increase iteration counter, k ← k+1, go back to step 1. 

3.1.4 Systematic Procedure for Solving OCP 

The following steps describe a systematic procedure for solving the OCP with the proposed 

OCP solver: 

1. Program formulation: The original optimal control problem must be formulated according 

to the extended Bolza formulation. 

2. Preparing two parameter files: One of the parameter files describes the numerical schemes 

used to solve the OCP and also the relationships between performance index, constraint 

functions, dynamic functions, state variables and control variables. The other parameter 

file includes the information on SQP parameters, such as convergence parameter, 

upper/lower bound and initial guess of design variables, etc.  

3. Implementing user-defined subroutines. 

4. Execute the optimization: The user defined subroutines are compiled and then linked with 

the SQP solver, MOST (Tseng et al., 1996).  

5. Execute the optimization. 

With the proposed OCP solver, engineers can focus their efforts on formulating their problems 

and then follow an efficient and systematic procedure to solve their optimal control problems. 

3.2 Mixed-Integer NLP Algorithm for Solving Discrete-valued OCPs 

The algorithm developed in this study consists of three major processes: branching, the 

AOCP, and bounding. Initially, all discrete-valued restrictions are relaxed and the resulting 

continuous NLP problem is solved using the AOCP. If the solution of continuous optimum 

design problem occurs when all discrete-valued variable values are in the discrete set Ud, 

which is preset by the user to meet practical requirements, then an optimal solution is 
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determined and the procedure ends. Otherwise, the algorithm selects one of the 

discrete-valued variables whose value is not in the discrete set Ud – for example, the j-th 

design variable, Pj, with value  – and branches on it. 
ˆ

jP

Branching process: In the branching process, the original design domain is divided into 

three subdomains by two allowable discrete values, ūi and ūi+1, that are nearest to the 

continuous optimum, as shown in Figure 2.  Among the three subdomains, subdomain II, 

included in the continuous solution but not in the feasible discontinuous solution, is dropped.  

In the other two subdomains, called nodes, two new NLP problems are formed by adding 

simple bounds, 
ˆ

jP ui≤  and 1
ˆ

j iP u +≥ , respectively, to the continuous NLP problems. One of 

the two new NLP problems is selected and solved next. Many search methods based on tree 

searching – including depth-first search, breadth-first search and best-first search – can be 

applied to choose the next branching node. The branching process is repeated in each of the 

subdomains until the feasible optimal solution is found in which all the discrete variables have 

allowable discrete values. Obviously, the number of subdomains may grow exponentially so 

that a great deal of computing time is required. Thus in the enhanced branch-and-bound 

method (Tseng et al., 1995), multiple branching and unbalanced branching strategies have 

been developed to improve the efficiency of the method. 

Bounding process: In discrete optimization, the minimum cost is always greater than or 

equal to the cost of the original regular optimal design that was originally branched. This fact 

provides a guideline for when branching should be stopped. If the branching process yields a 

feasible discontinuous solution, then the corresponding cost value can be considered a bound. 

Any other subdomain that imposes a continuous minimum cost larger than this bound need 

not be branched further. This bounding strategy can be used to select the branching route 

intelligently and avoid the need for a complete search over all the branches. 
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3.3 Algorithm for Solving Discrete-valued OCPs 

In this study, the AOCP algorithm is used as the core iterative routine of the enhanced 

branch-and-bound method. All candidates will be evaluated and finally an optimal solution 

can be found. Here, symbol S is used to represent the discretized control variable set and the P 

is the design variable vector. Assuming that the problem at least has one feasible solution, it 

can then be proven that an optimal solution exists and can be found by the proposed method. 

The details of the proposed algorithm are as follows and Figure 3 presents a schematic flow 

chart of the algorithm for solving discrete-valued optimal control problems. 

 

Initialization: 

Relax all discrete-valued restrictions and then place the resulting continuous NLP problem on 

the branching tree. 

Set the cost bound Jmax = ∞. 

while (there are pending nodes in the branching tree) do 

1. Select an unexplored node from the branching tree. 

2. Control discretization. 

3. Repeat (for k-th AOCP iteration ) 

(1). Solve the initial value problem for state variable x(k) of AOCP. 

(2). Calculate the values of the cost function, J0, and the constraints. 

(3). Solve the QP(k) problem by applying the BFGS method to obtain the descent 

direction d(k). 

(4). if (QP(k) is feasible and convergent) then exit AOCP. 

(5). Find the step size α(k) of the SQP method by using the line search method. 

(6). Update the design variable vector: PP

(k+1) = P(k)
P + α(k) d(k). 

4. if (NLP is optimal) and (J0<Jmax) then 
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if ( is feasible ) then ( 1)k +S

Update the current best point by setting the cost bound Jmax = J0. 

Add this node to the feasible node matrix. 

else 

Evaluate the values of criteria for selecting the branch node. 

Choose a discrete-valued variable 
( 1)k

l

+

S ∉ �  and branch it. 

Add two new NLP problems into the branching tree. 

Drop this node. 

endif 

else 

Stop branching on this node. 

endif 

end while. 

3.4 Two-Phase Scheme for Solving TOCP 

The mixed integer NLP algorithm developed in this dissertation is one type of switching 

time computation (STC) method. Most switching time computation methods (see, e.g., Kaya 

and Noakes, 1996; Lucas and Kaya, 2001; Simakov et al., 2002) assume that the structure of 

the control is bang-bang and the number of switching times is known. Unfortunately, the 

information on the switchings of several practical time-optimal control problems is unknown 

and hard to compute using analytical methods. Hence, to overcome this difficulty, this 

dissertation proposes a two-phase Scheme that consists of the AOCP plus the mixed-integer 

NLP method. In Phase I, the AOCP is used to calculate the information on switching times 

with rough time grids so that the information can be used in Phase II as the feasible initial 

design of the mixed integer NLP method. This scheme is described briefly below. 
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Phase I: Find the information about the switching times and terminal time. 

1. Solve the time-optimal control problem using continuous controls by following the 

steps of the AOCP method. 

2. Based on the numerical results, extract information about the switching times and 

terminal time, tf. 

Phase II: Calculate the exact solutions 

3. Based on the information about switching times obtained in Phase I, treat the 

switchings as design variables and add them into the time grid vector T. It should be 

noted that each interval between the upper and lower bounds on each of those design 

variables must include one switching. 

4. Insert the terminal time, tf, into the design variable vector P. 

5. Discretize each control variable into the number of switchings plus one. Then the 

discrete control vector, S, can be added to the design variable vector P and the 

corresponding upper and lower bounds be limited by the original bounds of the 

controls. 

6. Solve the problem by applying the mixed integer NLP method, and then find the 

optimal discrete-type control trajectories. 

A third-order system shown in following section is used to demonstrate the processes of this 

numerical scheme. 
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4. Illustrative Examples 

The numerical results for the following examples are obtained on an Intel Celeron 1.2 

GHz computer with 512 MB of RAM memory. The AOCP is coded in FORTRAN, and C 

language is used to implement the enhanced branch-and-bound method. The Visual C++ 5.0 

and Visual FORTRAN 5.0 installed in a Windows 2000 operating system are adopted to 

compile the corresponding programs. The total CPU times for solving the F-8 fighter craft 

problem in Phase I and Phase II are 3.605 and 1.782 seconds, respectively. 

4.1 Third-Order System 

The following system of differential equations is a model of the third-order system 

dynamics taken from Wu (1999).  

21 xx =& , (9)

32 xx =& , (10)

3 310 10x x u= − +& . (11)

The problem here is to find the control |u| ≤ 10 in order to bring the system from the initial 

state [-10, 0, 0]T to the final state [0, 0, 0]T in minimum time. 

First, this problem is solved directly by the mixed integer NLP method. Assuming four 

switching times (T1, T2, T3, T4) and five control arcs have values in the discrete set, Ud: {-10, 

10}, the terminal time, tf, is treated as a design variable, so the design variable vector P can be 

expressed as [T1, T2, T3, T4, tf, Ud1, Ud2, Ud3, Ud4, Ud5]T. Most notably, the final conditions of 

the state variables are transferred to the equality constraints. Thus, the TOCP problem 

becomes one of determining the switching times. Figure 4(a) presents the continuous solution 

obtained by using the AOCP and the discrete solution determined by applying the mixed 

integer NLP method proposed herein. The results indicate that the control trajectory 

determined by the mixed integer NLP method is of the bang-bang type and the solution 
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consistent with the results obtained by Wu (1999). 

As stated in previous section, several assumptions must be made when the mixed integer 

NLP method is applied to solving TOCP directly. Unfortunately, these assumptions cannot be 

guaranteed to hold in practical cases. Consequently, the two-phase scheme proposed in this 

project is needed. For illustration, the third-order system is again solved using this two-phase 

scheme. In Phase I, the two switching times are found to be [0.330, 0.725]T and the terminal 

time tf is 0.7864. In the first phase, these switching data need not be accurate because they are 

only used to help users decide on the number of switching times, the control arcs and their 

corresponding boundaries. Thus, in Phase II, the design variable vector P is re-formed as [T1, 

T2, tf, Ud1, Ud2, Ud3]T; the numerical result obtained by applying the mixed integer NLP 

method is as presented in Figure 4(b). In Phase II, the switching times of the discrete control 

input are [0.323, 0.713]T, and the terminal time tf is 0.7813 seconds. The control trajectory 

also agrees with that obtained by Wu (1999). 

4.2 F-8 Fighter Aircraft 

The F-8 fighter aircraft has been considered in several pioneering studies (e.g., Kaya and 

Noakes, 1996; Banks and Mhana, 1992; Simakov et al., 2002) and has become a standard for 

testing various optimal control strategies. A nonlinear dynamic model of the F-8 fighter 

aircraft is considered below. The model is represented in state space by the following 

differential equations: 

2 2 2
1 1 3 1 3 1 2 1 30.877 0.088 0.47 0.019 3.846 3

1x x x x x x x x x x= − + − + − − +&  

2 2
1 10.215 0.28 0.47 0.63u x u x u− + − + 3u , 

(15)

2 3x x=& , (16)

2 3
3 1 3 1 14.208 0.396 0.47 3.564 20.967x x x x x= − − − − −& u  (17)
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    2 2
1 16.265 46 61.4 3x u x u u+ + + , 

where x1 is the angle of attack in radians, x2 is the pitch angle, x3 is the pitch rate and the 

control input u represents the tail deflection angle. For convenience of comparison, the 

standard settings (Kaya and Noakes, 1996; Lee et al., 1997) are used. A control |u| ≤ 0.05236 

must be found that brings the system from its initial state [ ]26.7 180 , 0, 0 Tπ  to the final 

state [ ]0, 0, 0 T  in minimum time. 

When the two-phase scheme is applied, as described in Section 5.4, the switching times 

computed in Phase I are 0.115, 2.067, 2.239, 4.995, and 5.282, and the terminal time is tf = 

5.7417. These switching data are used to set the design variables and their corresponding 

bounds, and then the problem is solved by the mixed integer NLP method. Finally, the 

switching times for the discrete control input are 0.098, 2.027, 2.199, 4.944, and 5.265, and 

the terminal time tf is 5.74216. Figure 5 shows the comparison of the controls between Phase I 

and Phase II, while Figure 6 shows the trajectories of the states and the control of Phase I and 

Phase II. This example is also solved by Kaya and Noakes (1996) using the switching time 

computation method and by Lee et al. (1997) using the Control Parameterization Enhancing 

Transform (CPET) method. Table 1 shows the terminal time tf, switching times and the 

accuracy of terminal constraints computed by various methods for this problem. According to 

the numerical results, the two-phase scheme provides a better solution, and the accuracy of 

the terminal constraints is acceptable. 

5. Conclusions 

In this project an optimal control problem solver, the OCP solver, based on the 

Sequential Quadratic Programming (SQP) method and integrated with many well-developed 

numerical routines is implemented. A systematic procedure for solving optimal control 

problems is also offered in this project. 
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This project also presents a novel method for solving discrete-valued optimal control 

problems. Most traditional methods focus on the continuous optimal control problems and fail 

when applied to a discrete-valued optimal control problem. One common type of such 

problems is the bang-bang type control problem arising from time-optimal control problems. 

When the controls are assumed to be of the bang-bang type, the time-optimal control problem 

becomes one of determining the TOCP switching times. Several methods for such 

determination have been studied extensively in the literature; however, these methods require 

that the number of switching times be known before their algorithms can be applied. As a 

result, they cannot meet practical situations in which the number of switching times is usually 

unknown before the control problem is solved. Therefore, to solve discrete-valued optimal 

control problems, this dissertation has focused on developing a computational method 

consisting of two phases: (a) the calculation of switching times using existing optimal control 

methods and (b) the use of the information obtained in the first phase to compute the 

discrete-valued control strategy. 

The proposed algorithm combines the proposed OCP solver with an enhanced 

branch-and-bound method.  To demonstrate the proposed computational scheme, the study 

applied third-order systems and an F-8 fighter aircraft control problem considered in several 

pioneering studies. Comparing the results of this study with the results from the literature 

indicates that the proposed method provides a better solution and the accuracy of the terminal 

constraints is acceptable. 
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Table 1 Results of various methods for the F-8 fight aircraft problem. 

Method tf Switching Times 

Accuracy of 

Terminal 

Constraints 

STC 

(Kaya and Noakes, 1996) 
6.3867 0.0761, 5.4672, 5.8241, 6.3867 ≤ 10-5

CPET 

(Lee et al., 1997) 
6.0350 2.188, 2.352, 5.233, 5.563 ≤ 10-10

Two-phase scheme 5.7422 0.098, 2.027, 2.199, 4.944, 5.265 ≤ 10-10
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Figure 1 flow chart of the NLP method for solving OCP 
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Figure 2 Conceptual layout of the branching process. 
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branch object
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does not contain 

any allowable value

Add a new 
upper and 

lower bounds

                Bounding process

Add the new 
node to feasible 

node matrix

Set new cost bound 
Jmax= J0

Show results  

Figure 3 Flow chart of the algorithm for solving discrete-valued optimal control problems. 
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AOCP vs. a mixed-integer NLP method. 
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Phase I vs. Phase II. 

Figure 4 Control trajectories for the third-order system. 
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Figure 5 Control trajectories for the F-8 fighter aircraft. 
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(a) Phase I. 
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(b) Phase II. 

Figure 6 Trajectories of the states and control input for the F-8 fighter aircraft. 
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計畫成果自評 

傳統最佳化設計方法單靠靜態分析所得到產品在實際動態工作環境下往往表現不

佳，甚至有時會面臨無法正常動作的窘境。因此，本研究計畫主要發展目標是依據動態

系統分析與最佳化理論，整合數值分析技巧，發展一套有效率的方法與軟體來協助設計

者處理動態系統最佳設計問題，其中必須將非線性與離散參數設計問題皆需納入考量，

以因應實際工程需求。 

 

本研究計畫分兩年實施，第一年研究重點在於發展出一套整合動態分析與最佳化技

巧的方法，並將之實作成一套泛用型之動態最佳化軟體，此軟體的發展將有助於動態系

統設計者縮短分析及設計的時程，並對產品的更新與市場佔有率的提升提供顯著的幫

助。而要發展一套整合動態分析與最佳化技巧的方法，首先必須解決工程系統非線性的

問題，系統動態特性分析時所解得的系統方程式常常是高度非線性的微分方程組，此時

通常無法求得解析解，而藉助電腦數值分析技巧來求得收斂解是必要的。 第二個困難

點是在於許多動態分析必須藉助專業的分析軟體來進行，此時如何整合最佳化與分析軟

體便成為另一項挑戰。 

 

本計畫利用數值分析方法與程式設計技巧，順利完成預期目標中所要發展的泛用型

之動態最佳化軟體，並利用許多文獻上著名的動態設計與控制問題來進行驗證，從軟體

求得的數值解與文獻的結果作比對，發現本計畫所發展之軟體所得的結果與文獻的結果

是吻合的，甚至有些問題利用本計畫所發展出來的軟體求得的解優於文獻上的結果，由

這些結果我們得到的初步的驗證，也順利完成本計畫中第一年所預期想要達到的目標。 

 

本研究計畫第二年除了延續第一年的主題外，更將工程設計常會遭遇到某些設計尺
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寸是有限離散數值（或整數）的情況納入考量。這個看似簡單的問題，其實是讓原本單

純的連續變數最佳化設計問題，轉換成複雜難解的混合型整數最佳化設計問題，但這類

型的問題卻是實際工程上所常常會遭遇的，如果能進一步提供解決這類型的動態最佳化

問題，將可大幅提升研發設計的能力。本研究計畫，採納第一年所發展的解題軟體做為

核心，並將加強型的分支界定演算法 (enhanced branch-and-bound method)納入前一階段

所開發的整合最佳控制軟體中，這也使得這個軟體可以同時處理實際動態系統中最常見

的連續及離散最佳控制問題。 

 

本研究計畫的成果除了實作成功能強大的泛用型動態最佳化分析軟體外，其方法與

應用也發表於國際期刊與會議中。由整個計畫執行過程中，於每個計畫執行階段，計畫

執行所預期之目標均已完成，而整個研究過程中所執行之目標與成果敘述如下： 

1. 發展一系統化解決動態最佳化問題的方法與流程，使用者只要依循所建議的方法將

問題定義成標準形式，便可以利用本研究計畫所發展的軟體求得其最佳解。 

2. 發展一新穎的方法來求解離散數值最佳控制問題(混合整數之離散數值動態設計問

題)，此方法可以讓使用者在對於原來連續最佳控制問題上對於某些設計變數作些微

的設定修改，就可以求解複雜的離散數值最佳控制問題。 

3. 發展一新穎的方法來求解猛撞型的最佳控制問題(Bang-bang Control problems)使用

者無須事先知道控制變數的切換時間點數量，即可求解出最佳的Bang-bang control 

law，對於非線性的問題以往要求得其Bang-bang control law是相當困難的，但利用本

研究計畫所發展的方法，搭配數值計算技巧，可以順利求得符合拘束條件的控制法

則。 
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ABSTRACT 

The optimal control theory can be applied to solve 
the optimization problems of dynamic system. Two major 
approaches which are used commonly to solve optimal 
control problems (OCP) are discussed in this paper. A 
numerical method based on discretization and nonlinear 
programming techniques is proposed and implemented an 
OCP solver. In addition, a systematic procedure for 
solving optimal control problems by using the OCP solver 
is suggested. Two various types of OCP, A flight level 
tracking problem and minimum time problem, are 
modeled according the proposed NLP formulation and 
solved by applying the OCP solver. The results reveal that 
the proposed method constitutes a viable method for 
solving optimal control problems. 
  
KEY WORDS 
optimal control problem, nonlinear programming, flight 
level tracking problem, minimum time problem, SQP, 
AOCP. 
 
1. INTRODUCTION 

Over the past decade, applications in dynamic 
system have increased significantly in the engineering. 
Most of the engineering applications are modeled 
dynamically using differential-algebraic equations 
(DAEs). The DAE formulation consists of differential 
equations that describe the dynamic behavior of the 
system, such as mass and energy balances, and algebraic 
equations that ensure physical and dynamic relations. By 
applying modeling and optimization technologies, a 
dynamic system optimization problem can be re-
formulated as an optimal control problem (OCP). There 
are many approaches can be used to deal with these OCPs. 
In particular, OCPs can be solved by a variational method 
[1, 2] or by Nonlinear Programming (NLP) approaches 
[3-5].  

The indirect or variational method is based on the 
solution of the first order necessary conditions for 
optimality that are obtained from Pontryagin’s Maximum 
Principle (PMP) [1]. For problems without inequality 
constraints, the optimality conditions can be formulated as 

a set of differential-algebraic equations which is often in 
the form of two-point boundary value problem (TPBVP). 
The TPBVP can be addressed with many approaches, 
including single shooting, multiple shooting, invariant 
embedding, or some discretization method such as 
collocation on finite elements. On the other hand, if the 
problem requires the handling of active inequality 
constraints, finding the correct switching structure as well 
as suitable initial guesses for state and co-state variable is 
often very difficult. 

Much attention has been paid to the development of 
numerical methods for solving optimal control problems 
[6, 7]. Most popular approach in this field turned to be 
reduction of the original problem to a NLP. A NLP 
consists of a multivariable function subject to multiple 
inequality and equality constraints. The solution of the 
nonlinear programming problem is to find the Kuhn-
Tucker points of equalities by the first-order necessary 
conditions. This is the conceptual analogy in solving the 
optimal control problem by the PMP. NLP approaches for 
OCPs can be classified into two groups: the sequential 
and the simultaneous strategies. In simultaneous strategy 
the state and control variable are fully discretized, but in 
the sequential strategy only discretizes the control 
variables. The simultaneous strategy often leads the 
optimization problems to large-scale NLP problems 
which usually require special strategies to solve them 
efficiently. On the other hand, instability questions will 
arise if the discretizations of control and state profiles are 
applied inappropriately. Comparing to the simultaneous 
NLP, the sequential NLP is more efficient and robust 
when the system contains stable modes. Therefore, the 
admissible optimal control problems which bases on the 
sequential NLP strategy is propose to solve the dynamic 
optimization problems in this paper. To facilitate 
engineers to solve their optimal control problems, a 
general optimal control problem solver which integrates 
proposed method with SQP algorithm is developed. 

In spite of extensive use of nonlinear programming 
methods to solve optimal control problems, engineers still 
spend much effort reformulating nonlinear programming 
problems for different control problems. Moreover, 
implementing the corresponding programs of the 
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nonlinear programming problem is tedious and time-
consuming.  Therefore, a systematic computational 
procedure for various optimal control problems has 
become an imperative for engineers, particularly for those 
who are inexperienced in optimal control theory or 
numerical techniques. Hence, the other purpose of this 
paper is to apply nonlinear mathematical programming 
techniques to implement a general optimal control 
problem solver that facilitates engineers in solving 
optimal control problems with a systematic and efficient 
procedure. 

Flight level tracking plays an important role in 
autopilot systems receives considerable attentions in 
many researches [8-12]. For a commercial aircraft, its 
cruising altitude is typically assigned a flight level by Air 
Traffic Control (ATC). To ensure aircraft separation, each 
aircraft has its own flight level and the flight level is 
separated by a few hundred feet. Changes in the flight 
level happen occasionally and have to be cleared by ATC. 
At all other times the aircraft have to ensure that they 
remain within allow bounds of their assigned level. At the 
same time, they also have to maintain limits on their 
speed, flight path angle, acceleration, etc. imposed by 
limitations of the airframe and engine, passenger comfort 
requirements, or to avoid dangerous situations such as 
aerodynamic stall. In this paper, the flight level tracking 
problem is formulated into an optimal control problem. 
For safety reasons, the speed of the aircraft and the flight 
path angle has to be kept in a safe “aerodynamic 
envelope” [9] and the envelope can be translated into the 
dynamic constraints of the optimal control problem. A 
flight level tracking problem and a minimum time 
problem are shown in Section 5 and then solved by the 
proposed method. 
 
2. NLP FORMULATION 

The formulation of admissible optimal control 
problems (AOCP) which bases on the sequential strategy 
is derived by Huang and Tseng [3]. Various types of 
OCPs are solved successfully by applying AOCP and the 
formulation is melded with SQP algorithm to develop a 
general optimal control solver, the OCP solver. Because 
the NLP formulation based on the AOCP will be applied 
to solve aircraft flight control problems, a brief 
description of the NLP formulation and AOCP algorithm 
is helpful to understand. 
Find the design variables P = [bT, TT, UT]T to minimize a 
performance index 
 

0 0[ , ( , , , ), ]f fJ t tψ= b x b U T  

0
0[ , ( , , ), ( , , , ), ]ft

t
F t t t dt+∫ b I U T x b U T  

(1) 

    
subject to state equations 

0[ , ( , , ), ( , , , ), ] , ft x t t dt t t t=   ≤ ≤x f b I U T b U T  (2) 
 
with initial conditions 

0( ) ( )t =x h b  (3) 
 
functional constraints as  
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0
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and dynamic constraints as  

0; 1,.........,
[ , ( , , ), ( , , , ), ]

0; 1,....,j

j q
t t t

j q q
φ

′= = 
 ′≤ = + 

b I U T x b U T  (5) 

This NLP formulation presents a general form that 
includes equality/inequality, functional and dynamic 
constraints and can be applied to a variety of control 
problems of engineering applications. 
 
AOCP ALGORITHM 

The architectural framework of the OCP solver 
illustrated in Fig. 1 is composed of SQP and AOCP 
algorithms. The AOCP algorithm contains three major 
modules: discretization, CTRLMF and CTRLCF. Each 
SQP iteration the values of design variable vector P(k) is 
passed into the CTRLMF module to compute the values 
of state variables by solving the initial value problem and 
then the values of performance indexes can be evaluated. 
After the CTRLMF module, the CTRLCF module uses 
the values of state variables calculated by CTRLMF 
module to compute the values of constraints. The values 
of the performance indexes and constraints are also 
passed back to the SQP algorithm and used to calculate 
the gradient information. In SQP algorithm, the gradient 
information will be used to evaluate the convergence and 
update the design variable vector P(k+1). If the 
convergence criteria are satisfied, the algorithm be 
stopped and shows the results. SQP is a robust and 
popular optimization solver and the details can be found 
in many literatures. Because SQP is the computational 
foundation of proposed method and hence the 
convergence and sensitivity of proposed method is same 
as the convergence and sensitivity of SQP algorithm. The 
convergence of SQP algorithm has been proposed in 
many literatures (e.g. [15]). Büskens and Maurer [16] 
provide a detail description of the sensitivity analysis of 
SQP method for solving OCP. In this paper, a general 
optimization solver, MOST [13], which bases on SQP is 
chosen to develop a general OCP solver. 

With admissible optimal control, some good first 
order differential equation methods having variable step 
size and error control are available to solve the DAE 
which is composed of Eqs. (12) and (13), e.g. Adams 
method and Runge-Kutta-Fehlberg method [14]. These 
solvers can give accurate results with user desired error 
control. The state trajectories are internally approximated 
using interpolation functions in the differential equation 
solvers. Values of the state and control variables between 
the grid points can be also obtained with different kinds of 
interpolation schemes. These numerical schemes are also 
included and implemented in the proposed OCP solver. 
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SYSTEMATIC PROCEDURE FOR SOLVING OCP 

In this paper, the OCP is converted into NLP 
problem with admissible optimal control formulation and 
then the optimizer based on SQP method is used to solve 
the NLP problem numerically. Most of the numerical 
schemes are implemented in the OCP solver and the 
complicated details of the transformation and 
programming will be completed in the OCP solver 
automatically. The optimal control and state trajectories 
will be obtained and recorded in the output files. 
Therefore, engineers can follow an efficient and 
systematic procedure to solve various optimal control 
problems. The procedure for solving the OCP with the 
OCP solver is described as follows. 

1. Program formulation: The original optimal control 
problem must be formulated according to the 
extended Bolza formulation. 

2. Preparing two parameter files: One of the parameter 
files describes the numerical schemes used to solve 
the OCP and also the relationships between 
performance index, constraint functions, dynamic 
functions, state variables and control variables. The 
other parameter file includes the information on SQP 
parameters, such as convergence parameter, 
upper/lower bound and initial guess of design 
variables, etc.  

3. Implementing two user-defined subroutines. 
4. Execute the optimization: The user-defined 

subroutines are compiled and then linked with the 
SQP solver, MOST. Then, execute the optimization. 

Obviously, the proposed OCP solver simplifies the 
computational procedure for solving OCP and facilitates 
engineers and students in solving optimal control 
problems. 

,i jJ φ 

 
Fig.1 Conceptual flow chart of the AOCP method 

3. AIRCRAFT MODEL 
Many ATC researches [11, 12] apply a point mass 

model to describe the aircraft motion and only the 
movement of the aircraft in the lateral-directional is 
considered. In Figure 2, three coordinate frames are used 
to describe the motion of the aircraft: Xg-Yg denotes the 
ground frame, the body frame denoted by Xb-Yb and the 
Xw-Yw denotes the wind frame. Besides, θ, γ, and  α 
denote the rotation angle between the frames. V ∈   
represents the speed of the aircraft which is aligned with 
the positive Xw direction and h is the altitude of the 
aircraft.  

 
Fig. 2  The aircraft model (Lygeros 2003). 

 
The equations of the motion can be derived from force 
balance relationships: 

cos sin
sin cos

mV T D mg
mV L T mg

α γ
γ α γ
= − −

= + −




 (16) 

Herein, T is the thrust exerted by the engine, D is the 
aerodynamic drag, and L is the aerodynamic lift. By 
applying basic aerodynamics, the lift (L) and drag (D) can 
be approximated by  

2
2

2
2

(1 ) (1 )
2

2

L
L

D
D

C S VL c a V c

C S VD a V

ρ
α α

ρ

= + = +

= =

 (17) 

where CL, CD, and c are dimension-less lift and drag 
coefficients, S is the wing surface area, ρ is the air density. 
According to the admissible optimal control formulation 
described in Section 3, the air model can be formulated by 
a three state model with state variable vector x(t) = [x1, x2, 
x3]T = [V, γ, h]T and control input vector u(t) = [u1, u2]T = 
[T, θ]T. By approximating α with a small angle, the 
equations of the motion (system equations) can be written 
as  
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      This model proposed by Lygeros [10] which extends 
the three dimensions of an aerodynamic envelope 
protection problem is adopted. Considering the safety 
conditions, speed of aircraft and flight path angle are 
bounded in a rectangular limitations called “safe 
aerodynamic envelop”. Lygeros [8] proposed a simplified 
aerodynamic envelope which is referred to Tomlin et al. 
[9] is adopted in this paper and translated into the 
following dynamic constraints. 

min 1 max

min 2 max

min 3 max

V x V
x

h x h
γ γ

≤ ≤
≤ ≤

≤ ≤

 (19) 

Following the NLP formulation described in Section 2, 
those constraints can be treated as dynamic constraints 
and rewritten as follows. 
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To illustrate the capabilities of the proposed method, the 
flight level tracking problem and minimum time problem 
are chosen in this paper.  
 
Case I: Flight level tracking problem 
A tracking problem is to find the controls to maintain the 
system state x(t) as close as possible to desired state r(t) 
in the interval [t0, tf]. The performance index for tracking 
problem can be written as  

0

2

( )
( ) ( )ft

tt
J t t dt= −∫ Q

x r  (21) 

where Q(t) is a real symmetric n × n matrix that is 
positive semi-definite for all t ∈ [t0,tf]. A flight level 
tracking problem is to keep the aircraft as possible to 
desire level and aircraft speed. Therefore, the performance 
index can be represented as  

( ) ( ) ( )
0

2 2 2
1 1 2 2 3 3

1
2

ft

d d dt
J x x x x x x dt = − + − + − ∫  (22) 

where x1d is the desired aircraft speed, x2d is desired flight 
path angle and x3d is the assigned altitude. 
 
Case II: Minimum time problem 
A minimum time problem is to transfer a system from an 
arbitrary initial state x(t0) = x0 to a specified target set S in 

minimum time. The performance index for minimum time 
problem can be written as 

0
0

ft

f t
J t t dt= − = ∫  (23) 

where tf is the first instant of time when x(t) and S 
intersect. In some emergencies, the aircraft is asked to 
change their level as soon as possible.  
 
4. NUMERICAL EXAMPLES 

The following parameters are used in both cases:  
aL = 65.3 Kg/m, aD = 3.18 Kg/m, m = 160×103 Kg, 
g = 9.81 m/s2, θmin = -20°, γmin = -20, 
c = 6, θmax = 25°, γmax = 25, 
Tmin = 60×103 N, Tmin = 120×103 N, Vmin = 92 m/s, 
Vmax = 170 m/s, hmin = -150 m, hmax = 150 m 
 
Case I: Flight level tracking problem 

The initial values of state variables are  
x0 = [100, 20, -120]T (24) 
and the purpose of this problem is to find a suitable 
control to maintain the flight level and keep the aircraft 
altitude in assign altitude. Thus, the desired states are set 
with following values. 
r(t) = [150, 0, 00]T (25) 
In addition to the dynamic constraints proposed in Eq. 
(20), the control inputs are also limited as following 
bounds: 

min 1 max

min 2 max

,T u T
uθ θ

≤ ≤

≤ ≤
 (26) 

Substitute parameters into Eqs. (18) and (22), the 
flight tracking problem is solved by the proposed OCP 
solver. The numerical results are shown in Figure 3. From 
Figure 3(a), all of the states meet the constraints and the 
flight level and aircraft speed return to the desired states. 
Table 1 shows the user subroutines of this case. 
Obviously, the proposed OCP solver provides an easier 
tool to solve dynamic optimization problems. 
 
Case II: Minimum time problem 

The aircraft is asked to increase their altitude in a 
minimum time. The initial and final altitude are h0 = 0 m 
and hf = 500 m respectively. All of the constraints 
imposed on Case I are also imposed on this case. The 
initial state x0 = [100, 0, 0]T. The final time, tf, obtained 
by using the AOCP is 73.98 seconds and the final altitude 
is 499.928 m. The control histories are shown in the Fig. 
4(a) and Fig. 4(b) represent the state trajectories. From 
Fig.4, all of the trajectories meet the safe “aerodynamic 
envelope” (dynamic constraints). 
 
5. CONCLUSIONS 

In this study an optimal control problem solver, the 
OCP solver, based on the Sequential Quadratic 
Programming (SQP) method and integrated with many 
well-developed numerical routines is implemented. A 
systematic procedure for solving optimal control 
problems is also offered in this paper. Two common types 
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of optimal control problems for flight level control are 
presented and solved by proposed method successfully. 
Numerical results show the proposed method can 
facilitate engineers in solving optimal control problems 
with a systematic and efficient procedure. 
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Table 1. User subroutines for flight level tracking problem 
//-------Program parameters ---------------------------------------------- 
 //B: Discrete design parameters of design variable vector. (INPUT) 
// U: Admissible control function vector. (INPUT)  
// Z: State variable vector. (INPUT)  
// T: Given time grid point. (INPUT)   
// G: First term of performance index or functional constraint or   
//      dynamic constraint. (OUTPUT)  
// NV: Number of design variables for optimizer (INPUT)  
// NU: Number of control functions. (INPUT)     
// NEQ: Number of state equations (INPUT)  
// N: Index of current number of function evaluation. (INPUT)  
// 
// --------------------------------FFN()--------------------------------------- 
// Routine to calculate the integral term of the performance index 
// or functional constraint 
void ffn(double *B, double *U, double *Z, double *T, double *F,  

int NV, int NU, int NEQ, int N, int NBJ) 
{ 
   if (N==0)  

*F = 0.5*((Z[0]-150.0)*(Z[0]-150.0)) + (Z[1]*PI/180.0) * 
( Z[1] * PI/180.0 ) + (Z[2]*Z[2]); 

   else 
 *F = 0.0; 

} 
//----------------------- GFN() ------------------------------------------------- 
// Routine to calculate the first term of the performance index or  
// functional constraint or dynamic constraint 
void gfn(double *B, double *U, double *Z, double *T, double *G,  

int NV, int NU, int NEQ, int N, int NBJ) 
{ 
   switch (N) 
   { 
      case 0: 

*G = 0.0;   break; 
      case 1: 
               *G = -1 * Z[0] + 92.0; break; 

case 2: 
               *G = Z[0] – 170.0; break; 

  case 3: 
               *G = -1 * Z[1] -20.0; break; 

  case 4: 
        *G = Z[1] – 25.0; break; 

  case 5: 
        *G = -1 * Z[2] -150.0; break; 

  case 6: 
        *G = Z[2] – 150.0;  break; 
   };   
} 
//---------------------- HFN() -------------------------------------------------- 
//Routine to calculate the state trajectory. 
void hfn(double *B, double *U, double *Z, double *DZ, double *T,  

int NV, int NU, int NEQ )  
{      

DZ[0] = -1*((aD*Z[0]*Z[0]/m) + (g*sin(Z[1]*PI/180.0))) + U[0] *  
10000 / m; 

 DZ[1] = (aL*Z[0]*(1-c*Z[1])/m) - (g*cos(Z[1]*PI/180.0)/Z[0]) + 
aL*c*Z[0]*U[1]/m; 

   DZ[2] = Z[0]*sin(Z[1]*PI/180.0); 
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} 
//--------------------- Z0FN() --------------------------------------------------- 
// Routine to calculate the initial state vector. 
void z0fn(double *B, double *ZINT, int NV, int NEQ )  
{ 
    ZINT[0] = 100.0; 

ZINT[1] = 20.0; 
ZINT[2] = -120.0; 

} 
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(a) State trajectories 
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(b) The thrust trajectory 
 

Fig. 3  Numerical results of the tracking problem. 
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(a) Control input trajectories  

 
Fig. 4  Trajectories of the minimum time problem 
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Fig. 4  Trajectories of the minimum time problem. 
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ABSTRACT 
This paper focuses on the numerical methods for solving 
the optimal control problems. An optimal control problem 
(OCP) solver is proposed to solve efficiently the optimal 
control problems in the engineering applications. In last 
two decades, discretization and parameterization 
techniques had been used to convert the optimal control 
problem into the nonlinear programming problem and 
then it can be solved it by using the standard optimization 
software. In this paper, a developed optimal control 
analytical module, an OCP solver, is integrated with the 
optimization software, MOST. A systematic procedure for 
solving optimal control problem by using the OCP solver 
is also proposed. Two various types of the optimal control 
problems presented in the literatures are chosen to verify 
the accuracy and efficiently for the OCP solver. From the 
numerical results in this paper, the trajectories for state 
and control variables agree with literatures’ results. 
Therefore, the capability and accuracy of the OCP solver 
is demonstrated and it can facilitate engineers to solve 
various optimal control problems with a systematic and 
efficient procedure. 
  
KEY WORDS 
optimal control problem, nonlinear programming, 
discretization and parameterization techniques, admissible 
optimal control formulation. 
 
1. INTRODUCTION 
 
Optimal control problems (OCP) have a large number of 
applications in many different fields, e.g. mechanical 
system [1], automotive vehicle design [2,3] and 
manufacturing process [4]. However, finding the solution 
is often a difficult and time-consuming task, particularly 
for nonlinear and state constrained problems. The optimal 
control problems can be solved by the classical calculus 
of variations approach or by the dynamic programming 
method. On the other hand, many practical problems are 
described by strongly nonlinear differential equations and 
cannot easily get the analytical solutions. Hence, many 
approximation methods [5-8] based on nonlinear 

programming method are used to solve the nonlinear 
optimal control problem. 
A nonlinear programming problem consists of a 
multivariable function subject to multiple inequality and 
equality constraints. The solution of the nonlinear 
programming problem is to find the Kuhn-Tucker points 
of equalities by the first-order necessary conditions. This 
is the conceptual analogy in solving the optimal control 
problem by the Pontryagin maximum principle [18]. 
Various discretization and parameterization techniques for 
state and control variables allow having an optimal 
solution for the OCP via the nonlinear programming. 
Jaddu and Shimemura [7] used the quasilinearization and 
state parameterization by using Chebyshev polynomials to 
solve constrained nonlinear optimal control problems. Hu 
et al. [8] applied an enhanced scheme based on the Direct 
Collocation and Nonlinear Programming Problem 
(DCNLP) to transform the system dynamics into 
constraints of the nonlinear programming. Many 
numerical examples are solved successfully by those 
methods.  
In this paper, a different approach for solving the OCP is 
proposed and integrated with various numerical schemes 
to implement a general optimal control problem solver 
that facilitate engineers to solve their optimal control 
problems with a systematic and efficient procedure. With 
the solver, the OCP can be converted into the nonlinear 
programming problem automatically and then be solved 
by a general constrained optimization solver-MOST. The 
OCP solver allows the designer to control both of the 
optimization process and the analysis as well as design 
sensitivity analysis using his owning experience and 
intuition. Two numerical examples in the recent 
literatures will be used to demonstrate and verify the OCP 
solver in this paper. The numerical results show the OCP 
solver is effective and accurate for solving the optimal 
control problem. 
 
2. PROBLEM FORMULATION 
 
A general problem of continuous time optimal control 
system can be defined as follows:  
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Find the design variables b, the control functions u and 
terminal time tf which minimize performance index 
 

0
0 0 0[ , ( ), ] [ , ( ), ( ), ]ft

f f t
J x t t F t x t t dtψ= + ∫b b u

 
(1) 

 
subject to the state (or dynamic) equations 
 

,]),(),(,[ dtttxtx ubf=&  fttt ≤≤0  (2) 
 
with the initial conditions 
 

)()( 0 bh=tx  (3) 
 
functional constraints 
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i r
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and dynamic point-wise constraints 
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qqj
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where b ∈ Rk is a vector of design variables, u ∈Rm is a 
vector of control functions, and x ∈Rn is a vector of state 
variables. The functions ψ0, F0, ψi, f, Fi and φj are 
assumed two at least twice differentiable. The preceding 
definition extends the original Bolza problem to account 
for inequality constraints. The original Bolza formulation 
containing only equality constraints is not general for the 
OCP. It also does not treat design variables b which may 
serve a variety of useful purposes apart from obvious 
design parameters; e.g., weight, area, velocity. Also, when 
the terminal time tf allows be free (for optimization), the 
free time problem is obtained, otherwise the fixed time 
problem is given. In addition, the initial conditions are 
separated from the functional constraints in Eq. (4) for 
practical considerations. The differential equations for the 
system in Eq. (2) are written in general first-order form. 
  
3. DISCRETIZATION MODEL 
The general continuous time optimal control problem can 
be transferred into NLP problem by introducing a 
parametric control and state model. To treat this 
continuous model as the discrete model, it must represent 
the infinite-dimensional control function u and state 
variable x by a finite set of parameters. At first 
discretization of the control function is considered. The 
entire time interval [t0, tf] is subdivided into N general 
unequal time intervals and the grid is designated as  
 
t0, t1, t2,…, tN-1, tN=tf (6) 
 

The time intervals between the grid points are defined in a 
vector form as  
 
T = [ T1, T2,…, TN ]T (7) 

Where 1i i iT t t −= − and 0
1

N

i f
i

T t t
=

= −∑  which generate the 

parameter set 
 
U = [u1(t0),…, u1(tN), u2(t0),…, um(t0),…, um(tN)]T (8) 
  =  [U1,…, UN+1, UN+2,…, UmN+1,…UmN+m]T (9) 
  
This can be treated as design variable vector. This results 
in a total number of k+N+mN+m design variables as 
 
P = [b1,…,bk, T1,…,TN,…, U1,… ,UmN+m ]T (10)
 
The coefficients of the interpolation function for the 
control function u may be considered as design variables 
instead of Ti and Ui in Eq. (10). For example, if time grid 
is not considered as design variable, the interpolation 
function based on third-order polynomial, u1(t) = U1 + U2 
× t + U3 × t2 + U4 × t3 can be used to represent the first 
component of the control forces in u; and U1, U2, U3, U4 
can be treated as design variables. Besides, in some 
control problems, the initial conditions on the state 
variables are unknown. For example, the number of the 
initial conditions is not enough for integrating or the 
initial conditions cannot be separated from the functional 
constraints in Eq. (4). The artificial variables are added as 
design variables to treat the problem that expand the size 
of design variable vector P. Two discretization techniques 
for the state variables in Eq. (2) can be used to evaluate 
the state trajectories. The first method discretizes both the 
control and the state variables and enforces the 
compliance of the state equations by introducing them as 
constraint equations in the nonlinear programming (NLP) 
problem. This method approximates both the states and 
the controls in discrete intervals and uses them as 
variables of the resulting NLP problem. This method is 
known as the Direct Collocation and Nonlinear 
Programming Problem (DCNLP) [8]. The next method is 
a straightforward approach that the control variables u(t) 
are approximated by some interpolation functions I(t) in 
each time interval, where I(t): [t0, tf]∈Rm. The 
approximate trajectories of state variables x are generated 
by solving the initial value problem defined in Eqs. (2) 
and (3). This method is commonly called the direct 
shooting method [9]. With the direct shooting method, the 
problem is called an admissible optimal problem [10]. 
In the DCNLP, the states and controls are discretized and 
used as the design variables of the NLP problem. In 
practical problems, a fine interval of discretization is 
necessary for an accurate solution. On the other hand, a 
huge amount of state and control variables are needed to 
describe the dynamic behavior in a large-scale problem, 
e.g. structure control problems. In those situations, the 
number of design variables of the NLP problem will be 
increase rapidly. The influence of the number of design 
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variables on the performance of the NLP problem is self-
evident. Furthermore, many well-developed subroutines 
exist for numerical integration that is needed in the 
admissible optimal control problems. Therefore, the 
admissible optimal control problem is more efficient and 
easy implementation than DCNLP and it has been 
adopted in this paper. 
 
4. ADMISSIBLE OPTIMAL CONTROL 
FORMULATION 
 
Consider now a typical functional that may be the 
performance index or a functional constraint: 

0

[ , ( ), ] [ , ( ), ( ), ]ft

f f t
J t t F t t t dtψ= + ∫b x b u x  (11)

 
where the first term involves only design variables and the 
state of the system at terminal time and the second term 
contains mean behavior over entire interval of motion. As 
noted earlier, the control functions u are treated as a 
subset of the vector P. The terminal time tf can be treated 
as one of the design variables in T, for example, 

0
1

N

f i
i

t T t
=

= +∑ . The dependence on design variable in Eq. 

(11) arises both explicitly and implicitly through the 
control and state variables. The admissible control 
function is represented in the form u(t) = I(U, T, t) and 
the state variable is written the form x(b, U, T, t) to 
emphasize that it is a function of design variables P. 
Therefore, equation (11) can be rewritten as follows: 

[ , ( , , , ), ]f fJ x t tψ= b b U T  

0

[ , ( , , ), ( , , , ), ]ft

t
F I t t t dt+∫ b U T x b U T  

(12)

 
The state equation in Eq. (2) is transformed as  

[ , ( , , ), ( , , , ), ] ,t x t t dt=x f b I U T b U T&  fttt ≤≤0  (13)
 
and a typical dynamic constraint function in Eq. (5) as 

[ , ( , , ), ( , , , ), ]t t tφ b I U T x b U T  (14)
 
Now, it can express the admissible optimal control 
problem in an NLP formulation as follows: 
Find the design variables P = [ bT, TT, UT]T to minimize a 
performance index 
 

0 0[ , ( , , , ), ]f fJ t tψ= b x b U T  

0
0[ , ( , , ), ( , , , ), ]ft

t
F t t t dt+∫ b I U T x b U T  
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subject to state equations 

[ , ( , , ), ( , , , ), ] ,t x t t dt=x f b I U T b U T&  fttt ≤≤0  (16)
 
with initial conditions 

0( ) ( )t =x h b  (17)

 
functional constraints as  
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0
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and dynamic constraints as  

0; 1,.........,
[ , ( , , ), ( , , , ), ]

0; 1,....,j

j q
t t t

j q q
φ

′= = 
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b I U T x b U T  (19)

 
With admissible optimal control, some good first order 
differential equation methods having variable step size 
and error control are available to integrate the state 
equations in Eqs. (16) and (17), e.g. Adams method and 
Runge-Kutta-Fehlberg method [11]. These solvers can 
give accurate results with user desired error control. The 
state trajectories are internally approximated using 
interpolation functions in the differential equation solvers. 
Values of the state and control variables between the grid 
points can be also obtained with different kinds of 
interpolation schemes.  
 
5. NUMERICAL SCHEMES 
 
Ordinary Differential equation (ODE) solver: With the 
admissible optimal control formulation, the state 
equations (13) and design sensitivity equations need to be 
integrated by the ODE solver. In this paper, DDERKF, 
DDEABM and DDEBDF that developed by Sandia 
Laboratory are selected to integrate state or design 
sensitivity equations [12]. DDEBDF is based on the 
variable-order (1-5) backward-differention formula. 
DDERKF is a fifth-order Runge-Kutta code and 
DDEABM is a variable-order (1-12) Adams-Bashforth 
code. Those equation solvers use variable-step-size 
algorithms and have good error control.  
 
Numerical Integration Scheme: Two integration schemes, 
Simpson’s rule and Gaussian quadrature formula, are 
adopted in this paper. Those schemes are used to integrate 
the integral part of the functional constraints. 
 
Interpolation Schemes: For the admissible optimal control 
formulation, interpolation schemes are needed at several 
places. The zero-order, first-order and piecewise cubic-
spline interpolation functions can be used in this paper. 
 
Optimization Solver: In the admissible optimal control 
formulation, the optimal control problem is converted into 
a NLP program and then a standard optimization solver 
can solve the NLP problem numerically. A great deal of 
attention has been paid to the NLP problems by using the 
Sequential Quadratic Programming (SQP) method [7, 13]. 
In this paper, an optimization solver-MOST [14] based on 
the SQP method is chosen to solve the NLP problem. 
 

120



Design sensitivity analysis: Base on SQP method used in 
numerical methods of optimization, one must perform 
design sensitivity analysis; i.e., calculate design gradients 
of problem functions. In general, two approaches are 
applied to calculate these gradients. A first approach is to 
use a finite-difference approximation. The other method is 
to differentiate implicit functions analytically. There are 
two methods for calculating analytical derivatives of a 
constraint with respect to the design variables P: the direct 
differentiation method (DDM) and the adjoint variable 
method (AVM) [15]. 
 
6. SYSTEMATIC PROCEDURE FOR 
SOLVING THE OCP PROBLEMS 
 
In this paper, the OCP is converted into NLP problem 
with admissible optimal control formulation and then the 
optimizer based on SQP method is used to solve the NLP 
problem numerically. Now, those procedures are 
implemented in the OCP solver and the complicated 
details of the transformation and programming will be 
completed in the OCP solver automatically. The optimal 
control and state trajectories will be obtained and 
recorded in the output files. Therefore, engineers can 
follow an efficient and systematic procedure to solve 
various optimal control problems. The procedure for 
solving the OCP with the OCP solver is described as 
follows. 

1) Define the OCP problem following the formulation 
defined in Section 2. 

2) According to the formulation, prepare the 
parameter files and user-defined subroutines. 

3) Compile the user’s subroutines and link with OCP 
solver. 

4) Execute the OCP solver and get the optimal results. 
 
7. NUMERICAL EXAMPLES 
 
Two various types of optimal control problems have been 
used in literatures as test problems to evaluate the 
performance of the proposed method. Both the acceptable 
violation of constraints for feasible designs and acceptable 
tolerance for the convergence parameter are 1.0E-3 in 
SQP method.  
 
Case 1: The van der Pol oscillator problem 
The van der Pol oscillator problem was given and solved 
by Bullock and Franklin [16] with second variation 
method. Also, Jaddu and Shimemura [7] used this 
problem to verify their computational method. In this 
work, it is also used to evaluate the performance and 
capabilities of the OCP solver.  The van der Pol oscillator 
problem can be formulated as follows: 
 
Minimize 

5 2 2 2
1 20

1 ( )
2

J x x u d t= + +∫  (20)

 

Subject to 

1 2x x=&  (21)
2

2 1 1 2(1 )x x x x u= − + − +&  (22)
with initial states xT(0) = [1, 0]T. 
 
Table 1 shows the performance comparison of various 
numerical schemes for the OCP solver. The finite-
difference method (DSA=FDM) and direct differentiation 
method (DDM) for sensitivity analysis are selected to 
evaluate their performance. The Simpson’s rule 
(INTG=SIMPSN) and Gaussian quadrature formula 
(INTG=GAUSS) are used to carry out the numerical 
integration over the time interval. DDERKF and 
DDEABM with an option to switch to DDEBDF are 
selected for solving first-order differential equations. The 
number of time grid points for the control function is 
selected as 21. The numerical results include the number 
of iterations (NIT) for the SQP method, optimal value of 
performance index (J*), CPU time for the entire iterative 
process. The numerical results for all example problems 
were obtained on an Intel Celeron 1.2 GHz computer with 
384 MB of RAM memory. 
 
 This optimal value of performance index for this problem 
was found by Bullock and Franklin [16] to be J* = 
1.433508 using second variation method. Also Jaddu and 
Shimemura [7] found the optimal value J* = 1.433487 
using a Chebyshev series of ninth order to approximate 
x1(t). In this case, the numerical results for various 
numerical schemes of the OCP solver are listed in Table 1 
and the optimal control and state trajectories is shown in 
Figs. 1. As the numerical results show, the performance 
with all of the numerical schemes of the OCP solver is 
quite accurate. Owing to the efficiency the finite-
difference approach for sensitivity analysis and Gaussian 
quadrature formula for the numerical integration are 
selected to solving the following problem. 
 
Case 2: Fourth-Order Systems: A Flexible Mechanism 
A flexible mechanism was proposed and solved by Wu 
[17]. The OCP formulation of this problem can be 
described as follows. 
Minimize   

fJ t=  (23)
Subject to  

1 2
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Control constraints 

1 ( )u t Mφ = ≤  (25)
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with boundary conditions xT(0) = [0,  0,  0,  0]T and xT(tf) 
= [1,  0,  1,  0]T.  
With admissible control formulation, the control variables 
are converted into the design variables and the control 
constraints are treated as the dynamic constraint. In this 
work, the system is solved by the OCP solver with 
following parameters: k = 1N-m-rad-1, m1 = m2 = 1kg-m2, 
and M = 1N-m. The numbers of time grid points for the 
control function (NGP) are selected as 5, 11 and 51 to 
study the effect of coarser or finer mesh. Two initial 
guesses, u (t) = 0.0 and u (t) = 1.0, for the control function 
with three piecewise interpolation schemes – zero order, 
first order, and cubic spline are used in this problem. The 
hybrid method that combines the DDM and AVM for 
design sensitivity analysis is used to calculate the design 
sensitivity coefficients.  
The optimal solution for this problem is given in Table 2 
and the trajectories of state variables are shown in Fig.2. 
All the 18 test runs are successfully solved with the 
proposed method, but the runs with small number of 
control grid points (NGP) give higher optimum values 
and less CPU time. The terminal time, tf, and the 
trajectories obtained in this work are agreed with the 
results, tf ≅ 4.3, obtained by Wu [17]. The numerical 
results also show that the proposed method has the 
capability to deal with the high order time-optimal control 
problem.  
 
8. CONCLUSIONS 
The admissible control formulation combines with SQP 
method used to solve the optimal control problem is 
presented. The theoretical basis of nonlinear programming 
approach for the optimal control problem is also described. 
An optimal control problem solver, the OCP solver, based 
on the nonlinear mathematical programming techniques 
and integrated with many well-developed numerical 
routines is implemented. A systematic procedure for 
solving optimal control problem is also proposed. Two 
various types of optimal control problems are used to 
evaluate the capability and accuracy of the OCP solver. 
The results show that the OCP solver can facilitate 
engineers to solve the optimal control problems with a 
systematic and efficient procedure. 
 
9. ACKNOWLEDGEMENTS 
 
The research reported in this paper was supported under a 
project sponsored by the National Science Council Grant, 
Taiwan, R.O.C., NSC90-2212-E009-039, is greatly 
appreciated. 
 
REFERENCES 
[1] Kim, T.H. and Ha, I.J., Time-Optimal Control of a 
Single-DOF Mechanical System with Friction, IEEE 
Trans. Automat. Contr., 46(5), 2001, 751-755. 
[2] Tsiotras, P., On the Optimal Braking of Wheeled 
Vehicles, Proc. of the American Control Conference, 
Chicago, 2000, 569-573. 

[3] Jalili, N. and Esmailzadeh, E., Optimum Active 
Vehicle Suspensions with Actuator Time Delay, 
Transcations of the ASME. Journal of Dynamic Systems, 
Measurement and Control, 123, 2001, 54-61. 
[4] Samaras, N.S. and Simaan, M.A., Optimized 
Trajectory Tracking Control of Multistage Dynamic 
Metal-Cooling Processes, IEEE Tran. Ind. Applicat., 
27(3), 2001, 920-927. 
[5] Lin, S.Y., Complete Decomposition Algorithm for 
Nonconvex Separable Optimization Problems and 
Applications, Automatica, 28, 1992, 249-254. 
[6] Pytlak, R., Numerical Methods for Optimal Control 
Problems with State Constraints (Lecture Notes in 
Mathematics 1707, Springer-Verlag, 1999). 
[7] Jaddu, H. and Shimemura, E., Computational Method 
Based on State Parameterization for Solving Constrained 
Nonlinear Optimal Control Problems, International 
Journal of Systems Science, 30(3), 1999, 275-282. 
[8] Hu, G.S., ONG, C.J. and Teo, C.L., An Enhanced 
Transcribing Scheme for The Numerical Solution of A 
Class of Optimal Control Problems, Engineering 
Optimization, 34(2), 2002, 155-173. 
[9] Bock, H.G. and Plitt, K.J., A Multiple Shooting 
Algorithm for Direct Solution of Optimal Control 
Problems, Proceedings of the 9th IFAC World Congress, 
Budapest, 1984. 
[10] Sage, A.P. and White, C.C. III, Optimum systems 
Control, 2nd Edition (Prentic Hall, 1977). 
[11] Press, W., Teukolsky, S.A., Vetterling, W.T., and 
Flannery, B., Numerical Recipes in C: The Art of 
Scientific Computing, 2nd Edition (Cambridge, New 
York, 1992). 
[12] Shampine, L.F. and Watts, H.A., DEPAC-Design of 
User Oriented Package of ODE Solvers, SAND 79-2347, 
Sandia Laboratory, 1979. 
[13] Tseng, C.H., Optimal Design for Dynamics and 
Control Using a Sequential Quadratic Programming 
Algorithm (PhD dissertation, Department of Mechanical 
Engineering, Iowa University, 1987). 
[14] Tseng, C. H., Liao, W. C. and Yang, T. C., MOST 
1.1 User's Manual. Technical Report No. AODL-93-01, 
Department of Mechanical Engineering, National Chiao-
Tung Univ., Taiwan, R.O.C., 1993. 
[15] Hsieh, C.C. and Arora, J.S., Design Sensitivity 
Analysis and Optimization of Dynamic Response, 
Computer Methods in Applied Mechanics and 
Engineering, 43, 1984, 195-219. 
[16] Bullock, T.E. and Franklin, G.F., A Second-order 
Feedback Method for Optimal Control computations, 
IEEE Transactions on Automatic Control, 12, 1967,666-
673. 
[17] Wu, S.T., Time-Optimal Control and High-Gain 
Linear State Feedback, International Journal of Control, 
72(9), 1999, 764-772. 
[18] Pontryagin, L.S., Boltyanskii, V.G., Gamkrelidze, 
R.V. and Mischenko, E.F., The Mathematical Theory of 
Optimal Processes (Wiley, 1962). 

122



Table 1  Performance comparison of various numerical 
schemes for the oscillator problem. 

DSA INTG DIFF INTP NIT J* Conv.Par. CPU 
Zero 11 1.4530 4.9577e-4 19.639
First 21 1.4333 7.6480e-4 6.069

DDERKF 
 

Cubic 20 1.4334 5.4521e-4 18.146

Zero 11 1.4530 4.9577e-4 18.455
First 21 1.4333 7.6480e-4 19.147

SIMPSN  

DDEABM 
 

Cubic 20 1.4334 5.4521e-4 15.202

Zero 12 1.4422 9.7245e-4 20.499
First 21 1.4328 8.4954e-4 4.665

DDERKF 

Cubic 20 1.4334 5.4616e-4 14.392

Zero 12 1.4422 9.7245e-4 19.078
First 21 1.4328 8.4954e-4 17.686

DDM  

GAUSS 

DDEABM 

Cubic 20 1.4334 5.4616e-4 11.776

Zero 13 1.4530 3.6313e-4 3.615
First 21 1.4333 7.6261e-4 1.382

DDERKF 

Cubic 20 1.4334 5.4124e-4 1.542

Zero 13 1.4530 3.6306e-4 3.615
First 21 1.4333 7.5959e-4 3.244

SIMPSN 

DDEABM 

Cubic 20 1.4334 5.4139e-4 2.333

Zero 14 1.4422 5.3821e-4 3.445
First 21 1.4328 8.4715e-4 0.752

DDERKF 

Cubic 20 1.4334 5.4218e-4 0.871

Zero 14 1.4422 5.3905e-4 3.555
First 21 1.4328 8.3944e-4 2.754

FDM 

GAUSS 

DDEABM 

Cubic 20 1.4334 5.4269e-4 1.603

Bullock and Franklin (1967) J* = 1.433508
Jaddu and Shimemura (1999) J* = 1.433487

 
Table 2  Optimal results for the fourth-order system. 

u(t0) NGP INTP NIT J* Conv.Par. CPU 
Zero 5 4.33196 1.04E-05 0.131

First 5 4.86764 5.69E-06 0.07

5 

Cubic 5 4.90565 4.67E-07 0.06

Zero 15 4.30699 5.71E-09 1.382

First 7 4.28066 5.65E-06 0.35

11 

Cubic 10 4.30041 1.52E-08 0.34

Zero 50 4.26239 1.38E-07 43.803

First 44 4.22087 3.50E-07 18.596

0.0 

51 

Cubic 40 4.22187 1.10E-08 12.659

Zero 6 4.33197 6.16E-07 0.12

First 7 4.86765 2.25E-07 0.091

5 

Cubic 9 4.90560 3.72E-05 0.12

Zero 7 4.36249 3.51E-08 0.651

First 8 4.28064 1.09E-05 0.43

11 

Cubic 10 4.30041 3.50E-07 0.39

Zero 49 4.26229 7.21E-08 42.872

First 42 4.22087 2.20E-06 17.315

1.0 

51 

Cubic 38 4.22187 2.88E-06 11.847
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Fig. 1  State trajectories for the van der Pol oscillator 
problem. 
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Fig. 2  State trajectories for the fourth-order system. 
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