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Blind Identification and Equalization for
Multiple-input Multiple-output Finite Impulse

Systems

Abstract

We propose three blind identification algorithms for multiple-input multiple-output
(MIMO) frequency selective fading wireless communication channels. The algorithms com-
pute the channel product matrices from the estimated covariance matrix of the received data
and then determine the channel impulse response matrix via an eigenvalue-eigenvector de-
composition. The algorithms are all based on transmitter-induced cyclostationarity through
precoding. Three precoding are considered: (i) periodic precoding, (ii) periodic precoding
plus zero padding, and (iii) zero padding alone. The algorithms, with optimally designed
periodic precoding, have normalized root-mean-squared error (NRMSE) performance com-
parable with subspace methods but require less computation, allow a more relaxed iden-
tifiability condition, and are applicable to general MIMO systems with more transmitters
or more receivers. Simulation results show that the algorithms are reasonably robust with

respect to channel order overestimation.
Key words: MIMO channels, blind identification, periodic precoding (modulation),

finite impulse response, zero padding, single carrier zero padding transmission systems,
OFDM systems
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Chapter 1

Introduction

1.1 Research Objective

Multiple-input multiple-output (MIMO) communication systems employing multiple
transmit and receive antennas have received much attention due to the potential improve-
ment in data transmission rate and link reliability they can offer. However, to exploit
the potential advantage of MIMO systems, accurate channel state information is required.
Channel can be identified or estimated using training signal which requires additional band-
width. As a means to eschewing the need of training signal and the associated bandwidth
requirement, blind identification of MIMO channels has been the focus of much research.
Many blind identification algorithms have been proposed in recent years (see [1, 2| for a

detailed review).

Existing algorithms for blind identification of MIMO finite impulse response (FIR)
channels can be classified into second-order statistics methods [8]-[12],[20]-[22], higher-
order statistics methods [3]-[5], and deterministic methods [6, 7]. Among these three types
of methods, blind identification based on second-order statistics has been widely studied
because it requires fewer data samples than the high-order statistics approach and it avoids
poor estimation accuracy under low SNR, a common shortcoming of deterministic methods.
Existing second-order statistics methods for MIMO systems, e.g., the subspace methods
8, 9], [26], [28]-[29], the linear prediction methods [10]-[12], and the matrix outer product
decomposition methods [20]-[22], either impose restrictive assumptions on the channel to
be identified or require large amount of computations, that may not be realistic in practical

applications.

The goal of this research is to develop blind identification algorithms for MIMO channels,



that are simple in computation and less restrictive in assumptions. It is hoped that the

algorithms developed are thus more practical from an application point of view.

1.2 Literature Survey

It is well-known that cyclostationarity of the received data is the key to all blind iden-
tification based on second-order statistics [1, 2]. Cycloststionarity can be induced either
at the receiver, by oversampling or multiple antennas, or at the transmitter, by various
coding methods. An advantage of transmitter-induced cyclostationarity is that the result-
ing identification methods require less restrictive assumption on the channel, for example,
channels with nonminimum phase zeros can be handled. One effective way to induce cy-
clostationarity at the transmitter is by periodic precoding. Blind identification methods
for general MIMO FIR channels using periodic precoding are found in [17, 18]. In [17],
Chevreuil and Loubaton proposes a scheme that multiplies the input sequence by a constant
modulus complex exponential precoding sequence to induce conjugate cyclostationarity at
the transmitter. The scheme reduces the MIMO channel identification problem to several
SIMO ones, which are then solved by the subspace method [24]. Each SIMO channel is
required to be free from common zeros. However, the method in [17] allows only real input
symbols and the identifiability condition is irreducible and column reduced. Bolcskei et.
al. [18] proposes a method for identifying each of the scalar channels individually up to a
phase ambiguity using non-constant modulus periodic precoding sequences. The method
imposes no restriction on channel zeros and is insensitivity to channel order overestimation.
However, no systematic procedure for the design of the precoding sequences is given. In
this report, we propose an identification method based on periodic precoding, which allows

complex input symbols and gives an optimal design of the precoding sequence.

Single carrier zero padding (SC-ZP) block transmission systems, another communication
systems, are used to remove interblock interference (IBI) [13, 14, 25, 26]. In the literature,
to the best of our knowledge, there is only one paper, by Zeng and Ng [26], that proposes
a subspace method for blind identification of MIMO SC-ZP block transmission systems.
The method can be used to identify the channel impulse response matrix up to a matrix
ambiguity when the channel is irreducible and the channel noise is uncorrelated and white.
In this report, we first propose an identification method for MIMO SC-ZP systems based
on periodic precoding, which can further relax the identifiability condition and reduce
the computational load, compared with the method in [26]. In addition, we also propose
another simplified identification method for such systems without periodic precoding. This
simplified method can also apply to MIMO zero padding orthogonal frequency division
multiplexing (ZP-OFDM) systems.



1.3 Organization of the Report

The report is organized as follows. In Chapter 2, we propose a blind identification
method for general MIMO FIR channels based on periodic precoding. We also discuss the
optimal design of the precoding sequence which takes into account the effect of additive
channel noise and numerical error. We also propose a blind identification method for
MIMO FIR channels in SC-ZP block transmission systems based on periodic precoding
and discuss the optimal design of the precoding sequence in Chapter 3. In Chapter 4, we
first propose a blind identification for SC-ZP block transmission systems without periodic
precoding. Extension of this method to ZP-OFDM systems is given subsequently. Chapter

5 concludes this report and discusses the related future research.

We define the following operations that will be used in the derivation of the main result.
First, for any mxm matrix A = [ay]o<ki<m-1, define T;(A) = [ao; @111~ Gme1—jm-1]"
for 0 <j <m—1,1ie., I[';(A) is the vector formed from the jth super-diagonal of A. Sec-
ond, for any Jn x Jn matrix B = [By]o<ki<n—1, Where By is a block matrix of dimension
J x J, define T;(B) = [B{; Bf, ., --- B] [T for 0 <j<n-—1,1ie, T;(B) is the

n—1—j3n—1
matrix formed from the jth block super-diagonal of B.



Chapter 2

Identification of General MIMO

Channels

In this chapter, we propose a blind identification method for MIMO FIR channels based
on periodic precoding. It is shown that, by properly choosing the precoding sequence, the
MIMO FIR transfer functions, with K inputs and J outputs, can be identified up to a uni-
tary matrix ambiguity. The transfer functions need not be irreducible or column reduced,
and there can be more outputs (J > K) or more inputs (J < K). The method exploits the
linear relation between the covariance matrix of the received data and the “channel product
matrices”. The method is shown to be robust with respect to channel order overestima-
tion. The proposed algorithm requires solving linear equations and computing the nonzero
eigenvalues and eigenvectors of a Hermitian positive semidefinite matrix. The performance
of the algorithm, and indeed the identifiability, depends on the choice of the precoding se-
quence. We propose a method for optimal selection of the precoding sequence which takes
into account the effect of additive channel noise and numerical error in covariance matrix

estimation. Simulation results are used to demonstrate the performance of the algorithm.

2.1 System Model and Formulation

We consider the linear MIMO baseband model of a communication channel with K
transmitters and J receivers shown in Figure 2.1, where each source symbol sequence is

multiplied by a P-periodic sequence, p(n), before transmission. The transmitted signal is

wi(n) =pn)sk(n), k=1,2--- K, (2.1)



p(n) ws(n)
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si(n) é U (n) Channel tr(n xy(n)

Figure 2.1. An MIMO channel model

where p(n + P) = p(n), ¥V n. The discrete time model describing the relation between the
transmitted signal uy(n) and the received signal x;(n) has the form of an MIMO FIR filter

with additive noise:

K Ljk
=3 > hpDue(n = 1) +wi(n), j=1,2,--,J, (22)
k=1 1=0

where hjx(0), hjr(1), -+, hj(L;k), are the impulse responses of the channel between the

kth transmitter and the jth receiver, and w;(n) is the channel noise seen at the input of

the jth receiver. The equations (2.1) and (2.2) can be written more compactly as
u(n) = p(n)s(n Z H(l)u(n — 1) + w(n), (2.3)

where u(n), s(n) € C¥, and x(n), w(n) € C/ are vector signals formed by stacking the
respective scalar signals together, e.g., x(n) = [z1(n) z2(n) - - x;(n)]’. The jkth element
of H(l) € C/*¥ is h;;.(1), and L = max;{L;x} is the order of the MIMO channel. Thus

H(L) # 0, x.

Group the sequence of x(n) as X(n) = [x(Pn)T,x(Pn+ 1)T, -+ x(Pn+ P —1)T]"
CEFP and let w(n),t(n),s(n) be similarly defined, we have

xX(n) = Hou(n) + Hia(n — 1) + w(n), (2.4)

where Hyg is an JP x K P block lower-triangular Toeplitz matrix with [H(0)T H(1)?

H(L)T oF, . -+ 0% )T € C/P*K as its first block column (i.e., the first K columns),
and H; is an JP x K P block upper-triangular Toeplitz matrix with [0y -+ 0sxx H(L)
H(L — 1) --- H(1)] € C/*EF as its first block row (i.e., the first J rows). Since p(n)
is periodic, t(n) = GS(n) for all n, where G = diag[p(0)Ix, p(1)Ik, - ,p(P — 1)Ig] €

REPXEP i5 o diagonal matrix, (2.4) can be written as

X(n) = HoGs(n) + H1GS(n — 1) + w(n), (2.5)

We assume that the receivers are synchronized with the transmitters. In addition, the

following assumptions are made throughout this chapter.
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(A1) s(n) and w(n) are white zero-mean vector sequences, and s(n) and w(n) are tempo-
rally and spatially uncorrelated. More precisely, E[s(k)s(j)*] = 6(k — j)Ix € REXE,
Elw(k)w(j)*] = d6(k—j)o21; € R E[s(k)w(j)*] = Oxxs, V k, j, where §(-) is the

Kronecker delta function.
(A2) An upper bound L of the channel order L is known and the period P > L+1.

(A3) The channel impulse response matrix H = [H(0)” H(1)" --- H(L)"]" is full col-

umn rank, i.e., rank(H)=K.

In the next section, we will derive an algorithm for blind identification of the MIMO

channel impulse response matrix H using second-order statistics of the received data.

2.2 Blind Channel Identification

In this section, we derive the proposed method for the case under assumptions (A1),
(A2), (A3) and noiseless case. We show that by appropriately selecting the periodic
precoding sequence, any MIMO channel satisfying (A3) is identifiable up to an K x K
unitary matrix ambiguity. The effect of noise and optimal design of the precoding sequence

are discussed in Section 2.3.

2.2.1 The Identification Method

We first derive the proposed method for the case where the channel order L is known
with P > L + 1, there are more receivers, i.e., J > K, and the noise is absent. We discuss
the cases of channel order overestimation and more transmitters than receivers (i.e., K > J)

in Section 2.2.2 and 2.2.3, respectively.

From (2.5) and assumption (A1), the covariance matrix of X(n) can be written as

(noiseless case)
Rx = E[x(n)x(n)"] = HoG*H}, + H;G*Hj,. (2.6)

Let J € RP*F be the matrix whose first sub-diagonal are all one, i.e., [} (JT) =[1 1 --- 1]T €
R®-1 and all remaining entries are zero. The block Toeplitz structures of Ho and Hy
allow us to write Hp = Yr_,J* @ H(k) and Hy; = ¢ (J7)P* @ H(k), respectively.
Besides, we define G, = diag[p(0), p(1),--- ,p(P — 1)] € RP*F. Hence HoG*H};, can be



written as

HoG Hy = Yp  J*e@H(k) (GZeLy,) Yr, (FeH(®)
= Yo D (FF@H(K) (G2 ®1y,) ((37) @ H(D)) (2.7)
= i Yo (FFGEIT)) @ (H(k)H(1)"),

where we have used the identies (A®B)* = A*®@B* and (A®B)(C®D) = (AC)® (BD)
[35, p.190]. Similarly, HyG*H? can be written as

H,G’H; =) ) (3" *GLI") @ (H(k)H(1)"). (2.8)

k=0 =0

The following proposition shows that the matrices J*G2(J*)" and (J7)""*G2J”~! have
special structures that allow decomposition of (2.6) into a group of decoupled equations.
Roughly speaking, the jth block super-diagonal part of (2.6) involves only the unknown
“channel product matrices”, H(k)H(k+7)*, k =0,1,--- , L—j. For example, the equations
corresponding to the diagonal blocks (j = 0) involve only H(k)H(k)*, k =0,1,--- , L. In
the proposed identification algorithm, these “channel product matrices” are computed first
by solving linear equations, and then the channel impulse response matrices H(k) are
computed via eigenvalue-eigenvector decomposition.

Proposition 2.1: Let 0 < k,l < L be two non-negative integers. Then

(a) For [ = k+j, where 0 < j < L —Fk, both J*GZ(J")" and (J7)P~*GZI"~! are upper
triangular matrices with only the respective jth upper diagonals nonzero, and
0y (FGLAT)) = [0 0 p(0)? p(1)? - p(P—1—k—j)%7,  (2.9)

k entries

VO
P—k—j entries

D ((IN7FGRI™) = [p(P = k) p(P—k+1)* -~ p(P=1)* 0 -~ 0 ]". (2.10)

P—k—j entries

k entries

(b) For I < k, both T; (J*GZ(JT)") and I; (J7)""*G2I"~!) are lower triangular with
zero diagonal matrices.
Proof : See [16].
It follows from (2.9) and (2.10) that

T (PG AT +T; (A7) +G237)
p(P— k)" - p(P—1)° p(0) --- p(P—1—k—j)J" if j=I-k>0

J/

k entries P—k—j entries

0(p—j)x1 it j#I-k
(2.11)



Since
T; (J*GE(IT)") @ H(k)H(1)*) =T, (J*G3(I")") @ H(k)H(1)* (2.12)
and
T (3P FGEIT ) @ H(k)H()®) =T; (N7 *GLIT ) o H(K)H(D)*,  (2.13)
it follows from (2.6)-(2.8) and (2.11)-(2.13) that T; (Rg) can be derived as follows.

T; (R)
=17 (HOGzH* +H,;G’H})
=0 Xt 15 (PFGRUIT)) @ (H(R)H()) + 7, (I FGRI7) @ (H(k)H(1)))
—Zk J SolT, (PG 4 T ()7 4GP @ HOYH()
~ 2 g (P = k) oo p(P—1)” p(0)* - p(P—l—k—J) T oHEH(E+ )
= 3Slp(P = B)’Ly o p(P =1Ly p(0)’Ly -+ p(P =1~k — j)’L " H(k)H(k + j)°
(2.14)

The right hand side of (2.14) is a linear combination of block columns with the channel
product matrices, H(k)H(k + j)*, as coefficients. If we define, for 0 < j < L,

F; = [(HOH())" (HOHG+1D)T - (H(L - jH(L))T]" e C/E 1 (2.15)
then (2.14) can be written in a more compact form as
T; (Rx) = MF; VO<j <L, (2.16)

where M; € R/P=)*J(L=i+1) ig defined as

p(0)? p(P —1)? p(P—2)? - p(P—L+j)?
p(1)? p(0)? p(P—1? - p(P=L+j+1)
p(2)° p(1)? p(0) o p(P—=L+j+2)°
M; = : : : : : ®1;.
p(P=3-34)? p(P—4—j)? p(P-5-j)? -+ p(P—L-3)
p(P—2—3)* p(P—=3-j)* p(P—4—-j)? -+ pP—L-2)
p(P=1—=4)* p(P—=2—j)* p(P=3—j)? --- p(P-L-1? |

(2.17)

We note that M, 1 < j < L, is obtained from M, by deleting its last jJ rows and last jJ

columns.

Since P > L+ 1, the (L + 1) equations in (2.16) are overdetermined and for the noise
free case, these equations are consistent. We note that the matrix M;, j =0,1,--- , L, is

completely determined by the precoding sequence. By appropriately selecting the precoding

8



sequence, we can make each M; full column rank. Then the solution F; can be obtained

as
F; = (M]M,;)""M] T, (Rg). (2.18)

If F;, 0 < j < L, are computed from (2.18), then we have the channel product matrices
H(E)H()* for 0 < k <1 < L. We now consider the computation required to determine

the channel impulse response matrix H from F;.

Let Q be the Hermitian matrix defined by 1,(Q) =F; for j =0,1,--- , L, and let the
channel impulse response matrix H = [H(0)” H(1)" --- H(L)"]*. Clearly we have

Q = HH". (2.19)

Since rank(H) = K by assumption (A3), Q has rank K. Since Q is Hermitian and positive

semidefinite, Q has K positive eigenvalues, say, Ai, -+, Ag. We can expand Q as

Q=) (VAd)(VAd)", (2.20)

j=1

where d; is a unit norm eigenvector of Q associated with A; > 0. We can thus choose the

channel impulse response matrix to be

H= [V \d, Vhody -+ /Agdg] € CTEFDXE, (2.21)

We note H can only be identified up to a unitary matrix ambiguity U € CE*K [20, 21],
ie., H = HU, since HH* = HH* = Q. The ambiguity matrix U is intrinsic to methods

for blind identification of multiple input systems using only second-order statistics [20, 21].

2.2.2 Channel Order Overestimation

So far we have assumed that the channel order L is known. If only an upper bound
L > L is available with P > L + 1, then following the same process given in Section 2.2.1,
the corresponding J(L + 1) x J(L + 1) matrix Q can be similarly constructed as in (2.19).
The last (L — L) block columns (i.e., (L —L).J columns) of Q are zero, so are its last (L — L)
block rows. Hence again, Q is of rank K and has K positive eigenvalues with the associated
cigenvectors all of the form d = [d” 0 --- 0]7 € C/E+D where d € C/EHY. Thus, we can
determine the channel impulse response matrix, up to a unitary matrix ambiguity, from
the K eigenvectors associated with the K positive eigenvalues of Q. In the noise free case,

we can, in theory, also determine the actual channel order.



2.2.3 More Transmitters Than Receivers

In the above discussions, we assume that there are more receivers than transmitters,
ie, J > K. If there are more transmitters, i.e., K > J, then either J(L + 1) > K or
K> J(L+1). If J(L+1) > K, then H is a tall matrix and assumption (A3) is generically
satisfied [33]. Hence the proposed method still applies. If K > J(L+1), then rank(H) < K
and assumption (A3) does not hold. Hence the proposed method is applicable to the more
transmitters case, provided the additional condition J(L + 1) > K is satisfied. We note
that if the channel has more transmitters than receivers, channel equalization and source
separation may be difficult even if accurate channel estimate is available. In addition, we
note that in the proposed method, the channel impulse response matrix H is only assumed

to be full column rank (A3). Hence the channel needs not be irreducible or column reduced.

2.3 Optimal Design of the Precoding Sequence

In Section 2.2, we see that in order to identify the channel, the precoding sequence
must be selected so that the resulting matrix M, is full column rank such that F; can
be exactly solved as (2.18). However, when noise is present, the covariance matrix Rg
contains the contribution of noise and numerical error is present in the estimation of Rx
in practice. This implies that (2.16) usually has no solution and (2.18) becomes a least
squares approximate solution. The choice of M; will affect error in the computation of F;
since different M;‘»FMJ- in (2.18) usually have different condition numbers. In this section,
we discuss the optimal design of the precoding sequence, which takes into account the effect
of noise and numerical error in estimating Rg, so as to increase the accuracy of F; and

thus reduce the channel estimation error.

2.3.1 Optimality Criterion

Now we consider the general case that noise is present and discuss the design of the
precoding sequence p(n). From (2.4) and assumption (A1), the covariance matrix of the

received signal is
Rz = HoG’H; + H,|G’H} +021; ® Ip. (2.22)

From (2.22) and (2.6), we see that noise has only contribution to the diagonal entries of

Rx(0). Therefore the (L 4 1) decoupled groups of equations in (2.16) remain unchanged,

10



except for the j = 0 group, which becomes
TO (R,—() - TO (H0G2H8 + H1G2HT) + O-Z;TO (IJ ® Ip) - M(]FO + Yv7 (223)

where Y = 02[I; I, --- I,]7 € R’P*/. Thus from (2.18), Fy, the least squares approxi-
mation of Fy, can be written by

Fo = (MIMy) "ML (MoFy +Y) = Fo + (MIMy)"'MIY = F, + Z, (2.24)
N————

To(Rx(0))

which is Fy plus a perturbation term due to noise. The perturbation term Z is the least
squares solution of the equation MyZ =Y. We note that if every column of Y is orthogonal
to every column of My, then Z = 0, which implies Fy = Fo. But that is impossible since
the entries of M, are positive and those of Y are nonnegative. Therefore, we seek to
appropriately choose the precoding sequence p(n) such that every column of Y is as close
to being orthogonal to that of My as possible. To this end, we first define qz; and y; shown
below as the columns of My and Y, respectively:

M, — Y01 QO2V' 0 Yos du1 Q12V' oy o doa QLQV' 2 7 (2.25)
Mo (:,1:J) Mo (:,J+1:2J) Mo (i, LJ+1:(L+1)J)
Y:Ui[IJ IJ IJ}T:[y1 Y2 - YJ] (226)

Then, due to the special structure of the block matrix My and Y, it is easy to check that
Qi is orthogonal to y;, i.e., qf.y; = 0 for j # 1, e.g.,

aly, = [p(0)%0 -0 - p(P—1)20---0][0620 ---0 --- 0020 ---0]" =0,

L J/ . S/ N\ S /

J entries J entries J entries J entries
P-1 .
and each q};y; assumes the same value, 02 >, _  p(n)?, for k=0,1,--- ,L, i =1,2,--- , J,
e.g.,
P-1
T _ 2 2 2 2 T __ 2 2
J entries J entries J entries J entries n=0

Thus we only need to consider the relation between columns of qg; and y; (the case of

k =0 and i = 1). Define the correlation coefficient

T
y=dou1 (2.27)

~Nlaoll2llyille”

Since v is nonnegative and by Cauchy-Schwarz inequality, 0 < v < 1. In order to make the

perturbation term Z small, we choose qg; so that the correlation coefficient v is as small
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as possible. Based on this point of view, we formulate the optimal selection problem as

minimizing v subject to

1
52l =1, (2.28)

n=0
Ip(n)|> > 7 >0, VOo<n<P-1 (2.29)

Roughly, constraint (2.28) normalizes the power gain of the precoding sequence of each
transmitter to 1; constraint (2.29) requires that at each instant, the power gain is no less
than 7. Note that the problem of selecting the precoding sequence is identical to the SISO
case considered in [16]. Thus the optimal precoding sequence p(n) is a two-level sequence

with a single peak in one period [16]. More specifically, for each m, 0 < m < P — 1,

p(n) = (2.30)

Pl—7)+7, n=m
VT, n#m, 0<n<P-1

is an optimal precoding sequence. Because the precoding sequence is periodic with period

P, the single peak can be placed at any one of the P positions which yield the same v =
1
VPA-7)2+7(2—7)
the estimation of covariance matrix Rg is minimized and thus identification performance

. Note that v decreases as 7 decreases, which implies that the noise effect in

improves. However the peak location m does significantly affect the numerical condition of

the linear equation (2.16). We discuss the selection of m next.

2.3.2 On Selection of m

We now consider the selection of m. We know that different choices of m result in dif-
ferent matrix M; and affect the numerical computation of F;,j =1,2,---, L, in (2.18) and
F, in (2.24), since different M]-TMj may have different condition number. If the condition
number is large, then the matrix M?Mj is ill-conditioned and the computations in (2.18)
and (2.24) are sensitive to data error. Let

p= max /{(MJTM]-), (2.31)
where k(A) is the condition number of A. Our goal is to choose m so as to minimize the
largest condition number of the corresponding matrices M?Mj, j=20,1,---, L. Since the
peak appears at one of the P possible positions in the periodic precoding sequence, there
are P precoding sequences which may result in P different u. The following result shows
that some choices of m are to be avoided since they result in some M; being rank deficient

and thus p = oo.
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Proposition 2.2 : At least one M;, 0 < j < L, is not full column rank if and only if
P-L+1<m<P-2.
Proof : See Appendix A.

Hence if we choose, either 0 < m < P — L or m = P — 1, then each M, is full column
rank and the channel is identifiable. The following result shows that we can classify the
remaining choices into 2 groups that are relevant to the optimal choice of m.
Proposition 2.3 :

(a) Each of the (P — L) choices, m =0, m =1, ---, m = P — L — 1, results in the same p
denoted by ;.
(b) The two choices m = P — L and m = P — 1 result in the same p denoted by ps. Also

M2 2 [
Proof : See Appendix A.

From Proposition 2.3, we know if s > py, then we choose case (a); if us = pi, we
proceed to compare the second largest condition numbers of the set of matrices {M;-FMJ }JL:o
for these two cases and choose the case whose value is smaller. If they are again equal,
the same procedure can be done by comparing the third largest condition numbers and so
on. Moreover, for 0 < m < P — L — 1 (case (a)), since the condition numbers of MM
are the same for each fixed j, j = 0,1,---, L, (see Appendix A), we can use m = 0 to
represent case (a). Similarly, m = P — 1 can be used to represent case (b). Hence the
optimal selection of m reduces to one of two cases: m = 0 or m = P — 1. In other words,

the optimal precoding sequence has a peak either at the beginning or at the end.

2.4 Identification Algorithm

So far, we have proposed a method for blind identification of FIR MIMO channels using
periodic precoding sequence. It is shown that, by properly choosing the precoding sequence,
the MIMO FIR transfer functions, with K inputs and J outputs, can be identified up to
a unitary matrix ambiguity. The proposed algorithm requires solving linear equations and
computing the nonzero eigenvalues and eigenvectors of a Hermitian positive semidefinite
matrix. Since the cyclostationarity is induced at the transmitter, the identifiability condi-
tion imposed on the channel is minimum: it only requires that channel impulse response
matrix H is full column rank. The channel transfer matrix is not required to be irreducible
or column reduced. The channel can have more receivers or more transmitters. The per-
formance of the algorithm depends on the precoding sequence which is optimally designed
to reduce the effect of noise and error in estimating the covariance matrix of the received
data.

13



We summarize the proposed method as the following algorithm.
1) Use the precoding sequence p(n) in (2.30) with optimal selection of m =0 orm = P —1
to form the matrix M; in (2.17).
2) Estimate the covariance matrix Rg via the time average Rg = 5 LS %(i)%(i)*, where
S is the number of data block (i.e., SP is the number of samples for each transmitter).
3) Compute F;, formed by the channel product matrices, for j =0,1,--- , L, using (2.18).
4) Form the matrix Q as in (2.19), and obtain the channel impulse response matrix (2.21)

by computing the K largest eigenvalues and the associated eigenvectors of Q.

2.5 Simulation Results

In this section, we use several examples to demonstrate the performance of the proposed

method. The channel normalized root-mean-square error (NRMSE) is defined as

NRMSE = |H|| Z IHO — H|2, (2.32)

where || - || denotes the Frobenius norm. H® = [H®(0)” H®(1)” ... HO(L)T]” is the
estimate of channel impulse response matrix H after removing the unitary matrix ambiguity
by the least squares method [21]. I = 100 is the number of Monte Carlo runs. The input
source symbols are independent and identically distributed (i.i.d.) QPSK signals. The
channel noise is temporally and spatially white Gaussian. The signal-to-noise ratio (SNR)
at the output is defined as SNR = £ Zuco Bt Hz] where t(n) = [ti(n) -+ t;(n)]" is the

Ellw(n)[l3]
signal component of the received signal (see Flgure 2.1).

1) Simulation 1 — optimal selection of precoding sequences

In this simulation, we use the following model

[ 134 — 055  1.67+0.12i ] [ —145+021i —1.354+021i | _,
H(z) = z

—0.69 +0.25¢ —0.51 — 0.33¢ 0.62 —0.31c  —0.76 + 0.43:

J/

H(0) H(1)

—0.31 +0.15 —0.41 — 0.16i
0.0 = (2.33)
—0.29 +0.21i —0.25 — 0.14i

N J/

H(2)

to demonstrate the effect of different precoding sequences on the performance of the pro-
posed method. In experiment 1, the first sequence is chosen as {0.767 1.07 1.07 1.07},
which satisfies (2.28) and (2.29). The second and third sequences are chosen based on
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(2.30) for P =4 and 7 = 0.5878 with the two possible peak positions: m = 0 and m = 3.
By computation, the corresponding g for the three cases are 40.0, 4.66 and 22.1, respec-
tively. Thus m = 0 is the optimal selection. Figure 2.2 shows that for SNR=10 dB, there
are about 5~7 dB and 5~9 dB difference in NRMSE between the optimal one and two
others.

In experiment 2, we use the precoding sequences that satisfy (2.30) with m = 0, but
with different 7 to test the effect of 7 on the identification performance. Figure 2.3 shows
that for each sequence, when the number of samples (for each transmitter) is fixed at
1000, the NRMSE decreases as SNR increases and is roughly constant for SNR > 20 dB. A
possible explanation is that for sufficiently large SNR, the NRMSE is contributed mainly by
numerical error rather than by channel noise. Figure 2.3 also shows that the identification
performs better for smaller 7, which is consistent with the conclusion at the end of Section
2.3.1.

2) Simulation 2 — channel order overestimation
In this simulation, we use the following channel model

4851 0.32 —0.4851 0. 7276 —0.12
H(z):[085 0300] [085 09387]2_1 [0776 0 aao]Z_2

—0.3676 0.2182 0.8823 0.8729 0.2941 —0.4364

J/ J/

'

H(0) H(1) H(2)
(2.34)

given in [19]. For each upper bound L,o< (f} — L) <6, we choose P = L +2, SNR=10
dB, and 1000 samples (for each transmitter) for simulation. The precoding sequences are
chosen as (2.30) with m = 0 and 7 = 0.2, 0.4, 0.6, and 0.8. Figure 2.4 shows the NRMSE
increases with increasing channel order overestimation. We see the proposed method is
quite robust to channel order overestimation when 7 is small. For example, with 7 = 0.4,
when (L — L) increases from 0 to 3, the NRMSE increases from -25.5dB to -21dB, which
is still a low value.

3) Simulation 3 — a 3-input 2-output channel

In this simulation, we use the 3-input 2-output model

0.8 0.44 0.33 —0.14 0.37 0.23 0.26 0.02 0.16

(. J/ N J/ N
e ' '

H(0) H(1) H(2)

1.6 0.88 0.66 —0.44 0.35 0.14 13 0.01 0.
H(>:[ ] [0 0.35 0 ]z—l [0300 008]2_2

(2.35)

to illustrate the performance of the proposed method for channel with more transmitters

than receivers. Note that H is full column rank, but the channel is not irreducible [21]
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because H(0) is not full rank, and it is not column reduced [21] either because H(2) is
not full rank. In experiment 1, the precoding sequences (P = 4) are given as in (2.30)
with m = 0 and m = 3, respectively. Figure 2.5 shows that the NRMSE decreases as the
number of data samples increases for SNR=10 dB. As expected, m = 0 case (the optimal

selection) is better than m = 3 case.

In experiment 2, we use the precoding sequences that satisfy (2.30) with m = 0, but
with different 7 to test the effect of 7 on the identification performance. Figure 2.6 shows
that for each sequence, when the number of samples (for each transmitter) is fixed at 1000,
the NRMSE decreases as SNR increases and is roughly constant for SNR > 25 dB due to

numerical error. Figure 2.6 also shows the identification performs better for smaller 7.
4) Simulation 4 — channel equalization performance

In this simulation, we use the channel model given in (2.34) to demonstrate the perfor-
mance of the proposed method for channel equalization. We use the precoding sequences
that satisfy (2.30) with m = 0, but with different 7 to test the effect of 7 on the equalization
performance. For simplicity, we use the minimum mean square error (MMSE) equalizer.
The equalizer is a 17-tap Wiener filter with 12-tap reconstruction delay whose jth output
uj(k) is an estimate of w;(k) for j = 1,2,--- , K. Since the precoding scheme is applied
at the transmitter, we need to multiply @;(k) by the corresponding p(k)~* to obtain an
estimate of s;(k) for j =1,2,--- , K. The number of samples is 1200. We first identify the
channel using the first 400 samples and then do equalization. To obtain smoother curves,

we use I = 300 as the number of Monte Carlo runs rather than 100.

Figure 2.7 shows that under low SNR, the proposed method performs better when 7 is
large; however, under high SNR, the proposed method performs better when 7 is low. A

possible explanation is as follows.

Channel estimates become more accurate as 7 becomes smaller, but the gains p(k)™! =
%, k=1,2,---,P—1become larger and result in larger noise amplification at the receiver.
Both channel estimation error and channel noise contribute to the (maximum likelihood)
detection performance, i.e., the symbol error rate. In the low SNR region, the detrimental
effect of noise amplification outweighs the benefit of small estimation error; whereas in the
high SNR region, accurate channel estimation weighs more than the noise amplification

effect. Hence we choose a small 7 when SNR is high and a large 7 when SNR is low.
5) Simulation 5 — Comparisons with other methods

In this simulation, we generate 100 2-input 4-output random channels with order L = 2;

each element in the channel impulse response matrix is a complex circular Gaussian random
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variable with unit variance. We compare the proposed method with a generalized space
time block codes (GSTBC)[23] based method. Both methods require periodic precoding
sequences. For the proposed method, the precoding sequence is chosen as {1.500 0.767
0.767 0.767}; whereas the entries in the precoding sequence for the GSTBC method is
chosen as random entries with modulus 1 for each random channel simulation [23]. The
performance of the proposed method is also compared with a linear prediction (LP)[2,
chap. 6] based method, and an outer product decomposition algorithm (OPDA)[20]. Both
methods do not require a periodic precoder. MMSE equalizers are used for the proposed
method, LP method, and OPDA method. For the GSTBC method, we use the customized
equalizer proposed in [23]. Figure 2.8(a) shows that when the number of samples is 1200
(for each transmitter), the identification performance of the proposed method is better
than those of the other three methods excepting the GSTBC method for SNR > 13 dB.
However, Figure 2.8(b) shows the equalization performance of the proposed method is only
better than those of the LP and OPDA methods and worse than the GSTBC method.
The inconsistency of the channel estimation and equalization performance of the proposed
method and the GSTBC method for SNR < 13 dB may be due to the different precoding
sequences and equalizers used. Figure 2.9 shows that when the number of samples is 200
(for each transmitter), the identification and equalization performance of the proposed
method is better than that of the GSTBC method for SNR < 15 dB. Figure 2.9 shows that
when the number of samples is small, the proposed method has better performance than
the GSTBC method under low SNR.
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Figure 2.5. 3-input 2-output model: channel NRMSE versus number of samples
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Chapter 3

Identification of MIMO Single
Carrier Zero Padding Channels

In this chapter, we propose a blind identification method based on periodic precod-
ing for another transmission systems, single carrier with zero padding block transmission
systems. The method uses periodic precoding on the source signal before transmission.
The estimation of the channel impulse response matrix consists of two steps: (1) obtain
the channel product matrix by solving a lower-triangular linear system and (2) obtain the
channel impulse response matrix by computing the positive eigenvalues and eigenvectors of
a Hermitian matrix formed from the channel product matrix. The method is applicable to
MIMO channels with more transmitters or more receivers. A sufficient condition for identi-
fiability is simply that the channel impulse response matrix is full column rank. The design
of the precoding sequence which minimizes the noise effect in covariance matrix estimation
is proposed and the effect of the optimal precoding sequence on channel equalization is

discussed. Simulations are used to demonstrate the performance of the method.

3.1 System Model and Formulation

Consider the K-input J-output discrete time SC-ZP block transmission baseband model
shown in Figure 3.1. At the transmitter, the kth input signal vg(n) is first multiplied by a
positive P-periodic sequence, p(n) € R, to obtain si(n) = p(n)vx(n), where p(n+P) = p(n),
¥V n. Then si(n) is passed through a serial-to-parallel block whose output is

5e(i) = [sk(iM) sp(iM +1) -+ sp(iM + M —1)]". (3.1)
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p(n) wi(n)

v1(n) XL s1(n) s/p s1(7) 7p U (i) P/s uy(n) ti(n) % z1(n)
1: M N:1 MIMO
: : : : FIR : :
p(fl) . ) . . _' ‘ . Channel . wai(n) .
vr(n) Ysk(n Ay Sk (i 7p ug(i) P/S ug(n) ty(n) 1 x;(n)
1: M N:1

Figure 3.1. An MIMO SC-ZP block transmission baseband model with periodic precoding

Then §(4) is passed through a zero padding prefilter F; = [I; 05, ,,]7 € RM+HPXM whose
output is

(1) = F15,(i) = [ 8x(4)" 00" =[w(iN) - u(iN+M—-1) 0---0]", (3.2)

g

P entries P entries

M entries M entries

where N = M + P. Finally, G(7) is converted to ug(n) via a parallel-to-serial block and
transmitted through the MIMO FIR channel. At the receiver, the jth received signal is
z;(n) = t;(n) + w;j(n), where ¢;(n) is the signal component at the output and w;(n) is the
channel noise seen at the jth receiver. If we define x(n) = [z1(n) xo(n) --- xz;(n)]* € C/,

then x(n) can be written as

x(n) = ZH(Z)u(n — )+ w(n) =t(n)+w(n), (3.3)

1=0
where u(n) € CX, w(n) € C’, and t(n) € C’ are similarly defined as x(n), and H(l) €
C7*K is the channel coefficient matrix whose jkth element h;;. (1), I = 0,1,---, Lj, is the
impulse response from the kth transmitter to the jth receiver, and L = max;;{L;z} is the
order of the MIMO channel. We assume that H(L) # 0,4 x. Group the sequence of x(n)
as X(i1) = [x(iN)T x(iN + 1)T---x(iN + N — 1)T]T € C/¥, and define u(i) € CEV and

w(i) € C'N similarly as x(i), we have
x(i) = Hou(i) + Hyu(i — 1) + w(i), (3.4)

where Hg is a JIN X KN block lower-triangular Toeplitz matrix with the first block column
being [H(0)" H(1)T ---H(L)T 0%, ;0% x]T € C/V*K and H; is a JN x KN block
upper-triangular Toeplitz matrix with the first block row being [0y - - - 05« x H(L) H(L—
1)---H(1)] € C/*EVN. We assume that the receivers are synchronized with the transmit-

ters. In addition, the following assumptions are made throughout this chapter.
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(B1) The source signal v(n) = [v1(n) va(n) -+ vg(n)]" € C¥ is a zero mean white se-
quence with E[v(m)v(n)*] = §(m —n)Ix € RE*K where §(-) is the Kronecker delta
function. The noise is white zero mean with E[w(m)w(n)*] = §(m —n)o2l; € R/*/,
In addition, the source signal is uncorrelated with the noise w(n), i.e., E[v(m)w(n)*] =

OK><J7 vm?”'

(B2) An upper bound L of the channel order L is known, P = L+ 1, and M > P is a
multiple of P.

(B3) The channel impulse response matrix H = [H(0)T H(1)” --- H(L)T]? is full column
rank, i.e., rank(H) = K.

In the next section, we derive an algorithm for blind identification of the MIMO channel

impulse response matrix H using second-order statistics of the received data.

3.2 Blind Channel Identification

In this section, we derive the proposed method under assumptions (B1), (B2), and
(B3). We discuss an optimal design of the precoding sequence, which takes into account
the noise effect in the estimation of covariance matrix of the received data, so as to increase
the accuracy in the computation of the channel product matrix HH* and thus reduce the
channel estimation error. With the proposed optimal precoding sequence, the computation
of HH* becomes particularly simple. Taking eigen-decomposition of HH*, we obtain the

channel impulse response matrix H up to a unitary matrix ambiguity.

3.2.1 The Identification Method

We first derive the proposed method for the case where the channel order L is known
with P = L+ 1, there are more receivers, i.e., J > K, and the noise is absent. The cases of
channel order overestimation and more transmitters than receivers (i.e., K > J) are given
at the end of this sub-section. The effects of noise and optimal design of the precoding

sequence are discussed in Section 3.2.2.

From (3.4), we know that only the last L block columns of Hy are non-zero and zeros
are padded in the last P block rows of @(i — 1) and @(i) (see (3.2)). Hence the product

H;u(i — 1) equals the zero vector and (3.4) can be written as follows (noiseless case):
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%(i) Ho a(i)

A\ A A

x(iN) 1 [ =0 17 u@n)
X(iN + L) H(L)--- H(0) Wil 1 1)
: = RS : = HLs(i),
X(iN+ M — 1) H(L)--- H(0) u(iN + M — 1)
: R 0
| x(iN+N-1) | | H(L)-- H(0) | | 0 |
(3.5)

where H, is the sub-matrix formed from the first M block columns of Hy and §(i) =
u(iN)T u(iN + 1)T - u(iN + M — 1)T]7 is the first M block entries of G(i). Because
u(iN) = [u1(iN) ug(iN) -+ ug(iN)]" (see the line below (3.3)) and uy(iN) = sg(iM)
for k = 1,2,--- K (see (3.2)), u(iN) = [s1(iM) so(iM) --- sg(iM)]T £ s(iM). Simi-
larly, u(iN +m) = s(iM +m) for m = 1,2,--- ;M — 1. Hence §(i) = [s(iM)T s(iM +
DT s iM + M — 1)1

Let x7(i) = [x(iN)T x(iN +1)T -+ x(iN + L)T]" be the first J(L + 1) rows of X(i).
Then

x7(i) = Hysy(i), (3.6)

where Hy € C/EFUXK(ILAD g the sub-matrix formed from the first (L + 1) block columns
and block rows of He, and s;(z) = [s(iM)T s(iM +1)T -+ s(iM + L)T]T. Also we know
for k = 1,2,--- | K, sp(iM) = p(iM)vi(iM) = p(0)vg(iM) from (3.1) and assumption
(B2). Hence s(iM) = [p(0)vy(iM) p(0)va(iM) -+ p(0)vg(iM)|T = p(0)v(iM), where
v(iM) = [vi(iM) ve(iM) -+ vg(iM)]*. Similarly, s(iM + n) = p(n)v(iM + n) for
n=1,2,---, L. Therefore (3.6) can be written as

*r ) Hy Vi
x(iN) p(0)EL(0) v(iM)
x(iN+1) | | p(0)H(1) p(1)H(0) v(iM + 1)
e | . (3.7)
x(iN + L) p(OVH(L) p(O)H(L —1)--- p(L)H(0) | | v(iM + L)

Define S € R/UADXJ(L4D) 55 the matrix whose first block sub-diagonal entries are all I

(i.e., S(J+1:J(L+1),1:JL)=1,), and all remaining entries are zero. Rewrite (3.7) as

x;(i) = [p(O)H p(1)SH --- p(L)S*H]v(i) = H,v(i). (3.8)
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Taking expectation of x(7)x(7)*, we get the covariance matrix
Ry — Elx;(i)x,(1)"] = H,H; (39)

From (3.8), since H, = [p(0)H p(1)SH --- p(L)S'H], (3.9) can be written as
L
R; = p(0)’HH" + p(1)’SHH"S” + - - + p(L)*’S"HH*(S")" = ) " p(k)*S*HH"(S")".
k=0
(3.10)

From [37, p.414], we know that the general matrix equation Z?Zl A;XB; = C can be equiv-

alently expressed as a matrix-vector equation form, [Z?Zl B ® A]} vec(X) = vec(C),
where vec(+) is the vec-function which stacks up columns of a matrix. Hence the matrix

equation (3.10) can be written in the following vector form:

vec(Ry) = vec (Z p(k:)QSkHH*(ST)k> = (Z p(k)*S* ® s’f> vee(HH") = G - vec(HH?).
k=0 k=0
(3.11)

Here G is a block Toeplitz lower-triangular matrix shown as follows:

L 1)2S 0)°1 o0 oy o
G-y phpstest— | MBS MO0 g (g
e : : L
p(L)*S" p(L— 1S o p(0)°Lyr

where F' = J(L + 1) and S € R/F*ITF i5 4 block diagonal matrix with S on the diagonal
blocks. Since G is square, the solution to (3.11) is

vec(HH*) = G 'vec(Ry) (3.13)

provided p(0) # 0. We use the solution obtained in (3.13) to form a Hermitian matrix
Q = HH". Then under the assumption (B3), we can obtain the channel impulse response
matrix, up to a unitary matrix ambiguity, by choosing the K largest eigenvalues and the
associated eigenvectors of Q, like the way at the end of Section 2.2.1.

Remark 1: So far we have assumed that the channel order L is known. If only an upper
bound L > L is available, then following the same process given in this sub-section, we ob-
tain vec(Ho Hz,) = S5 S, ® Si]~'vec(R;) where Hoy = [HT 0 --- 0]7 € C/(E+DXK

) L—L blocks
Then we can also obtain Q = Ho, H}, . Note that the last (L — L) block columns and block

rows of Q are zero. Then similar to the discussion in Section 2.2.2, we can also identify
the channel impulse response matrix.
Remark 2: The proposed method can apply to the case of more transmitters than re-

ceivers. Please see the discussion in Section 2.2.3.

26



3.2.2 Optimal Design of the Precoding Sequence

When the noise is present, the covariance matrix Ry contains the contribution of noise.
Thus (3.9) becomes

R; = E[x;(i)x;(i)"] = HH} 4 0.1, (3.14)
where F' = J(L + 1). In this case, (3.11) becomes
vec(Ry) = G - vec(HH*) + o2 vec(Ip). (3.15)
From (3.13), the approximate solution of vec(HH*) is
Veﬁ*) = G 'vec(Ry). (3.16)

It follows from (3.16) and (3.15) that

Veﬁ*) = vec(HH") + 02 G - vec(Iy) = vec(HH*) + 02 z. (3.17)
~—_———
The vector z = [21 25 -+ 2p2]T in (3.17) is the solution of Gz = vec(Ir). Since the matrix

G is completely determined by the precoding sequence p(n), we seek to choose p(n) so that
|z||3 is minimized. To this end, we need to analyze the relations between z and p(n). By

expanding the matrix equation Gz = vec(Ir), we find that

((p(0)22z,=1 i=14+kF+1), k=0,1,---,J—1
2711 (n)2zz+1n F1) =1 i=1+k(F+1), k=0,1,---,J—1
{ Toop sy =1 A= 1HRF 4D, k=01 o1 (31

\ Zi:op(n)22i+(Lfn)J(F+l) =1 =1+ k(F+ 1)7 k= 07 17 e aJ -1

and z; = 0 for all other indices j. We write (3.18) as the following matrix equation.

qo 0 te 0 mo 1
o 0 m 1
AR (N R I (3.19)
gL 9gr—1 - 9o mr, 1
Gs m y
where Gy is a lower-triangular Toeplitz matrix, g, = p(n)? for n = 0,1,--- , L, and m; =

Zipjopgry for j=0,1,--- L i =1+k(F+1),k=0,1,--- ,J—1. Hence Gz = vec(Ip), the
relations between z and p(n), is reduced to (3.19), and minimization of ||z||3 is equivalent

to minimization of ||m||3, which is a nonlinear function of gg, g1, - - -, gr. Then the problem
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is to minimize ||ml|3 by choosing go, g1, - - - , gz, subject to suitable constraints. Specifically,

we formulate the problem as

Minimize,, 4,... 4, [lm|/3  subject to

Gu>T>0, YO<n<L (3.20)
1 L
n=0

Roughly, constraint (3.20) requires that at each instant, the power gain (g, = p(n)?) is no
less than 7 with 0 < 7 < 1; constraint (3.21) normalizes the power gain of the precoding

sequence of each transmitter to 1.

It is easy to show that for L = 1, the problem has a unique global minimizer given by
go = 2 — 1 and g, = 7. For general L > 2 case, the standard Kuhn-Tucker conditions
[38] of the nonlinear minimization problem do not seem to yield easily a unique analytical
solution. However, the problem can be easily solved numerically (for fixed L and 7), say
using the Matlab Optimization Toolbox. Extensive numerically solutions, with different L,

7, and initial guess, have indicated that a global minimizer exists and is given by

In the following, we show that the solution (3.22) is also the global minimizer of an
upper bound of [[m|[3. We know [jm[5 = [[GMy[[5 < [GSH3 - Iy[3 = (L + DIGS(I5,

where ||G;!||2 is the 2-induced norm of G;*'. Since Gy is triangular and Toeplitz, it follows
from [32] that for any fixed integer L > 1,

1
112 2(L+1) . A
IG 2 < m[(a+1) +2(L+ (e +2) - 1] = f(a, 8), (3.23)
where v = max—1 ..., [4] and § = [go|. Hence we know ||m||2 (L+1)f(a, ). Since for
any a > 0 and 3 > 0, 8f(a/6) > 0 (see Appendix C) and 22 aﬁ = Bf(a,ﬁ) < 0, we know

for any fixed 8 > 0, f(« ,6) is an increasing function of «, and for any fixed a > 0, f(a, 3)

is a decreasing function of . Hence to minimize f(a, ), we should choose a as small as

possible and choose [ as large as possible subject to § < L+1— L7 and @ > 705> It
follows that (3.22) is a global minimizer of the upper bound (L + 1) f(«, ).
Since g, = p(n)? and p(n) > 0, the optimal precoding sequence is
L+1— Lt n=>0
n) = ’ 3.24
p<>{f”7’ A 3.29

We consider next the effect of 7 on channel identification. From (3.19) and [30, 31], we

know m = Gy, where G is a lower-triangular Toeplitz matrix with [go g1 --- gr]” €
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R+ as its first column, and

{

_ 1

Y 3.25
:—%Zézlgl—i‘gi, i=1,2,---,1—1, for [=1,2,---,L _ ( )

K Qi

Then
lmf3 = g+ @o+g)*+ -+ @G +a+--+3.) (3.26)

For the optimal solution in (3.22), the corresponding g, in (3.25) can be expressed as

follows:

_ 1

=——>0

-?0 L+17L77_' . i . (327)
9i = _(L+17LT)2<1 - ) <0, i=1,2-,L :

The following proposition shows that ||ml|3 is a continuous and strictly increasing function
of 7 on (0,1). In other words, for 0 < 7 < 1, |jml|3 decreases as 7 decreases, and thus as
7 decreases, the noise effect in the estimation of the covariance matrix Ry is reduced and

hence identification performance improves.
1—(1— —T—)2(L+D)
L+1—Lt

2(L+1—L7)T—72

Proposition 3.1: With g, given in (3.27), |/m]3 =
0<7<1
Proof: See Appendix D.

and -£|ml|} > 0 for

3.2.3 Computation of Gal

With the precoding sequence p(n) chosen as (3.24), the matrix G in (3.12) becomes

(IIJF 0 0
S al;p - 0

Go=1| . " T, (3.28)
bSE bSEl ... gl

where a = L+1—L7, and b = 7. The inverse of G can be obtained by forward substitutions

as
koL 0 o0
Gyt = kl.g kOI.JF (,) : (3.29)
kS ki SE e kb

o —

where kg = £ and k; = —5(1 — 2)""! for i = 1,2,---,L. The solution vec(HH*) =
Gy 'vec(Ry) in (3.16) is thus quite easy to compute once the optimal precoding sequence

is given.
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3.2.4 Identification Algorithm

So far, we have proposed a new method to identify the MIMO channels for the single
carrier zero padding block transmission system using optimal designed periodic precoding
which minimize the noise effect in the estimation of the covariance matrix Ry. With zero
padding, the computation of the channel product matrix HH* becomes particularly simple,
since it amounts to solving a lower-triangular linear system. The channel impulse response
matrix H is then computed, up to a unitary matrix ambiguity, from the channel product
matrix via an eigen-decomposition. We summarize the proposed method as the following
algorithm:

1) Select the optimal precoding sequence p(n) given by (3.24), and form G as in (3.29).
2) Collect the received data as X(i) and pick up the first (L + 1) block entries of X(i) as

x7(7). Then estimate the covariance matrix Ry via the time average

S
Ry = D xeli)xs (i) (3.30)

where S is the number of data block.
3) Compute vec(HH*) = Gj'vec(R;) to obtain the elements of HH*.
4) Form the matrix Q = HH" and obtain the channel impulse response matrix by comput-

ing the K largest eigenvalues and the associated eigenvectors of Q.

3.3 Channel Equalization

Once the received data X(i) = HeS(7)+w(¢) is available and the channel is identified, the
minimum mean square error (MMSE) or zero forcing (ZF) equalization methods [13, 14] can
be used to recover the modulated sources si(n). For example, with an MMSE equalizer,
G., we estimate 5(i) by (i) = G.X(i). Since the precoding scheme is applied at the
transmitter, we need to multiply the estimated §(i) by P~! to obtain an estimate of v (i),
where V(i) is similarly defined as §(i), and P = I x_ ® (diag[p(0), -, p(L)] ® I). In

L+1
other words, the estimated v(i) can be obtained by

V(i) = P1Gx(4). (3.31)
From (3.31), we know the equalization performance is related to P~! and G,.. Because
G, is formed from the estimated channel coefficients, we expect good channel identification

to bring an accurate G, and thus improves the equalization performance. Also we know

using the optimal precoding sequence in (3.24), the identification performance improves as 7

30



decreases. Hence using a small 7 brings good channel estimation and improves the accuracy
of G, which is expected to improves the equalization performance. However, using a small
7 would make the diagonal gain p(k)~! = % in P! k=1,2,---, L, becomes large, which
results in large noise amplification at the receiver and hence is more likely to cause decision
error. Therefore using a small 7 would amplify the noise and the equalization performance

deteriorates as 7 decreases.

In summary, although decreasing 7 improves the accuracy of G, it would cause an
increased amplification of noise, and vice versa. Hence there is a trade-off on the selection
of 7 when channel equalization is performed. In the work of [15, 16, 27], this trade-off is
also observed. We will give a simulation example to demonstrate this trade-off in the next

section.

3.4 Simulation Results

In this section, we use several examples to demonstrate the performance of the proposed
method. The channel NRMSE, SNR, and the number of Monte Carlo runs are the same as
those given in Section 2.5. The source symbols are i.i.d. QPSK signals. The channel noise

is zero mean, temporally and spatially white Gaussian.
1) Simulation 1 — optimal selection of precoding sequences

In this simulation, we use the model (2.33) to demonstrate the performance of the
proposed method. The length of symbol blocks is M = 27, which is zero padded to
blocks of length M + P = 30. It means P = 3(= L + 1) and transmission efficiency is
90%. In experiment 1, we use 5 precoding sequences which all satisfy (3.20) and (3.21) to
illustrate the effect of the precoding sequences on the identification performance. The first
sequence Sy are chosen based on (3.24) for 7 = 0.6, i.e., Sy is chosen as {v/1.8 v/0.6 v/0.6}.
The sequences Si, Sa, Sa, and Sp are chosen as {\/ﬁ\/ﬁ\/ﬁ}, {\/ﬁm\/ﬁ},
{v/0.6 /1.0 v/1.4}, and {111} (i.e., no precoding), respectively. Figure 3.2 shows that for
SNR=10 dB, the NRMSE decreases as the number of symbol blocks increases for every
precoding sequence. As expected, the optimal precoding sequence Sy yields the smallest
NRMSE.

In experiment 2, we use the precoding sequences that satisfy (3.24), but with different
7 to test the effect of 7 on the identification performance. Figure 3.3 shows that when the
number of symbol blocks = 100, the NRMSE decreases as SNR increases and is roughly
constant for SNR > 20 dB for different 7. Figures 3.3 also shows that the identification

performs better for smaller 7.
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2) Simulation 2 — channel order overestimation

In this simulation, we use the channel model (2.33) with SNR = 10 dB, fix the number
of symbol blocks at 300, and use the precoding sequence that satisfies (3.24) with 7 = 0.6.
For each upper bound [:, 0< (ﬁ— L) <6, we choose P = L+1 and M = 9P for simulation
such that the transmission efficiency is maintained at 90%. Figure 3.4 shows the NRMSE
increases with increasing channel order overestimation for each 7. We see that periodic
precoding improves robustness to channel order overestimation. For example, without
precoding (7 = 1), the NRMSE increases about 6 dB for (L — L) = 3. With precoding,
(1 = 0.4), the corresponding increase in NRMSE is about 1.5 dB.

3) Simulation 3 — a 3-input 2-output channel

In this simulation, we use the 3-input 2-output model (2.35) to illustrate the perfor-
mance of the proposed method for channel with more transmitters than receivers. We use
M =27 and P = 3. In experiment 1, we use the same precoding sequences Sy, S;, and Sy
which are used in simulation 1. Figure 3.5 shows that for SNR=10 dB, the NRMSE de-
creases as the number of symbol blocks increases for each precoding sequence. The optimal

precoding sequence S yields the smallest NRMSE.

In experiment 2, we use the precoding sequences that satisfy (3.24), but with different 7
to test the effect of 7 on the identification performance. Figure 3.6 shows that the channel
NRMSE decreases as SNR increases for each 7 and that the identification method performs

better for smaller 7.
4) Simulation 4 — trade-off in selecting 7

In this simulation, we discuss the trade-off in selecting 7 when channel equalization
is performed. We use the MMSE equalizer [13, 14]. We generate 150 2-input 2-output
complex random channels based on the IEEE 802.11a standard [36, p. 336]. The sampling
frequency is 20 MHZ and the the delay spread is 35 nsec (for home environment). Thus
the orders of the channels are L = 7. We use M=56 and P = L + 1 = 8 such that
N = M + P = 64. The number of symbol blocks is 250. We use the optimal precoding

sequences which satisfy (3.24) with various 7.

Figure 3.7 shows that the identification performs better for smaller 7. Figure 3.8(a)
shows that for 7 € [0.1,0.8], the bit error rate (BER) performance deteriorates as 7 de-
creases and the BER for 7 = 0.7 and 7 = 0.8 are very close. Figure 3.8(b) shows that
for large 7, 7 > 0.8, the BER performance improves as 7 decreases. Figure 3.8 shows
that there is a trade-off between identification accuracy and noise amplification: a small 7

means large noise amplification and an accurate channel estimate, and vice versa. For this
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example, it seems a 7 between 0.7 and 0.8 is a good choice for BER performance.
5) Simulation 5 — comparison with the subspace method

In this simulation, we again generate 300 2-input 2-output channels based on IEEE
802.11a standard. We use the precoding sequences that satisfy (3.24) with 7 = 0.8. We
use Gray-coded QPSK and 16-QAM input symbols for simulation. We compare the iden-
tification and MMSE equalization performances of the proposed method with those of the
subspace method [26] for MIMO SC-ZP systems.

Figure 3.9(a) shows that when the number of symbol blocks is 200, the identification
performance of the proposed method is better than that of the subspace method except
SNR > 16 dB. The proposed method yields almost the same identification performance for
QPSK and 16-QAM input symbols. Figure 3.9(b) shows that the equalization performance
of the proposed method is better than that of the subspace method except SNR > 16
dB. Figure 3.9 shows that the identification and equalization performance of the proposed
method is better than those of the subspace method for low to medium SNR. The subspace
method gives smaller BER than the proposed method for SNR> 16 dB.
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Chapter 4

A Simplified Identification Algorithm
for MIMO Zero Padding Channels

In this chapter, we propose a simplified identification method for MIMO SC-ZP block
transmission systems without periodic precoding. The proposed method can also apply to
MIMO ZP-OFDM systems. With zero-padding, the relation between the covariance ma-
trix of the received data and the channel product matrices becomes highly structured. The
structure makes it easy to estimate the channel product matrices and the noise covariance
matrices. Eigen-decomposition of a Hermitian matrix formed by the channel product ma-
trices yields the channel impulse response up to a unitary matrix ambiguity. The proposed
method is shown to be robust to channel order overestimation. The channel noise may be
temporally and spatially colored, the channel needs not be irreducible or column reduced,
and there can be more outputs or more inputs. Simulation results are used to demonstrate

the performance of the proposed method.

4.1 System Model and Formulation

Consider the K-input J-output discrete time SC-ZP block transmission baseband model
shown in Figure 4.1. Following the same derivation process in Section 3.1, we have the

relation of block inputs and outputs as follows.

where (i), w(i), X(7), Ho and H;y are those defined in Section 3.1. In addition, we make

the following assumptions.
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Figure 4.1. An MIMO single carrier with zero padding block transmission baseband model

(C1) The source signal s(n) = [si(n) sa(n) -+ sg(n)]’ € CK is a zero mean white
sequence with E[s(m)s(n)*] = §(m—n)lx € REXK where §(-) is the Kronecker delta
function. The noise is zero mean, wide-sense stationary, and may be temporally and
spatially colored with E[w(m)w(m + d)*] = Ky (d) € C/*/. In addition, the source

signal is uncorrelated with the noise w(n), i.e., E[s(m)w(n)*] = Oxx.s, ¥ m,n.
(C2) An upper bound L of the channel order L is known, P = L + 1, and M > P.

(C3) The channel impulse response matrix H = [H(0)" H(1)” - .- H(L)T]" is full column
rank, i.e., rank(H)=K.

In the next section, we propose an algorithm for blind identification of the MIMO

channel impulse response matrix H using second-order statistics of the received data.

4.2 Blind Channel Identification

In this section, we derive the proposed method under assumptions (C1), (C2), and
(C3). Application of the proposed method to MIMO ZP-OFDM systems is given in Section
4.3.

4.2.1 The Identification Method

We first derive the proposed method for the case where the channel order L is known

with P = L 4+ 1, and there are more receivers, i.e., J > K. The cases of channel order
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overestimation and more transmitters than receivers (i.e., K > J) are given at the end of

this sub-section.

Due to assumption (C2) and the effect of zero padding, we know (4.1) can be expressed

in a simple form X(i) = Hotui(7) + W(i) shown as follows:

(i) —~ b -~ (i)
[ x(iN) | H(f)) ) u(iN)
x(z’N'+ L) H(L)- : H(0) u(iN'+ L)
| - H(L).- H(0) | e
x(iN + M —1) o u(iN + M —1)
| x(iN+N—1) | 2L HO | 0 |
B (L41) blocks
(4.2)

Let x(i) = [x(iN)" -+ x(iN + L)T]" be the first (L + 1) block rows of X(i). Then
Xf(i) = Hfllf(i) + Wf(i), (43)

where H; € C/(L+D*K(L+D g the sub-matrix formed by the first (L + 1) block columns
and block rows of Hy, and us(i), wg(i) are similarly defined as x¢(z). Taking expectation

of x¢(7)xs(2)*, we get
Ry = Blx;(0)x;(1)"] = H/H} + Ky, (4.4)

where K is a Hermitian and block Toeplitz matrix and each block on the jth block super-
diagonal is equal to Ky(j) for j = 0,1,---, L. Since Hy is block lower triangular, we

have
( To(Ry) = [H(O)H(0)* + Kyw(0) o HOHD* +Kw(0) - X7 HOH)" + Ky (0)]
Ti(Ry) = [HO)H1)* + Ky (1) Y HOHI+1)* +Ky(1) - S HOH+1)* + Ky (1)]
T2(Ry) = [HO)H(2)* + Kw(2) S HOH(+2)* + Kw(2) - S FHOH+2)" + Ky(2)]
TL;l(Rf) =HOHL -1)*+Ky(L — 1.) lezo HOH(+L-1)"+Ky(L—-1)]
( Tr(Ry) = [H(0)H(L)* + Kuw(L)].
(4.5)

Then for each T,;(Ry), j = 0,1,---, L, keep the first block matrix and subtract the mth
block matrix from the (m + 1)th block matrix of T;(Rf), m =1,2,--- ,L —j > 1. In this
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way, we obtain the following matrices.

/

Eo = [H(0)H(0)" + K (0) H(1)H(1)* H(2)H(2)" H(L)H(L)"]
E, =[HOH(1)*+ Ky (1) H(1)H(2)* H(2)H(3)* H(L — 1)H(L)*
<EzZHﬂWH@V+Kw@)Hﬂﬂﬂ$*fﬂ%HHV - H(L —2)H(L)"] (4.6)
EL'_l = [H(O)H(L - 1)+ Kw(L — 1) H(1)H(L)*]
| Er = [H(0)H(L)" + Kw(L)]
From (4.6), we can obtain the channel product matrices H(m)H(n)* form,n =1,2,--- | L.

If we can further obtain H(0)H(j)* for j = 0,1,--- , L, then we can get a Hermitian matrix
Q = HH" formed by these channel product matrices. Similarly, under the assumption
(C3), we can obtain the channel impulse response matrix, up to a unitary matrix ambiguity,
by choosing the K largest eigenvalues and the associated eigenvectors of Q, like the way

given at the end of Section 2.2.1

Now, to obtain H(0)H(j)* for j = 0,1, -+, L, we need to eliminate the noise covariance
matrix imposing on H(0)H(j)* + K (j). We will take advantage of the special structure of
the last P block entries of X(i), i.e., x; = [x(iN + M)T -+ x(iN + N —1)"]" to eliminate
Ky (j) for 5 =0,1,--- L.

From (4.2), we know x;(7) can be written as

. H, ﬁ/(j)
X(2 ~ 5 '\,- , 1
’ X(iNA—i- My ] 0---0 H(L) --- H(1) H(0) u(i)
H(L H(1) H(0 :
x(iN+ M +1) _ ) . .,( (.)_ u(iN + M —1)
o . 0 H(L) - H(1) H(0) 0
X(ZN + N — 1> i M gl,ocks h P(=L+1) blocks ’ _ 0 i
(4.7)

where w;(i) is similarly defined as x,;(i). Because the last P block rows in (i) are zero and
P =L+ 1, x(i) can be written as

x,(1) = H.[u(iN)" - u(iN + M — D) + wy(i) = Hyu, (i) + wi (i), (4.8)

where H,., the first M block columns of H;, is a JP x KM block Toeplitz matrix with the
first block row being [0« - --0yxx H(L) H(L—1) --- H(1)] and the first block column
e —

(M—L) blocks
being zero, as seen from (4.7). Let R; = E[x(iN + M)x;(i)]. Then from (4.7) and (4.8),
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R, = [E[x(iN+ M)x(iN + M)*] Ex(iN + M)x(iN + M +1)*] --- E[x(iN + M)x(iN + N —1)*]]
L L—1
= D_HOHO" +Kw(0) Y HOH(I+1)" +Kw(1) - Ku(L)].
=1 =1 ?z(’L_)/
R;(0) Ry (1)
(4.9)

From (4.5), the last block column (in reverse order) of Ry gives the matrix R,,:

L L—1
R, =) HOH() +Kw(0) Y HOH(+1)"+Ky(1) - HOH(L)" +Ku(L)],
=0 .  m=0 - RT:(L)
R (0) R (1)

(4.10)

where R;(i) and R,,(i) € C’*/ for i = 0,1,---, L. Then subtracting (4.9) from (4.10),
we can obtain the channel product matrices H(0)H(0)*, H(0)H(1)*, ---, H(0)H(L)*. The
noise covariance matrix Ky(7) for j = 0,1,--- | L can also be obtained. Hence we can form
the Hermitian matrix Q = HH" and estimate the channel impulse response matrix H by
taking eigen-decomposition of Q.

Remark 1: If we choose P = L instead of P = L + 1, Hyu(i — 1) = 0 in (4.1) still holds
and we can also obtain (4.6). However, we can not eliminate the noise covariance matrix
imposing on H(0)H(L)* + K (L). More precisely, when P = L, then (4.9) and (4.10) will
become Ry(1: J;1:J x L) = [Ry(0) Ry(1) --- Ry(L—1)] and R,,,(1 : J;1: I x L) =
R.(0) R, (1) -+ Ry (L — 1)], respectively. The difference of these two matrices gives
H(0)H(0)*, H(0)H(1)*,--- ,H(0)H(L — 1)*. The remaining unknown is H(0)H(L)*. Thus
we need to use P = L + 1 when K (L) # 0. However, if Ky (L) = 0, e.g., temporally
white noise case (K (j) =0 for j =1,2,--- L), we choose P = L because we can directly
obtain H(0)H(L)* from E in (4.6).

Remark 2: So far we have assumed that the channel order L is known. If only an upper
bound L > L is available (in this case, assumption (C2) becomes: M > P, P = L + 1),
then following the same process given in this sub-section , we observe that (4.6) becomes
E; = [E; 05) -+ 05.]) for j = 0,1,--+, L and B; = [Ku(j) 05 --+ 0s,)] for

(ﬁfL)v blocks (L—j)vblocks

j=L+1,L+2--- ,f/. Then after noise covariance matrices elimination, we can also

obtain Q with the last (L — L) block columns and block rows being zero. Then similar to
the discussion in Section 2.2.2, we can also identify the channel impulse response matrix.
Remark 3: The proposed method can apply to the case of more transmitters than re-

ceivers. Please see Section 2.2.3.
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4.2.2 Identification Algorithm

So far, we have proposed a blind identification method for MIMO zero padding block
transmission systems based on eigen-decomposition approach. With zero-padding, the re-
lation between the covariance matrix of the received data and the channel product matrices
becomes highly structured. The structure makes it easy to estimate the channel product
matrices and the noise covariance matrices. Eigen-decomposition of a Hermitian matrix
formed by the channel product matrices yields the channel impulse response up to a uni-
tary matrix ambiguity. The channel noise may be temporally and spatially colored. We
summarize the proposed method as the following algorithm.

Algorithm :
1) Collect the received data as X(i), pick up the first (L + 1) block entries of X(i) as x7(i)
and the last P block entries of X(i) as x;(7).

2) Estimate the matrices Ry and R; via the following time average

Ry=5 Z xp(i)xp(2)", (4.11)

R, = % Z x(iN + M)x(i)*, (4.12)

where S is the number of data block, and x(¢/N 4+ M) is the (M + 1)th block entry of X(i).
3) Form Y;(R;) as in (4.5) and then obtain H(m)H(n)* for m,n = 1,2,--- L.

4) Form (4.10) from Y;(Ry), j = 0,1,---, L, and form (4.9) from R;. Then obtain
H(0)H(j)* for j =0,1,--- , L by subtracting (4.9) from (4.10).

5) Form the matrix Q = HH" using the channel product matrices, and obtain the channel
impulse response matrix H by computing the K largest eigenvalues and the associated

eigenvectors of Q.

4.2.3 Extension to MIMO Zero-Padding OFDM Systems

The proposed method can be extended to the MIMO ZP-OFDM systems. In this case,
at the transmitter, each 8§;(7) is multiplied by the IFFT matrix F* before entering the zero
padding block, F; [26]. Here F € CM*M is an FFT matix. Thus we know the input to F;
is F*s; (i) for OFDM case. Since F is a unitary matix [?], 8x(¢) and F*S,(i) are both zero

mean and have the same second-order statistics. Hence

E[F*si(m)] =0, E[(F'Sg(m))(F*Sk(n))*] = d(m — n)Iy.
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Hence the first and second-order statistics of u(n) for OFDM case are the same as those
for single carrier case. Therefore, following the same method given in Section 4.2.1, we can
identify the channel impulse response matrix for ZP-OFDM system.

Remark : At the receiver for ZP-OFDM system, each X;(i), j = 1,2,---,.J, enters an
overlap added matrix F5, an FF'T matrix F, and the parallel-to-serial block to yield output
[26]. Here Fy = [I}; L,] € RM*M+P) with L, = [Ip OF{M_P)XP]T. However, we only
use the data %(i), which is a permutation of [X,(i)T Xo(4)T -+ %;(1)T]7, to identify the

channel impulse response matrix.

4.3 Simulation Results

In this section, we use several examples to demonstrate the performance of the proposed
method. The channel NRMSE and the number of Monte Carlo runs are the same as those
given in Section 2.5. The input source symbols are i.i.d. QPSK signals. The signal-to-noise
ratio (SNR) at the output is defined as SNR = %, where t(n) = [t1(n) -+ t;(n)]"
is the signal component of the received signal (see Figure 4.1). Except Simulation 1, the

channel noise is zero mean, temporally and spatially white Gaussian.
1) Simulation 1 — color noise case

In this simulation, we use the channel model (2.32) to demonstrate the performance of
the proposed method when the channel noise is colored. The length of symbol blocks is
M = 27, which is zero padded to blocks of length M + P = 30. It means P = 3(= L+1) and
transmission efficiency is 90%. The additive color noise w(n) is generated by passing a zero
mean, unit variance, temporally and spatially white Gaussian vector sequence wy(n) € R?
through an FIR filter C(z) = C(0)+C(1)2'+C(2)z? whose output is w(n) = C(z)wy(n),

where

C(0) =

—0.135+0.192¢ 0.136 + 0.235¢

0.283 4+ 0.181¢ 0.185+ 0.1157 c)
’ —0.154 + 0.102; 0.108 + 0.338i

[ 0.185+0.126i  0.165 -+ 0.235i ]

C(2) =

0.089 + 0.181z 0.089 + 0.2352
0.089 + 0.126¢ 0.108 + 0.159¢

In this case, Ky (0), Kw (1), and Ky (2) defined in assumption (B) are shown as follows:

0.208 4 0.159: 0.350 0.171 4+ 0.1017 0.199 + 0.0112

0.397 0.208 — 0.1592 0.242 — 0.067: 0.121 — 0.1202
Kw<o>=[ ] w<1>:[ ' ]

0.101 — 0.068: 0.086 — 0.0372

Kw(2) =
2) [ 0.090 + 0.031z 0.064 + 0.038¢
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Figure 4.2(a) shows the NRMSE decreases as the number of symbol blocks increases. Figure
4.2(b) shows that the noise NRMSE also decreases as the number of symbol blocks increases,
where the noise NRMSE is similarly defined as in (2.32) except H is replaced by K =
[Kuw(0)T Ky (1)T Ky (2)7]7 and H® is replaced by K@ = [K(0)7 K@ (1)T K (2)7]7.

2) Simulation 2 — random channels case

In this simulation, we generate 100 2-input 2-output random channels with order L = 2
to demonstrate the performance of the proposed method. Each element in the channel
impulse response matrix is complex Gaussian distribution with zero mean and unit variance.
We use M = 18 and P = 2(= L) (transmission efficiency is 90%). Figure 4.3 shows for
different number of symbol blocks, the NRMSE decreases as SNR increases and is roughly
constant for SNR > 20 dB.

3) Simulation 3 — a 3-input 2-output channel

In this simulation, we use the 3-input 2-output model (2.35) to illustrate the perfor-
mance of the proposed method for channel with more inputs than outputs. We use M = 18
and P = 2. Figure 4.4 shows for different number of symbol blocks, the NRMSE decreases
as SNR increases and is roughly constant for SNR > 20 dB.

4) Simulation 4 — channel order overestimation

In this simulation, we use the channel model (2.34) to demonstrate the performance of
the proposed method by comparing with the subspace method [26], which is also for MIMO
zero padding block transmission systems. For each upper bound i, 0 < (f) — L) <6,
we choose P = L and M = 9P for simulation such that the transmission efficiency is
maintained at 90%. Figure 4.5 shows when the number of symbol blocks is fixed at 500,
the NRMSE increases with increasing channel order overestimation for different SNR. When
SNR=0 and 5 dB, the proposed method performs better than the subspace method. When
SNR=10 dB, the subspace method performs better than the proposed method. Figures 4.5
shows that the proposed method is more robust to channel order overestimation than the

subspace method when SNR is low.

5) Simulation 5 — channel estimation and equalization of a 2-input 2-output ZP-OFDM

System

In this simulation, we use a ZP-OFDM system with the same channel model (2.34), and
M = 18, P = 2. We compare the performance of the proposed method with that of the
subspace method [26]. Figure 4.6(a) shows when SNR = 0 and 5 dB, the performance of
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the proposed method is better than that of the subspace method. However, when SNR =
10 dB, the performance of the subspace method is better than that of the proposed method.
Figure 4.6(b) shows when the number of blocks is 100 (300), the proposed method performs
better than the subspace method when SNR below about 8 dB (6 dB). Figures 4.6(a) and
4.6(b) show that the proposed method has better performance than the subspace method
under low SNR.

Figure 4.7 shows the simulation results for the zero forcing equalization of the proposed
method and the subspace method. The number of symbol blocks is 500 (where the number
of symbols = 18 x 2 x 500 = 18000). We first identify the channel using the first 25, 50,
250, and 500 symbol blocks, respectively, and then do equalization. In each sub-figure of
Figure 4.7, we see the proposed method performs better than the subspace method under
low SNR, whereas the subspace method performs better under high SNR. Besides, from
Figure 4.7, we can also observe the tendency that when the number of symbol blocks used
for identification increases, the equalization performance of the proposed method and the
subspace method would tend to be identical. Simulation result in Figure 4.8 shows when
the number of symbol blocks for identification and equalization is 5000, the performance

of these two methods are almost identical.
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Figure 4.2. Color noise case
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Chapter 5

Conclusions

We develop three blind identification algorithms for MIMO frequency selective wireless
communication channels. Instead of computing the channel matrix directly from the co-
variance matrix of the received data, as in subspace methods, the algorithms compute the
channel product matrixes first and then determine the channel impulse response matrix
via an eigenvalue-eigenvector decomposition. The algorithms are simple, in terms of the
amount of computations required, as compared with subspace methods; they allow a more
relaxed identifiability condition and are applicable to MIMO systems with more transmit-
ters or more receivers. Simulation results show that they are reasonably robust with respect
to channel order overestimation and has an NRMSE performance comparable to subspace
methods.

The algorithms differ in precoding complexity. The three precoding considered are:
(i) periodic precoding, (ii) periodic precoding plus zero padding, and (iii) zero padding
alone. As a result, for each of the three cases, the computation required to determine the
channel product matrices are also different. The computations required are respectively
(i) to solve a decoupled group of overdetermined linear systems of equations, (ii) to solve
a triangular linear system, and (iii) to carry out a number of simple subtractions. The
simplified computation in (iii) comes at the price of about 3 dB increase in NRMSE as

compared to (i) and (ii).
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Appendix

A Proof of Proposition 4.1 and 4.2

Preliminary :

For each j, let N; € RWN=9)x(L=i+1) be similarly defined as (2.17), except that Iy,
is replaced by 1. It can be easily check that there exists permutation matrices Py, €
RM-(N=>Mr(N=0) and Py, € RM (L=t DxMr(L=3+1) guch that P, M, Py, = diag[N;,Nj,--- \N;] =
D; € RM-N=i)xMr(L=j+1) ig 3 block diagonal matrix with each block of dimension (N — j) x
(L —j+1). Since P,,” =Py, ”" and P,,;” =Py, " [34, p.110], we have M; = P,"D,;P,,".

Hence M, is full column rank if and only if N; is full column rank for 7 =0,1,---, L.

Also, MI'M; = (P,,D'Py)(P,"D,P,,") = P,,D'D;P,,” = P, diag[N'N;,--- ,NT'N;|P,,".
Let A(A) denote the spectrum of A [34, p.310], that is, the set of eigenvalues of A. Then

Proof of Proposition 2.2 :

Ifat N—L+1<m< N —2,it can be checked that N;, j =2,3,---,L — 1 is not of
full column rank since it has two columns both equal to [ 7---7]T which implies that at

least one M is rank deficient and vice versa.
Proof of Proposition 2.3 :

From the Preliminary, since A(M] M) = A(NTN;), the condition number of M} M;
K

J J
is identical to that of NJNj, i.e., (M) M;) = £(NTN;). Thus we need only compute the

condition number of NJ-TNJ».
Case (a): Form=0,m=1,---,and m =N — L — 1, we know
NIN;=a-Tpj1+(2b4¢)-[1---1]"[1---1], (A1)
where a = N2(1—7)%, b= N7(1—7), ¢; = (N — j)72. Hence the maximum and minimum
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eigenvalues are a + (L — j + 1)(2b + ¢;) and a respectively. Thus the condition number of
MTM; is 1+ [(L — j + 1)(2b 4 ¢;)/a] which is a decreasing function of j. Therefore the
corresponding p is equal to g = 14 [(L 4+ 1)(20 + o) /al.

Case (b): For m = N — L and m = N — 1, we consider the j = 0 case and j # 0 case
for N; separately. For j = 0 with m = N — L or m = N — 1, direct multiplication of NI N
gives the same matrix as (A.1), and the condition number of MIMj is p;. For j # 0 with
m = N — L, direct multiplication of N N; yields

-(I+26+0j 2b—|—Cj 2b+Cj 2b+0j b+Cj-
2b+Cj a+2b+cj 2b—|—Cj 2b+Cj b+Cj
. . . . . . L—j L—i
NIN; = : : . : : : e R+ (L—j+1)
2b + ¢ 2b+c;  2b+c¢; - a+2b4c¢; b+
b+Cj b—|—Cj b+Cj b+Cj Cj i

(A.2)

The eigenvalues of N?Nj in ascending order, are o, a, 3;, where a has a multiplicity L—j—
1, and B = 5{(L—7)(2b+¢;)+(ate;) /(L — 5)(2b+ ¢;) + (a — ¢;)]P + 4(L — j)(b+ ¢;)},
a5 = HL = b+ )+ (0+ ¢) = V= )BT ) T (0= GE+ UL =T e
All of the eigenvalues are positive and real. (A proof is given in Appendix B). It can be

similarly shown that for 7 # 0 with m = N — 1, N]TNj has the same eigenvalues «;, a, 3;.
Hence for j = 1,2,---, L, A\(MTM;) = {oy, a, 3;} and the condition number is

2 2 2
| 2 — AN — DB + y;1/x2 — 4(N — L)
K(MJ‘TMJ')I&IML ’ J\/]

Oéj 2<N — L)b2 ’

(A.3)
where x; = (L — 7)(2b+ ¢j) + a + ¢;. Since ;/a; is also a decreasing function of j, then

the maximum value is 3;/a;. Therefore, combining the two cases (j = 0,5 # 0), the

corresponding p is po = max{puy, f1/a1} > .
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B The Eigenvalues of N;FN]- for m=N—L

Proof :

Let A; = NTN; defined in (A.2), then A; is positive definite since N; is full column

rank. It can be checked that the eigenvectors corresponding to (L—j—1) multiple eigenvalue

a are: [1,-1,0,0,-- 0", [1,1,-2,0,--,0]7, -, [1,1,---,1,—(L — j — 1),0]7. The
remaining eigenvectors are [1,1,--- ,1,2]7 € RE7/FL Hence
1 a+(L—j)2b+c¢j)+ (b+cj)x 1
Aj : = . : = /\j : ) (Bl)
1 a+ (L—7)2b+c¢;)+ (b+¢j)x
x (L—j)(b+0j>+6j$ X

which implies the following two equations

CL‘l‘(L—])(2b+0j)+(b+cj)l':>\3, (BQ)
(L —j)(b+¢;) + cjz = Az (B.3)
Substitute (B.2) into (B.3), we can get an second order equation of z. Solving this equation

can lead to two solutions of x. Bring these two x into (B.2) and we can obtain the two

eigenvalues (3;, «;. In addition, 8; > a because of (B.4)

i = HE =)@ +e)+(a+¢) + VL -2+ ¢) +a—¢ + 4L - j)b+¢)*)
> (L =920+ ¢) + (a+¢;) + V(L =520+ ¢5) +a— ¢}
UL =) 20+ ¢;) + (a+¢) +[(L = 5)(20+¢;) +a— ¢}
a+ (L—j)(2b+c¢)
> a

and a; < a because of the interlacing property [34, p.396].

53



O

C AProofof%>O

)

With f(a, ) = (ot D42 D21 gy ¢ 0, L>1,

v

B*(a+2)?

%{(a +2)722(L + 1) (a+ )24 4 2(L + 1)) — 2(a + 2)3[(a + 1)2EHD 4 2(L 4+ 1) (a + 2) — 1]}
2(L+ 1) (a+ D)2 a+ 1+ 1) +2(L+1)(a+2) — 2(a+ 1)2EHD —4(L +1)(a +2) + 2]
[2(L + 1)(a + 1)2EF) £ 2(L + 1) (a + 1)224T —2(L + 1) (a + 2) — 2(a + 1)20+D 4 9]
2L(a 4+ 1)2EF) 1 2(L + 1) (a + 1)+ —2(L + 1) (a + 2) + 2]
[ )
[ ) —

2L(a+ 1)2EHD 4 o(L 4 1) (e + 1) — 2(L + 1)(a + 2) + 2]
2L(a + 1)2EHD oL + 4La + 4a + 2La® + 6La? + 2a° + 602
Faras (2L(a+ 1) — 1)+ 4La +4a + 2La® + 6La® + 20° + 6a°}

> 0.
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D A Proof of Proposition 3.1

Let a = L+ 1— L7 and b = 7, then according to (3.27), go = é > 0 and g; =
—L(1-2)" <0fori=1,2,---,L,and

a2

[y
S

Jo+g+g+--+ag = g——z—a%(l—g)—"'—%(l—g)l*l
1_ b MO-0-g))

- a? 1-(1-2)
— -y
(1-2)

Q== 2

Hence

+(Go+ )+ -+ @G+ g+ +3L)
P+EA=YP 4+ + [0 -5
[+ (1= 22 4o (1= )]
L1 (1-2)2( 4]
1— (1 b)2(L+1)
(1 b)2(L+1)

2ab—b?
1—(1— s )2+

2(L+1—L7)r—72

g
o
|
Q|
(=)}

Il
a1=

s}
|,_. ol

|
S)
[N

and

 REAI-L) T2 [ 2L (- ) - ()] (- )2 D) (—4Lr—27)
EHmHZ - 2(L+1—L7r)r—72]2 - R(L+1—L7)T—72]2
[(1=7)T(2LA1)+7]-[2(L+1) (1= pg=p7) 2 ) [(L+1 LT)Q] [1_(1_L+11LT)2<L+1)].(4L.,+27)
[2(L+1—-L7)T—72]2 2(L+1-L7)7—72]2

Because 0 <1—7 < land 0 < (1— =) <1lfor 0 <7 <1, £m|3>0for 0 <7 <1.
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