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多輸入多輸出有限脈衝系統的盲判別與對等化

中文摘要

本報告針對多出入多輸出頻率選擇衰減之無線通信系統提出了三種通道盲蔽判別

的方法。 判別的方法是利用所估測出來的接收信號協方差矩陣, 先計算出通道乘積矩陣,

再對此通道乘積矩陣取特徵分解, 即可求出通道脈衝響應矩陣。 所提出的方法都是利用

對傳送信號作不同的編碼方式所引發的循環穩態特性來求解問題。 我們分別考慮了以下

三種不同的編碼方式: (1) 週期性編碼, (2) 週期性編碼加補零, (3) 補零。 對前兩種判

別方法, 我們也設計了最佳的週期性編碼器。 我們的方法在正規均方差的表現上可與子

空間的方法相比, 但只需要較少的計算量, 同時判別條件也較為寬鬆, 另外我們的方法

還可適用於發射器數目較接收器數目多或者少的情況。 數值模擬的結果顯示我們所提出

的方法對通道階數過估的情況具有相當的強健性。

關鍵詞: 多出入多輸出通道, 盲蔽判別, 週期性編碼, 有限脈衝響應, 補零, 單載波補

零傳輸系統, 正交分頻多工系統。
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Blind Identification and Equalization for

Multiple-input Multiple-output Finite Impulse

Systems

Abstract

We propose three blind identification algorithms for multiple-input multiple-output

(MIMO) frequency selective fading wireless communication channels. The algorithms com-

pute the channel product matrices from the estimated covariance matrix of the received data

and then determine the channel impulse response matrix via an eigenvalue-eigenvector de-

composition. The algorithms are all based on transmitter-induced cyclostationarity through

precoding. Three precoding are considered: (i) periodic precoding, (ii) periodic precoding

plus zero padding, and (iii) zero padding alone. The algorithms, with optimally designed

periodic precoding, have normalized root-mean-squared error (NRMSE) performance com-

parable with subspace methods but require less computation, allow a more relaxed iden-

tifiability condition, and are applicable to general MIMO systems with more transmitters

or more receivers. Simulation results show that the algorithms are reasonably robust with

respect to channel order overestimation.

Key words: MIMO channels, blind identification, periodic precoding (modulation),

finite impulse response, zero padding, single carrier zero padding transmission systems,

OFDM systems
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Chapter 1

Introduction

1.1 Research Objective

Multiple-input multiple-output (MIMO) communication systems employing multiple

transmit and receive antennas have received much attention due to the potential improve-

ment in data transmission rate and link reliability they can offer. However, to exploit

the potential advantage of MIMO systems, accurate channel state information is required.

Channel can be identified or estimated using training signal which requires additional band-

width. As a means to eschewing the need of training signal and the associated bandwidth

requirement, blind identification of MIMO channels has been the focus of much research.

Many blind identification algorithms have been proposed in recent years (see [1, 2] for a

detailed review).

Existing algorithms for blind identification of MIMO finite impulse response (FIR)

channels can be classified into second-order statistics methods [8]-[12],[20]-[22], higher-

order statistics methods [3]-[5], and deterministic methods [6, 7]. Among these three types

of methods, blind identification based on second-order statistics has been widely studied

because it requires fewer data samples than the high-order statistics approach and it avoids

poor estimation accuracy under low SNR, a common shortcoming of deterministic methods.

Existing second-order statistics methods for MIMO systems, e.g., the subspace methods

[8, 9], [26], [28]-[29], the linear prediction methods [10]-[12], and the matrix outer product

decomposition methods [20]-[22], either impose restrictive assumptions on the channel to

be identified or require large amount of computations, that may not be realistic in practical

applications.

The goal of this research is to develop blind identification algorithms for MIMO channels,
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that are simple in computation and less restrictive in assumptions. It is hoped that the

algorithms developed are thus more practical from an application point of view.

1.2 Literature Survey

It is well-known that cyclostationarity of the received data is the key to all blind iden-

tification based on second-order statistics [1, 2]. Cycloststionarity can be induced either

at the receiver, by oversampling or multiple antennas, or at the transmitter, by various

coding methods. An advantage of transmitter-induced cyclostationarity is that the result-

ing identification methods require less restrictive assumption on the channel, for example,

channels with nonminimum phase zeros can be handled. One effective way to induce cy-

clostationarity at the transmitter is by periodic precoding. Blind identification methods

for general MIMO FIR channels using periodic precoding are found in [17, 18]. In [17],

Chevreuil and Loubaton proposes a scheme that multiplies the input sequence by a constant

modulus complex exponential precoding sequence to induce conjugate cyclostationarity at

the transmitter. The scheme reduces the MIMO channel identification problem to several

SIMO ones, which are then solved by the subspace method [24]. Each SIMO channel is

required to be free from common zeros. However, the method in [17] allows only real input

symbols and the identifiability condition is irreducible and column reduced. Bölcskei et.

al. [18] proposes a method for identifying each of the scalar channels individually up to a

phase ambiguity using non-constant modulus periodic precoding sequences. The method

imposes no restriction on channel zeros and is insensitivity to channel order overestimation.

However, no systematic procedure for the design of the precoding sequences is given. In

this report, we propose an identification method based on periodic precoding, which allows

complex input symbols and gives an optimal design of the precoding sequence.

Single carrier zero padding (SC-ZP) block transmission systems, another communication

systems, are used to remove interblock interference (IBI) [13, 14, 25, 26]. In the literature,

to the best of our knowledge, there is only one paper, by Zeng and Ng [26], that proposes

a subspace method for blind identification of MIMO SC-ZP block transmission systems.

The method can be used to identify the channel impulse response matrix up to a matrix

ambiguity when the channel is irreducible and the channel noise is uncorrelated and white.

In this report, we first propose an identification method for MIMO SC-ZP systems based

on periodic precoding, which can further relax the identifiability condition and reduce

the computational load, compared with the method in [26]. In addition, we also propose

another simplified identification method for such systems without periodic precoding. This

simplified method can also apply to MIMO zero padding orthogonal frequency division

multiplexing (ZP-OFDM) systems.
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1.3 Organization of the Report

The report is organized as follows. In Chapter 2, we propose a blind identification

method for general MIMO FIR channels based on periodic precoding. We also discuss the

optimal design of the precoding sequence which takes into account the effect of additive

channel noise and numerical error. We also propose a blind identification method for

MIMO FIR channels in SC-ZP block transmission systems based on periodic precoding

and discuss the optimal design of the precoding sequence in Chapter 3. In Chapter 4, we

first propose a blind identification for SC-ZP block transmission systems without periodic

precoding. Extension of this method to ZP-OFDM systems is given subsequently. Chapter

5 concludes this report and discusses the related future research.

We define the following operations that will be used in the derivation of the main result.

First, for any m×m matrix A = [ak,l]0≤k,l≤m−1, define Γj(A) = [a0,j a1,j+1 · · · am−1−j,m−1]
T

for 0 ≤ j ≤ m − 1, i.e., Γj(A) is the vector formed from the jth super-diagonal of A. Sec-

ond, for any Jn× Jn matrix B = [Bk,l]0≤k,l≤n−1, where Bk,l is a block matrix of dimension

J × J , define Υj(B) = [BT
0,j BT

1,j+1 · · · BT
n−1−j,n−1]

T for 0 ≤ j ≤ n − 1, i.e., Υj(B) is the

matrix formed from the jth block super-diagonal of B.
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Chapter 2

Identification of General MIMO

Channels

In this chapter, we propose a blind identification method for MIMO FIR channels based

on periodic precoding. It is shown that, by properly choosing the precoding sequence, the

MIMO FIR transfer functions, with K inputs and J outputs, can be identified up to a uni-

tary matrix ambiguity. The transfer functions need not be irreducible or column reduced,

and there can be more outputs (J ≥ K) or more inputs (J < K). The method exploits the

linear relation between the covariance matrix of the received data and the “channel product

matrices”. The method is shown to be robust with respect to channel order overestima-

tion. The proposed algorithm requires solving linear equations and computing the nonzero

eigenvalues and eigenvectors of a Hermitian positive semidefinite matrix. The performance

of the algorithm, and indeed the identifiability, depends on the choice of the precoding se-

quence. We propose a method for optimal selection of the precoding sequence which takes

into account the effect of additive channel noise and numerical error in covariance matrix

estimation. Simulation results are used to demonstrate the performance of the algorithm.

2.1 System Model and Formulation

We consider the linear MIMO baseband model of a communication channel with K

transmitters and J receivers shown in Figure 2.1, where each source symbol sequence is

multiplied by a P -periodic sequence, p(n), before transmission. The transmitted signal is

wk(n) = p(n)sk(n), k = 1, 2, · · · , K, (2.1)
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-
⊗? -s1(n)

p(n)
u1(n)

...
...

-
⊗? -sK(n)

p(n)
uK(n)

MIMO FIR

Channel

-
⊕? -t1(n)

w1(n)
x1(n)

...
...

-
⊕? -tJ(n)

wJ(n)
xJ(n)

Figure 2.1. An MIMO channel model

where p(n + P ) = p(n), ∀ n. The discrete time model describing the relation between the

transmitted signal uk(n) and the received signal xj(n) has the form of an MIMO FIR filter

with additive noise:

xj(n) =
K∑

k=1

Ljk∑
l=0

hjk(l)uk(n − l) + wj(n), j = 1, 2, · · · , J, (2.2)

where hjk(0), hjk(1), · · · , hjk(Ljk), are the impulse responses of the channel between the

kth transmitter and the jth receiver, and wj(n) is the channel noise seen at the input of

the jth receiver. The equations (2.1) and (2.2) can be written more compactly as

u(n) = p(n)s(n), x(n) =
L∑

l=0

H(l)u(n − l) + w(n), (2.3)

where u(n), s(n) ∈ CK , and x(n), w(n) ∈ CJ are vector signals formed by stacking the

respective scalar signals together, e.g., x(n) = [x1(n) x2(n) · · · xJ(n)]T . The jkth element

of H(l) ∈ CJ×K is hjk(l), and L = maxj,k{Ljk} is the order of the MIMO channel. Thus

H(L) 6= 0J×K .

Group the sequence of x(n) as x̄(n) = [x(Pn)T ,x(Pn + 1)T , · · · ,x(Pn + P − 1)T ]T ∈
CKP , and let w̄(n), ū(n), s̄(n) be similarly defined, we have

x̄(n) = H0ū(n) + H1ū(n − 1) + w̄(n), (2.4)

where H0 is an JP × KP block lower-triangular Toeplitz matrix with [H(0)T H(1)T · · ·
H(L)T 0T

J×K · · · 0T
J×K ]T ∈ CJP×K as its first block column (i.e., the first K columns),

and H1 is an JP ×KP block upper-triangular Toeplitz matrix with [0J×K · · · 0J×K H(L)

H(L − 1) · · · H(1)] ∈ CJ×KP as its first block row (i.e., the first J rows). Since p(n)

is periodic, ū(n) = Gs̄(n) for all n, where G = diag[p(0)IK , p(1)IK , · · · , p(P − 1)IK ] ∈
RKP×KP is a diagonal matrix, (2.4) can be written as

x̄(n) = H0Gs̄(n) + H1Gs̄(n − 1) + w̄(n), (2.5)

We assume that the receivers are synchronized with the transmitters. In addition, the

following assumptions are made throughout this chapter.
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(A1) s(n) and w(n) are white zero-mean vector sequences, and s(n) and w(n) are tempo-

rally and spatially uncorrelated. More precisely, E[s(k)s(j)∗] = δ(k − j)IK ∈ RK×K ,

E[w(k)w(j)∗] = δ(k − j)σ2
wIJ ∈ RJ×J , E[s(k)w(j)∗] = 0K×J , ∀ k, j, where δ(·) is the

Kronecker delta function.

(A2) An upper bound L̂ of the channel order L is known and the period P > L̂ + 1.

(A3) The channel impulse response matrix H = [H(0)T H(1)T · · · H(L)T ]T is full col-

umn rank, i.e., rank(H)=K.

In the next section, we will derive an algorithm for blind identification of the MIMO

channel impulse response matrix H using second-order statistics of the received data.

2.2 Blind Channel Identification

In this section, we derive the proposed method for the case under assumptions (A1),

(A2), (A3) and noiseless case. We show that by appropriately selecting the periodic

precoding sequence, any MIMO channel satisfying (A3) is identifiable up to an K × K

unitary matrix ambiguity. The effect of noise and optimal design of the precoding sequence

are discussed in Section 2.3.

2.2.1 The Identification Method

We first derive the proposed method for the case where the channel order L is known

with P > L + 1, there are more receivers, i.e., J ≥ K, and the noise is absent. We discuss

the cases of channel order overestimation and more transmitters than receivers (i.e., K > J)

in Section 2.2.2 and 2.2.3, respectively.

From (2.5) and assumption (A1), the covariance matrix of x̄(n) can be written as

(noiseless case)

Rx̄ = E[x̄(n)x̄(n)∗] = H0G
2H∗

0 + H1G
2H∗

1. (2.6)

Let J ∈ RP×P be the matrix whose first sub-diagonal are all one, i.e., Γ1(J
T ) = [1 1 · · · 1]T ∈

R(P−1), and all remaining entries are zero. The block Toeplitz structures of H0 and H1

allow us to write H0 =
∑L

k=0 Jk ⊗ H(k) and H1 =
∑L

k=0(J
T )P−k ⊗ H(k), respectively.

Besides, we define Gp = diag[p(0), p(1), · · · , p(P − 1)] ∈ RP×P . Hence H0G
2H∗

0 can be
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written as

H0G
2H∗

0 =
∑L

k=0 Jk ⊗ H(k)
(
G2

p ⊗ IMt

) ∑L
l=0

(
Jl ⊗ H(l)

)∗
=

∑L
k=0

∑L
l=0

(
Jk ⊗ H(k)

) (
G2

p ⊗ IMt

) (
(JT )l ⊗ H(l)∗

)
=

∑L
k=0

∑L
l=0

(
JkG2

p(JT )l
)
⊗ (H(k)H(l)∗) ,

(2.7)

where we have used the identies (A⊗B)∗ = A∗⊗B∗ and (A⊗B)(C⊗D) = (AC)⊗ (BD)

[35, p.190]. Similarly, H1G
2H∗

1 can be written as

H1G
2H∗

1 =
L∑

k=0

L∑
l=0

(
(JT )P−kG2

pJ
P−l

)
⊗ (H(k)H(l)∗) . (2.8)

The following proposition shows that the matrices JkG2
p(JT )l and (JT )P−kG2

pJ
P−l have

special structures that allow decomposition of (2.6) into a group of decoupled equations.

Roughly speaking, the jth block super-diagonal part of (2.6) involves only the unknown

“channel product matrices”, H(k)H(k+j)∗, k = 0, 1, · · · , L−j. For example, the equations

corresponding to the diagonal blocks (j = 0) involve only H(k)H(k)∗, k = 0, 1, · · · , L. In

the proposed identification algorithm, these “channel product matrices” are computed first

by solving linear equations, and then the channel impulse response matrices H(k) are

computed via eigenvalue-eigenvector decomposition.

Proposition 2.1 : Let 0 ≤ k, l ≤ L be two non-negative integers. Then

(a) For l = k + j, where 0 ≤ j ≤ L− k, both JkG2
p(JT )l and (JT )P−kG2

pJ
P−l are upper

triangular matrices with only the respective jth upper diagonals nonzero, and

Γj

(
JkG2

p(JT )l
)

= [0 · · · 0︸ ︷︷ ︸
k entries

p(0)2 p(1)2 · · · p(P − 1 − k − j)2︸ ︷︷ ︸
P−k−j entries

]T , (2.9)

Γj

(
(JT )P−kG2

pJ
P−l

)
= [p(P − k)2 p(P − k + 1)2 · · · p(P − 1)2︸ ︷︷ ︸

k entries

0 · · · 0︸ ︷︷ ︸
P−k−j entries

]T . (2.10)

(b) For l < k, both Γj

(
JkG2

p(JT )l
)

and Γj

(
(JT )P−kG2

pJ
P−l

)
are lower triangular with

zero diagonal matrices.

Proof : See [16].

It follows from (2.9) and (2.10) that

Γj

(
JkG2

p(JT )l
)

+ Γj

(
(JT )P−kG2

pJ
P−l

)
=


[p(P − k)2 · · · p(P − 1)2︸ ︷︷ ︸

k entries

p(0)2 · · · p(P − 1 − k − j)2︸ ︷︷ ︸
P−k−j entries

]T if j = l − k ≥ 0

0(P−j)×1 if j 6= l − k

.

(2.11)
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Since

Υj

((
JkG2

p(JT )l
)
⊗ H(k)H(l)∗

)
= Γj

(
JkG2

p(JT )l
)
⊗ H(k)H(l)∗ (2.12)

and

Υj

((
(JT )P−kG2

pJ
P−l

)
⊗ H(k)H(l)∗

)
= Γj

(
(JT )P−kG2

pJ
P−l

)
⊗ H(k)H(l)∗, (2.13)

it follows from (2.6)-(2.8) and (2.11)-(2.13) that Υj (Rx̄) can be derived as follows.

Υj (Rx̄)

= Υj

(
H0G

2H∗
0 + H1G

2H∗
1

)
=

∑L
k=0

∑L
l=0 Υj

((
JkG2

p(JT )l
)
⊗ (H(k)H(l)∗)

)
+ Υj

((
(JT )P−kG2

pJ
P−l

)
⊗ (H(k)H(l)∗)

)
=

∑L
k=0

∑L
l=0{Γj

(
JkG2

p(JT )l
)

+ Γj

(
(JT )P−kG2

pJ
P−l

)
} ⊗ H(k)H(l)∗

=
∑L−j

k=0 [p(P − k)2 · · · p(P − 1)2 p(0)2 · · · p(P − 1 − k − j)2]T ⊗ H(k)H(k + j)∗

=
∑L−j

k=0 [p(P − k)2IJ · · · p(P − 1)2IJ p(0)2IJ · · · p(P − 1 − k − j)2IJ ]TH(k)H(k + j)∗

(2.14)

The right hand side of (2.14) is a linear combination of block columns with the channel

product matrices, H(k)H(k + j)∗, as coefficients. If we define, for 0 ≤ j ≤ L,

Fj = [(H(0)H(j)∗)T (H(1)H(j + 1)∗)T · · · (H(L − j)H(L)∗)T ]T ∈ CJ(L−j+1)×J , (2.15)

then (2.14) can be written in a more compact form as

Υj (Rx̄) = MjFj ∀ 0 ≤ j ≤ L, (2.16)

where Mj ∈ RJ(P−j)×J(L−j+1) is defined as

Mj =



p(0)2 p(P − 1)2 p(P − 2)2 · · · p(P − L + j)2

p(1)2 p(0)2 p(P − 1)2 · · · p(P − L + j + 1)2

p(2)2 p(1)2 p(0)2 · · · p(P − L + j + 2)2

...
...

...
...

...

p(P − 3 − j)2 p(P − 4 − j)2 p(P − 5 − j)2 · · · p(P − L − 3)2

p(P − 2 − j)2 p(P − 3 − j)2 p(P − 4 − j)2 · · · p(P − L − 2)2

p(P − 1 − j)2 p(P − 2 − j)2 p(P − 3 − j)2 · · · p(P − L − 1)2


⊗ IJ .

(2.17)

We note that Mj, 1 ≤ j ≤ L, is obtained from M0 by deleting its last jJ rows and last jJ

columns.

Since P > L + 1, the (L + 1) equations in (2.16) are overdetermined and for the noise

free case, these equations are consistent. We note that the matrix Mj, j = 0, 1, · · · , L, is

completely determined by the precoding sequence. By appropriately selecting the precoding
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sequence, we can make each Mj full column rank. Then the solution Fj can be obtained

as

Fj = (MT
j Mj)

−1MT
j Υj (Rx̄) . (2.18)

If Fj, 0 ≤ j ≤ L, are computed from (2.18), then we have the channel product matrices

H(k)H(l)∗ for 0 ≤ k ≤ l ≤ L. We now consider the computation required to determine

the channel impulse response matrix H from Fj.

Let Q be the Hermitian matrix defined by Υj(Q) = Fj for j = 0, 1, · · · , L, and let the

channel impulse response matrix H = [H(0)T H(1)T · · · H(L)T ]T . Clearly we have

Q = HH∗. (2.19)

Since rank(H) = K by assumption (A3), Q has rank K. Since Q is Hermitian and positive

semidefinite, Q has K positive eigenvalues, say, λ1, · · · , λK . We can expand Q as

Q =
K∑

j=1

(
√

λjdj)(
√

λjdj)
∗, (2.20)

where dj is a unit norm eigenvector of Q associated with λj > 0. We can thus choose the

channel impulse response matrix to be

Ĥ = [
√

λ1d1

√
λ2d2 · · ·

√
λKdK ] ∈ CJ(L+1)×K . (2.21)

We note H can only be identified up to a unitary matrix ambiguity U ∈ CK×K [20, 21],

i.e., Ĥ = HU, since ĤĤ∗ = HH∗ = Q. The ambiguity matrix U is intrinsic to methods

for blind identification of multiple input systems using only second-order statistics [20, 21].

2.2.2 Channel Order Overestimation

So far we have assumed that the channel order L is known. If only an upper bound

L̂ ≥ L is available with P > L̂ + 1, then following the same process given in Section 2.2.1,

the corresponding J(L̂ + 1)× J(L̂ + 1) matrix Q can be similarly constructed as in (2.19).

The last (L̂−L) block columns (i.e., (L̂−L)J columns) of Q are zero, so are its last (L̂−L)

block rows. Hence again, Q is of rank K and has K positive eigenvalues with the associated

eigenvectors all of the form d̂ = [dT 0 · · · 0]T ∈ CJ(L̂+1) where d ∈ CJ(L+1). Thus, we can

determine the channel impulse response matrix, up to a unitary matrix ambiguity, from

the K eigenvectors associated with the K positive eigenvalues of Q. In the noise free case,

we can, in theory, also determine the actual channel order.

9



2.2.3 More Transmitters Than Receivers

In the above discussions, we assume that there are more receivers than transmitters,

i.e., J ≥ K. If there are more transmitters, i.e., K > J , then either J(L + 1) ≥ K or

K > J(L+1). If J(L+1) ≥ K, then H is a tall matrix and assumption (A3) is generically

satisfied [33]. Hence the proposed method still applies. If K > J(L+1), then rank(H) < K

and assumption (A3) does not hold. Hence the proposed method is applicable to the more

transmitters case, provided the additional condition J(L + 1) ≥ K is satisfied. We note

that if the channel has more transmitters than receivers, channel equalization and source

separation may be difficult even if accurate channel estimate is available. In addition, we

note that in the proposed method, the channel impulse response matrix H is only assumed

to be full column rank (A3). Hence the channel needs not be irreducible or column reduced.

2.3 Optimal Design of the Precoding Sequence

In Section 2.2, we see that in order to identify the channel, the precoding sequence

must be selected so that the resulting matrix Mj is full column rank such that Fj can

be exactly solved as (2.18). However, when noise is present, the covariance matrix Rx̄

contains the contribution of noise and numerical error is present in the estimation of Rx̄

in practice. This implies that (2.16) usually has no solution and (2.18) becomes a least

squares approximate solution. The choice of Mj will affect error in the computation of Fj

since different MT
j Mj in (2.18) usually have different condition numbers. In this section,

we discuss the optimal design of the precoding sequence, which takes into account the effect

of noise and numerical error in estimating R̂x̄, so as to increase the accuracy of Fj and

thus reduce the channel estimation error.

2.3.1 Optimality Criterion

Now we consider the general case that noise is present and discuss the design of the

precoding sequence p(n). From (2.4) and assumption (A1), the covariance matrix of the

received signal is

Rx̄ = H0G
2H∗

0 + H1G
2H∗

1 + σ2
wIJ ⊗ IP . (2.22)

From (2.22) and (2.6), we see that noise has only contribution to the diagonal entries of

Rx̄(0). Therefore the (L + 1) decoupled groups of equations in (2.16) remain unchanged,
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except for the j = 0 group, which becomes

Υ0 (Rx̄) = Υ0

(
H0G

2H∗
0 + H1G

2H∗
1

)
+ σ2

wΥ0 (IJ ⊗ IP ) = M0F0 + Y, (2.23)

where Y = σ2
w[IJ IJ · · · IJ ]T ∈ RJP×J . Thus from (2.18), F̂0, the least squares approxi-

mation of F0, can be written by

F̂0 = (MT
0 M0)

−1MT
0 (M0F0 + Y)︸ ︷︷ ︸

Υ0(Rx̄(0))

= F0 + (MT
0 M0)

−1MT
0 Y = F0 + Z, (2.24)

which is F0 plus a perturbation term due to noise. The perturbation term Z is the least

squares solution of the equation M0Z = Y. We note that if every column of Y is orthogonal

to every column of M0, then Z = 0, which implies F̂0 = F0. But that is impossible since

the entries of M0 are positive and those of Y are nonnegative. Therefore, we seek to

appropriately choose the precoding sequence p(n) such that every column of Y is as close

to being orthogonal to that of M0 as possible. To this end, we first define qki and yi shown

below as the columns of M0 and Y, respectively:

M0 =

[
q01 q02 · · · q0J︸ ︷︷ ︸

M0(:,1:J)

q11 q12 · · · q1J︸ ︷︷ ︸
M0(:,J+1:2J)

· · · qL1 qL2 · · · qLJ︸ ︷︷ ︸
M0(:,LJ+1:(L+1)J)

]
, (2.25)

Y = σ2
w[IJ IJ · · · IJ ]T = [y1 y2 · · · yJ ]. (2.26)

Then, due to the special structure of the block matrix M0 and Y, it is easy to check that

qki is orthogonal to yj, i.e., qT
kiyj = 0 for j 6= i, e.g.,

qT
01y2 = [p(0)2 0 · · · 0︸ ︷︷ ︸

J entries

· · · p(P − 1)2 0 · · · 0︸ ︷︷ ︸
J entries

][0 σ2
w 0 · · · 0︸ ︷︷ ︸

J entries

· · · 0 σ2
w 0 · · · 0︸ ︷︷ ︸

J entries

]T = 0,

and each qT
kiyi assumes the same value, σ2

w

∑P−1
n=0 p(n)2, for k = 0, 1, · · · , L, i = 1, 2, · · · , J ,

e.g.,

qT
01y1 = [p(0)2 0 · · · 0︸ ︷︷ ︸

J entries

· · · p(P − 1)2 0 · · · 0︸ ︷︷ ︸
J entries

][σ2
w 0 · · · 0︸ ︷︷ ︸
J entries

· · · σ2
w 0 · · · 0︸ ︷︷ ︸
J entries

]T = σ2
w

P−1∑
n=0

p(n)2.

Thus we only need to consider the relation between columns of q01 and y1 (the case of

k = 0 and i = 1). Define the correlation coefficient

γ =
qT

01y1

‖q01‖2‖y1‖2

. (2.27)

Since γ is nonnegative and by Cauchy-Schwarz inequality, 0 ≤ γ ≤ 1. In order to make the

perturbation term Z small, we choose q01 so that the correlation coefficient γ is as small
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as possible. Based on this point of view, we formulate the optimal selection problem as

minimizing γ subject to

1

P

P−1∑
n=0

|p(n)|2 = 1, (2.28)

|p(n)|2 ≥ τ > 0, ∀ 0 ≤ n ≤ P − 1. (2.29)

Roughly, constraint (2.28) normalizes the power gain of the precoding sequence of each

transmitter to 1; constraint (2.29) requires that at each instant, the power gain is no less

than τ . Note that the problem of selecting the precoding sequence is identical to the SISO

case considered in [16]. Thus the optimal precoding sequence p(n) is a two-level sequence

with a single peak in one period [16]. More specifically, for each m, 0 ≤ m ≤ P − 1,

p(n) =

{ √
P (1 − τ) + τ , n = m

√
τ , n 6= m, 0 ≤ n ≤ P − 1

(2.30)

is an optimal precoding sequence. Because the precoding sequence is periodic with period

P , the single peak can be placed at any one of the P positions which yield the same γ =
1√

P (1−τ)2+τ(2−τ)
. Note that γ decreases as τ decreases, which implies that the noise effect in

the estimation of covariance matrix Rx̄ is minimized and thus identification performance

improves. However the peak location m does significantly affect the numerical condition of

the linear equation (2.16). We discuss the selection of m next.

2.3.2 On Selection of m

We now consider the selection of m. We know that different choices of m result in dif-

ferent matrix Mj and affect the numerical computation of Fj, j = 1, 2, · · · , L, in (2.18) and

F̂0 in (2.24), since different MT
j Mj may have different condition number. If the condition

number is large, then the matrix MT
j Mj is ill-conditioned and the computations in (2.18)

and (2.24) are sensitive to data error. Let

µ = max
0≤j≤L

κ(MT
j Mj), (2.31)

where κ(A) is the condition number of A. Our goal is to choose m so as to minimize the

largest condition number of the corresponding matrices MT
j Mj, j = 0, 1, · · · , L. Since the

peak appears at one of the P possible positions in the periodic precoding sequence, there

are P precoding sequences which may result in P different µ. The following result shows

that some choices of m are to be avoided since they result in some Mj being rank deficient

and thus µ = ∞.
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Proposition 2.2 : At least one Mj, 0 ≤ j ≤ L, is not full column rank if and only if

P − L + 1 ≤ m ≤ P − 2.

Proof : See Appendix A.

Hence if we choose, either 0 ≤ m ≤ P − L or m = P − 1, then each Mj is full column

rank and the channel is identifiable. The following result shows that we can classify the

remaining choices into 2 groups that are relevant to the optimal choice of m.

Proposition 2.3 :

(a) Each of the (P − L) choices, m = 0, m = 1, · · · , m = P − L − 1, results in the same µ

denoted by µ1.

(b) The two choices m = P − L and m = P − 1 result in the same µ denoted by µ2. Also

µ2 ≥ µ1.

Proof : See Appendix A.

From Proposition 2.3, we know if µ2 > µ1, then we choose case (a); if µ2 = µ1, we

proceed to compare the second largest condition numbers of the set of matrices {MT
j Mj}L

j=0

for these two cases and choose the case whose value is smaller. If they are again equal,

the same procedure can be done by comparing the third largest condition numbers and so

on. Moreover, for 0 ≤ m ≤ P − L − 1 (case (a)), since the condition numbers of MT
j Mj

are the same for each fixed j, j = 0, 1, · · · , L, (see Appendix A), we can use m = 0 to

represent case (a). Similarly, m = P − 1 can be used to represent case (b). Hence the

optimal selection of m reduces to one of two cases: m = 0 or m = P − 1. In other words,

the optimal precoding sequence has a peak either at the beginning or at the end.

2.4 Identification Algorithm

So far, we have proposed a method for blind identification of FIR MIMO channels using

periodic precoding sequence. It is shown that, by properly choosing the precoding sequence,

the MIMO FIR transfer functions, with K inputs and J outputs, can be identified up to

a unitary matrix ambiguity. The proposed algorithm requires solving linear equations and

computing the nonzero eigenvalues and eigenvectors of a Hermitian positive semidefinite

matrix. Since the cyclostationarity is induced at the transmitter, the identifiability condi-

tion imposed on the channel is minimum: it only requires that channel impulse response

matrix H is full column rank. The channel transfer matrix is not required to be irreducible

or column reduced. The channel can have more receivers or more transmitters. The per-

formance of the algorithm depends on the precoding sequence which is optimally designed

to reduce the effect of noise and error in estimating the covariance matrix of the received

data.
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We summarize the proposed method as the following algorithm.

1) Use the precoding sequence p(n) in (2.30) with optimal selection of m = 0 or m = P − 1

to form the matrix Mj in (2.17).

2) Estimate the covariance matrix Rx̄ via the time average R̂x̄ = 1
S

∑S
i=1 x̄(i)x̄(i)∗, where

S is the number of data block (i.e., SP is the number of samples for each transmitter).

3) Compute Fj, formed by the channel product matrices, for j = 0, 1, · · · , L, using (2.18).

4) Form the matrix Q as in (2.19), and obtain the channel impulse response matrix (2.21)

by computing the K largest eigenvalues and the associated eigenvectors of Q.

2.5 Simulation Results

In this section, we use several examples to demonstrate the performance of the proposed

method. The channel normalized root-mean-square error (NRMSE) is defined as

NRMSE =
1

‖H‖F

√√√√1

I

I∑
i=1

‖Ĥ(i) − H‖2
F , (2.32)

where ‖ · ‖F denotes the Frobenius norm. Ĥ(i) = [Ĥ(i)(0)T Ĥ(i)(1)T · · · Ĥ(i)(L)T ]T is the

estimate of channel impulse response matrix H after removing the unitary matrix ambiguity

by the least squares method [21]. I = 100 is the number of Monte Carlo runs. The input

source symbols are independent and identically distributed (i.i.d.) QPSK signals. The

channel noise is temporally and spatially white Gaussian. The signal-to-noise ratio (SNR)

at the output is defined as SNR =
1
P

PP−1
n=0 E[‖t(n)‖2

2]

E[‖w(n)‖2
2]

, where t(n) = [t1(n) · · · tJ(n)]T is the

signal component of the received signal (see Figure 2.1).

1) Simulation 1 – optimal selection of precoding sequences

In this simulation, we use the following model

H(z) =

[
1.34 − 0.55i 1.67 + 0.12i

−0.69 + 0.25i −0.51 − 0.33i

]
︸ ︷︷ ︸

H(0)

+

[
−1.45 + 0.21i −1.35 + 0.21i

0.62 − 0.31i −0.76 + 0.43i

]
︸ ︷︷ ︸

H(1)

z−1

+

[
−0.31 + 0.15i −0.41 − 0.16i

−0.29 + 0.21i −0.25 − 0.14i

]
︸ ︷︷ ︸

H(2)

z−2 (2.33)

to demonstrate the effect of different precoding sequences on the performance of the pro-

posed method. In experiment 1, the first sequence is chosen as {0.767 1.07 1.07 1.07},
which satisfies (2.28) and (2.29). The second and third sequences are chosen based on
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(2.30) for P = 4 and τ = 0.5878 with the two possible peak positions: m = 0 and m = 3.

By computation, the corresponding µ for the three cases are 40.0, 4.66 and 22.1, respec-

tively. Thus m = 0 is the optimal selection. Figure 2.2 shows that for SNR=10 dB, there

are about 5∼7 dB and 5∼9 dB difference in NRMSE between the optimal one and two

others.

In experiment 2, we use the precoding sequences that satisfy (2.30) with m = 0, but

with different τ to test the effect of τ on the identification performance. Figure 2.3 shows

that for each sequence, when the number of samples (for each transmitter) is fixed at

1000, the NRMSE decreases as SNR increases and is roughly constant for SNR ≥ 20 dB. A

possible explanation is that for sufficiently large SNR, the NRMSE is contributed mainly by

numerical error rather than by channel noise. Figure 2.3 also shows that the identification

performs better for smaller τ , which is consistent with the conclusion at the end of Section

2.3.1.

2) Simulation 2 – channel order overestimation

In this simulation, we use the following channel model

H(z) =

[
0.4851 0.3200

−0.3676 0.2182

]
︸ ︷︷ ︸

H(0)

+

[
−0.4851 0.9387

0.8823 0.8729

]
︸ ︷︷ ︸

H(1)

z−1 +

[
0.7276 −0.1280

0.2941 −0.4364

]
︸ ︷︷ ︸

H(2)

z−2

(2.34)

given in [19]. For each upper bound L̂, 0 ≤ (L̂ − L) ≤ 6, we choose P = L̂ + 2, SNR=10

dB, and 1000 samples (for each transmitter) for simulation. The precoding sequences are

chosen as (2.30) with m = 0 and τ = 0.2, 0.4, 0.6, and 0.8. Figure 2.4 shows the NRMSE

increases with increasing channel order overestimation. We see the proposed method is

quite robust to channel order overestimation when τ is small. For example, with τ = 0.4,

when (L̂ − L) increases from 0 to 3, the NRMSE increases from -25.5dB to -21dB, which

is still a low value.

3) Simulation 3 – a 3-input 2-output channel

In this simulation, we use the 3-input 2-output model

H(z) =

[
1.6 0.88 0.66

0.8 0.44 0.33

]
︸ ︷︷ ︸

H(0)

+

[
−0.44 0.35 0.14

−0.14 0.37 0.23

]
︸ ︷︷ ︸

H(1)

z−1 +

[
0.13 0.01 0.08

0.26 0.02 0.16

]
︸ ︷︷ ︸

H(2)

z−2

(2.35)

to illustrate the performance of the proposed method for channel with more transmitters

than receivers. Note that H is full column rank, but the channel is not irreducible [21]
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because H(0) is not full rank, and it is not column reduced [21] either because H(2) is

not full rank. In experiment 1, the precoding sequences (P = 4) are given as in (2.30)

with m = 0 and m = 3, respectively. Figure 2.5 shows that the NRMSE decreases as the

number of data samples increases for SNR=10 dB. As expected, m = 0 case (the optimal

selection) is better than m = 3 case.

In experiment 2, we use the precoding sequences that satisfy (2.30) with m = 0, but

with different τ to test the effect of τ on the identification performance. Figure 2.6 shows

that for each sequence, when the number of samples (for each transmitter) is fixed at 1000,

the NRMSE decreases as SNR increases and is roughly constant for SNR ≥ 25 dB due to

numerical error. Figure 2.6 also shows the identification performs better for smaller τ .

4) Simulation 4 – channel equalization performance

In this simulation, we use the channel model given in (2.34) to demonstrate the perfor-

mance of the proposed method for channel equalization. We use the precoding sequences

that satisfy (2.30) with m = 0, but with different τ to test the effect of τ on the equalization

performance. For simplicity, we use the minimum mean square error (MMSE) equalizer.

The equalizer is a 17-tap Wiener filter with 12-tap reconstruction delay whose jth output

ûj(k) is an estimate of uj(k) for j = 1, 2, · · · , K. Since the precoding scheme is applied

at the transmitter, we need to multiply ûj(k) by the corresponding p(k)−1 to obtain an

estimate of sj(k) for j = 1, 2, · · · , K. The number of samples is 1200. We first identify the

channel using the first 400 samples and then do equalization. To obtain smoother curves,

we use I = 300 as the number of Monte Carlo runs rather than 100.

Figure 2.7 shows that under low SNR, the proposed method performs better when τ is

large; however, under high SNR, the proposed method performs better when τ is low. A

possible explanation is as follows.

Channel estimates become more accurate as τ becomes smaller, but the gains p(k)−1 =
1√
τ
, k = 1, 2, · · · , P−1 become larger and result in larger noise amplification at the receiver.

Both channel estimation error and channel noise contribute to the (maximum likelihood)

detection performance, i.e., the symbol error rate. In the low SNR region, the detrimental

effect of noise amplification outweighs the benefit of small estimation error; whereas in the

high SNR region, accurate channel estimation weighs more than the noise amplification

effect. Hence we choose a small τ when SNR is high and a large τ when SNR is low.

5) Simulation 5 – Comparisons with other methods

In this simulation, we generate 100 2-input 4-output random channels with order L = 2;

each element in the channel impulse response matrix is a complex circular Gaussian random
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variable with unit variance. We compare the proposed method with a generalized space

time block codes (GSTBC)[23] based method. Both methods require periodic precoding

sequences. For the proposed method, the precoding sequence is chosen as {1.500 0.767

0.767 0.767}; whereas the entries in the precoding sequence for the GSTBC method is

chosen as random entries with modulus 1 for each random channel simulation [23]. The

performance of the proposed method is also compared with a linear prediction (LP)[2,

chap. 6] based method, and an outer product decomposition algorithm (OPDA)[20]. Both

methods do not require a periodic precoder. MMSE equalizers are used for the proposed

method, LP method, and OPDA method. For the GSTBC method, we use the customized

equalizer proposed in [23]. Figure 2.8(a) shows that when the number of samples is 1200

(for each transmitter), the identification performance of the proposed method is better

than those of the other three methods excepting the GSTBC method for SNR ≥ 13 dB.

However, Figure 2.8(b) shows the equalization performance of the proposed method is only

better than those of the LP and OPDA methods and worse than the GSTBC method.

The inconsistency of the channel estimation and equalization performance of the proposed

method and the GSTBC method for SNR ≤ 13 dB may be due to the different precoding

sequences and equalizers used. Figure 2.9 shows that when the number of samples is 200

(for each transmitter), the identification and equalization performance of the proposed

method is better than that of the GSTBC method for SNR ≤ 15 dB. Figure 2.9 shows that

when the number of samples is small, the proposed method has better performance than

the GSTBC method under low SNR.
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Figure 2.6. 3-input 2-output model: channel NRMSE versus output SNR
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Figure 2.7. Symbol error rate versus output SNR
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Figure 2.8. Comparison of NRMSE and symbol error rate, number of input samples =

1200
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Figure 2.9. Comparison of NRMSE and symbol error rate, number of input samples = 200
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Chapter 3

Identification of MIMO Single

Carrier Zero Padding Channels

In this chapter, we propose a blind identification method based on periodic precod-

ing for another transmission systems, single carrier with zero padding block transmission

systems. The method uses periodic precoding on the source signal before transmission.

The estimation of the channel impulse response matrix consists of two steps: (1) obtain

the channel product matrix by solving a lower-triangular linear system and (2) obtain the

channel impulse response matrix by computing the positive eigenvalues and eigenvectors of

a Hermitian matrix formed from the channel product matrix. The method is applicable to

MIMO channels with more transmitters or more receivers. A sufficient condition for identi-

fiability is simply that the channel impulse response matrix is full column rank. The design

of the precoding sequence which minimizes the noise effect in covariance matrix estimation

is proposed and the effect of the optimal precoding sequence on channel equalization is

discussed. Simulations are used to demonstrate the performance of the method.

3.1 System Model and Formulation

Consider the K-input J-output discrete time SC-ZP block transmission baseband model

shown in Figure 3.1. At the transmitter, the kth input signal vk(n) is first multiplied by a

positive P -periodic sequence, p(n) ∈ R, to obtain sk(n) = p(n)vk(n), where p(n+P ) = p(n),

∀ n. Then sk(n) is passed through a serial-to-parallel block whose output is

s̄k(i) = [sk(iM) sk(iM + 1) · · · sk(iM + M − 1)]T . (3.1)
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x1(n)

...
...

-⊕?
-tJ(n)

wJ(n)

xJ(n)

Figure 3.1. An MIMO SC-ZP block transmission baseband model with periodic precoding

Then s̄k(i) is passed through a zero padding prefilter F1 = [IM 0T
P×M ]T ∈ R(M+P )×M whose

output is

ūk(i) = F1s̄k(i) = [ s̄k(i)
T︸ ︷︷ ︸

M entries

0 · · · 0︸ ︷︷ ︸
P entries

]T = [uk(iN) · · ·uk(iN + M − 1)︸ ︷︷ ︸
M entries

0 · · · 0︸ ︷︷ ︸
P entries

]T , (3.2)

where N = M + P . Finally, ūk(i) is converted to uk(n) via a parallel-to-serial block and

transmitted through the MIMO FIR channel. At the receiver, the jth received signal is

xj(n) = tj(n) + wj(n), where tj(n) is the signal component at the output and wj(n) is the

channel noise seen at the jth receiver. If we define x(n) = [x1(n) x2(n) · · · xJ(n)]T ∈ CJ ,

then x(n) can be written as

x(n) =
L∑

l=0

H(l)u(n − l) + w(n) = t(n) + w(n), (3.3)

where u(n) ∈ CK , w(n) ∈ CJ , and t(n) ∈ CJ are similarly defined as x(n), and H(l) ∈
CJ×K is the channel coefficient matrix whose jkth element hjk(l), l = 0, 1, · · · , Ljk, is the

impulse response from the kth transmitter to the jth receiver, and L = maxj,k{Ljk} is the

order of the MIMO channel. We assume that H(L) 6= 0J×K . Group the sequence of x(n)

as x̄(i) = [x(iN)T x(iN + 1)T · · ·x(iN + N − 1)T ]T ∈ CJN , and define ū(i) ∈ CKN and

w̄(i) ∈ CJN similarly as x̄(i), we have

x̄(i) = H0ū(i) + H1ū(i − 1) + w̄(i), (3.4)

where H0 is a JN ×KN block lower-triangular Toeplitz matrix with the first block column

being [H(0)T H(1)T · · ·H(L)T 0T
J×K · · ·0T

J×K ]T ∈ CJN×K , and H1 is a JN × KN block

upper-triangular Toeplitz matrix with the first block row being [0J×K · · ·0J×K H(L) H(L−
1) · · ·H(1)] ∈ CJ×KN . We assume that the receivers are synchronized with the transmit-

ters. In addition, the following assumptions are made throughout this chapter.
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(B1) The source signal v(n) = [v1(n) v2(n) · · · vK(n)]T ∈ CK is a zero mean white se-

quence with E[v(m)v(n)∗] = δ(m− n)IK ∈ RK×K , where δ(·) is the Kronecker delta

function. The noise is white zero mean with E[w(m)w(n)∗] = δ(m−n)σ2
wIJ ∈ RJ×J .

In addition, the source signal is uncorrelated with the noise w(n), i.e., E[v(m)w(n)∗] =

0K×J , ∀ m,n.

(B2) An upper bound L̂ of the channel order L is known, P = L̂ + 1, and M > P is a

multiple of P .

(B3) The channel impulse response matrix H = [H(0)T H(1)T · · ·H(L)T ]T is full column

rank, i.e., rank(H) = K.

In the next section, we derive an algorithm for blind identification of the MIMO channel

impulse response matrix H using second-order statistics of the received data.

3.2 Blind Channel Identification

In this section, we derive the proposed method under assumptions (B1), (B2), and

(B3). We discuss an optimal design of the precoding sequence, which takes into account

the noise effect in the estimation of covariance matrix of the received data, so as to increase

the accuracy in the computation of the channel product matrix HH∗ and thus reduce the

channel estimation error. With the proposed optimal precoding sequence, the computation

of HH∗ becomes particularly simple. Taking eigen-decomposition of HH∗, we obtain the

channel impulse response matrix H up to a unitary matrix ambiguity.

3.2.1 The Identification Method

We first derive the proposed method for the case where the channel order L is known

with P = L+1, there are more receivers, i.e., J ≥ K, and the noise is absent. The cases of

channel order overestimation and more transmitters than receivers (i.e., K > J) are given

at the end of this sub-section. The effects of noise and optimal design of the precoding

sequence are discussed in Section 3.2.2.

From (3.4), we know that only the last L block columns of H1 are non-zero and zeros

are padded in the last P block rows of ū(i − 1) and ū(i) (see (3.2)). Hence the product

H1ū(i − 1) equals the zero vector and (3.4) can be written as follows (noiseless case):
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x̄(i)︷ ︸︸ ︷

x(iN)
...

x(iN + L)
...

x(iN + M − 1)
...

x(iN + N − 1)


=

H0︷ ︸︸ ︷

H(0)
...

. . .

H(L) · · · H(0)
. . .

...
. . .

H(L) · · · H(0)
. . .

...
. . .

H(L) · · · H(0)



ū(i)︷ ︸︸ ︷

u(iN)
...

u(iN + L)
...

u(iN + M − 1)

0
˙̇̇
0


= Hes̄(i),

(3.5)

where He is the sub-matrix formed from the first M block columns of H0 and s̄(i) =

[u(iN)T u(iN + 1)T · · · u(iN + M − 1)T ]T is the first M block entries of ū(i). Because

u(iN) = [u1(iN) u2(iN) · · · uK(iN)]T (see the line below (3.3)) and uk(iN) = sk(iM)

for k = 1, 2, · · · , K (see (3.2)), u(iN) = [s1(iM) s2(iM) · · · sK(iM)]T , s(iM). Simi-

larly, u(iN + m) = s(iM + m) for m = 1, 2, · · · ,M − 1. Hence s̄(i) = [s(iM)T s(iM +

1)T · · · s(iM + M − 1)T ]T .

Let xf (i) = [x(iN)T x(iN + 1)T · · · x(iN + L)T ]T be the first J(L + 1) rows of x̄(i).

Then

xf (i) = Hfsf (i), (3.6)

where Hf ∈ CJ(L+1)×K(L+1) is the sub-matrix formed from the first (L + 1) block columns

and block rows of He, and sf (i) = [s(iM)T s(iM + 1)T · · · s(iM + L)T ]T . Also we know

for k = 1, 2, · · · , K, sk(iM) = p(iM)vk(iM) = p(0)vk(iM) from (3.1) and assumption

(B2). Hence s(iM) = [p(0)v1(iM) p(0)v2(iM) · · · p(0)vK(iM)]T = p(0)v(iM), where

v(iM) = [v1(iM) v2(iM) · · · vK(iM)]T . Similarly, s(iM + n) = p(n)v(iM + n) for

n = 1, 2, · · · , L. Therefore (3.6) can be written as

xf (i)︷ ︸︸ ︷
x(iN)

x(iN + 1)
...

x(iN + L)

 =

Hp︷ ︸︸ ︷
p(0)H(0)

p(0)H(1) p(1)H(0)
...

...
. . .

p(0)H(L) p(1)H(L − 1) · · · p(L)H(0)



vf (i)︷ ︸︸ ︷
v(iM)

v(iM + 1)
...

v(iM + L)

 . (3.7)

Define S ∈ RJ(L+1)×J(L+1) as the matrix whose first block sub-diagonal entries are all IJ

(i.e., S(J +1 : J(L+1), 1 : JL) = IJL), and all remaining entries are zero. Rewrite (3.7) as

xf (i) = [p(0)H p(1)SH · · · p(L)SLH]vf (i) = Hpvf (i). (3.8)
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Taking expectation of xf (i)xf (i)
∗, we get the covariance matrix

Rf = E[xf (i)xf (i)
∗] = HpH

∗
p . (3.9)

From (3.8), since Hp = [p(0)H p(1)SH · · · p(L)SLH], (3.9) can be written as

Rf = p(0)2HH∗ + p(1)2SHH∗ST + · · · + p(L)2SLHH∗(ST )L =
L∑

k=0

p(k)2SkHH∗(ST )k.

(3.10)

From [37, p.414], we know that the general matrix equation
∑p

j=1 AjXBj = C can be equiv-

alently expressed as a matrix-vector equation form,
[∑p

j=1 BT
j ⊗ Aj

]
vec(X) = vec(C),

where vec(·) is the vec-function which stacks up columns of a matrix. Hence the matrix

equation (3.10) can be written in the following vector form:

vec(Rf ) = vec

(
L∑

k=0

p(k)2SkHH∗(ST )k

)
=

(
L∑

k=0

p(k)2Sk ⊗ Sk

)
vec(HH∗) = G · vec(HH∗).

(3.11)

Here G is a block Toeplitz lower-triangular matrix shown as follows:

G =
L∑

k=0

p(k)2Sk ⊗ Sk =


p(0)2IJF 0 · · · 0

p(1)2Ŝ p(0)2IJF · · · 0
...

...
. . .

...

p(L)2ŜL p(L − 1)2ŜL−1 · · · p(0)2IJF

 ∈ RF 2×F 2

, (3.12)

where F = J(L + 1) and Ŝ ∈ RJF×JF is a block diagonal matrix with S on the diagonal

blocks. Since G is square, the solution to (3.11) is

vec(HH∗) = G−1vec(Rf ) (3.13)

provided p(0) 6= 0. We use the solution obtained in (3.13) to form a Hermitian matrix

Q = HH∗. Then under the assumption (B3), we can obtain the channel impulse response

matrix, up to a unitary matrix ambiguity, by choosing the K largest eigenvalues and the

associated eigenvectors of Q, like the way at the end of Section 2.2.1.

Remark 1: So far we have assumed that the channel order L is known. If only an upper

bound L̂ ≥ L is available, then following the same process given in this sub-section, we ob-

tain ̂vec(HovH∗
ov) = [

∑L̂
k=0 Sk ⊗ Sk]

−1vec(Rf ) where Hov = [HT 0 · · · 0︸ ︷︷ ︸
L̂−L blocks

]T ∈ CJ(L̂+1)×K .

Then we can also obtain Q = HovH
∗
ov. Note that the last (L̂−L) block columns and block

rows of Q are zero. Then similar to the discussion in Section 2.2.2, we can also identify

the channel impulse response matrix.

Remark 2: The proposed method can apply to the case of more transmitters than re-

ceivers. Please see the discussion in Section 2.2.3.
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3.2.2 Optimal Design of the Precoding Sequence

When the noise is present, the covariance matrix Rf contains the contribution of noise.

Thus (3.9) becomes

Rf = E[xf (i)xf (i)
∗] = HpH

∗
p + σ2

wIF , (3.14)

where F = J(L + 1). In this case, (3.11) becomes

vec(Rf ) = G · vec(HH∗) + σ2
wvec(IF ). (3.15)

From (3.13), the approximate solution of vec(HH∗) is

̂vec(HH∗) = G−1vec(Rf ). (3.16)

It follows from (3.16) and (3.15) that

̂vec(HH∗) = vec(HH∗) + σ2
w G−1 · vec(IF )︸ ︷︷ ︸

z

= vec(HH∗) + σ2
wz. (3.17)

The vector z = [z1 z2 · · · zF 2 ]T in (3.17) is the solution of Gz = vec(IF ). Since the matrix

G is completely determined by the precoding sequence p(n), we seek to choose p(n) so that

‖z‖2
2 is minimized. To this end, we need to analyze the relations between z and p(n). By

expanding the matrix equation Gz = vec(IF ), we find that



p(0)2zi = 1 i = 1 + k(F + 1), k = 0, 1, · · · , J − 1∑1
n=0 p(n)2zi+(1−n)J(F+1) = 1 i = 1 + k(F + 1), k = 0, 1, · · · , J − 1∑2
n=0 p(n)2zi+(2−n)J(F+1) = 1 i = 1 + k(F + 1), k = 0, 1, · · · , J − 1

...
...

...∑L
n=0 p(n)2zi+(L−n)J(F+1) = 1 i = 1 + k(F + 1), k = 0, 1, · · · , J − 1

(3.18)

and zj = 0 for all other indices j. We write (3.18) as the following matrix equation.
g0 0 · · · 0

g1 g0 · · · 0
...

...
. . .

...

gL gL−1 · · · g0


︸ ︷︷ ︸

Gs


m0

m1

...

mL


︸ ︷︷ ︸

m

=


1

1
...

1


︸ ︷︷ ︸

y

(3.19)

where Gs is a lower-triangular Toeplitz matrix, gn = p(n)2 for n = 0, 1, · · · , L, and mj =

zi+jJ(F+1) for j = 0, 1, · · · , L, i = 1+k(F +1), k = 0, 1, · · · , J−1. Hence Gz = vec(IF ), the

relations between z and p(n), is reduced to (3.19), and minimization of ‖z‖2
2 is equivalent

to minimization of ‖m‖2
2, which is a nonlinear function of g0, g1, · · · , gL. Then the problem
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is to minimize ‖m‖2
2 by choosing g0, g1, · · · , gL, subject to suitable constraints. Specifically,

we formulate the problem as

Minimizeg0,g1··· ,gL
‖m‖2

2 subject to

gn ≥ τ > 0, ∀ 0 ≤ n ≤ L (3.20)

1

L + 1

L∑
n=0

gn = 1 . (3.21)

Roughly, constraint (3.20) requires that at each instant, the power gain (gn = p(n)2) is no

less than τ with 0 < τ < 1; constraint (3.21) normalizes the power gain of the precoding

sequence of each transmitter to 1.

It is easy to show that for L = 1, the problem has a unique global minimizer given by

g0 = 2 − τ and g1 = τ . For general L ≥ 2 case, the standard Kuhn-Tucker conditions

[38] of the nonlinear minimization problem do not seem to yield easily a unique analytical

solution. However, the problem can be easily solved numerically (for fixed L and τ), say

using the Matlab Optimization Toolbox. Extensive numerically solutions, with different L,

τ , and initial guess, have indicated that a global minimizer exists and is given by

g0 = L + 1 − Lτ, g1 = g2 = · · · = gL = τ. (3.22)

In the following, we show that the solution (3.22) is also the global minimizer of an

upper bound of ‖m‖2
2. We know ‖m‖2

2 = ‖G−1
s y‖2

2 ≤ ‖G−1
s ‖2

2 · ‖y‖2
2 = (L + 1)‖G−1

s ‖2
2,

where ‖G−1
s ‖2 is the 2-induced norm of G−1

s . Since Gs is triangular and Toeplitz, it follows

from [32] that for any fixed integer L ≥ 1,

‖G−1
s ‖2

2 ≤
1

(α + 2)2β2
[(α + 1)2(L+1) + 2(L + 1)(α + 2) − 1] , f(α, β), (3.23)

where α = maxi=1,2,··· ,L | gi

g0
| and β = |g0|. Hence we know ‖m‖2

2 ≤ (L+1)f(α, β). Since for

any α > 0 and β > 0, ∂f(α,β)
∂α

> 0 (see Appendix C) and ∂f(α,β)
∂β

= − 2
β
f(α, β) < 0 , we know

for any fixed β > 0, f(α, β) is an increasing function of α, and for any fixed α > 0, f(α, β)

is a decreasing function of β. Hence to minimize f(α, β), we should choose α as small as

possible and choose β as large as possible subject to β ≤ L + 1 − Lτ and α ≥ τ
L+1−Lτ

. It

follows that (3.22) is a global minimizer of the upper bound (L + 1)f(α, β).

Since gn = p(n)2 and p(n) > 0, the optimal precoding sequence is

p(n) =

{ √
L + 1 − Lτ , n = 0

√
τ , 1 ≤ n ≤ L .

(3.24)

We consider next the effect of τ on channel identification. From (3.19) and [30, 31], we

know m = G−1
s y, where G−1

s is a lower-triangular Toeplitz matrix with [ḡ0 ḡ1 · · · ḡL]T ∈
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RL+1 as its first column, and{
ḡ0 = 1

g0

ḡl = − 1
g0

∑l
i=1 ḡl−igi, i = 1, 2, · · · , l − 1, for l = 1, 2, · · · , L .

(3.25)

Then

‖m‖2
2 = ḡ2

0 + (ḡ0 + ḡ1)
2 + · · · + (ḡ0 + ḡ1 + · · · + ḡL)2. (3.26)

For the optimal solution in (3.22), the corresponding ḡn in (3.25) can be expressed as

follows: {
ḡ0 = 1

L+1−Lτ
> 0

ḡi = − τ
(L+1−Lτ)2

(1 − τ
L+1−Lτ

)i−1 < 0, i = 1, 2, · · · , L .
(3.27)

The following proposition shows that ‖m‖2
2 is a continuous and strictly increasing function

of τ on (0, 1). In other words, for 0 < τ < 1, ‖m‖2
2 decreases as τ decreases, and thus as

τ decreases, the noise effect in the estimation of the covariance matrix Rf is reduced and

hence identification performance improves.

Proposition 3.1: With ḡn given in (3.27), ‖m‖2
2 =

1−(1− τ
L+1−Lτ

)2(L+1)

2(L+1−Lτ)τ−τ2 and d
dτ
‖m‖2

2 > 0 for

0 < τ < 1.

Proof : See Appendix D.

3.2.3 Computation of G−1
0

With the precoding sequence p(n) chosen as (3.24), the matrix G in (3.12) becomes

G0 =


aIJF 0 · · · 0

bŜ aIJF · · · 0
...

...
. . .

...

bŜL bŜL−1 · · · aIJF

 , (3.28)

where a = L+1−Lτ , and b = τ . The inverse of G0 can be obtained by forward substitutions

as

G−1
0 =


k0IJF 0 · · · 0

k1Ŝ k0IJF · · · 0
...

...
. . .

...

kLŜ
L kL−1Ŝ

L−1 · · · k0IJF

 , (3.29)

where k0 = 1
a

and ki = − b
a2 (1 − b

a
)i−1 for i = 1, 2, · · · , L. The solution ̂vec(HH∗) =

G−1
0 vec(Rf ) in (3.16) is thus quite easy to compute once the optimal precoding sequence

is given.
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3.2.4 Identification Algorithm

So far, we have proposed a new method to identify the MIMO channels for the single

carrier zero padding block transmission system using optimal designed periodic precoding

which minimize the noise effect in the estimation of the covariance matrix Rf . With zero

padding, the computation of the channel product matrix HH∗ becomes particularly simple,

since it amounts to solving a lower-triangular linear system. The channel impulse response

matrix H is then computed, up to a unitary matrix ambiguity, from the channel product

matrix via an eigen-decomposition. We summarize the proposed method as the following

algorithm:

1) Select the optimal precoding sequence p(n) given by (3.24), and form G−1
0 as in (3.29).

2) Collect the received data as x̄(i) and pick up the first (L + 1) block entries of x̄(i) as

xf (i). Then estimate the covariance matrix Rf via the time average

R̂f =
1

S

S∑
i=1

xf (i)xf (i)
∗, (3.30)

where S is the number of data block.

3) Compute ̂vec(HH∗) = G−1
0 vec(R̂f ) to obtain the elements of HH∗.

4) Form the matrix Q = HH∗ and obtain the channel impulse response matrix by comput-

ing the K largest eigenvalues and the associated eigenvectors of Q.

3.3 Channel Equalization

Once the received data x̄(i) = Hes̄(i)+w̄(i) is available and the channel is identified, the

minimum mean square error (MMSE) or zero forcing (ZF) equalization methods [13, 14] can

be used to recover the modulated sources sk(n). For example, with an MMSE equalizer,

Ge, we estimate s̄(i) by ̂̄s(i) = Gex̄(i). Since the precoding scheme is applied at the

transmitter, we need to multiply the estimated s̄(i) by P−1 to obtain an estimate of v̄(i),

where v̄(i) is similarly defined as s̄(i), and P = I M
L+1

⊗ (diag[p(0), · · · , p(L)] ⊗ IK). In

other words, the estimated v̄(i) can be obtained by

̂̄v(i) = P−1Gex̄(i). (3.31)

From (3.31), we know the equalization performance is related to P−1 and Ge. Because

Ge is formed from the estimated channel coefficients, we expect good channel identification

to bring an accurate Ge and thus improves the equalization performance. Also we know

using the optimal precoding sequence in (3.24), the identification performance improves as τ
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decreases. Hence using a small τ brings good channel estimation and improves the accuracy

of Ge, which is expected to improves the equalization performance. However, using a small

τ would make the diagonal gain p(k)−1 = 1√
τ

in P−1, k = 1, 2, · · · , L, becomes large, which

results in large noise amplification at the receiver and hence is more likely to cause decision

error. Therefore using a small τ would amplify the noise and the equalization performance

deteriorates as τ decreases.

In summary, although decreasing τ improves the accuracy of Ge, it would cause an

increased amplification of noise, and vice versa. Hence there is a trade-off on the selection

of τ when channel equalization is performed. In the work of [15, 16, 27], this trade-off is

also observed. We will give a simulation example to demonstrate this trade-off in the next

section.

3.4 Simulation Results

In this section, we use several examples to demonstrate the performance of the proposed

method. The channel NRMSE, SNR, and the number of Monte Carlo runs are the same as

those given in Section 2.5. The source symbols are i.i.d. QPSK signals. The channel noise

is zero mean, temporally and spatially white Gaussian.

1) Simulation 1 – optimal selection of precoding sequences

In this simulation, we use the model (2.33) to demonstrate the performance of the

proposed method. The length of symbol blocks is M = 27, which is zero padded to

blocks of length M + P = 30. It means P = 3(= L + 1) and transmission efficiency is

90%. In experiment 1, we use 5 precoding sequences which all satisfy (3.20) and (3.21) to

illustrate the effect of the precoding sequences on the identification performance. The first

sequence S0 are chosen based on (3.24) for τ = 0.6, i.e., S0 is chosen as {
√

1.8
√

0.6
√

0.6}.
The sequences S1, S2, SA, and SB are chosen as {

√
0.6

√
1.8

√
0.6}, {

√
0.6

√
0.6

√
1.8},

{
√

0.6
√

1.0
√

1.4}, and {1 1 1} (i.e., no precoding), respectively. Figure 3.2 shows that for

SNR=10 dB, the NRMSE decreases as the number of symbol blocks increases for every

precoding sequence. As expected, the optimal precoding sequence S0 yields the smallest

NRMSE.

In experiment 2, we use the precoding sequences that satisfy (3.24), but with different

τ to test the effect of τ on the identification performance. Figure 3.3 shows that when the

number of symbol blocks = 100, the NRMSE decreases as SNR increases and is roughly

constant for SNR ≥ 20 dB for different τ . Figures 3.3 also shows that the identification

performs better for smaller τ .
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2) Simulation 2 – channel order overestimation

In this simulation, we use the channel model (2.33) with SNR = 10 dB, fix the number

of symbol blocks at 300, and use the precoding sequence that satisfies (3.24) with τ = 0.6.

For each upper bound L̂, 0 ≤ (L̂−L) ≤ 6, we choose P = L̂+1 and M = 9P for simulation

such that the transmission efficiency is maintained at 90%. Figure 3.4 shows the NRMSE

increases with increasing channel order overestimation for each τ . We see that periodic

precoding improves robustness to channel order overestimation. For example, without

precoding (τ = 1), the NRMSE increases about 6 dB for (L̂ − L) = 3. With precoding,

(τ = 0.4), the corresponding increase in NRMSE is about 1.5 dB.

3) Simulation 3 – a 3-input 2-output channel

In this simulation, we use the 3-input 2-output model (2.35) to illustrate the perfor-

mance of the proposed method for channel with more transmitters than receivers. We use

M = 27 and P = 3. In experiment 1, we use the same precoding sequences S0, S1, and S2

which are used in simulation 1. Figure 3.5 shows that for SNR=10 dB, the NRMSE de-

creases as the number of symbol blocks increases for each precoding sequence. The optimal

precoding sequence S0 yields the smallest NRMSE.

In experiment 2, we use the precoding sequences that satisfy (3.24), but with different τ

to test the effect of τ on the identification performance. Figure 3.6 shows that the channel

NRMSE decreases as SNR increases for each τ and that the identification method performs

better for smaller τ .

4) Simulation 4 – trade-off in selecting τ

In this simulation, we discuss the trade-off in selecting τ when channel equalization

is performed. We use the MMSE equalizer [13, 14]. We generate 150 2-input 2-output

complex random channels based on the IEEE 802.11a standard [36, p. 336]. The sampling

frequency is 20 MHZ and the the delay spread is 35 nsec (for home environment). Thus

the orders of the channels are L = 7. We use M=56 and P = L + 1 = 8 such that

N = M + P = 64. The number of symbol blocks is 250. We use the optimal precoding

sequences which satisfy (3.24) with various τ .

Figure 3.7 shows that the identification performs better for smaller τ . Figure 3.8(a)

shows that for τ ∈ [0.1, 0.8], the bit error rate (BER) performance deteriorates as τ de-

creases and the BER for τ = 0.7 and τ = 0.8 are very close. Figure 3.8(b) shows that

for large τ , τ ≥ 0.8, the BER performance improves as τ decreases. Figure 3.8 shows

that there is a trade-off between identification accuracy and noise amplification: a small τ

means large noise amplification and an accurate channel estimate, and vice versa. For this
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example, it seems a τ between 0.7 and 0.8 is a good choice for BER performance.

5) Simulation 5 – comparison with the subspace method

In this simulation, we again generate 300 2-input 2-output channels based on IEEE

802.11a standard. We use the precoding sequences that satisfy (3.24) with τ = 0.8. We

use Gray-coded QPSK and 16-QAM input symbols for simulation. We compare the iden-

tification and MMSE equalization performances of the proposed method with those of the

subspace method [26] for MIMO SC-ZP systems.

Figure 3.9(a) shows that when the number of symbol blocks is 200, the identification

performance of the proposed method is better than that of the subspace method except

SNR > 16 dB. The proposed method yields almost the same identification performance for

QPSK and 16-QAM input symbols. Figure 3.9(b) shows that the equalization performance

of the proposed method is better than that of the subspace method except SNR > 16

dB. Figure 3.9 shows that the identification and equalization performance of the proposed

method is better than those of the subspace method for low to medium SNR. The subspace

method gives smaller BER than the proposed method for SNR> 16 dB.

33



10 20 30 40 50 60 70 80 90 100
−20

−18

−16

−14

−12

−10

−8

−6

−4

−2

0

Number of symbol blocks

C
ha

nn
el

 N
R

M
S

E
(d

B
)

 

 
sequence S

0

sequence S
1

sequence S
2

sequence S
A

sequence S
B

Figure 3.2. Channel NRMSE versus number of symbol blocks

0 5 10 15 20 25 30 35 40
−30

−25

−20

−15

−10

−5

SNR

C
ha

nn
el

 N
R

M
S

E
(d

B
)

 

 
τ=0.2
τ=0.4
τ=0.6
τ=0.8
τ=1.0

Figure 3.3. Channel NRMSE versus output SNR
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Figure 3.4. Channel NRMSE versus (L̂ − L)
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Figure 3.5. Channel NRMSE versus number of symbol blocks
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Figure 3.6. Channel NRMSE versus output SNR
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Figure 3.8. BER versus output SNR
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Figure 3.9. Comparison with the subspace method
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Chapter 4

A Simplified Identification Algorithm

for MIMO Zero Padding Channels

In this chapter, we propose a simplified identification method for MIMO SC-ZP block

transmission systems without periodic precoding. The proposed method can also apply to

MIMO ZP-OFDM systems. With zero-padding, the relation between the covariance ma-

trix of the received data and the channel product matrices becomes highly structured. The

structure makes it easy to estimate the channel product matrices and the noise covariance

matrices. Eigen-decomposition of a Hermitian matrix formed by the channel product ma-

trices yields the channel impulse response up to a unitary matrix ambiguity. The proposed

method is shown to be robust to channel order overestimation. The channel noise may be

temporally and spatially colored, the channel needs not be irreducible or column reduced,

and there can be more outputs or more inputs. Simulation results are used to demonstrate

the performance of the proposed method.

4.1 System Model and Formulation

Consider the K-input J-output discrete time SC-ZP block transmission baseband model

shown in Figure 4.1. Following the same derivation process in Section 3.1, we have the

relation of block inputs and outputs as follows.

x̄(i) = H0ū(i) + H1ū(i − 1) + w̄(i), (4.1)

where ū(i), w̄(i), x̄(i), H0 and H1 are those defined in Section 3.1. In addition, we make

the following assumptions.

38



- S/P ====⇒ ZP ====⇒ P/S -s1(n) s̄1(i) ū1(i) u1(n)

1 : M N : 1
...

...
...

...

- S/P ====⇒ ZP ====⇒ P/S -sK(n) s̄K(i) ūK(i) uK(n)

1 : M N : 1

MIMO
FIR
Channel

-⊕?
-t1(n)

w1(n)

x1(n)

...
...

-⊕?
-tJ(n)

wJ(n)

xJ(n)

Figure 4.1. An MIMO single carrier with zero padding block transmission baseband model

(C1) The source signal s(n) = [s1(n) s2(n) · · · sK(n)]T ∈ CK is a zero mean white

sequence with E[s(m)s(n)∗] = δ(m−n)IK ∈ RK×K , where δ(·) is the Kronecker delta

function. The noise is zero mean, wide-sense stationary, and may be temporally and

spatially colored with E[w(m)w(m + d)∗] = Kw(d) ∈ CJ×J . In addition, the source

signal is uncorrelated with the noise w(n), i.e., E[s(m)w(n)∗] = 0K×J , ∀ m,n.

(C2) An upper bound L̂ of the channel order L is known, P = L̂ + 1, and M > P .

(C3) The channel impulse response matrix H = [H(0)T H(1)T · · ·H(L)T ]T is full column

rank, i.e., rank(H)=K.

In the next section, we propose an algorithm for blind identification of the MIMO

channel impulse response matrix H using second-order statistics of the received data.

4.2 Blind Channel Identification

In this section, we derive the proposed method under assumptions (C1), (C2), and

(C3). Application of the proposed method to MIMO ZP-OFDM systems is given in Section

4.3.

4.2.1 The Identification Method

We first derive the proposed method for the case where the channel order L is known

with P = L + 1, and there are more receivers, i.e., J ≥ K. The cases of channel order
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overestimation and more transmitters than receivers (i.e., K > J) are given at the end of

this sub-section.

Due to assumption (C2) and the effect of zero padding, we know (4.1) can be expressed

in a simple form x̄(i) = H0ū(i) + w̄(i) shown as follows:

x̄(i)︷ ︸︸ ︷

x(iN)
...

x(iN + L)
...

x(iN + M − 1)
...

x(iN + N − 1)


=

H0︷ ︸︸ ︷

H(0)
...

. . .

H(L) · · · H(0)
. . .

...
. . .

H(L) · · · H(0)
. . .

...
. . .

H(L) · · · H(0)︸ ︷︷ ︸
(L+1) blocks



ū(i)︷ ︸︸ ︷

u(iN)
...

u(iN + L)
...

u(iN + M − 1)

0
˙̇̇
0


+w̄(i).

(4.2)

Let xf (i) = [x(iN)T · · · x(iN + L)T ]T be the first (L + 1) block rows of x̄(i). Then

xf (i) = Hfuf (i) + wf (i), (4.3)

where Hf ∈ CJ(L+1)×K(L+1) is the sub-matrix formed by the first (L + 1) block columns

and block rows of H0, and uf (i), wf (i) are similarly defined as xf (i). Taking expectation

of xf (i)xf (i)
∗, we get

Rf = E[xf (i)xf (i)
∗] = HfH

∗
f + Kf , (4.4)

where Kf is a Hermitian and block Toeplitz matrix and each block on the jth block super-

diagonal is equal to Kw(j) for j = 0, 1, · · · , L. Since Hf is block lower triangular, we

have

Υ0(Rf ) = [H(0)H(0)∗ + Kw(0)
∑1

l=0 H(l)H(l)∗ + Kw(0) · · ·
∑L

l=0 H(l)H(l)∗ + Kw(0)]
Υ1(Rf ) = [H(0)H(1)∗ + Kw(1)

∑1
l=0 H(l)H(l + 1)∗ + Kw(1) · · ·

∑L−1
l=0 H(l)H(l + 1)∗ + Kw(1)]

Υ2(Rf ) = [H(0)H(2)∗ + Kw(2)
∑1

l=0 H(l)H(l + 2)∗ + Kw(2) · · ·
∑L−2

l=0 H(l)H(l + 2)∗ + Kw(2)]
...

...
...

ΥL−1(Rf ) = [H(0)H(L − 1)∗ + Kw(L − 1)
∑1

l=0 H(l)H(l + L − 1)∗ + Kw(L − 1)]
ΥL(Rf ) = [H(0)H(L)∗ + Kw(L)].

(4.5)

Then for each Υj(Rf ), j = 0, 1, · · · , L, keep the first block matrix and subtract the mth

block matrix from the (m + 1)th block matrix of Υj(Rf ), m = 1, 2, · · · , L − j ≥ 1. In this
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way, we obtain the following matrices.

E0 = [H(0)H(0)∗ + Kw(0) H(1)H(1)∗ H(2)H(2)∗ · · · H(L)H(L)∗]

E1 = [H(0)H(1)∗ + Kw(1) H(1)H(2)∗ H(2)H(3)∗ · · · H(L − 1)H(L)∗]

E2 = [H(0)H(2)∗ + Kw(2) H(1)H(3)∗ H(2)H(4)∗ · · · H(L − 2)H(L)∗]
...

...
...

EL−1 = [H(0)H(L − 1)∗ + Kw(L − 1) H(1)H(L)∗]

EL = [H(0)H(L)∗ + Kw(L)]

(4.6)

From (4.6), we can obtain the channel product matrices H(m)H(n)∗ for m,n = 1, 2, · · · , L.

If we can further obtain H(0)H(j)∗ for j = 0, 1, · · · , L, then we can get a Hermitian matrix

Q = HH∗ formed by these channel product matrices. Similarly, under the assumption

(C3), we can obtain the channel impulse response matrix, up to a unitary matrix ambiguity,

by choosing the K largest eigenvalues and the associated eigenvectors of Q, like the way

given at the end of Section 2.2.1

Now, to obtain H(0)H(j)∗ for j = 0, 1, · · · , L, we need to eliminate the noise covariance

matrix imposing on H(0)H(j)∗ +Kw(j). We will take advantage of the special structure of

the last P block entries of x̄(i), i.e., xl = [x(iN + M)T · · · x(iN + N − 1)T ]T to eliminate

Kw(j) for j = 0, 1, · · · , L.

From (4.2), we know xl(i) can be written as

xl(i)︷ ︸︸ ︷
x(iN + M)

x(iN + M + 1)
...

x(iN + N − 1)

 =

Hl︷ ︸︸ ︷
0 · · ·0 H(L) · · · H(1) H(0)

H(L) · · · H(1) H(0)
. . . . . . . . .

0︸ ︷︷ ︸
M blocks

H(L) · · ·H(1) H(0)︸ ︷︷ ︸
P (=L+1) blocks



ū(i)︷ ︸︸ ︷

u(iN)
...

u(iN + M − 1)

0
˙̇̇
0


+wl(i),

(4.7)

where wl(i) is similarly defined as xl(i). Because the last P block rows in ū(i) are zero and

P = L + 1, xl(i) can be written as

xl(i) = Hr[u(iN)T · · · u(iN + M − 1)T ]T + wl(i) = Hrur(i) + wl(i), (4.8)

where Hr, the first M block columns of Hl, is a JP ×KM block Toeplitz matrix with the

first block row being [0J×K · · ·0J×K︸ ︷︷ ︸
(M−L) blocks

H(L) H(L−1) · · · H(1)] and the first block column

being zero, as seen from (4.7). Let Rl = E[x(iN + M)x∗
l (i)]. Then from (4.7) and (4.8),
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we have

Rl = [E[x(iN + M)x(iN + M)∗] E[x(iN + M)x(iN + M + 1)∗] · · · E[x(iN + M)x(iN + N − 1)∗]]

= [
L∑

l=1

H(l)H(l)∗ + Kw(0)︸ ︷︷ ︸
Rl(0)

L−1∑
l=1

H(l)H(l + 1)∗ + Kw(1)︸ ︷︷ ︸
Rl(1)

· · · Kw(L)︸ ︷︷ ︸
Rl(L)

].

(4.9)

From (4.5), the last block column (in reverse order) of Rf gives the matrix Rm:

Rm = [
L∑

l=0

H(l)H(l)∗ + Kw(0)︸ ︷︷ ︸
Rm(0)

L−1∑
m=0

H(l)H(l + 1)∗ + Kw(1)︸ ︷︷ ︸
Rm(1)

· · · H(0)H(L)∗ + Kw(L)︸ ︷︷ ︸
Rm(L)

],

(4.10)

where Rl(i) and Rm(i) ∈ CJ×J for i = 0, 1, · · · , L. Then subtracting (4.9) from (4.10),

we can obtain the channel product matrices H(0)H(0)∗, H(0)H(1)∗, · · · , H(0)H(L)∗. The

noise covariance matrix Kw(j) for j = 0, 1, · · · , L can also be obtained. Hence we can form

the Hermitian matrix Q = HH∗ and estimate the channel impulse response matrix H by

taking eigen-decomposition of Q.

Remark 1: If we choose P = L instead of P = L + 1, H1ū(i − 1) = 0 in (4.1) still holds

and we can also obtain (4.6). However, we can not eliminate the noise covariance matrix

imposing on H(0)H(L)∗ + Kw(L). More precisely, when P = L, then (4.9) and (4.10) will

become Rl(1 : J, 1 : J × L) = [Rl(0) Rl(1) · · · Rl(L − 1)] and Rm(1 : J, 1 : J × L) =

[Rm(0) Rm(1) · · · Rm(L − 1)], respectively. The difference of these two matrices gives

H(0)H(0)∗,H(0)H(1)∗, · · · ,H(0)H(L− 1)∗. The remaining unknown is H(0)H(L)∗. Thus

we need to use P = L + 1 when Kw(L) 6= 0. However, if Kw(L) = 0, e.g., temporally

white noise case (Kw(j) = 0 for j = 1, 2, · · · , L), we choose P = L because we can directly

obtain H(0)H(L)∗ from EL in (4.6).

Remark 2: So far we have assumed that the channel order L is known. If only an upper

bound L̂ ≥ L is available (in this case, assumption (C2) becomes: M > P , P = L̂ + 1),

then following the same process given in this sub-section , we observe that (4.6) becomes

Êj = [Ej 0J×J · · · 0J×J︸ ︷︷ ︸
(L̂−L) blocks

] for j = 0, 1, · · · , L and Êj = [Kw(j) 0J×J · · · 0J×J︸ ︷︷ ︸
(L̂−j) blocks

] for

j = L + 1, L + 2, · · · , L̂. Then after noise covariance matrices elimination, we can also

obtain Q with the last (L̂ − L) block columns and block rows being zero. Then similar to

the discussion in Section 2.2.2, we can also identify the channel impulse response matrix.

Remark 3: The proposed method can apply to the case of more transmitters than re-

ceivers. Please see Section 2.2.3.
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4.2.2 Identification Algorithm

So far, we have proposed a blind identification method for MIMO zero padding block

transmission systems based on eigen-decomposition approach. With zero-padding, the re-

lation between the covariance matrix of the received data and the channel product matrices

becomes highly structured. The structure makes it easy to estimate the channel product

matrices and the noise covariance matrices. Eigen-decomposition of a Hermitian matrix

formed by the channel product matrices yields the channel impulse response up to a uni-

tary matrix ambiguity. The channel noise may be temporally and spatially colored. We

summarize the proposed method as the following algorithm.

Algorithm :

1) Collect the received data as x̄(i), pick up the first (L + 1) block entries of x̄(i) as xf (i)

and the last P block entries of x̄(i) as xl(i).

2) Estimate the matrices Rf and Rl via the following time average

R̂f =
1

S

S∑
i=1

xf (i)xf (i)
∗, (4.11)

R̂l =
1

S

S∑
i=1

x(iN + M)xl(i)
∗, (4.12)

where S is the number of data block, and x(iN + M) is the (M + 1)th block entry of x̄(i).

3) Form Υj(R̂f ) as in (4.5) and then obtain H(m)H(n)∗ for m,n = 1, 2, · · · , L.

4) Form (4.10) from Υj(R̂f ), j = 0, 1, · · · , L, and form (4.9) from R̂l. Then obtain

H(0)H(j)∗ for j = 0, 1, · · · , L by subtracting (4.9) from (4.10).

5) Form the matrix Q = HH∗ using the channel product matrices, and obtain the channel

impulse response matrix H by computing the K largest eigenvalues and the associated

eigenvectors of Q.

4.2.3 Extension to MIMO Zero-Padding OFDM Systems

The proposed method can be extended to the MIMO ZP-OFDM systems. In this case,

at the transmitter, each s̄k(i) is multiplied by the IFFT matrix F∗ before entering the zero

padding block, F1 [26]. Here F ∈ CM×M is an FFT matix. Thus we know the input to F1

is F∗s̄k(i) for OFDM case. Since F is a unitary matix [?], s̄k(i) and F∗s̄k(i) are both zero

mean and have the same second-order statistics. Hence

E[F∗s̄k(m)] = 0, E[(F∗s̄k(m))(F∗s̄k(n))∗] = δ(m − n)IM .
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Hence the first and second-order statistics of u(n) for OFDM case are the same as those

for single carrier case. Therefore, following the same method given in Section 4.2.1, we can

identify the channel impulse response matrix for ZP-OFDM system.

Remark : At the receiver for ZP-OFDM system, each x̄j(i), j = 1, 2, · · · , J , enters an

overlap added matrix F2, an FFT matrix F, and the parallel-to-serial block to yield output

[26]. Here F2 = [IM La] ∈ RM×(M+P ) with La = [IP 0T
(M−P )×P ]T . However, we only

use the data x̄(i), which is a permutation of [x̄1(i)
T x̄2(i)

T · · · x̄J(i)T ]T , to identify the

channel impulse response matrix.

4.3 Simulation Results

In this section, we use several examples to demonstrate the performance of the proposed

method. The channel NRMSE and the number of Monte Carlo runs are the same as those

given in Section 2.5. The input source symbols are i.i.d. QPSK signals. The signal-to-noise

ratio (SNR) at the output is defined as SNR =
E[‖t(n)‖2

2]

E[‖w(n)‖2
2]
, where t(n) = [t1(n) · · · tJ(n)]T

is the signal component of the received signal (see Figure 4.1). Except Simulation 1, the

channel noise is zero mean, temporally and spatially white Gaussian.

1) Simulation 1 – color noise case

In this simulation, we use the channel model (2.32) to demonstrate the performance of

the proposed method when the channel noise is colored. The length of symbol blocks is

M = 27, which is zero padded to blocks of length M+P = 30. It means P = 3(= L+1) and

transmission efficiency is 90%. The additive color noise w(n) is generated by passing a zero

mean, unit variance, temporally and spatially white Gaussian vector sequence wv(n) ∈ R2

through an FIR filter C(z) = C(0)+C(1)z−1+C(2)z−2 whose output is w(n) = C(z)wv(n),

where

C(0) =

[
0.283 + 0.181i 0.185 + 0.115i

−0.135 + 0.192i 0.136 + 0.235i

]
, C(1) =

[
0.185 + 0.126i 0.165 + 0.235i

−0.154 + 0.102i 0.108 + 0.338i

]
,

C(2) =

[
0.089 + 0.181i 0.089 + 0.235i

0.089 + 0.126i 0.108 + 0.159i

]
In this case, Kw(0), Kw(1), and Kw(2) defined in assumption (B) are shown as follows:

Kw(0) =

[
0.397 0.208 − 0.159i

0.208 + 0.159i 0.350

]
, Kw(1) =

[
0.242 − 0.067i 0.121 − 0.120i

0.171 + 0.101i 0.199 + 0.011i

]
,

Kw(2) =

[
0.101 − 0.068i 0.086 − 0.037i

0.090 + 0.031i 0.064 + 0.038i

]
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Figure 4.2(a) shows the NRMSE decreases as the number of symbol blocks increases. Figure

4.2(b) shows that the noise NRMSE also decreases as the number of symbol blocks increases,

where the noise NRMSE is similarly defined as in (2.32) except H is replaced by K =

[Kw(0)T Kw(1)T Kw(2)T ]T and Ĥ(i) is replaced by K̂(i) = [K̂
(i)
w (0)T K̂

(i)
w (1)T K̂

(i)
w (2)T ]T .

2) Simulation 2 – random channels case

In this simulation, we generate 100 2-input 2-output random channels with order L = 2

to demonstrate the performance of the proposed method. Each element in the channel

impulse response matrix is complex Gaussian distribution with zero mean and unit variance.

We use M = 18 and P = 2(= L) (transmission efficiency is 90%). Figure 4.3 shows for

different number of symbol blocks, the NRMSE decreases as SNR increases and is roughly

constant for SNR ≥ 20 dB.

3) Simulation 3 – a 3-input 2-output channel

In this simulation, we use the 3-input 2-output model (2.35) to illustrate the perfor-

mance of the proposed method for channel with more inputs than outputs. We use M = 18

and P = 2. Figure 4.4 shows for different number of symbol blocks, the NRMSE decreases

as SNR increases and is roughly constant for SNR ≥ 20 dB.

4) Simulation 4 – channel order overestimation

In this simulation, we use the channel model (2.34) to demonstrate the performance of

the proposed method by comparing with the subspace method [26], which is also for MIMO

zero padding block transmission systems. For each upper bound L̂, 0 ≤ (L̂ − L) ≤ 6,

we choose P = L̂ and M = 9P for simulation such that the transmission efficiency is

maintained at 90%. Figure 4.5 shows when the number of symbol blocks is fixed at 500,

the NRMSE increases with increasing channel order overestimation for different SNR. When

SNR=0 and 5 dB, the proposed method performs better than the subspace method. When

SNR=10 dB, the subspace method performs better than the proposed method. Figures 4.5

shows that the proposed method is more robust to channel order overestimation than the

subspace method when SNR is low.

5) Simulation 5 – channel estimation and equalization of a 2-input 2-output ZP-OFDM

system

In this simulation, we use a ZP-OFDM system with the same channel model (2.34), and

M = 18, P = 2. We compare the performance of the proposed method with that of the

subspace method [26]. Figure 4.6(a) shows when SNR = 0 and 5 dB, the performance of
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the proposed method is better than that of the subspace method. However, when SNR =

10 dB, the performance of the subspace method is better than that of the proposed method.

Figure 4.6(b) shows when the number of blocks is 100 (300), the proposed method performs

better than the subspace method when SNR below about 8 dB (6 dB). Figures 4.6(a) and

4.6(b) show that the proposed method has better performance than the subspace method

under low SNR.

Figure 4.7 shows the simulation results for the zero forcing equalization of the proposed

method and the subspace method. The number of symbol blocks is 500 (where the number

of symbols = 18 × 2 × 500 = 18000). We first identify the channel using the first 25, 50,

250, and 500 symbol blocks, respectively, and then do equalization. In each sub-figure of

Figure 4.7, we see the proposed method performs better than the subspace method under

low SNR, whereas the subspace method performs better under high SNR. Besides, from

Figure 4.7, we can also observe the tendency that when the number of symbol blocks used

for identification increases, the equalization performance of the proposed method and the

subspace method would tend to be identical. Simulation result in Figure 4.8 shows when

the number of symbol blocks for identification and equalization is 5000, the performance

of these two methods are almost identical.
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Figure 4.2. Color noise case
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Figure 4.3. Channel NRMSE versus output SNR
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Figure 4.7. An OFDM system: symbol error rate versus output SNR
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Figure 4.8. An OFDM system: symbol error rate versus output SNR
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Chapter 5

Conclusions

We develop three blind identification algorithms for MIMO frequency selective wireless

communication channels. Instead of computing the channel matrix directly from the co-

variance matrix of the received data, as in subspace methods, the algorithms compute the

channel product matrixes first and then determine the channel impulse response matrix

via an eigenvalue-eigenvector decomposition. The algorithms are simple, in terms of the

amount of computations required, as compared with subspace methods; they allow a more

relaxed identifiability condition and are applicable to MIMO systems with more transmit-

ters or more receivers. Simulation results show that they are reasonably robust with respect

to channel order overestimation and has an NRMSE performance comparable to subspace

methods.

The algorithms differ in precoding complexity. The three precoding considered are:

(i) periodic precoding, (ii) periodic precoding plus zero padding, and (iii) zero padding

alone. As a result, for each of the three cases, the computation required to determine the

channel product matrices are also different. The computations required are respectively

(i) to solve a decoupled group of overdetermined linear systems of equations, (ii) to solve

a triangular linear system, and (iii) to carry out a number of simple subtractions. The

simplified computation in (iii) comes at the price of about 3 dB increase in NRMSE as

compared to (i) and (ii).
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Appendix

A Proof of Proposition 4.1 and 4.2

Preliminary :

For each j, let Nj ∈ R(N−j)×(L−j+1) be similarly defined as (2.17), except that IMr

is replaced by 1. It can be easily check that there exists permutation matrices Plj ∈
RMr(N−j)×Mr(N−j) and Prj ∈ RMr(L−j+1)×Mr(L−j+1) such that PljMjPrj = diag[Nj,Nj, · · · ,Nj] =

Dj ∈ RMr(N−j)×Mr(L−j+1) is a block diagonal matrix with each block of dimension (N−j)×
(L − j + 1). Since Plj

T = Plj
−1 and Prj

T = Prj
−1 [34, p.110], we have Mj = Plj

TDjPrj
T .

Hence Mj is full column rank if and only if Nj is full column rank for j = 0, 1, · · · , L.

Also, MT
j Mj = (PrjD

T
j Plj)(Plj

TDjPrj
T ) = PrjD

T
j DjPrj

T = Prjdiag[NT
j Nj, · · · ,NT

j Nj]Prj
T .

Let λ(A) denote the spectrum of A [34, p.310], that is, the set of eigenvalues of A. Then

λ(MT
j Mj) = λ(NT

j Nj).

Proof of Proposition 2.2 :

If at N − L + 1 ≤ m ≤ N − 2, it can be checked that Nj, j = 2, 3, · · · , L − 1 is not of

full column rank since it has two columns both equal to [τ τ · · · τ ]T which implies that at

least one Mj is rank deficient and vice versa.

Proof of Proposition 2.3 :

From the Preliminary, since λ(MT
j Mj) = λ(NT

j Nj), the condition number of MT
j Mj

is identical to that of NT
j Nj, i.e., κ(MT

j Mj) = κ(NT
j Nj). Thus we need only compute the

condition number of NT
j Nj.

Case (a): For m = 0, m = 1, · · · , and m = N − L − 1, we know

NT
j Nj = a · IL−j+1 + (2b + cj) · [1 · · · 1]T [1 · · · 1], (A.1)

where a = N2(1− τ)2, b = Nτ(1− τ), cj = (N − j)τ 2. Hence the maximum and minimum
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eigenvalues are a + (L − j + 1)(2b + cj) and a respectively. Thus the condition number of

MT
j Mj is 1 + [(L − j + 1)(2b + cj)/a] which is a decreasing function of j. Therefore the

corresponding µ is equal to µ1 = 1 + [(L + 1)(2b + c0)/a].

Case (b): For m = N − L and m = N − 1, we consider the j = 0 case and j 6= 0 case

for Nj separately. For j = 0 with m = N −L or m = N − 1, direct multiplication of NT
0 N0

gives the same matrix as (A.1), and the condition number of MT
0 M0 is µ1. For j 6= 0 with

m = N − L, direct multiplication of NT
j Nj yields

NT
j Nj =


a + 2b + cj 2b + cj 2b + cj · · · 2b + cj b + cj

2b + cj a + 2b + cj 2b + cj · · · 2b + cj b + cj

...
...

. . .
...

...
...

2b + cj 2b + cj 2b + cj · · · a + 2b + cj b + cj

b + cj b + cj b + cj · · · b + cj cj

 ∈ R(L−j+1)×(L−j+1).

(A.2)

The eigenvalues of NT
j Nj in ascending order, are αj, a, βj, where a has a multiplicity L−j−

1, and βj = 1
2
{(L−j)(2b+cj)+(a+cj)+

√
[(L − j)(2b + cj) + (a − cj)]2 + 4(L − j)(b + cj)2},

αj = 1
2
{(L − j)(2b + cj) + (a + cj) −

√
[(L − j)(2b + cj) + (a − cj)]2 + 4(L − j)(b + cj)2}.

All of the eigenvalues are positive and real. (A proof is given in Appendix B). It can be

similarly shown that for j 6= 0 with m = N − 1, NT
j Nj has the same eigenvalues αj, a, βj.

Hence for j = 1, 2, · · · , L, λ(MT
j Mj) = {αj, a, βj} and the condition number is

κ(MT
j Mj) =

βj

αj

= 1 +
χ2

j − 4(N − L)b2 + χj

√
χ2

j − 4(N − L)b2

2(N − L)b2
, (A.3)

where χj = (L − j)(2b + cj) + a + cj. Since βj/αj is also a decreasing function of j, then

the maximum value is β1/α1. Therefore, combining the two cases (j = 0, j 6= 0), the

corresponding µ is µ2 = max{µ1, β1/α1} ≥ µ1.

52



B The Eigenvalues of NT
j Nj for m = N − L

Proof :

Let Aj = NT
j Nj defined in (A.2), then Aj is positive definite since Nj is full column

rank. It can be checked that the eigenvectors corresponding to (L−j−1) multiple eigenvalue

a are: [1,−1, 0, 0, · · · , 0]T , [1, 1,−2, 0, · · · , 0]T , · · · , [1, 1, · · · , 1,−(L − j − 1), 0]T . The

remaining eigenvectors are [1, 1, · · · , 1, x]T ∈ RL−j+1. Hence

Aj


1
...

1

x

 =


a + (L − j)(2b + cj) + (b + cj)x

...

a + (L − j)(2b + cj) + (b + cj)x

(L − j)(b + cj) + cjx

 = λj


1
...

1

x

 , (B.1)

which implies the following two equations

a + (L − j)(2b + cj) + (b + cj)x = λj, (B.2)

(L − j)(b + cj) + cjx = λjx. (B.3)

Substitute (B.2) into (B.3), we can get an second order equation of x. Solving this equation

can lead to two solutions of x. Bring these two x into (B.2) and we can obtain the two

eigenvalues βj, αj. In addition, βj ≥ a because of (B.4)

βj = 1
2
{(L − j)(2b + cj) + (a + cj) +

√
[(L − j)(2b + cj) + a − cj]2 + 4(L − j)(b + cj)2}

≥ 1
2
{(L − j)(2b + cj) + (a + cj) +

√
[(L − j)(2b + cj) + a − cj]2}

= 1
2
{[(L − j)(2b + cj) + (a + cj) + [(L − j)(2b + cj) + a − cj]}

= a + (L − j)(2b + cj)

≥ a

(B.4)

and αj ≤ a because of the interlacing property [34, p.396].
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C A Proof of ∂f(α,β)
∂α > 0

With f(α, β) = (α+1)2(L+1)+2(L+1)(α+2)−1
β2(α+2)2

for α > 0, L ≥ 1,

∂f(α,β)
∂α = 1

β2 {(α + 2)−2[2(L + 1)(α + 1)2L+1 + 2(L + 1)] − 2(α + 2)−3[(α + 1)2(L+1) + 2(L + 1)(α + 2) − 1]}
= 1

β2(α+2)3
[2(L + 1)(α + 1)2L+1(α + 1 + 1) + 2(L + 1)(α + 2) − 2(α + 1)2(L+1) − 4(L + 1)(α + 2) + 2]

= 1
β2(α+2)3

[2(L + 1)(α + 1)2(L+1) + 2(L + 1)(α + 1)2L+1 − 2(L + 1)(α + 2) − 2(α + 1)2(L+1) + 2]

= 1
β2(α+2)3

[2L(α + 1)2(L+1) + 2(L + 1)(α + 1)2L+1 − 2(L + 1)(α + 2) + 2]

≥ 1
β2(α+2)3

[2L(α + 1)2(L+1) + 2(L + 1)(α + 1)3 − 2(L + 1)(α + 2) + 2]

= 1
β2(α+2)3

[2L(α + 1)2(L+1) − 2L + 4Lα + 4α + 2Lα3 + 6Lα2 + 2α3 + 6α2]

= 1
β2(α+2)3

{2L[(α + 1)2(L+1) − 1] + 4Lα + 4α + 2Lα3 + 6Lα2 + 2α3 + 6α2}
> 0.
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D A Proof of Proposition 3.1

Let a = L + 1 − Lτ and b = τ , then according to (3.27), ḡ0 = 1
a

> 0 and ḡi =

− b
a2 (1 − b

a
)i−1 < 0 for i = 1, 2, · · · , L, and

ḡ0 + ḡ1 + ḡ2 + · · · + ḡl = 1
a
− b

a2 − b
a2 (1 − b

a
) − · · · − b

a2 (1 − b
a
)l−1

= 1
a
− b

a2 ·
1·[1−(1− b

a
)l]

1−(1− b
a
)

= 1
a
− 1

a
[1 − (1 − b

a
)l]

= 1
a
(1 − b

a
)l

Hence

‖m‖2
2 = ḡ2

0 + (ḡ0 + ḡ1)
2 + · · · + (ḡ0 + ḡ1 + · · · + ḡL)2

= [ 1
a
]2 + [ 1

a
(1 − b

a
)]2 + · · · + [ 1

a
(1 − b

a
)L]2

= 1
a2 [1 + (1 − b

a
)2 + · · · + (1 − b

a
)2L]

= 1
a2 ·

1·[1−(1− b
a
)2(L+1)]

1−(1− b
a
)2

=
1−(1− b

a
)2(L+1)

a2·[1−1− b2

a2 + 2b
a

]

=
1−(1− b

a
)2(L+1)

2ab−b2

=
1−(1− τ

L+1−Lτ
)2(L+1)

2(L+1−Lτ)τ−τ2

and

d
dτ
‖m‖2

2 =
[2(L+1−Lτ)τ−τ2]·[−2(L+1)(1− τ

L+1−Lτ
)2L+1]·[− d

dτ
( τ

L+1−Lτ
)]

[2(L+1−Lτ)τ−τ2]2
− [1−(1− τ

L+1−Lτ
)2(L+1)]·(−4Lτ−2τ)

[2(L+1−Lτ)τ−τ2]2

=
[(1−τ)τ(2L+1)+τ ]·[2(L+1)(1− τ

L+1−Lτ
)2L+1]·[ L+1

(L+1−Lτ)2
]

[2(L+1−Lτ)τ−τ2]2
+

[1−(1− τ
L+1−Lτ

)2(L+1)]·(4Lτ+2τ)

[2(L+1−Lτ)τ−τ2]2

Because 0 < 1− τ < 1 and 0 < (1− τ
L+1−Lτ

) < 1 for 0 < τ < 1, d
dτ
‖m‖2

2 > 0 for 0 < τ < 1.
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