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Abstract

With the advent of deep-submicron manufacturing technology, the trend of VLSI design is
towards the System-On-Chip. The corresponding verification tasks become more and more
complex. Therefore, how to verify a design quickly and efficiently has become an important issue

in modern 1C design flow.

Because the verification characteristics and targets of different design levels are quite diverse,
this project considers the overall SOC verification flow and divides it into six major topics for
advanced research : (1) Formal Verification for High-Level Synthesis, (2) Interface Protocol
Verification, (3) Property-Based Functional Verification and Error Diagnosis, (4) Physical
Verification, (5) Post-Layout Verification and Optimization Platform, and (6) Compact Thermal
Modeling and Efficient Thermal Simulation for Hot Spots Verifications. The ultimate goal of this
project is to integrate these core verification technologies as a complete top-down solution.

In the first year, our achievement includes following items: using Petri-Net modeling for
high-level verification, FSM-based interface protocol checker, error trance reduction algorithm,
preliminary work for floorplan verification, triangulation encoding for topological layout, and
generalized integral transform method for thermal analysis. In the first year, 3 journal papers and

7 international conference papers related to this project were published.

Keyword : SOC verification, system verification, functional verification, physical verification,
design error diagnosis
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ERE 1

The System-On-Chip (SOC) design encompasses a large design space. Typically, the
designer explores the possible architectures, selecting algorithms, choosing architectural elements,
and constructing candidate architectures. Designing such a complex system is hard; designing
such a system that will work correctly is even harder. Design errors should be removed as early
as possible; otherwise, errors detected at the later stages will result a costly, time-consuming
redesign cycles. Thus, the designer should face two distinct tasks in SOC design; carrying out
design process itself and establishing the correctness of a design. Design correctness is the main
theme of this sub-project. In this sub-project, we develop theorem proving technique for
architectural design. Based on Petri-Net models, the theorem proving verifies the reachability,

admissibility, and correctness of task scheduling and resource allocation.

Key Word : SoC, Formal Verification, Theorem Proving, Design for Verification
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ERE 1

In the system-on-a-chip (SOC) era, designers tend to integrate a large number of IP
(Intellectual Property) components into a system. To increase the reusability of the IPs and
facilitate the integration, IPs are usually compliant with certain interface protocol, then they can
concordantly communicate with each other within the system. For high speed and flexibility
considerations, the specification of interface protocol gets more complex today. Therefore, to
verify if the IPs can work correctly after integrating into a system becomes a big issue in SOC

verification.

The interface specifications are often written in natural language or timing-diagram. The first
problem of functional verification is how to translate the specification into a more precise
description. We can model the behavior of interface protocol with a well-defined description, and
then use it to detect errors and debug. We develop a description style which is suitable for
interface specification and automatically synthesis a protocol checker to detect any protocol error

violating the specification.

Key Word : Design Verification, Protocol Checker
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ERE 1

Diagnosing counterexamples with error traces has acted as one of the most critical steps in
functional verification. Unfortunately, error traces are normally very lengthy such that designers
need to spend considerable effort to understand them. To alleviate designers' burden for
debugging, we present a SAT-based algorithm for reducing the lengths of error traces. The
algorithm performs the paradigm of binary search algorithm to halve the search space recursively.
Furthermore, it applies a novel theorem to guarantee to gain the shortest lengths for the error

traces. Experimental results demonstrate that our approach greatly surpasses previous work and

indeed has the optimum solutions.

Key Word : Assertion-based verification, debugging and error diagnosis, error trace,

counterexample.
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wiEE

In SOC era, due to rapidly increasing design complexity, verification has played an
important role through the whole design flow. As technology advances apace, not only system-
and logic-levels, but also physical-level verification has become significantly important. An SOC
design is an IC that integrates the major functional modules of a complete end-product into a

single chip. To accommodate a variety of demands, SOC designs are required to be low power
and high frequency.

In this subproject, we will focus on physical verification for the SOC design flow. The major

parts of the physical design flow consist of floorplanning, placement, clock-tree synthesis,
routing stages. For this flow, this subproject proposes the following verification issues: (1)
placement verification, (2) clocking verification, and (3) timing verification.
Placement verification processes the verification between the golden floorplan and the resultant
placement. During the physical design flow, the floorplan might not be inherited to placement.
Legalization or timing improvement actions cannot be done without moving cells. This kind of
movement might violate the golden floorplan. Hence, the correlation between floorplan and
placement should be verified.

Key Word : System-on-a-Chip, Verification, Physical Design, Design Flow
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Traditionally topological layout model uses flexible wires to store a layout, such as
rubber-band sketch. Instead of using wires as the main objects in the layout encoding, we can use
cut to encode the layout, where a cut is a line segment between two non-wire objects in the layout.
The wires are then represented in a sequence of the crossing wires on each cut. This encoding
scheme can uniquely represent physical layout and significantly reduce the layout data
complexity than before. Furthermore, we can triangulate original layout area by the cuts and the

wire topology is implicitly encoded on the triangulation of the layout.

In this subproject, we plan to survey the triangulation encoding model and then try to

enhance this model or develop another efficient topological layout encoding in the first year.

Key Word : SOC, deep submicron, post-layout design, topological layout, layout verification,

design rule checker (DRC)
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As CMOS technology scaled into the sub-100nm region, the increasing component density,
operation speed, and power dissipation lead to dramatic thermal problems on chip designs.
Furthermore, two of the most advanced chip integration techniques, system-on-chip (SOC) and
system-in-package (SIP), will exacerbate the thermal problems because of the accumulation of
multiple heat dissipation sources in a small area, and the problems become worse in stacked-die
package. In the die stacking geometry, chips are stacked up sharing similar heat dissipation paths
as a single die. Thus, the accumulated heat energy in stacked-die is several times than the single
chip. The local high temperature region in single chip might become hot spot when the dies are
stacked. Therefore, the capability of predicting the temperature profile is critically important for
circuit timing estimation, leakage reduction, power estimation, hotspot avoidance, and reliability

concerns during modern IC designs.

In the first year, we develop a generalized integral transforms method to solve the transient
and steady temperature distribution for the thermal placement stage. The proposed method first
constructs a set of system-compatible orthogonal bases to reduce the variables of original
government equation. After those orthogonal bases being constructed, Galerkin projection is
utilized to project the original system equations onto a set of reduced-variables equations. Since
the Galerkin projection procedure only requires to perform the integral operator through the
orthogonal bases and power density of blocks, the computation cost is linearly proportional to the

number of blocks.

Key Word : Generalized Integral Transforms, Thermal Model, Thermal Analysis, Thermal

Coupling, Temperature Profile, Hotspot, System-in-Package (SIP), Stacked-die
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