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Abstract—~For an arbitrary n x n matrix A and an n x 1 column vector b, we present a systolic
algorithm to solve the dense linear equations Az = b. An important consideration is that the pivot row
can be changed during the execution of our systolic algorithm. The computational model consists
of n linear systolic arrays. For 1 < i < n, the ith linear array is responsible to eliminate the ith
unknown variable x; of . This algorithm requires 4n time steps to solve the linear system. The
elapsed time unit within a time step is independent of the problem size n. Since the structure of a
PE is simple and the same type PE executes the identical instructions, it is very suitable for VLSI
implementation. The design process and correctness proof are considered in detail. Moreover, this
algorithm can detect whether A is singular or not.
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1. INTRODUCTION

Parallel computers have been used to solve many problems in the fields of sciences and engi-
neering. Systolic array is one of parallel computers. An algorithm which can be executed on
a systolic array is called a systolic algorithm. The systolic array has been widely used to solve
various problems because of its regular structure, simple interconnection, and feasibility for VLSI
implementation [1-5]. Some useful discussions of systolic arrays and systolic algorithms can be
referred to the papers in [6-8].

Given an arbitrary n x n matrix A = (a;;) and an n x 1 column vector b = (b;), the solution of
the linear system Ax = b is one of major problems in computational and applied mathematics.
For solving Az = b, under the elementary row operation on A, a sequential algorithm is always
required to find an i*" pivot row such that this row possesses the largest absolute value among
the it column of A. This partial pivoting method is not easy to be accomplished within a
parallel algorithm. Thus, many parallel algorithms to solve Az = b require some assumptions,
such as A is nonsingular that the diagonal entries of A are nonzero, and that the problem relating
to pivoting is not considered [9-15].

When A is a nonsingular matrix, the LU decomposition is a very useful method to solve
Az = b. This method obtains a triangular matrix from A followed by the back substitution.
That is, the solution of Ax = b comes from the solutions of two triangular systems Ly = b
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and Uz = y. However, it is possible that there exist many nonsingular matrices in which the
LU decomposition is not easy to do. For example, a zero will appear in the diagonal of A
when the LU decomposition is in progress. In this article, without any assumption on the given
matrix A, we present a systolic algorithm to obtain the solution of Az = b. Under our method,
an existing pivot row can be replaced by a new pivot row during the execution of the elementary
row operation on A. If A is a singular matrix, then we can find a row or a column such that it
has all zero entries.

The computational model used to solve Az = b is a two-dimensional systolic array which
consists of n linear systolic arrays. Each linear array is designed by the same consideration.
Thus, these n linear arrays have similar structure and execute identical instructions. Every linear
array has n equations as input data and also has n equations as output data. For 1 <i < n,
the ith linear array is responsible to eliminate the i*® unknown variable z; of . This i*! linear
array deletes (n — 1) coefficients of z; and remains the value of 1 as the coefficient of z; in the
last equation. But this coefficient 1 of z; is not involved into the work of the following (n — 7)
linear systolic arrays which are used to eliminate the unknown variables x for i +1 < k < n,
respectively. Hence, when we perform the instructions on the i*h linear array, the unknown
variables z; for 1 <! < i — 1 are all ignored. This design consideration implies that the back
substitution which is followed the LU decomposition is unnecessary in our systolic algorithm.

2. AN OVERVIEW OF SYSTOLIC ARRAY

A systolic array consists of many simple structure PEs (processing elements) such that the
same type PE executes the same instructions. Each PE only can communicate data with its
neighboring PEs. Suppose that PE1 and PE2 are two PEs in a systolic array. If it is necessary to
transfer data from PE1 to PE2, then there exists a communication link, say £-link, joining PE1
to PE2. The data sending out by PE1 on &-link is denoted as &, of PE1. The data receiving
by PE2 from £-link is denoted as &in of PE2. This £-link is also considered as an output link of
PE1 and an input link of PE2.

In a systolic array, a time step is considered as an enough large elapsed time unit such that all
PEs can perform the following three tasks.

(a) The PE reads data from its input links.
(B) The PE executes the designed algorithm exactly once loop.
(7) The PE sends out data to its output links.

In our algorithm, the elapsed time unit within a time step is independent of the problem size n.

If a &-link from PE1 to PE2 has a delay symbol 6D, then the &, sending out by PE1 at a
time step ¢t will be the &, of PE2 at the time step ¢ + §. In our systolic array, each link has only
one delay, that is, § = 1. Thus, we omit the delay symbol in our systolic array. The condition of
6 # 0 means that the behavior of data broadcasting is not allowed within our systolic array.

3. THE DESIGN CONSIDERATION
OF A LINEAR SYSTOLIC ARRAY

For a fixed integer ¢ such that 1 < ¢ < n, we design the i*h linear systolic array to eliminate
the i*® unknown variable z; of z. The i*} linear array consists of (n — i + 2) PEs and three
communication links with names a-link, d-link, and c-link. See Figure 1. These PEs are indexed
as PE(i,j) for i < j < n+ 1. The d-link and c¢-link are used to send data from PE(z,j) to
PE(i,j + 1). The input a-link of PE(4, j) is used to receive data from the (i — 1)th linear array.
The output a-link of PE(3, j) is used to send data to the (i + 1)*? linear array.

We classify our PEs into two types. The PE(i, ) is in the type I and the remaining PEs are in
the type II. The structures of PEs are depicted in Figure 2. Each PE contains a register R. The
type I PE has a more register P. The PE(4,1) is responsible to find a pivot row. When a pivot
row had found. the type II PEs update the entries of another rows.
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Figure 3. The two-dimensional systolic array.

From the above discussion, we obtan n linear systolic arrays. These n linear arrays are con-
nected to form a two-dimensional array as shown in Figure 3, where the k" column of A will be
arranged to meet PE(1, k) for 1 < k < n and the column b will be arranged to meet PE(1,n+1).
We use the symbols “*” and “"” to mean a waiting and a stopping signal, respectively.

Let [A®,5(®)] be the n x (n+1) augmented matrix by adjoining b to A. At the beginning of our
algorithm, the matrix [A(®),b5()] is the input values of the a-links on the first linear array. The
output data, except the symbol “ *,” which comes from the a-links of the i** linear array will be
formed and denoted as the matrix [A®,b(®]. According to the order of the values appearing on
the output a-links of the ith linear array, the row indexes in [A®,b®)] are numbered sequentially
asi+1,1+2,...,n, 1,2,...,i.That is, the first aoy of PE(4,j) has the row index (i + 1) in
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[A®) ()] and the last aoy: of PE(3, ) has the row index i in [A®,b®]. Of couse, this matrix
[A®) ()] will be the input data of the (i + 1)* linear array.

Note that the matrix [A® 5] is an n x (n — i 4 1) matrix since PE(3, 1) has no output a-link.
The absence of output a-link in PE(%, i) causes the i*" unknown variable z; to be deleted. The
solution of Az = b will appear on the aoy; of PE(n,n + 1) which is on the n'® linear array.

In our systolic array, the d-link is only used to carry the ai, of PE(3,?) to PE(%, §), for all j > 4.
The major work of the c¢-link is to indicate whether a new pivot row is found or not. At the
initial state, we assign (n — ¢+ 1) to the register P of PE(4,4). When the first pivot row is found,
we reset P as 1 — P. This value of 1 — P indicates how many remaining rows will be tested as a
pivot row. The register R of PE(4, j) contains an entry of the current pivot row. At the initial
state, we set the symbol “*” into the register R of all PE(Z, ).

4. THE INSTRUCTIONS OF PES

For1 <i<nandi<j<n+1, we will present the major instructions of PE(i, ). All PEs
perform their instructions until the signal “*” appears on their input a-links. First, we consider
the work of type I PE.

(1) The main purpose of PE(3,) is to find the first pivot row by detecting its first nonzero
value of ai,. Once PE(%,1) has found its first pivot row, PE(i, ) performs the following
three tasks.

() PE(i,%) sets its P =1 — P.
(B8) PE(i,1) assigns |ain|, the absolute value of ajy,, into its R.
(v) PE(3,1) sends ain to its d-link.

(2) If PE(3,4) has its P > 0 and ain = 0, then PE(i, ) is still on the state of finding the first
pivot row. That is, the first pivot row is not appeared until now. In this case, PE(i,?)
decreases one from P and PE(4, 1) continues its search of the first pivot row. At any time
step, once PE(i,1) has its aj, = 0, PE(4,4) sets its ¢couy = 1 in order to detect whether
there exists a zero row in the matrix A=Y, The existence of a zero row in A®~1) causes
the singularity of A.

(3) If there exists no pivot row, we obtain P = 0 and R = * in PE(4,7). That is, the first
column of A{~1) will be appeared as a zero column. In this case, PE(i,) announces
that A is a singular matrix by sending the message of its couy = 3.

(4) After PE(, ) had found a pivot row and PE(i,¢) has its P < 0, if PE(4,¢) has aj, # 0
again, then PE(3, 1) tries to replace the existing pivot row. When |ais| > R, the action of
exchanging two pivot rows will be performed. This exchanged message is transferred by
a value of 2 on the c-link.

Now we consider the major work of the type II PE. These PEs will be used to modify
the entries of [A®~1), 5(:=1)] into the entries of the matrix [A® ().

(5) PE(i,j) always sends its din t0 dout.

(6) If PE(3, j) knows that PE(4,4) had found its first pivot row, then PE(%, j) assigns the value
of ain/din to its R. At this same time step, PE(i, j) sends out the symbol “*” to its aouyt.

(7) If PE(%,4) has its ¢in = 0 and R # *, then PE(¢, j) modifies the value of its ain into the
value of its agut-

(8) When PE(i,j) has its ¢y = 1, PE(4, j) detects whether its ai; = 0. If aj, = 0, then
PE(i, j) passes its cip t0 Cout. Otherwise, if ai, # 0, PE(4, j) sets its coue = 0. This work
detects whether there exists a zero row in A®~1), When PE(i,n) has its cou, = 1, we
know that A is a singular matrix because of a zero row in the matrix A¢-1,

(9) If PE(3, ) has its ¢ip = 2, then the action of exchanging two pivot rows is performed. The
PE(i, 7) retrieves the content of R to be modified into its aoys and PE(3, 5) stores the new
pivot entry ain/din into its register R.

(10) When PE(4,j) has ain = =, PE(4, j) sends the content of its R to its aous and PE(3, j)
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resets R as a special symbol “&” in order to send the signal “ " ” to its aoy at the next
time step.

5. THE SYSTOLIC ALGORITHM

First of all, we define nine procedures. The first five procedures are used in the type I PE. The
last four procedures are used for the type II PE.
procedure testing-first-pivot =
if P =1 then sending-singular-matriz else searching-first-pivot.
procedure sending-singular-matric = coyy = 3; R=".
procedure searching-first-pivot = P = P — 1; ¢y = 1.
procedure finding-first-pivot = P =1 — P; R = |aiy|; cous = 0.
procedure trying-new-pivot =
P=P+1,
if |ain| > R then {R = |ain|; Cout = 2} else { if ain = 0 then cou = 1 else ¢oyy = 0.}
procedure sending-last-element = aoyy = R; R = &.
procedure ezchanging-two-pivots = Gout = R — @in/din; R = ain/din-
procedure modifying-a-link =
if R = x then storing-first-pivot else aout = @in — R * din.
procedure storing-first-pivot = if din # 0 then {R = ain/din; Gout = *} €lse agye = ajp.
ALGorITHM. LINEAR-SOLVER (4,b,n) =

Initial state:

Forl<i<nandi<j<(n+1), weset R=xinall PEs. Set P=n—i+1 in PE(4,i). The
entry a;; of A meets PE(L, j) at the time step ¢t = j +¢ — 1. The entry b; of b meets PE(1,n +1)
at the time step t = n 4 4. A stopping signal “”” will meet PE(1, j) at the time step t = n + ;.
All the remaining links are denoted by the symbol “*.”

Executive state:
repeat
/* do parallel for all PEs of type I. %/
dout = Qin,
if a;, = * then {c,y = *; break};
if a;, =" then {R=";co ="; break };
if P =0 then ¢,y = 0;
if P < 0 then trying-new-pivot;
if P > 0 then { if ai, = 0 then testing-first-pivot else finding-first-pivot};
/* do parallel for all PEs of type II. */
dout = din;
if (cin = 1 and aip # 0) then ¢y = 0 else couy = Cin;
if ain = * then {aoy = *; break;}
if (R =& or ¢y = 3) then {R ="} aout =" ; break;}
if ai, =" then { sending-last-element; break;}
if ¢;;, = 2 then exchanging-two-pivots;
if (cin = 0 or ¢y = 1) then modifying-a-link;
until R=".

6. AN ILLUSTRATIVE EXAMPLE

We give an example with

2 -1

1 5
[A,b] = [A“’),b(")] = (4 1 0 3)
2

3 -7 4
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to illustrate our algorithm as shown in Table 1. The related values of Table 1 are corresponding
to the positions of links and registers as shown in Figures 1 and 2, where the arrows are omitted.
In what follows, we use the notation “PE(, j)[ain = 2, R =3,...]t = 4” to indicate that PE(s, j)
has its aj, = 2, R = 3, and so on at the time step t = 4. The symbol “S1 = S2” means that
the statement S1 implies the statement S2.

Table 1. An illustrative for n = 3 (the first linear array).

fime PE(1,1) PE(1,2) PEG3) | PE(14)

* * *

- * . - * *

onN

*

-

»

"

»

»

»

»

*

>
4
2 4 2 2 - » - *
2 0 -1/2 0 * * * * * *
3 1 1 *
3 3 4 4 2 2 * *
0 2 1/4 2 0 1/2 0 * * *
-3/4 *
A .7 0 5
A 3 3 4 4 2 2
4 A of 14 0 2 0 2 0 5/2 0
-31/4 1/2 *
A -4 3
A A 3 3 4 4
5 Q A & A 0 0 0 2 3/4 2
1/4 -4 7/4
A 2
6 A A 3 3
A A & A 0 3/4 0
A 0 -1/4
A
7 A A
stop A A & A
A 3/4
8
stop A

There are three linear equations which correspond to the linear system Az = b.

2z, —x9 + 23 =5, (1)
41:1 + Ty = 39 (2)
3.'131 - 71132 — 4.’1:3 =2. (3)

In Table 1, three linear systolic arrays are considered in the following three cases, respectively.

CASE (a). On the first linear array, since PE(1,1)[ain = 2,P = 3|t = 1, the equation (1) is a
pivot row. From the procedures finding-first-pivot and storing-first-pivot, we have

PE(]., 1) [P = —2,R = 2, dout = 2, Cout = 0] t= 1,
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Table 1. (cont.) The second linear array.

Time PE(2,2) PE(2,3) PE(2,4)
3 @ * * * * *
-3/4 * *
4 -3/4 * * * *
1] " - . * - *
-31/4 1/2 *
. 2 0 -2/3 0 " - "
1/4 -4 7/4
6 @ 1/4 -31/4 -31/4 | -3/4 -3/4
0 2 16/31) 2 0 =713 0
-110/93 *
. 0 -1/4
7 0 A 1/4 1/4 -31/4 -31/4
A 0 16/31| © 21 31 ]2
-4/31 -220/93
Coep - »
8 D A A 1/4 1/4
A & " 0 1/31 0
16/31 23/31
A
9 A A
A A & A
1/31
10
stop A
A
i 1
ﬁPE(1»2) Cin = 0,05, = —1’din = 2aR = _“2'aaout = *1dout =2,Cout = 0|t =2,
[ 1
:>PE(1~ 3) ¢in =0,aip =1,din =2,R = §’aout =*,dout = 2,Cout = 0 ¢t = 3,
[ 5
:>PE(1~4) cin = 0,05, = 5adin = Q,R = 51 Qout = *, dout =2,cou =0t =4.

2

From equation (2), we have PE(1,1)[P = —2,a;, = 4,R = 2]t = 2. By the executions of
trying-new-pivot and the fact |ai| > R, the message of exchanging two pivot rows must be
carried to PE(1, ) for j > 1. Thus, by the assignment of aoyy = R — @i, /ds, within the procedure
exchanging-two-pivots, we obtain

PE(1,1)

=PE(1,2)

=PE(1, 3)

=PE(1,4)

[R =4,doyt = 4, Cout = 2] t=2,

[ 3 1
din = 4,¢in = 2,0in = 1, 00ut = —Z7R = Zadout =4, Cout = 2] t =3,

1
din = 4,¢in = 2,ain =0, a0ut = '2‘»R= 0,doutr = 4, Cout = 2] t =4,
i 7 3
din = 4,¢in = 2,8in = 3,80yt = Z»R = Z,dout =4,Couy = 2|t =35.
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Table 1. (cont.) The third linear array.

Time ) PE(3,4)

*

o
» »

» *| o
- - m
w
@
-~

. »

LI

» »

-110/93 .
-110/93 . *
0 * * -

~
»

-4/31 -220/93
8 -4/31 -110/93 -110/93
110/93 0 0 0 2 0
16/31 23/31
9 16/31 -4/31 -4/31
110/83 0 0 0 2 0
1
A 1/31
10 A 16/31 16/31
A 0 2 0
-1
N
a3 A
11 Q N
2
12

The above three values of aoy: form the first row of [A(l),b(l)] with row index 2. For equa-
tion (3), by the procedure trying-new-pivot with |ain| = 3 < R and the execution of the assignment
Gout = Qin — B * di, within the procedure modifying-a-link, we have

PE(1,1) [P = —1,ain = 3, R = 4,dous = 3, Cous = 0]t = 3,

1 31

=PE(1,2) [ain =—7,din =3,¢in =0,R = 7 Qout = — dout = 3, Cout = O:I t=4,

':1—7
=>PE(17 3) [ain = —4,din = 3,¢in = 0, R = 0, aout = —4,dout = 3, Cout = O]t =35,
3 1
=>PE(174) I:ain =2,din = 3,cn =0,R= Z,aout = s dout = 3, Cout = O:I t=6.

The above three values of aey form the second row of [A(l), b(l)] with row index 3. From the
initial state of our algorithm, we have PE(L, j)[ai, = "]t = j + 3 for 1 < j < 4. Hence, PE(1,1)
stops its execution at ¢t = 4. From the procedure sending-last-element, we have
1
4 b

PE(1,2) [ai,, = " Gout = =, R = &] t=5  PE(1,3)[ain = "a0u =0,R =&t =6,

and
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The above three values of agy; form the third row of [A(), (V)] with 1 as its row index. Then
we have PE(1,j){aous = " ,R ="]t = j+4 for 2 < j < 4. Thus, these three PEs stop their
executions.

From the above executions, we obtain

3 1 7

4 2 4
a0 = -3 = 5|

1 3

= 0 bl

4 4

which corresponds to the linear system of
3 1 7
(-3)=+ ()= @
31 1
(—I> T2~ 4wy = -, (5)

T + (i) To = Z (6)

CaASE (B). On the second linear systolic array, [A(%), b(1)] is the input data on the input a-links
of PE(2,7) for 2 € j < 4. From equation (4) and PE(1, 2)[aoy; = —3/4]t = 3, we have

[ 3 3 3
PE(272) Qin = —Z»R = _7dout = —Zacout =0,P= _1] t=4,
L
[ 3 1 2 3
=PE(2,3) bcin =0,din = _Z)ain = §’R = “gaaout = *,dout = _Zacout = 0] t =5,
3 7 7 3
=>PE(3,4) Cin = Ovdin = _Z,ain = Z»R = —gva’out = *’dout = ‘Z,Cout = O] t=6.

From equation (5) and the procedure ezchanging-two-pivots with |ai,| > R, we have

31 31 31

PE(272) Lain:_Z)RzZ?doutz_jacout=2wp=0 t=57
[ 31 110 16 31
:>PE(273) -cin = 2adin = —"Ivain = "41a0ut - —a»R - ﬁadout = _z'-, Cout = 2} t = 6,
31 1 220 1 31
:>PE(2y4) -Cin = 2,din = _Zyain = _Z,aout = _33_»R = ﬁydout = _Iacout = 2] t="17.

The above two values of aoy form the first row of [A(?, b(?] with row index 3. From equa-
tion (8), we have

[ 1 31 1
PE(272) Lain = ZaR = I’dout = Zvcout = 0} t= 67
[ 1 16 4 1
=:>PE(2,3) \-Cin = Ovdin = Z;ain = OvR = ﬁyaout = _'El-»dout = Z:cout = 0] t= 77
[ 1 3 1 23 1
-——‘=>PE(3,4) Lcin =0,din = Z,ain = Z’R = ﬁvaout = '3—lsdout = Z,cout = O] t=8.

The above two values of aou; form the second row of [A®,b3)] with row index 1. Now
PE(1,2)[aout = "]t = 6 implies PE(2, 2){ain = "]t = 7. In the same way, we have

PE(1,3) [aout = "]t =7 and PE(1,4)[acu ="t =38,

1
=>PE(2,3)[ain=‘,aout=%§,R=&}t=8 and PE(2,4) ain=”,aout=ﬁ,R=&]t:9.
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These two values of aou form the third row of [A® 5] with row index 2. After this time
step, PE(2, j) stops its execution.
Until now, we have the matrix

110 220
93 93
[A(z‘) b(2)] _ 4 02
’ 31 31 |’
61
31 31
which corresponds to the linear system of
110 220
(‘—3‘) 7= g3 ™
4 23
Iy — (ﬁ) r3 = ﬁ) (8)
16 1

CASE (). We consider the operations on the third linear array. Equation (7) is a pivot row.
Hence, it implies

110 110 110
PE(3,3) [ain = "—93—,3 = Eé‘,dout = —53 ' Cout = 0,P= 0] t=1,
110 220 110
=PE(3,4) [cin =0,din = g3 %n = —-‘gg',R = 2, Gout = *dout = g3 ? Cout = 0] t=8

From equation (8), we have
4
31’

4
PE(3,3) [ain = — dout = ‘—ﬁ,P = chout = 0] t= 8,

4 23 4
=>PE(314) [cin = 0,din = —ﬁ,R = 27ain = 3_1aaout = ladout = _ﬁacout = 0] t=29.

This output of agys = 1 forms the first row of [A®,5(3)] with row index 1. Note that in this
last linear array, the matrix A® is empty. From equation (9), we have

16 110 16
PE(3,3) |:ain = _3_i'aR= aadout = ﬁ)PZOacout =0:| t=9,
16 1 16
=>PE(3,4) [Cin =0, din = 3_11 Qin = ﬁyR =2,00ut = —1,doyt = ﬁ,cout = O] t = 10.
This @y, = —1 is the only entry in the second row of [A®),b(3)] with row index 2. Since

PE(2,3) has its aout =~ at t = 9, we have PE(3,3)[a;, = ", R ="t = 10. At this same time
step, PE(3, 3) stops its execution. Also we have PE(2,4)[aou; = "]t = 10 which implies the result
of PE(3,4)[ain =", a0us = 2, R = &Jt = 11.

This oyt = 2 is in the third row of [A®), b®)] with row index 3. Finally, we have PE(3,4) has
its R =" ,a0ys =" at t = 12, and thus, all PEs stop their executions. The solution of Az = b
is in the matrix [A®),5®)] which corresponds to the linear equations of z; = 1, o = —1, and
I3 = 2.

7. THE CORRECTNESS PROOF

From the procedure sending-first-pivot, we know that when the first pivot row is found by
PE(i, 1), the type II PE(4, j) sends out a symbol “*” to its aoy. These symbols “*” which are
generated by the ith linear array will propagate to the PEs of the following k! linear array for
k > 1. These synbols “*” and the waiting symbol “*” given in the initial state of our algorithm
will cause some PEs to be idle.
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LEMMA 1. On the i** linear array, when we ignore the “*” due to the initial state, but we

include the “*” generated by the previous linear array, the first entry on the input a-link of
PE(i, j) appears at the time stept =i+ j — 1.

(0)
Ly

PE(1,n + 1)[ai, = b(lo)]t = n + 1. Since there is one time delay on each a-link, by induction
on the integer 1, PE(7,j) has an entry on its a-link at the time step t = j +i—1fori < j <
n+1. |

ProoF. From the initial state, for 1 < j < n, we obtain PE(1, j){ain = a7 ;]t = j. Also we have

LEMMA 2. On the i*" linear array, if we have the entry affyzl) =0, for all i < k < n, then PE(i,1)
send out its couy = 3 before the time stept = n + 2 — 2.

ProoF. By the procedure testing-first-pivot, we know that the case of all ag:]) = 0 will be
detected by PE(4,i) on the i*" linear array. From Lemma 1, PE(i,4) has its first entry on its
input a-link at ¢t = 2i — 1. Since aﬁfl_ 1 is the first entry of the first column of A~1) and there
are at most (¢ — 1) symbols “*” generated from the previous (i — 1) linear arrays, PE(7,4) has
Ef;l) on its input a-link before the time step t = 26 — 1+ (i — 1) = 3¢ — 2. Thus,
PE(i, i) has its ain = al; " before t = (3i — 2) + (n — i) = n+2i — 2. At this time step, PE(i, )
has P = 1 and a;, = 0. The procedure sending-singular-matriz implies that PE(i,%) sends its
Cour = 3 to indicate the singularity of A. 1

the entry a

LemMma 3. During the execution on the itP linear array, if there exists an integer k, fori < k <n
such that the entries af;,;l) =0, for all i < j < n, then PE(i,n) has its coue = 1 before the time
stept=n+k+i—2.

ProoF. By Lemma 1, the first entry a;, of PE(%, 1) appears at t = 2 —1. Since the first (k—i+1)

rows of [A(=1 p(=1] are indexed sequentially from i to k, and there are at most (i — 1) symbols

“*» generated by the previous (¢ — 1) linear arrays, the entry aff‘;l) will meet PE(4,1) before the

time step t = 2i — 1+ (k—4) + (i — 1) = 2i + k— 2. By al’; ") = 0, PE(i, ) has its cou = 1 by the
execution of procedure searching-first-pivot or the procedure trying-new-pivot. Thus, we have
PE(i, i) [aim = 0, cous = 1]t < 2 + k — 2,
—PE(i,i + 1) [cin = 1,0 = 0 = al' 71, cour = 1} t<2%+k—1, i
=PE(i,n) [cn=1,in =0, cous =] t <2i+k—2+(n—i)=n+k+i—2.

The cour = 1 on PE(i,n) indicates that A~V has a zero row. Therefore, A is a singular
matrix. From Lemmas 2 and 3, we know that if there exists an integer i such that PE(i, n) has
its cout = 1 Or coue = 3, then A is singular. In the following three lemmas, we assume that A is
nonsingular.

LEMMA 4. The type I PE(i,i) stops its execution at the time step t = n + 31 — 2 and the
type II PE(i,j) stops its execution at the time step t = n + 2i + 7 — 1. That is, we have
PE(:,i)[R="]t =n+3i— 2 and PE(4,j)[R=",a0u = Jt =n+2i+j—1, for 1 <i<n and
1< < n+1.

ProoOF. By induction on i.

Basis: For + = 1. From the initial state, we have

PE(1,1) [ain = ag?g] t=1,
—PE(L,1) [ain = a{f}| t =,
=PE(L,1)[an="R="]t=n+1.
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From the initial state, we know that the entry of the first row of [A(®,5(9)] meets PE(1, j) at
the time step ¢ = j + i — 1. Since each column in [A(?, b(%)] has n entries, we have

PE(1, ) [ain = afﬁ}] t=n+j-1,
=PE(1,j)[ain=",R=&|t=n+],

=PE(1,j)[R=",00ut ="t =n+j + 1.

Thus, it is true for 7 = 1.

Assumption: For i = k, it is true. Thus, we have

PE(k,k)[R="]t=n+3k -2,
and

PE(k,j)[R=",00u ="t =n+2k+j—1, forj>k+1.

Induction: For i =k + 1.
From the above assumption with j = k + 1, we have

PE(k,k+1)[aous ="]t =n+2k+(k+1)—1=n+ 3k,
=PE(k+1,k+1)an="]t=n+3k+1=n+3k+1) -2,
—PEk+1,k+1)[R="]t=n+3(k+1) -2

From the above assumption with j > k + 1, we have

PEk,j)[R="]t=n+2k+j—1,
=PE(k,j) [aous =" |t =n+ 2k +j — 1,
=PE(k+1,j)[ain=",R=&]t =n+2k+j,
=PE(k+1,j)[R=",00u ="t =n+2k+j+1=n+2(k+1)+j-1

Thus, 7 = k + 1 is true. Therefore, the lemma is proved by induction. ]

LEMMA 5. The time complexity of our systolic algorithm is 4n.

PROOF. Leti =nand j = n+1, in Lemma 4. We have PE(n,n+1)[R ="]t =n+2i+j—1 = 4n.
Thus, PE(n,n + 1) stops its execution at the time step ¢t = 4n. 1

LEMMA 6. The it linear array produces the values of aoy to form the matrix [A(i), b(i)] which
corresponds to the linear system of
(3) 1) (3 )
Q301 i Tit1 + a1(;+1,i+2$’i+2 +o A e = bz(:-h
(3) (3) (3) _ ()
Qiyoip1Titl T Qipg paTite + o + 8o nTn = by,

as,)z'+1$i+1 + as‘)i+2zi+2 +ooet 0Dz, = b,

T1 4 0f 11 @is1 + 0 ppaTira + o+ alpan = b,

z; + a’1(2,1:3+1zi+1 + ag,zi)+2xi+2 palde a,(?lzn = bz@‘

PRrROOF. By the mathematical induction on i.
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Basis: For i = 1.
From the initial state, the matrix [A, b] = [A(®),b(9] is assigned to the input a-links of PE(1, ),
1< j < (n+1). Thus, we have PE(L, 1)ai = a{)Jt = k for 1 < k < n..

Suppose that afg)l is the first nonzero value meeting PE(1,1) at the time step t = u. Since

PE(1,1)[P = n]t = 1, the procedure testing-first-pivot causes the searching-first-pivot to be
executed for (u — 1) times. Thus, we have PE(1,1)[P = n — u + 1]t = u — 1. At the next
time step, we have PE(1,1)[ain # O]t = u. From the execution of finding-first-pivot, we have
PE(1, D[P = —n +ujt = u.

From the time step t = 1 to the time step t = u — 1, PE(1,1) sets its couy = 1 and dgy, = 0.
This causes the type II PE(1, j) assigning its aj, to its aoy by the assignment of aouy = ain within
the procedure storing-first-pivot under the condition of di, = 0. That is, for 2 < j < (n + 1),
PE(1, ;) carries the first (u — 1) rows of [A(® (0], under deleting the first column of A©), to
form the first (v — 1) rows of [A®M),b()]. These (u — 1) rows in [AM),5()] are numbered as the
row indexes from 2 to u.

Since the ut? row of [A®, 5] is the first pivot row found by PE(1,1), we obtain di, # 0 on
PE(1,7) for 2 < j < (n +1). From the procedure storing-first-pivot, we have

PE(1, j) R:Zﬂ,aout:*t:u+j—1, for 2 < j < (n+1).
mn

From the time step ¢t = u + 1 to ¢t = n, PE(1,1) sends the message to indicate whether the
action of exchanging pivot row occurs or not. This implies that the type II PE(1, j) modifies the
last (n—u) rows of [A(®,b(9)] to form the rows of [A"), 5] with the row indexes from u+1 to n.
Until now, we obtain (n — 1) rows in [A() b()]. These (n — 1) rows of [A‘), b()] correspond to
(n — 1) linear equations such that all the coefficients of x; are deleted.

At the time step t = n + 1, PE(1,1) receives the stooping signal a;, =" . So PE(1,1) stops its
execution. Similarly, we have PE(1,5)[ain, = "t = n+ 7, for 2 < j < (n +1). The procedure
sending-last-element causes PE(1, j) to assign the content of R to aoyt to form the last row of
[AD bV}, This last row has its index 1 and it corresponds to a linear equation such that its
coefficient of the unknown z; is 1. Therefore, the case of i = 1 is true.

Assumption: Suppose that this lemma is true for i = k.

Induction: Fori =k + 1.

Since the values on the output a-links of the k" linear array form the matrix [A®) 5], this
matrix is the input of a-links of the (k + 1)*" linear array. By Lemma 1, we know that the first
entry generated by the k*! linear array meets PE(k + 1,k 4+ 1) at ¢t = 2k + 1.

Fork+1<7r<mn,let ai{c,zﬂ meet PE(k + 1,k + 1) at the time step ¢t = ¢,.. Since there are k&
symbols “*” generated by the previous k linear arrays, the ¢, has to satisfy the condition of

2k +1 < t, < n+ 2k. Suppose that ai’f,lH is the first nonzero value meeting PE(k + 1,k + 1) at

the time step t = t,,, for k+1 < v < n. That is, we have af,iﬂ =0, for s satisfing k+1 < s <v-1.
Hence, from the time stept =t;+j—k—1tot =1, + j+ v — 2k — 2, the type II PE(k + 1,)
carries the first (v — k — 1) rows of [A®),5(%)], under deleting the first column in A*), to form
the first (v — k — 1) rows of [A%+1) b*+1)] with the row indexes from k + 2 to v.

Since the first pivot row of [A®), )] is found by PE(k + 1,k +1) at t = ¢, by af,’f,)cﬂ £ 0, we
have PE(k + 1, /}[R = ain/din, Gout = *¥|t =t, +j —k — 1, for k+2 < j < n+ 1. After sending
aout = *, PE(k +1, 7) modifies the following (n — v + k) rows of [A®), 5] to form the (n —v +k)
rows of [A%+D p(k+1)] with row indexes as v+ 1, v+2,...,n~1,n, 1,2, ..., k=2, k~1, k.

At the initial state, we set PE(4,4)[P = n — i 4+ 1}t = 0. Thus, on the (k + 1)*® linear array,
there are only the first (n — k) rows of [A®),b()] to be detected as a pivot row. The last k
rows of [A(’“),b(k)], with row index [ for 1 < | < k, correspond to the k linear equations with
the coefficient 1 on the unknown variables z;, respectively. On the (k + 1)*" linear array, these k
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equations are not involved into the work for detecting a pivot row. Since the pivot row on
the (k + 1)t linear array does not contain the unknowns z; for 1 < I < k, the assignment of
Gout = Gin — R * dj, cannot influence the coefficients of z;. Thus, the coefficient of z; preserves
as 1 under the executions of the (k + 1)*! linear array. From Lemma 4, for k+2 < j <n+1, we
have

PE(k,k+1)[aout ="t =n+3k and PE(k,j)[aout ="]t=n+2k+j—1,
= PEk+1Lk+1)|amn=",R="]t=n+3k+1,

and
PE(k +1,5) [ain =",00ut = R,R=&] =n+ 2k +j.

These (n — k) values of aoys form the last row of [Ak+1) p+1)] with row index k + 1. This
last row corresponds to a linear equation with the coefficient 1 on the unknown xz;4;. At the
next time step, we have PE(k+ 1,j)[R=",a0ut ="t =n+2k+j+1. Thecaseofi =k +1is
true. Therefore, this lemma is proved by induction. ]

THEOREM. The systolic algorithm LINEAR-SOLVER (A, b, n) is correct to solve the dense linear
system Ax = b within 4n time steps.

Proor. From the results of Lemmas 5 and 6 the following concludes. ]

8. CONCLUSIONS

We present a systolic algorithm to solve the linear systems Az = b. An important feature in
our algorithm is that, during the elementary row operation on A, the action of exchanging two
pivot rows can performed. Since we need to preserve the coefficient of z;, for 1 <1 < (i — 1),
within a linear equation during the execution of the i*! linear systolic array, the elementary row
operation on the i*! linear array has to be accomplished by the way of R; — ¢ * R;, where R; is
the row to be modified, ¢ is a scale value, and R; is the current pivot row. This requirement is
achieved by the assignment of aouy = ain — R * din within the procedure modifying-a-link.

This algorithm can be used to solve the linear systems AX = B for X, B being n x m matrices.
In this case, the algorithm requires (4n-+m — 1) time steps. When B is an n by n identity matrix
and A is nonsingular, the solution is the inverse matrix of A. Moreover, it seems that the absolute
value of the determinant of A is the product of R in PE(Z, i) for 1 < i < mn.

During the execution of our algorithm, if we have a&' 2 # 0, for all 1 < i < n and the
action of exchanging pivot row does not occur, then our algorithm has the same work as the LU
decomposition to do. In this case, the c-link is redundant. In fact, the major purpose of c¢-link
is used to carry the message of exchanging pivot row. However, note that the LU decomposition
only obtains the upper triangular matrix of A, but our algorithm solves the linear system Az = b.

We hope that this method of designing a systolic algorithm can be applied to solve some
NP-complete problems, such as the knapsack and travel-salesman problems.
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