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A b s t r a c t - - F o r  an arbitrary n x n matrix A and an n × 1 column vector b, we present a systolic 
algorithm to solve the dense linear equations Ax = b. An important consideration is that the pivot row 
can be changed during the execution of our systolic algorithm. The computational model consists 
of n linear systolic arrays. For 1 < i < n, the ith linear array is responsible to eliminate the ith 
unknown variable xi of x. This algorithm requires 4n time steps to solve the linear system. The 
elapsed time unit within a time step is independent of the problem size n. Since the structure of a 
PE is simple and the same type PE executes the identical instructions, it is very suitable for VLSI 
implementation. The design process and correctness proof axe considered in detail. Moreover, this 
algorithm can detect whether A is singular or not. 

K e y w o r d s - - P a x a l l e l  computer, Linear array, Systolis algorithm, Dense linear system. 

1. I N T R O D U C T I O N  

Paral lel  compute rs  have been  used to solve m a n y  problems in the fields of sciences and  engi- 

neering.  Systolic array is one of parallel computers .  An  algor i thm which can be executed on 

a systolic array is called a systol ic  a lgor i thm.  The  systolic array has been widely used to solve 

various problems because of its regular  s t ructure ,  simple in terconnect ion,  and  feasibility for VLSI 

i m p l e m e n t a t i o n  [1-5]. Some useful discussions of systolic arrays and  systolic a lgor i thms can be 

referred to the  papers  in [6-8]. 

Given an  a rb i t r a ry  n × n mat r ix  A = (ai j )  and  an n × 1 co lumn vector b = (b~), the solut ion of 

the l inear  sys tem A x  = b is one of major  problems in computa t iona l  and  applied mathemat ics .  

For solving A x  = b, under  the e lementa ry  row opera t ion on A, a sequential  a lgor i thm is always 

required to  find an  i th pivot row such tha t  this  row possesses the largest absolute  value among  

the i th co lumn of A. This  par t ia l  p ivot ing me thod  is not  easy to be accomplished wi th in  a 

parallel  a lgori thm. Thus ,  m a n y  parallel  a lgori thms to solve A x  = b require some assumpt ions ,  

such as A is nons ingula r  t h a t  the  diagonal  entr ies of A are nonzero, and  tha t  the problem rela t ing 

to p ivot ing  is not  considered [9-15]. 

W h e n  A is a nons ingula r  matr ix ,  the L U  decomposi t ion is a very useful me thod  to solve 

A x  = b. This  me thod  ob ta ins  a t r i angu la r  ma t r ix  from A followed by the back subs t i tu t ion .  

T h a t  is, the solut ion of A x  = b comes from the solut ions of two t r i angu la r  systems L y  = b 
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and U x  = y.  However, it is possible tha t  there exist many  nonsingular matrices in which the 
L U  decomposition is not easy to do. For example, a zero will appear  in the diagonal of A 
when the L U  decomposition is in progress. In this article, without any assumption on the given 
matr ix  A, we present a systolic algorithm to obtain the solution of A x  = b. Under our method,  
an existing pivot row can be replaced by a new pivot row during the execution of the elementary 
row operat ion on A. If  A is a singular matrix,  then we can find a row or a column such tha t  it 

has all zero entries. 
The  computat ional  model used to solve A x  = b is a two-dimensional systolic array which 

consists of n linear systolic arrays. Each linear array is designed by the same consideration. 
Thus, these n linear arrays have similar structure and execute identical instructions. Every linear 
array has n equations as input da ta  and also has n equations as output  data. For 1 < i < n, 
the ith linear array is responsible to eliminate the i th unknown variable xi of x. This ith linear 

array deletes (n - 1) coefficients of xi and remains the value of 1 as the coefficient of xi in the 
last equation. But  this coefficient 1 of xi is not involved into the work of the following (n - i) 
linear systolic arrays which are used to eliminate the unknown variables x k  for i + 1 < k < n, 
respectively. Hence, when we perform the instructions on the ith linear array, the unknown 
variables xl for 1 < l < i - 1 are all ignored. This design consideration implies tha t  the back 
substi tut ion which is followed the L U  decomposition is unnecessary in our systolic algorithm. 

2.  A N  O V E R V I E W  O F  S Y S T O L I C  A R R A Y  

A systolic array consists of many  simple structure PEs (processing elements) such tha t  the 
same type PE  executes the same instructions. Each PE only can communicate da ta  with its 
neighboring PEs. Suppose tha t  PE1 and PE2 are two PEs in a systolic array. If  it is necessary to 

transfer da ta  from PE1 to PE2, then there exists a communication link, say ~-link, joining PE1 
to PE2. The da ta  sending out by PE1 on ~-link is denoted as ~out of PE1. The da ta  receiving 
by PE2 from ~-link is denoted as ~in of PE2. This ~-link is also considered as an output  link of 

PE1 and an input link of PE2. 
In a systolic array, a t i m e  s t ep  is considered as an enough large elapsed t ime unit such tha t  all 

PEs can perform the following three tasks. 

(c~) The PE reads da ta  from its input links. 
(~) The PE executes the designed algorithm exactly once loop. 
(V) The PE sends out data  to its output  links. 

In our algorithm, the elapsed t ime unit within a t ime step is independent of the problem size n. 
If  a ~-link from PE1 to PE2 has a delay symbol ~D, then the ~out sending out by PE1 at a 

t ime step t will be the ~in of PE2 at the t ime step t + $. In our systolic array, each link has only 
one delay, tha t  is, ~ -- 1. Thus, we omit  the delay symbol in our systolic array. The condition of 

~ 0 means that  the behavior of da ta  broadcasting is not allowed within our systolic array. 

3 .  T H E  D E S I G N  C O N S I D E R A T I O N  

O F  A L I N E A R  S Y S T O L I C  A R R A Y  

For a fixed integer i such tha t  1 <: i <: n, we design the ith linear systolic array to eliminate 
t h e  ith unknown variable xi of x. The ith linear array consists of (n - i + 2) PEs and three 
communicat ion links with names a-link, d-link, and c-link. See Figure 1. These PEs are indexed 
as P E ( i , j )  for i < j _< n + 1. The d-link and c-link are used to send da ta  from P E ( i , j )  to 
P E ( i , j  + 1). The  input a-link of P E ( i , j )  is used to receive da ta  from the (i - 1) th linear array. 
The  output  a-link of P E ( i , j )  is used to send data  to the (i ÷ 1) th linear array. 

We classify our PEs into two types. The PE(i,  i) is in the type I and the remaining PEs are in 
the type II. The structures of PEs are depicted in Figure 2. Each PE contains a register R. The 
type I PE  has a more register P.  The PE(i,  i) is responsible to find a pivot row. When a pivot 
row had found, the type II  PEs update  the entries of another rows. 
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Figure 1. The ith linear systolic array. 
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Figure 3. The two-dimensional systolic array. 

From the above discussion, we obtan n linear systolic arrays. These n linear arrays are con- 
nected to form a two-dimensional array as shown in Figure 3, where the k th column of A will be 
arranged to meet PE(1, k) for 1 < k < n and the column b will be arranged to meet PE(1, n ÷ 1). 
We use the symbols " * "  and ..... to mean a waiting and a stopping signal, respectively. 

Let [A (°) , b (°)] be the n × ( n ÷  1) augmented matr ix  by adjoining b to A. At the beginning of our 
algorithm, the matr ix  [A (°), b (°)] is the input values of the a-links on the first linear array. The 
output  data,  except the symbol " *," which comes from the a-links of the i th  linear array will be 
formed and denoted as the matr ix  [A (0, b(0]. According to the order of the values appearing on 
the output  a-links of the i th  linear array, the row indexes in [A (i) , b (0] are numbered sequentially 
as i + 1, i ÷ 2 . . . . .  n, 1 , 2 , . . . , / . T h a t  is, the first aout  of P E ( i , j )  has the row index (i + 1) in 
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[A(i),b (~)] and the last aout of PE( i , j )  has the row index i in [A(i),b(0]. Of couse, this matr ix 
[A (i), b (i)] will be the input data of the (i + 1) th linear array. 

Note that  the matrix [A (i), b (i)] is an n × (n - i -}- 1) matrix since PE(i,  i) has no output  a-link. 
The absence of output  a-link in PE(i,  i) causes the ith unknown variable xi to be deleted. The 
solution of A x  = b will appear on the aout of PE(n,  n + 1) which is on the n th linear array. 

In our systolic array, the d-link is only used to carry the ain of PE(i,  i) to PE(i,  j ) ,  for all j > i. 
The major work of the c-link is to indicate whether a new pivot row is found or not. At the 
initial state, we assign ( n -  i + 1) to the register P of PE(i,  i). When the first pivot row is found, 
we reset P as 1 - P.  This value of 1 - P indicates how many remaining rows will be tested as a 
pivot row. The register R of PE(i,  j )  contains an entry of the current pivot row. At the initial 
state, we set the symbol " * "  into the register R of all PE( i , j ) .  

4 .  T H E  I N S T R U C T I O N S  O F  P E S  

For 1 < i < n and i < j _< n + 1, we will present the major instructions of PE( i , j ) .  All PEs 
perform their instructions until the signal . . . . .  appears on their input a-links. First, we consider 

the work of type I PE. 

(1) The main purpose of PE(i,  i) is to find the first pivot row by detecting its first nonzero 
value of ain. Once PE(i,  i) has found its first pivot row, PE(i,  i) performs the following 
three tasks. 
((~) PE( i , i )  sets its P = 1 - P.  
(~) PE( i , i )  assigns lain], the absolute value of ain, into its R. 

(V) PE( i , i )  sends ain to its d-link. 
(2) If PE(i ,  i) has its P > 0 and ain ---- 0, then PE( i , i )  is still on the state of finding the first 

pivot row. Tha t  is, the first pivot row is not appeared until now. In this case, PE(i,  i) 
decreases one from P and PE(i,  i) continues its search of the first pivot row. At any time 
step, once PE( i , i )  has its ain ~ 0, PE( i , i )  sets its Cout ---- 1 in order to detect whether 
there exists a zero row in the matrix A (i-1). The existence of a zero row in A (i-l) causes 

the singularity of A. 
(3) If there exists no pivot row, we obtain P = 0 and R -- * in PE(i,  i). Tha t  is, the first 

column of A (i-1) will be appeared as a zero column. In this case, PE(i,  i) announces 
that  A is a singular matrix by sending the message of its Cout = 3. 

(4) After PE(i,  i) had found a pivot row and PE(i ,  i) has its P < 0, if PE(i ,  i) has ain ~ 0 
again, then PE(i,  i) tries to replace the existing pivot row. When lainl > R, the action of 
exchanging two pivot rows will be performed. This exchanged message is transferred by 
a value of 2 on the c-link. 

Now we consider the major work of the type II PE. These PEs will be used to modify 
the entries of [A (i-1), b (~-1)] into the entries of the matrix [A (i), b(i)]. 

(5) P E ( i , j )  always sends its din to dour. 
(6) If PE(i ,  j )  knows that  PE(i ,  i) had found its first pivot row, then PE(i,  j )  assigns the value 

of a in /d in  to  its R. At this same time step, PE(i,  j )  sends out the symbol " * "  to its aout. 
(7) If PE(i ,  j )  has its Cin = 0 and R ¢ *, then PE(i,  j )  modifies the value of its ain into the 

value of its aout. 

(8) When P E ( i , j )  has its cin = 1, P E ( i , j )  detects whether its ain = 0. If ain -~ 0, then 
P E ( i , j )  passes its cin to Cout- Otherwise, if ain ¢ 0, P E( i , j )  sets its Cout = 0. This work 
detects whether there exists a zero row in A (i-1). When PE(i,  n) has its Cout = 1, we 
know that  A is a singular matrix because of a zero row in the matrix A (i-1). 

(9) If P E ( i , j )  has its Cin -- 2, then the action of exchanging two pivot rows is performed. The 
PE(i ,  j )  retrieves the content of R to be modified into its aout and PE(i ,  j )  stores the new 
pivot entry a in /d in  into its register R. 

(10) When P E ( i , j )  has ain = , PE( i , j )  sends the content of its R to its aout and P E ( i , j )  
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resets R as a special symbol  "&" in order to send the signal " ^ " to its aout a t  the  next  

t ime  step. 

5. T H E  S Y S T O L I C  A L G O R I T H M  

Firs t  of all, we define n ine  procedures.  The  first five procedures are used in the  type  I PE.  The  

last four procedures  are used for the type  II PE.  

p r o c e d u r e  t e s t i ng - f i r s t -p i vo t  

i f  P - -  1 t h e n  s e n d i n g - s i n g u l a r - m a t r i x  e l se  searching- f i rs t -p ivot .  

p r o c e d u r e  s e n d i n g - s i n g u l a r - m a t r i x  - Cout -- 3; R = ^ . 

p r o c e d u r e  search ing- f i r s t -p ivo t  =_ P = P - 1; Cout -- 1. 

p r o c e d u r e  f i nd ing - f i r s t -p i vo t  -- P = 1 - P ;  R = laini; Cout = 0. 

p r o c e d u r e  t r y i n g - n e w - p i v o t  =- 

P = P + I ;  

i f  lainl > R t h e n  ( R  = lainl; Cout -- 2} e l se  ( i f a i n  = 0 t h e n  Cout = 1 e l se  Cout = 0.} 

p r o c e d u r e  s e n d i n g - l a s t - e l e m e n t  --  aout ~- R; R --- ~ .  

p r o c e d u r e  exchang ing - two-p i vo t s  - aout = R - a i n / d i n ;  R : a i n / d i n .  

p r o c e d u r e  modi f y ing -a - l i nk  - 

i f  R -- • t h e n  s tor ing - f i r s t -p i vo t  e lse  aout = ain - R * din. 

p r o c e d u r e  s tor ing - f i r s t -p i vo t  - i f  din ~ 0 t h e n  ( R  -- ain/din;  aout -- *} e l se  aout -- ale. 

ALGORITHM. L I N E A R - S O L V E R  (A, b, n)  - 

I n i t i a l  s t a t e :  

For l < i < n a n d i < j < _  (n + l ) ,  we set R = . in all PEs. S e t P = n - i + l i n P E ( i , i ) .  The  

en t ry  ai,3 of A meets  PE(1,  j )  at  the t ime  step t -- j + i - 1. The  en t ry  bi of b meets  PE(1,  n + 1) 

at the t ime step t -- n ÷ i. A s topping signal " ^ " will meet  P E ( 1 , j )  at  the t ime step t -- n + j .  

All the r ema in ing  links are denoted by the symbol  "* " 

E x e c u t i v e  s t a t e :  

r e p e a t  

/*  d o  p a r a l l e l  fo r  a l l  P E s  o f  t y p e  I .  * /  

dnut ~ ain; 
if  ain ~- * t h e n  (Cout = *; b r e a k } ;  

i f  a i n  - -  ^ t h e n  ( R  -- ^ ; Cou t ---- ^ ; b r e a k  }; 

if  P = 0 t h e n  Cout = 0; 

if  P < 0 t h e n  t r y ing -new-p ivo t ;  

if  P > 0 t h e n  { if  a i n  ---- 0 t h e n  t e s t ing- f i r s t -p ivo t  e l se  f ind ing- f i r s t -p ivo t} ;  

/ ,  d o  p a r a l l e l  fo r  a l l  P E s  of  t y p e  I I .  */  

dout -- din; 

i f  ( C i n  ~ -  1 a n d  ain ~ 0) t h e n  Cout = 0 e l se  Cout = t i n ;  

i f  ain : * t h e n  (aout --- *; b r e a k ; }  

i f  (R = & o r  ci, = 3) t h e n  ( R  = ^ ; a o u t  ---- ^ ; b r e a k ; }  

i f  a i n  : ^ t h e n  ( send ing - la s t - e l emen t ;  b r e a k ; }  

if  Cin = 2 t h e n  exchang ing- two-p ivo t s ;  

i f  (Cin = 0 o r  Cin = 1) t h e n  modi fy ing-a- l ink ;  

u n t i l  R = ^. 

6. A N  I L L U S T R A T I V E  E X A M P L E  

We give an  example  wi th  

0 

- 7  - 4  2 
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to i l l u s t r a t e  our  a lgo r i t hm as shown in Table  1. The  re la ted  values  of  Table  1 are  co r re spond ing  

to  t he  pos i t ions  of  l inks and  regis ters  as shown in F igures  1 and 2, where  the  ar rows are  omi t t ed .  

In  w h a t  follows, we use the  n o t a t i o n  " P E ( i , j ) [ a ; ,  = 2, R -- 3 , . . .  It = 4" to  ind ica te  t h a t  P E ( i , j )  

has  i ts  ain --  2, R -- 3, and  so on a t  t he  t ime  s tep  t = 4. T h e  symbol  "S1 ==~ $2" means  t h a t  
the  s t a t e m e n t  S1 impl ies  the  s t a t e m e n t  $2. 

Table 1. An illustrative for n = 3 (the first linear array). 

Time PE(1,1) PE(1,2) PE(1,3) PE(1,4) 

* = t { - {  { - {  { - {  0 ~' ,t  * • 

t • t ~ * 

2 * * t 

• t 

4 - 1  * t 

t t 

3 1 1 * 

~ C i:)0 ~ ~ V ~  ~ V ~  : V ~ :  
-3/4 

^ -7 0 5 

4 ~ ^ ^  ~1-~-I ~o 4[ o-1'2 o~1-~. ~o 
-31/4 1/2 

^ -4 3 
^ A 3 4 

5 ~ A [ & ' ~  ^ 3 I ~ O  1 0 2 F ~ ' - - - I  4 2 
"114 -4 7/4 

^ 2 

° I-:--I  ^^I-71 ^̂  o~ I-~13o 
^ 0 -1/4 

A 

V:~ [ ~  ^^~1 ^̂ 
^ 3/4 

A 

T h e r e  are  t h ree  l inear  equa t ions  which co r respond  to the  l inear  sys t em A x  = b. 

2Xl - x2 + x3 --  5, (1) 

4x l  + z2 = 3, (2) 

3 x l  - 7x2  - 4x3 = 2. (3) 

In  Table  1, th ree  l inear  sys tol ic  a r r ays  are  considered in the  following th ree  cases, respect ively.  

CASE ( a ) .  On the  first  l inear  array,  since PE(1 ,1) [a in  = 2, P = 3]t = 1, t he  equa t ion  (1) is a 

p ivot  row. F r o m  the  p rocedures  f i n d i n g - f i r s t - p i v o t  and  s t o r i n g - f i r s t - p i v o t ,  we have 

PE(1 ,  1) [P  = - 2 ,  R = 2, dout = 2, tout = 0] t = 1, 
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Table 1. (cont.) The second linear array. 

83 

rime PE(2,2} PE(2,3) 

. :-1 

10 

.3/4 • 
< E b  -3" " . - 7  

0 * * 

.31/4 1/2 
0 3114 -3/4 ~ - 3 / 4 2  0 0 

1/4 -4 
~ 1/4 .31/4r~-~ .3114 

0 2 l ,olo, i 2 
.110/93 

^ 0 
( ~ )  ^̂  1/4 ~ 1 1 4 0  0 

-4/31 

^ E l  ^ A ^ 

16/31 

A 

PE(2,4} 

. .-i- t 

• .7. 
= 

: I - ]  

7/4 
-3/40 ~ ' ~  0"3/4 

-1/4 
- 3 1 / 4 [ ~  2"31/4 

-220193 

3/4 
1140 [ ~  01/4 

23/31 
A 

^ ~ - ~ ^  
A A 

1/31 

A 

===~PE(1,2) Icin =O,  ain = - l , d i n  = 2, R = - 2 , a o u t  =* ,dou t  = 2, Cout =O] t = 2, 

==~PE(1,3) [Cin = O, ain = l ,din = 2, R = ~,aout = . ,dout = 2, Cout = Ol t = 3~ 

===aPE(I,4) [Cin = O, ain = 5, din = 2, R = 5,aout  = *,dout = N, cout = Ol t = 4. 

From equa t ion  (2), we have P E ( 1 , 1 ) [ P  = - 2 ,  ain = 4, R = 2It - 2. By  the  execut ions  of 

trying-new-pivot  and  the  fact lain[ ::> R, the  message of exchanging  two p ivot  rows mus t  be 

ca r r i ed  to  PE(1 ,  j )  for j > 1. Thus ,  by  the  ass ignment  of aou t = R -a in /d in  wi th in  the  p rocedure  

exchanging-two-pivots,  we o b t a i n  

PE(1 ,  1 ) [R  = 4, dout = 4, Cout = 2] t : 2, 

- - - ~ P E ( 1 , 2 )  din = 4, Cin = 2, ain = 1,aout = - ~ , R  = ~,dout  = 4, Cout = 2 t = 3, 

----~PE(1,3) [din = 4, cin = 2, ain -= O, aout = l , R  = O, dout = 4, Cout = 2] t = 4, 

==aPE(I ,4)  [din = 4, Cin = 2, ain = 3, aout = 7 , R  = 3,dout  = 4, Cout = 2] t = 5. 
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Table 1. (cont.) The third linear array. 

Time 

5 

PE(3,3) PE(3,4) 

! 

7 
-110/93 

-110/93 
0 

1 I ,t 

1 I * . t 

10 

11 

-4/31 
-4/31 
0 

16/31 
16/31 
0 

A 

A 

-220/93 
"110/93 I 0 2 I "110/93 0 

23/31 
-4/310 ~ - ~  0-4/31 

1 

1/31 
16/31 16/31 o lo 

:1 
A 

I - 1  A A 

2 

12 F 1  
A 

T h e  a b o v e  t h r e e  va lues  of  aou t f o rm  t h e  f irst  row of  [A(1),b (1)] w i t h  row i n d e x  2. F o r  equa -  

t i o n  (3),  b y  t h e  p r o c e d u r e  trying-new-pivot w i t h  ]ainl --  3 < R a n d  the  e x e c u t i o n  of  t h e  a s s i g n m e n t  

aout - -  a i .  - R * din w i t h i n  t h e  p r o c e d u r e  modifying-a-link, we have  

P E ( 1 ,  1) [P  --  - 1 ,  ain = 3, R = 4, dou t - -  3, Cout = 0] t - -  3, 

- - - - *PE(1 , 2 )  ain = - 7 ,  din = 3, cin = O,R = 1 , a o u t  = - - ~ - ,  out 3, eout = 0 t = 4, 

= ~ P E ( 1 ,  3) [ain -- -4 ,  din = 3, tin --- 0, R -= 0, aout --=- - 4 ,  dout = 3, tout  - -  0] t = 5, 

[ 3 1 ] 
= = ~ P E ( 1 , 4 )  ai~ = 2, din = 3, ei~ = O,R = ~ , a o u t  = - ~ , d o u t  = 3,¢out = 0 t = 6. 

T h e  a b o v e  t h r e e  va lues  of  aout f o rm  t h e  s e c o n d  row of  [A (1), b (1)] w i t h  row i n d e x  3. F r o m  t h e  

i n i t i a l  s t a t e  of  ou r  a l g o r i t h m ,  we have  PE(1, j )[ain = ^ ]t = j + 3 for 1 _< j < 4. Hence ,  P E ( 1 ,  1) 

s t o p s  i t s  e x e c u t i o n  a t  t = 4. F r o m  t h e  p r o c e d u r e  sending-last-element,  we have  

P E ( 1 ,  2) ain -~ , aout -~ "~, R = & t = 5, P E ( 1 ,  3) [ain --  , aout - -  0, R = &] t = 6, 

a n d  3 
P E ( 1 , 4 )  a i ,  = ' a ° u t  --  4 '  
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__3 
4 

[A(1) b(1)] = 31 
' 4 

1 

which corresponds to the  linear sys tem of 

The  above three  values of aout form the third row of [A (1), b (1)] with 1 as its row index. Then  
we have PE(1 , j ) [aou t  = , R  = ^ I t  = j + 4  for 2 <_ j <_ 4. Thus,  these three  PEs  stop their  
executions.  

From the  above executions,  we obta in  

1 7 

1 
- 4  - ~  , 

3 
0 3 

7 

- x 2  - 4 x 3  = - ~ ,  ( 5 )  

x l  + x2 = - .  (6) 
4 

CASE (~). On the second linear systolic array, [A (1), b (1)] is the input  da ta  on the input  a-links 
of P E ( 2 , j )  for 2 _< j <_ 4. From equat ion (4) and eE(1,2)[aout  = - 3 / 4 ] t  = 3, we have 

PE(2 ,2 )  ain - 4 '  4 '  

[ 3 1 2 3 ] 
===~PE(2, 3) Cin = 0, din -~ - ~ ,  ain ----- 2 '  R = - ~ ,  aout ~- *, dout -- - 3 '  Cout -- 0 t = 5, 

[ ] ---~ P E ( 3 , 4 )  c i .  = 0, din = -3,ai. = 3 , R  = - g , a o u t  = * ,dout  = - - ~ , C o u t  = 0 t = 6. 

From equat ion (5) and the  procedure  exchanging-two-pivots with lainl > R, we have 

[ ] 31,R = ,dout = --~-,Cout = 2, P = 0 t = 5, PE(2 ,2 )  ain - 4 

31 II0 16 31 ] 
= 2, din ---- - -~ - , a in  -- - 4 ,  aout - , R  -- ~- ,dout  -- - - T ,  Cout --- 2 t -- 6, 

- -2 ,  din = - ~ - , a i n  = - ~ , a o u t - -  , R =  ~-~, out = -  Cout = 2  t = 7. 

values of aou t form the first row of [A (2), b (2)] with row index 3. From equa- 

~ P E ( 2 ,  3) [CAn 

:===~PE(2, 4) [Cin 

The  above two 
t ion (6), we have 

BE(2,  2) 

==~PE(2, 3) 

==*-PE(3, 4) 

1 31 1 ] 
ain ---- 4 ' R - -  - 4 '  d°ut : 4 ' C ° u t - - 0  t - - 6 ,  

[ 16 4 d 1 1 CAn : O, din ---- 1 ,  ain ---- 0, R : ~ ,  aout ---- - ~ - ,  out : 4 '  C°u t  : 0 t : 7, 

CAn = 0, din ---- 1 ,  ain = 4 '  ~ - ,  aout ---- ~ - ,  out : 4 '  tout : 0 t : 8. 

The  above two values of aout form the second row o f  [A(2),b (2)] with row index 1. Now 
PE(1,2)[aout  -- ^ ]t -- 6 implies PE(2,  2)[al,  -- ^ ]t = 7. In the  same way, we have 

B E ( l ,  3 ) [ a o u t = ^ ] t = 7  and BE( l ,  4 ) [ a o u t = ^ ] t = 8 ,  

[ ] [ ] ~ P E ( 2 , 3 )  aln = ^ , a o u t - - - ~ , R - - ~ :  t = 8 and PE(2 ,4 )  ain ---^ , a o u t = l , R = •  t = 9. 
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These  two values of  aout form the  th i rd  row of [A (2), b (2)] wi th  row index 2. 
s tep,  PE(2,  j )  s tops  its execution.  

Until  now, we have the  ma t r i x  
110 

31 
1_6 
31 

which cor responds  to  the  linear sys tem of 

220 

23 

31 ' 

1 

3 1  

After  this  t ime  

- x 3  - -  9 3 '  ( 7 )  

x l  - z3  = ~ ,  (8)  

1 
z~  + z 3  = - - .  (9)  

31 

CASE ( ~ ) .  We consider the  opera t ions  on the  th i rd  linear array. Equa t ion  (7) is a p ivot  row. 

Hence,  it implies 

[ 110 110 . 110 ] 
BE(3 ,3 )  a i n - -  - - - ~ - , R - -  - ~ , d o u t - - - - - ~ , C o u t  = 0 ,  P = 0  t = 7 ,  

[ 110 _1 0 ] 
==~PE(3,  4) Cin = 0 ,  din - 93 ' ain -- - , R = 2, aout = *dout = 93 ' Cout = 0 t = 8. 

F rom equat ion  (8), we have 

P E ( 3 ,  3)  a i .  = - ~ - ,  dout  = - 3 i - '  P = 0,  Cout = 0 t = 8,  

~ P E ( 3 , 4 )  Cin = 0 ,  d in  = -~,R = 2,  a~ ,  = ~- i - , aou t  = 1 , d o u r  = - g i - , e o u t  = 0 t = 9. 

This  o u t p u t  of  aout = 1 forms the  first row of [A (3), b (3)] wi th  row index 1. Note  t h a t  in this  
last  l inear array,  the  ma t r i x  A (a) is empty.  F rom equat ion  (9), we have 

[ 16 ~ 16 p = O ,  c o u t = O l t = 9  ' PE(3 ,  3) ain = ~ ' ,  R = ' d°ut = 31 '  

[ 10 ] 
~ P E ( 3 , 4 )  Cin = 0, di,  = -~,ai ,  = ,R  = 2, aout = -1 ,dou t  = ~-~,Cout = 0 t = 10. 

This  aout = - 1  is the  only en t ry  in the  second row of [A(a),b (3)] with row index 2. Since 
P E ( 2 , 3 )  h a s  i t s  a o u t  = ^ a t  t = 9,  w e  h a v e  P E ( a , a ) [ a i n  = ~ ,R = ^ ] t  = 10.  A t  t h i s  s a m e  t i m e  

step,  PE(3 ,  3) s tops  its execution.  Also we have PE(2,  4)[aout = ^ ]t = 10 which implies the  result  

of  PE(3 ,4) [a in  -- ^ ,aout - -  2, R -- &]t = 11. 
Th i s  aout -- 2 is in the  th i rd  row of [A (3), b (3)] wi th  row index 3. Finally, we have PE(3 ,  4) has  

its R = ^ , aout ---- ^ at  t ---- 12, and thus,  all PEs  s top their  executions.  T h e  solut ion of Ax = b 
is in the  m a t r i x  [A (3), b (3)] which corresponds  to  the  linear equat ions  of  Xl -- 1, x2 -- - 1 ,  and 

X3~2. 

7. T H E  C O R R E C T N E S S  P R O O F  

From the  procedure  sending-first-pivot, we know t h a t  when  the  first pivot  row is found by  
PE( i ,  i), the  t ype  I I  P E ( i , j )  sends out  a symbol  " * "  to  its aout. These  symbols  " * "  which are 
genera ted  by the  i t h  l inear a r r ay  will p ropaga t e  to  the  P E s  of the  following k t h  l inear a r ray  for 
k > i. These  synbols  " * "  and the  wai t ing symbol  " * "  given in the  initial s t a te  of  our  a lgor i thm 
will cause some P E s  to  be idle. 
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LEMMA 1. On the  i TM l inear array,  when we ignore the  " * "  due to the  ini t iM s ta te ,  but  we 

include the  " * "  g e n e r a t e d  by the prev ious  l inear  array,  the  first e n t r y  on the i npu t  a -Bnk  o f  

PE( i ,  j )  a p p e a r s  a t  the  t ime  s t ep  t = i + j - 1. 

PaOOF.  F r o m  the  in i t ia l  s ta te ,  for 1 _< j _< n, we ob t a in  P E ( 1 , j ) [ a i n  = ul,Jl c-(°)~  ̀ = j .  Also we have 

P E ( 1 , n  + 1)fain = b~°)]t = n + 1. Since there  is one t ime  de lay  on each a- l ink,  by  induc t ion  

on the  integer  i, P E ( i , j )  has  an en t ry  on its a- l ink a t  the  t ime  s tep  t = j + i - 1 for i <_ j _< 

n + l .  l 

LEMMA 2. On the i TM l inear array,  i f  we have the  e n t r y  a(ki~ 1) = 0, for a11 i < k < n, then  PE( i ,  i) 

send  ou t  i t s  Cout = 3 before the  t ime s t ep  t = n + 2i - 2. 

PROOF. By  the  p rocedure  test ing-f irst-pivot ,  we know t h a t  the  case of all _(i-1) ak,i = 0 will be 

d e t e c t e d  by  P E ( i , i )  on the  i th l inear  array. F rom L e m m a  1, P E ( i , i )  has  i ts  first e n t r y  on its 
A i - i )  

i n p u t  a - l ink  at  t = 2i - 1. Since ui, i is t he  first en t ry  of the  first co lumn of A (~-i) and  the re  

are  a t  mos t  (i - 1) symbols  " * "  gene ra t ed  from the  previous  (i - 1) l inear  ar rays ,  P E ( i ,  i) has  
_ ( i - 1 )  

the  e n t r y  (ti# on its inpu t  a - l ink  before the  t ime  s tep  t = 2i - 1 + (i - 1) = 3i - 2. Thus ,  
h(i-1) P E ( i ,  i) has  i ts ain ---- an, i before  t = (3i - 2) + (n - i) = n + 2i - 2. At  th is  t ime  s tep,  P E ( i ,  i) 

has P = 1 and ai~ = 0. T h e  p rocedure  sending-s ingular-matr ix  impl ies  t h a t  P E ( i ,  i) sends  its 

corn = 3 to  ind ica te  the  s ingu la r i ty  of A. | 

LEMMA 3. During  the  execut ion on the  i th l inear  array,  i f  there  ex is ts  an integer k, for i < k < n 
~(~-i) 

such tha t  the  entries  ~k,j = O, for all i <_ j <_ n, then PE( i ,  n) has i ts  Cout = 1 before the  t ime  

s t ep  t = n  + k + i -  2. 

PROOF. By L e m m a  1, the  first e n t r y  ain of P E ( i ,  i) a ppe a r s  a t  t = 2 i -  1. Since the  first ( k -  i + 1) 

rows of [A ( i-1) ,  b (i-1)] are indexed  sequent ia l ly  from i to k, and  there  are  a t  mos t  ( i -  1) symbols  

" * "  gene ra t ed  by  the  previous  (i - 1) l inear  ar rays ,  the  e n t r y  a2i~ -1) will mee t  P E ( i ,  i) before the  
~(~-i) 

t ime  s tep  t = 2i - 1 + (k - i) + (i - 1) = 2i + k - 2. By  uk# = 0, P E ( i ,  i) has  i ts  Cout = 1 by the  

execu t ion  of  p rocedure  searching-first-pivot  or the  p rocedure  t ry ing-new-pivot .  Thus,  we have 

PE(i, i) fain = 0, Cou t = 1] t ~ 2 i  + k - 2, 

[ (~-~) ] 
= = * P E ( i , i  + 1) Cin = 1,ain = 0 = ak,i+l,Cou t = 1 t <_ 2i + k - 1, 

~ P E ( i ,  n )  [Cin = 1, a in  = 0 ,  Cout =1 ]  t < 2 i + k - 2 + ( n - i )  = n  + k + i - 2. 

T h e  Cout = 1 on P E ( i , n )  ind ica tes  t h a t  A (i-1) has  a zero row. Therefore ,  A is a s ingular  

ma t r ix .  F r o m  L e m m a s  2 and 3, we know t h a t  if the re  exis ts  an integer  i such t h a t  P E ( i ,  n) has  

i ts  Co,t = 1 or  Cout = 3, t hen  A is s ingular .  In  the  following th ree  lemmas ,  we assume t h a t  A is 

nons ingular .  

LEMMA 4. The  t ype  I PE( i ,  i) s tops  i ts  execut ion  at  the  t ime  s t ep  t = n + 3i - 2 and  the  

t ype  H P E ( i , j )  s tops  i ts  execut ion  at  the  t ime  s tep  t = n +  2 i + ]  - 1. Tha t  is, we have 

PE( i ,  i ) [R = ° It = n + 3i - 2 and P E ( i , j ) [ R  = ^ ,  aout = ~  }t = n + 2i + j - 1, for 1 < i < n and 

i < j < n + l .  

PROOF. By induc t ion  on i. 

Basis:  For  z = 1. F rom the  ini t ia l  s ta te ,  we have 

a(°) ] 
P E ( 1 , 1 )  a i , =  1 , 1 ] t = 1 ,  

a(0) ] 
==*PE(1,  1) a in  =- 1,n] t ---- n ,  

==*PE(1 ,1 )  fain = ' , R  = ^ ] t  = n + 1. 
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From the  initial s ta te ,  we know tha t  the en t ry  of  the  first row of [A (°), b (°)] meets  P E ( 1 , j )  a t  
the  t ime  s tep  t - - j  + i - 1. Since each column in [A(°),b (°)] has n entries, we have 

= n + j - 1, a ( ° ) . ]  
P E ( 1 , j )  ain = n,3] t 

= ~ P E ( 1 , j )  [ai, = ^ , R  = & I t - -  n + j ,  

= = ~ P E ( 1 , j ) [ R  = ^ , a o u t  = ^It  = n + j  + 1. 

Thus ,  it is t rue  for i -- 1. 

A s s u m p t i o n :  For i -- k, it is t rue.  Thus ,  we have 

B E ( k , k )  [R = ^ I t  = n + 3 k -  2, 

and  

P E ( k , j )  [R : ^ , a o u t  : ^ I t  : n + 2 k ÷ j  - 1, 

I n d u c t i o n :  For i = k + 1. 

F rom the above a s sumpt ion  wi th  j = k + 1, we have 

f o r j  > k ÷ l .  

PE(k ,  k + 1) [aout = ^  ] t = n ÷ 2k + (k ÷ 1) - 1 = n ÷ 3k, 

===~PE(k + 1, k ÷ 1) [ a i n  - -  ^] t ---- n ÷ 3k + 1 = n + 3(k + 1) - 2, 

==~PE(k  + 1, k + 1) [R = ^ I t  = n + 3(k + 1) - 2. 

F rom the above  a s sumpt ion  wi th  j > k + 1, we have 

P E ( k , j )  [R = ^ I t  -- n + 2k + j  - 1, 

==~PE(k,  j )  [aout ----^  ] t ---- n + 2k + j - 1, 

.~PE(k + 1, j )  lain = ^ ,  R = &] t = n + 2k + j ,  

===~PE(k + 1, j )  [R = ^, aout = ^ ] t ---- n + 2k + j + 1 = n + 2(k + 1) + j - 1. 

Thus ,  i = k + 1 is t rue.  Therefore ,  the  l e m m a  is proved by  induction.  | 

LEMMA 5. The  t i m e  c o m p l e x i t y  o f  our  s y s t o l i c  a l g o r i t h m  is 4 n .  

PROOF. Let  i = n and  j = n + l ,  in L e m m a  4. We have PE(n ,  n + l ) [ R  = ^ ]t = n + 2 i + j - 1  = 4n .  

Thus ,  P E ( n , n  + 1) s tops  its execut ion a t  the  t ime  s tep t = 4n. | 

LEMMA 6. The  i t h  / /near  a r r a y  p r o d u c e s  the values O#aout t o  form the m a t r i x  [A (i), b (i)] w h i c h  

c o r r e s p o n d s  t o  t h e / / n e a r  sys t em o[  

(~) . a ( i )  ~ (i) h(i) 
a i + l , i + l X i + l  T i + 1 , i + 2 ~ i + 2  ÷ • .  • ÷ a z + l , n X  n = V i + l ,  

(i) - a  (i) a (i) x = b (~) 
a i + 2 , ~ + l X i + l  ' ~  i + 2 , i - ~ 2 X i +  2 ÷ "" " ÷ i + 2 , n  n i~-2 ,  

a(i) x -F ^(i) x + + a (i) x b (i) n , i + l  i + 1  t~n,iq- 2 i-t-2 " ' "  n , n  n = n ,  

- -  a (i) x + ~(i)  x + + (i) b~i), 
X l  --r 1 , i + 1  i + 1  t ~ l , i + 2  i + 2  " "" a l , n X n  = 

(i) _ h!~) _ (i) a (i) X" ÷ + a i , n X n  - z  " X i  t a i , i + l X i + l  -{- i , i + 2  z + 2  " " " 

PROOF. B y  the  m a t h e m a t i c a l  induct ion on i. 
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B a s i s :  For i -- 1. 
From the initial state,  the matr ix  [A, b] = [A (°), b (°)] is assigned to the input  a-links of  P E ( 1 , j ) ,  

1 < j < (n + 1). Thus,  we have PE(1,  1)[ain "(°)1÷ k for 1 < k < n.. 
_ _ ~ ~ k , l J ~  ~--- 

Suppose tha t  _(0) is the first nonzero value meet ing PE(1,  1) at  the t ime step t = u. Since ~u,1 
PE(1 ,  1)[P = n]t = 1, the procedure  testing-first-pivot causes the searching-first-pivot to  be 
executed for ( u -  1) times. Thus,  we have P E ( 1 , 1 ) [ P  = n - u +  1]t = u -  1. At  the next 

t ime step, we have PE(1,  1)[ain ¢ 0]t = u. From the execution of finding-first-pivot, we have 
B E ( 1 , 1 ) [ P  = - n  + u]t = u. 

From the t ime step t = 1 to  the  t ime step t = u - 1, PE(1,  1) sets its Cout = 1 and dour = 0. 

This  causes the type  II  PE(1,  j )  assigning its ain to its aout by the assignment of  aout = ain within 

the  procedure  storing-first-pivot under  the condit ion of din = 0. T h a t  is, for 2 <_ j < (n + 1), 
P E ( 1 , j )  carries the first (u - 1) rows of  [A (°), b(°)], under  deleting the first column of  A (°), to  
form the  first (u - 1) rows of [A(1),b(1)]. These (u - 1) rows in [A(1),b (1)] are numbered  as the  

row indexes from 2 to u. 

Since the u TM row of [A (°), b (°)] is the first pivot row found by PE(1,  1), we obta in  din ¢ 0 on 

P E ( 1 , j )  for 2 < j _< (n + 1). From the procedure storing-first-pivot, we have 

[a o ] 
P E ( 1 , j )  R = ~ i n , a O u t = *  t = u + j - 1 ,  for 2 _< j <_ (n + l). 

From the  t ime step t = u + 1 to t = n, PE(1,  1) sends the  message to indicate whether  the 

act ion of  exchanging pivot row occurs or not.  This implies t ha t  the type  II  PE(1,  j )  modifies the 
last ( n - u )  rows of  [A (°), b (°)] to form the  rows of  [A (1), b (1)] with the row indexes from u +  1 to n. 

Until  now, we obta in  (n - 1) rows in [A 0),  b(1)]. These (n - 1) rows of [A (1), b (1)] correspond to 

(n - 1) linear equat ions such tha t  all the coefficients of  Xl are deleted. 

At  the  t ime step t = n + 1, PE(1,1)  receives the s tooping signal ain = ^ • So PE(1,1)  stops its 

execution.  Similarly, we have PE(1, j ) [a in  = ^ It = n + j ,  for 2 _< j < (n + 1). The  procedure  

sending-last-element causes P E ( 1 , j )  to  assign the content  of R to  aout to form the  last row of 

[A (1), b(1)]. This  last row has its index 1 and it corresponds to  a linear equat ion such tha t  its 

coefficient of  the unknown xl  is 1. Therefore,  the case of i = 1 is true. 

A s s u m p t i o n :  Suppose tha t  this l emma is t rue  for i = k. 

I n d u c t i o n :  For i = k + 1. 
Since the values on the  ou tpu t  a-links of  the k TM linear ar ray  form the matr ix  [A (k), b(k)], this 

mat r ix  is the  input  of a-links of  the (k + 1) th linear array. By  L e m m a  1, we know tha t  the first 

en t ry  genera ted  by the k TM linear array meets  P E ( k  + 1, k + 1) at t = 2k + 1. 

For k + 1 < r < n, let ~(k) meet  P E ( k  + 1, k + 1) at the t ime step t = t~. Since there are k ~r,k-I-1 
symbols  " * "  generated by the previous k linear arrays, the  tr  has to satisfy the condit ion of 

2k + 1 < tr < n + 2k. Suppose tha t  .(k) is the first nonzero value meet ing P E ( k  + 1, k + 1) at 
- -  - -  ~ v , k + l  

(k) 
the t ime step t = tv, for k + l  < v < n. T h a t  is, we have as,k+ 1 = 0, for s satisfing k + l  < s < v - 1 .  
Hence, from the t ime step t = t~ + j  - k -  1 to t = t~ + j  + v -  2 k -  2, the type  II P E ( k  + 1 , j )  
carries the first (v - k - 1) rows of [A (k), b(k)], under  deleting the first column in A (k), to form 

the first (v - k - 1) rows of  [A(k+l),b(k+l)] with the  row indexes from k + 2 to v. 

Since the  first pivot row of [A (k), b (k)] is found by P E ( k  + 1, k + 1) at  t = t~ by Ak) Uv,k+ 1 ¢ O, we 

have P E ( k  + 1 , j ) [ R  = ain/din,aout - * ] t  = tv + j  - k - 1, for k + 2 ___ j _< n + 1. After  sending 
a o u  t ----- * ,  P E ( k  + 1, j )  modifies the following (n - v + k) rows of  [A (k) , b (k)] to  form the (n - v + k) 
rows of [A(k+l),b (k+l)] with row indexes as v + 1, v + 2 . . . .  , n - 1, n, 1, 2, . . . ,  k - 2, k - 1, k. 

At  the  initial state,  we set PE( i , i ) [P  = n - i + 1It = 0. Thus,  on the (k + 1)  th  linear array, 
there  are only  the  first (n - k) rows of [A (k),b (k)] to  be detected as a pivot row. The  last k 
rows of  [A(k),b(k)], with row index l for 1 < l < k, correspond to the  k linear equat ions  with 

the coefficient 1 on the unknown variables xt, respectively. On  the (k + 1) th linear array, these k 
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equations are not involved into the work for detecting a pivot row. Since the pivot row on 
the (k + 1) th linear array does not contain the unknowns xl for 1 < l < k, the assignment of 

aout ---- ain -- R * din cannot influence the coefficients of xl. Thus, the coefficient of xz preserves 
as 1 under the executions of the (k + 1) th linear array. From Lemma 4, for k + 2 < j < n + 1, we 

have 

P E ( k , k  + l)[aout = ^ ] t = n  + 3k and PE(k, j )[aout  = ^ ] t = n  + 2k + j - 1 ,  

~ PE(k  + l , k  + l)[ain = ^ , R = ^ ] t = n +  3k + l,  

and 

PE(k  + 1, j ) lain = ^ ,aout = R , R  = &] = n + 2k + j .  

These (n - k) values of aout form the last row of [A (k+l), b (k+l)] with row index k + 1. This 

last row corresponds to a linear equation with the coefficient 1 on the unknown Xk+l. At the 
next t ime step, we have PE(k  + 1 , j ) [R = ^ ,aout ---- ̂  I t  = n + 2k + j  + 1. The case of i = k + 1 is 
true. Therefore, this l emma is proved by induction. | 

THEOREM. The systolic algorithm L I N E A R - S O L V E R  ( A, b, n) is correct to solve the dense linear 

sys tem A x  = b within 4n t ime steps. 

PROOF. From the results of Lemmas 5 and 6 the following concludes. | 

8 .  C O N C L U S I O N S  

We present a systolic algorithm to solve the linear systems A x  = b. An important  feature in 
our algorithm is that ,  during the elementary row operation on A, the action of exchanging two 
pivot rows can performed. Since we need to preserve the coefficient of xz, for 1 < l < (i - 1), 
within a linear equation during the execution of the i th linear systolic array, the elementary row 
operat ion on the i th linear array has to be accomplished by the way of Rj  - c * Ri, where Rj  is 
the row to be modified, c is a scale value, and Ri is the current pivot row. This requirement is 

achieved by the assignment of aout = ain - R * din within the procedure modifying-a-link. 

This algorithm can be used to solve the linear systems A X  = B for X,  B being n × m matrices. 

In this case, the algorithm requires (4n + m - 1) t ime steps. When B is an n by n identity matr ix  
and A is nonsingular, the solution is the inverse matr ix  of A. Moreover, it seems tha t  the absolute 
value of the determinant  of A is the product of R in PE(i,  i) for 1 < i < n. 

_(i-:) 
During the execution of our algorithm, if we have ~,~ ~ 0, for all 1 < i _< n and the 

action of exchanging pivot row does not occur, then our algorithm has the same work as the LU 

decomposit ion to do. In this case, the c-link is redundant.  In fact, the major  purpose of c-link 
is used to carry the message of exchanging pivot row. However, note tha t  the LU decomposition 
only obtains the upper  tr iangular matr ix  of A, but our algorithm solves the linear system A x  = b. 

We hope that  this method of designing a systolic algorithm can be applied to solve some 

NP-complete  problems, such as the knapsack and travel-salesman problems. 
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