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計畫中文摘要 
 

模 擬 最 佳 化 (simulation 

optimization)是最佳化方法領域中最新

的發展，模擬最佳化問題主要是指對任一

個 input variable setting 的 objective 

function 的 evaluation 都須利用模擬

(simulation)的方法來求得，所以我們無

法以傳統最佳化方法解決此類型的的問

題。此類問題涵蓋的範圍甚廣，如一些具

有 廣 大 輸 入 變 數 空 間 (huge 

input-variable space) 的隨機模擬最佳

化 問 題 (stochastic simulation 

optimization problem)，大型系統中具有

決策變數與 discrete variable 的最佳化

問題等等。 

本計劃在上一年度中，已獲致兩項研

究成果[15]，[16]。在這一年度中，我們

更針對 polling system 使用 k-limited 

service discipline 的模擬最佳化問題作

深入的研究，並以序的最佳化方法

(ordinal optimization)來求得一個不錯

的 service discipline。 

 

Abstract 
 

Simulation optimization is one of the 
most frontier research area in optimization. 

The main characteristics of simulation 
optimization problem is the evaluation of the 
objective function of an input-variable setting 
requires lengthy simulation. Therefore we 
cannot use the conventional optimization 
techniques to solve them. There are various  
types of simulation optimization problems 
such as stochastic optimization problems 
with huge input-variable space and large 
scale optimization problems with decision 
and discrete control variables. 

In the first year of this project, We have 

obtained two research results. In this year , we 

have studied the simulation optimization 

problem on polling system using k-limited 

service discipline and use ordinal optimization 

method to obtain a good enough solution. 
 
 
一、前言 
 

在 1992 年時，Professor Azadivar 在

[1] 中給模擬最佳化問題 (simulation 

optimization problem)下了一個簡單的定

義 ： 對 任 一 個 input(variable) 的

objective function 的 evaluation 都需

利 用 模 擬 (simulation) 才 能 得 知 其

objective value 的最佳化問題即是模擬

最佳化問題。此類型問題涵蓋範圍甚廣，

如在隨機模擬最佳化問題(stochastic 



simulation optimization)中需要以隨機

模擬(stochastic simulation)來計算一個

input variable 的 objective value，由

於每一個隨機模擬都需相當長的計算時

間 ， 所 以 如 果 輸 入 變 數 空 間

(input-variable space)很龐大的話，那

麼要得到最佳解所需要的計算量實在是無

比的冗長。在上一年度計畫中，我們已完

成兩項成果 :  

(i) 我們已將晶圓測試程序中減少晶

粒誤宰及重測的問題 formulate 成一個模

擬最佳化問題，並研擬出一個 two-level 

ordinal optimization 的 algorithm 成功

地解決了此問題。此成果所撰寫成的論文

[15]已被 IEEE Trans. on Systems，Man and 

Cybernetics Part A 期刊 accept. 

(ii)對具離散控制變數的分散式最佳

電力潮流問題上已初步研擬出一個連續變

數的分散式最佳電力潮流演算法。此成果

已於 2005 年 6 月 15 日至 17 日在 EuroPES 

2005 於西班牙召開的會議中發表[16]。 

在本年度中，我們更進一步地將所研

擬的解模擬最佳化問題的序的最佳化演算

法則應用到 polling system 上。 

 

 

二、研究目的 

 

在電腦網路、通訊網路、製造系統、

運輸系統等眾多重要電子與傳統工業的領

域中，其某些服務型態常以 polling model

的方式出現，而在 polling model 中如何

設定 service discipline 便成為這些應用

領域擴大其獲益的重要手段，所以我們這

一年度的計畫內容及研究成果對工業的貢

獻將相當大。 

 

三、文獻探討 

 

在 polling system 中典型的 service 

disciplines 計有 exhaustive，gated，

limited，k-limited 及 time-limited，等

多種，它們在[2]-[5]中皆有詳盡的探討，

這些現有的分析方法，大都根據 queuing 

theory 來推演其結果，所以他們都必須做

相當強的假設，例如 arrival process 是

Poisson，service time 是 exponential 

distribution 或甚至如 buffer size 是∞

等。所以他們的結果並不切合實際狀況，

而 我 們 擬 將 polling system with 

k-limited service discipline 形成一個

模擬最佳化問題。此類型問題在[6]-[11]

中有相當多的探討，但與他們不同的是，

我們將採用序的最佳化方法[12]-[14]來

解它。 

 
四、研究方法 
 

我們所考慮的 multi-queue polling 

model 是一個 G/G/1/K polling model，它

假 設 arrival process 是 general 

probability distribution，service time

也 是 general probability 

distribution，這個 model 只有一個

cyclic server，但是有 J 個 queues 而每

個 queue 的長度都是 K(有限的)。這樣的

polling model 便如圖 1所示。 
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Figure.1.A G/G/1/K polling model 
 
我 們 可 以 將 如 何 設 定 k-limited 

service discipline 以使 polling system

的平均等待時間(average waiting time)

最小化的問題形成一個模擬最佳化的問

題，其細節如下所述 :  

The k-limited service discipline, that is 
when the server attends the j th queue, it 
will serve for )( Km j ≤  customers (jobs or 
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packets) or until the queue becomes empty, 
whichever comes first. Thus,  
is a decision vector of our k-limited service 
discipline. We assume that a customer that 
completing the service will depart from the 
system, and any customer being served but 
yet completed will not be interrupted by any 
reason. The switchover time of the cyclic 
server switching to next queue is assumed to 
be of normal distribution with mean 

),,,( 21 Kmmm L

δ  and 
variance . 2σ
 

We denote the random variable  as 
the waiting time of a typical customer of the 

jW

j th queue at steady state. The waiting time is 
defined as the time length from arrival instant 
until the beginning of service. Then,  
represents the average waiting time of a 
customer in the 

][ jWE

j th queue at steady state.  
We let jτ  denote the weighting 

coefficient of queue j , then ∑
=

J

j
jj WE

J 1
][1 τ  

denotes the weighting average waiting time 
of the G/G/1/K polling system. 
 

Now, we can formulate our stochastic 
simulation optimization problem for the 
G/G/1/K polling system as 
 

∑
=

=

J

j
jjJjm

WE
Jj 1,,1,

][1min τ
K

            (1) 

subject to the G/G/1/K polling model. 
 

In other words, we are looking for an 
optimal k-limited service discipline to 
minimize the weighting average waiting time 
of a G/G/1/K polling model. Suppose 20=K , 
then the size of the decision variable space of 
(2) will be  or  provided that 20J 2010 10=J . 
Note that  is allowed to be more than jm K , 
because during the period when the server 
serves a customer, new customers may arrive; 
however, such an  should not be a 
good choice unless the arrival rate is very 
high. Thus, problem (1) is a stochastic 
optimization problem with huge decision 
variable space as depicted in (1) and is 
especially suitable for the proposed ordinal 

optimization approach to solve for a good 
enough k-limited service discipline. 

)( Km j >

 

五、結果與討論 
 

我們已研擬出一個序的最佳化演算法

來求解一個不錯的 k-limited service 

discipline。我們也將所得到的結果與現

有的 service disciplines 來比較並發現

我們的結果好的非常多。我們已將這些研

究發現撰寫成論文，如附件一，並發表於

今年(2006) 6 月 26-28 日在希臘羅德島召

開的 IASTED Simulation and Modeling 國

際會議[17]。同時，我們也在文章中註明

此研究成果係本國科會計畫所贊助，並將

計劃編號明列其上。 
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ABSTRACT 
In this paper, we propose an ordinal optimization 
approach to solve for a good enough solution of the 
stochastic simulation optimization problem with huge 
decision-variable space. We apply the proposed ordinal 
optimization algorithm to G/G/1/K polling systems to 
solve for a good enough number-limited service discipline 
to minimize the weighting average waiting time. We have 
compared our results with those obtained by the existing 
service disciplines and found that our approach 
outperforms the existing ones. We have also used the 
genetic algorithm and simulated annealing method to 
solve the same stochastic simulation optimization 
problem, and the results show that our approach is much 
more superior in the aspects of computational efficiency 
and the quality of obtained solution. 
 
KEY WORDS 
Ordinal optimization, stochastic simulation optimization, 
neural network, genetic algorithm, polling system, 
average waiting time. 
 
 
1.  Introduction 
 
Simulation optimization problems could be viewed as 
optimization problems of a simulated system whose 
outputs can only be evaluated by simulations, which can 
be either a real simulation of the simulated system or 
simply a computer simulation [1]. Thus, the objective of 
simulation optimization is to find the optimal settings of 
the decision variables to the simulated system that makes 
the output variables at their best or optimal conditions. 
Various methods had been developed for this purpose 
such as the Gradient Search based methods [2], the 
Stochastic Approximation methods [3], the Response 
Surface method [4], and Heuristic methods. These 
methods had been thoroughly discussed in [5]. Among 
them, the Heuristic methods including the Genetic 
Algorithm (GA) [6], the Simulated Annealing (SA) 
method [7], and the Tabu Search (TS) method [8] are 
frequently used in simulation optimization [9]. Despite 
the success of several applications of the above heuristic 

methods [10], many technical hurdles and barriers to 
broader application remain as indicated in [11]. Chief 
among these is speed, because using the simulation to 
evaluate the output variables for a given setting of the 
decision variables is already computationally expensive 
not even mention the search of the best setting provided 
that the decision-variable space is huge. Furthermore, 
simulation often faces situations where variability is an 
integral part of the problem. Thus, stochastic noise further 
complicates the simulation optimization problem. The 
purpose of this paper is to resolve this challenging 
stochastic simulation optimization problem efficiently and 
effectively. 
 
The considered stochastic simulation optimization 
problem is stated in the following 
 

)]([min θθ JEΘ∈                       (1) 
 
where Θ  is a huge decision-variable space, )][(⋅E  denotes 
the expectation of )(⋅ , and  denotes the output or a 
function of outputs of the simulated system, and 

)(⋅J
)]([ θJE  

represents the objective function. To cope with the 
computational complexity of this problem, we will 
employ the Ordinal Optimization (OO) theory based goal 
softening strategy [12]-[13], which efficiently seeks a 
good enough solution with high probability instead of 
searching the best for sure based on the observation that 
the performance order of the decision-variable settings is 
likely preserved even evaluated by a surrogate model. 
From here on, we will use the word setting to represent the 
setting of decision variables. 
 
The basic idea of the OO theory based goal softening 
strategy is to reduce the searching space gradually, and its 
existing searching procedures can be summarized in the 
following [12]: (i) Uniformly select N , say 1000, settings 
from Θ . (ii) Evaluate and order the N  settings using a 
surrogate model of the considered problem, then pick the 
top , say 35, settings to form the Selected Subset (SS), 
which is the estimated Good Enough Subset (GS). (iii) 
Evaluate and order all the  settings in SS using the exact 

s

s

 274522-018 



model, then pick the best setting among the s . The OO 
theory had shown that for  in (i) and a surrogate 
model with moderate noise in (ii), the best setting selected 
from (iii) with s ≅35 must belong to the GS with 
probability 0.95, where GS represents a collection of the 
top 5% actually good enough settings among the 

1000=N

N . This 
means the best setting in SS selected from (iii) is among 
the actual top 5% of the N  settings with probability 0.95. 
However, the good enough solution of problem (1) that 
we are searching for should be a good enough setting in 

 instead of the Θ N  settings unless Θ  is as small as N  
[14]. As indicated in a recent paper by Lin and Ho [15], 
under a moderate modeling noise, the top 3.5% of the 
uniformly selected N  settings will be among the top 5% 
settings of a huge  with a very high probability ( 0.99), 
and the best case can be among the top 3.5% settings of 

 provided that there is no modeling error. However, for 
 with a size of , a top 3.5% setting is a setting 

among the top ones. The solution among the top 
 of the  solutions is not convincing to be a 

good enough solution with high probability in the sense of 
practical applications. Therefore to apply the existing goal 
softening searching procedures, we need to develop a new 
scheme to select 

Θ ≥

Θ
Θ 3010

28105.3 ×
28105.3 × 3010

N  roughly good settings from Θ  to 
replace (i) so as to ensure the final selected-setting is an 
actually good enough solution of (1) with high probability. 
 
Heuristic methods for obtaining N  roughly good settings 
may depend on how well one’s knowledge about the 
considered system. For instance in the optimal power flow 
problems with discrete control variables, Lin, et al. [16] 
proposed an algorithm based on the OO theory and 
engineering intuition to select N  roughly good discrete 
control vectors. However, the engineering intuition may 
work only for specific systems. Thus, in this paper, we 
will propose an OO theory based systematic approach to 
select N  roughly good settings fro  Θ  and combine 
with the existing goal softening searching procedures to 
find a good enough solution of (1). The presentation of 
this OO theory based algorithm to solve (1) for a good 
enough solution is a novel approach in the area of stochastic 
simulation optimization and is the contribution of this 
paper. Application of the proposed algorithm to a 
stochastic simulation optimization problem of a G/G/1/K 
polling system, which will be introduced and formulated 
in Section 4, is another contribution of this paper. 

m

 
We organize our paper in the following manner. In 
Section 2, we will describe our approach for finding N  
roughly good settings from Θ . In Section 3, we will 
present the proposed OO theory based algorithm to solve 
for a good enough solution of the stochastic simulation 
optimization problem. In Section 4, we will present the 
G/G/1/K polling model and describe the corresponding 
stochastic simulation optimization problem for 
minimizing the weighting average waiting time. In 
Section 5, we will compare the results obtained by our 

approach with those obtained by the existing service 
disciplines. In addition, we will demonstrate the 
computational efficiency and the quality of the obtained 
good enough solution of our approach by comparing with 
the genetic algorithm (GA) and simulated annealing (SA) 
method. Finally, we will make a conclusion in Section 6. 
 
 
2.  Fiding N  Roughly Good Settings from 

Decision-Variable Space 
 
As indicated in the OO theory [12]-[13], performance 
“order” of the settings is likely preserved even evaluated 
using a crude model. Thus, to select )1000(=N  roughly 
good settings from Θ  without consuming much 
computation time, we need to construct a surrogate model 
that is computationally easy to estimate the objective 
value of (1) for a given setting θ , and use an efficient 
scheme to select N  roughly good settings. Our surrogate 
model is constructed based on an ANN [17], and our 
selection scheme is GA [6]. 
 
2.1 The Artificial Neural Network (ANN) Based 

Model 
 
Considering the inputs and outputs as the settings Θ∈θ  
and the corresponding objective values )]([ θJE , 
respectively, we can use an ANN to implement the 
mapping from the inputs to the outputs [17]. First of all, 
we will select a representative subset of Θ  by uniformly 
picking M , say 500, settings from Θ . Then we will 
evaluate )]([ θJE  of these M  settings using an 
approximate model, which can be a stochastic simulation 
with moderate number of random test samples, say 1000 
random test samples, as indicated in [14]. These collected 
M  input-output pairs of (θ , )]([ θJE ) will be used to 
train the ANN to adjust its arc weights. Once this ANN is 
trained, we can input any setting θ  to obtain an 
estimation of the corresponding )]([ θJE  from the output 
of the ANN; in this manner, we can avoid an accurate but 
lengthy stochastic simulation to evaluate )]([ θJE  for a 
given θ . This forms our surrogate model to estimate the 
objective value of (1) for a given setting θ  roughly but 
efficiently. ANN is considered to be a universal function 
approximator [17] including the relationship between the 
input and output of the discrete event simulated systems 
as presented in [18] and [19], however, the approximation 
accuracy is closely related to the complicacy of the 
structure of the ANN. In other words, there is a tradeoff 
between the accuracy and training time. Since what we 
care here are the relative performance order of θ ’s rather 
than the values of )(θJ ’s, we can employ a simple two-
layer feedforward ANN as our model. To speed up the 
convergence, we employ the scaled conjugate gradient 
algorithm [20] to train the ANN. 
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2.2 The Genetic Algorithm (GA) 
 
By the aid of the above effective and efficient objective 
value evaluation model, we can efficiently search N  
roughly good settings from Θ  using heuristic global 
searching techniques. Since GA improves a pool of 
populations from iteration to iteration, it should best fit 
our needs. The population in GA terminology represents a 
setting θ  in our problem, and each setting is encoded by 
a string of 0s and 1s. We start from I , say 5000, 
randomly selected settings from Θ  as our initial 
populations. The fitness of each setting is set to be the 
reciprocal of the corresponding objective value )]([ θJE  
(provided that 0)]([ >θJE , ∀ Θ∈θ ) computed based on 
the ANN. The members in the mating pool are selected 
from the pool of populations using roulette wheel 
selection scheme based on the fitness values. We set the 
probability of selecting members in the mating pool to 
serve as parents for crossover, , to be 0.7. We use a 
single point crossover scheme and assume the mutation 
probability to be 0.02. We stop the GA when the number 
of generations exceeds 20. After the applied GA 
converges, we rank the final 

rp

I  populations based on their 
fitness values and pick the top N  populations, which are 
the N  roughly good settings that we look for. 
 
2.3 Searching the Good Enough Solution Among the 

N  
 
Starting from the selected N  roughly good settings, we 
will proceed directly with step (ii) of the existing goal 
softening searching procedures described in Section 1. In 
this step, we will evaluate the objective value of each 
setting using a more refined model than the ANN, that is a 
stochastic simulation with moderate number of random 
test samples. We will then order the N  settings based on 
the estimated objective values and choose the top s  
settings to form the Selected Subset (SS). Subsequently, 
we will evaluate each of the s , say 35, settings using the 
exact model of the considered problem as indicated in 
step (iii) of the existing goal softening searching 
procedures. The exact model is a stochastic simulation 
with sufficiently large number of random test samples that 
makes the value estimation of )]([ θJE  for a given θ  
sufficiently stable. The setting associated with the 
smallest objective value of (1) among the s  is the good 
enough solution that we seek. 
 
 
3.  The Ordinal Optimization (OO) Theory 

Based Algorithm 
 
3.1 The Algorithm 
 
Now, our OO theory based algorithm to solve for a good 
enough solution of (1) can be stated as follows. 
 

Step 1: Uniformly select M  θ ’s from Θ  and use an 
approximate model to compute the corresponding 

)]([ θJE ’s using 1000 random test samples. Train an 
ANN by adjusting its arc weights using the mapping 
between the given M  input-output pairs, that are the 
M (θ , )]([ θJE ) pairs. 
 
Step 2: Randomly select I  settings from Θ  as the initial 
populations. Apply a GA equipped with a simple roulette-
wheel selection scheme, , a single-point 
crossover scheme and a 0.02 mutation probability to these 
populations by the aid of the efficient and effective 
fitness-value evaluation model based on the ANN trained 
in Step 1. After the GA evolves for 20 generations, we 
rank all the final 

7.0=rp

I  populations based on their fitness 
values and select the top N  populations. 
 
Step 3: Use a stochastic simulation with moderate number 
of random test samples, say  random test samples, to 
estimate the objective values of the 

mL
N  settings obtained 

in Step 2. Rank the N  settings based on their estimated 
objective values and select the top  settings. s
 
Step 4: Use the stochastic simulation with sufficiently 
large number of random test samples, say  random test 
samples, to compute the objective values of the s  
settings. The setting with the smallest objective value of 
(1) is the good enough solution. 

sL

 
 
4.  Application to G/G/1/K Polling Systems 
 
4.1 Introduction 
 
A polling model represents a system of multiple queues 
served by a single server in a cyclic order [21]. The 
studies of polling models had lasted for more than half 
century, and various applications had been found such as 
the computer network, communication network, 
manufacturing systems, transportation systems, etc.. 
Typical service disciplines when server admits customers in 
the attended queue are exhaustive (the server continues to 
serve all customers at a queue until it empties), gated (the 
server continuously serves only those customers that are 
found at a queue when it is inspected), limited (at most one 
customer is served at a queue in a cycle) [21]-[22], and 
time-limited (the server dwell certain amount of time at a 
queue even if it is empty) [23]. Each service discipline 
represents a decision strategy to achieve a certain 
performance of the polling system, for example the average 
waiting time. Numerous analysis techniques [21]-[24] have 
been developed for computing the average waiting times 
in polling models of different service disciplines. For the 
sake of analysis, all these techniques assumed Poisson 
arrival processes and infinite queue length for each queue, 
which may not be valid in practice. 
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4.2 G/G/1/K Polling Model 
 
The polling model considered here is a G/G/1/K polling 
model, which accounts for general arrival processes, 
general distribution of service time and finite queue 
length for each queue. Assuming there are J  queues and 
each queue has length K , the G/G/1/K polling model is 
shown in Fig. 1. This polling model is more realistic, 
however it will cause vast difficulties for the existing 
service disciplines mentioned in Section 4.1 to analyze the 
system’s performance. Since it is hardly to get any 
analytical formula for evaluating the system’s 
performance using the existing service discipline, it would 
be more practical to design a service discipline that can 
obtain better system’s performance for the G/G/1/K 
polling system. 
 
The proposed service discipline is a number-limited 
service discipline, that is when the server attends the th 
queue, it will serve for  customers (jobs or 
packets) or until the queue becomes empty, whichever 
comes first. Thus,  is a decision vector of 
our number-limited service discipline. We assume that a 
customer that completing the service will depart from the 
system, and any customer being served but yet completed 
will not be interrupted by any reason. The switchover 
time of the cyclic server switching to next queue is 
assumed to be of normal distribution with mean 

j
)( Km j ≤

),,,( 21 Kmmm L

δ  and 
variance . 2σ
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Fig. 1. G/G/1/K Polling Model. 

 
 
4.3 The Stochastic Simulation Optimization Problem 
 
We denote the random variable  as the waiting time of 
a typical customer of the th queue at steady state. The 
waiting time is defined as the time length from arrival 

instant until the beginning of service. Then,  
represents the average waiting time of a customer in the 

th queue at steady state. We let 

jW
j

][ jWE

j jτ  denote the weighting 

coefficient of queue , then j ∑
=

J

j
jj WE

J 1
][1 τ  denotes the 

weighting average waiting time of the G/G/1/K polling 
system. 
 
Now, we can formulate our stochastic simulation 
optimization problem for the G/G/1/K polling system as 
 

∑
=

=

J

j
jjJjm

WE
Jj 1,,1,

][1min τ
K

                     (2) 

subject to the G/G/1/K polling model. 
 
In other words, we are looking for an optimal number-
limited service discipline to minimize the weighting 
average waiting time of a G/G/1/K polling model. 
Suppose 20=K , then the size of the decision variable 
space of (2) will be JK  or  provided that 1020 10=J . 
Note that  is allowed to be more than jm K , because 
during the period when the server serves a customer, new 
customers may arrive; however, such an m  should 
not be a good choice unless the arrival rate is very high. 
Thus, problem (2) is a stochastic optimization problem 
with huge decision variable space as depicted in (1) and is 
especially suitable for the proposed ordinal optimization 
approach to solve for a good enough number-limited 
service discipline. 

)( Kj >

 
Remark: The four existing service disciplines stated in 
Section 1 can be viewed as special cases of the number-
limited service discipline. For examples,  for all Km j >>

Jj ,,1L=  corresponds to the exhaustive service 
discipline; sufficiently large  for all )( Km j ≤ Jj ,,1L=  
corresponds to the gated service discipline; 1=jm  for all 

Jj ,,1L=  corresponds to the limited service discipline; 
the time-limited service discipline is an inefficient scheme 
from the number-limited service discipline viewpoint, 
because the server has to stay at the queue before time out 
expires even if the queue is empty. 
 
 
5.  Test Results and Comparisons 
 
To test our approach, we set the parameters of the polling 
model as follows: 10=J ; the arrival process of the th 
queue is Poisson with arrival rate 

j

jλ  for Jj ,,1L=  as 
shown in Table 1; the service time is of exponential 
distribution with service rate 20=μ ; the mean and 
standard derivation of the switchover time of normal 
distribution are 301=δ sec and 01.0=σ , respectively; 
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the assumed weighting coefficients jτ  for the 10 queues 
are also shown in Table 1. 
 
We set the following parameters in the OO theory based 
algorithm:  in Step 1, and 500=M 1000=I 1000=N  in 
Step 2, and  in Step 3, and  in 
Step 4. 

1000=mL 35=s 10000=sL

 
The good enough decision vector of the number-limited 
service discipline and the corresponding weighting 
average waiting time obtained by our OO theory based 
algorithm are shown in Table 2. The CPU time consumed 
by our approach is only 3 minutes, which will meet the real 
time application. We have also applied the exhaustive, 
gated, limited, and time-limited (=3 seconds) disciplines 
to the same polling system for the same number of 
customers used in the exact model of Step 4. The 
weighting average waiting time they obtained are shown 
in Table 3. We also show the percentage of the weighting 
average waiting time saved by our approach with respect 
to the existing service disciplines in the last row of Table 
3. From this row, we see that our approach drastically 
outperforms the existing service disciplines. 
 
 

Table 1 The Arrival Rates and Weighting 
Coefficients of the 10 Queues 

j  1 2 3 4 5 6 7 8 9 10 
jλ  1 1 1 1 1 1 1 1 1 1 

jτ  1 1 1 10 1 50 1 1 1 1 
 
 

Table 2 The Good Enough Decision Vector of the 
Number-Limited Service Discipline and the 
Corresponding Weighting Average Waiting Time 
Resulted by Our Approach, GA and SA Method 

Method Decision vector WAWT† 

(secs.) %100
*

-WAWT §

⋅
∗

OO 7 12 13 1 18 2 16 9 16 17 27.6278 0% 
SA 17 10 9 2 19 3 9 18 11 15 40.1982 45.5% 
GA 18 13 11 4 15 4 11 14 17 19 54.6926 97.9% 

† WAWT: weighting average waiting time. 
§ ∗: the WAWT obtained by our approach. 
 
 

Table 3 The Weighting Average Waiting Time 
Resulted by the Existing Service Disciplines 

Discipline Exhaustive Gated Limited Time-out
WAWT†(secs.) 62.7187 80.1327 98.4026 126.3718

%100
*

 - WAWT †

⋅
∗

 127.0% 190.0% 256.2% 357.4%

† WAWT, ∗: same as in Table 2. 
 
 
 

 
Fig. 2. Comparison of the Computational Efficiency and 

the Quality of the Obtained Solution of Our 
Approach, GA and SA Method. 

 
 
We have also used the GA and SA method to solve (2). 
As we have indicated in Section 1 that these heuristic 
global searching techniques are very time consuming, we 
terminate the execution of these two methods when they 
consume 3 hours of CPU time, which is 60 times of the 
CPU time consumed by our approach. The resulting 
decision vector of the number-limited service discipline 
and the corresponding weighting average waiting time are 
also shown in Table 2. We see that even when they 
consume 60 times of the CPU time consumed by our 
approach, the best-so-far weighting average waiting time 
they obtained are still 45.5% (SA) and 97.9% (GA) more 
than ours. In the meantime, we also show the progress of 
the best-so-far weighting average waiting time versus the 
CPU times consumed by the GA and SA method in Fig. 2. 
From this figure, we can observe the sluggish 
improvement of the best-so-far weighting average waiting 
time of these two methods. Although the weighting 
average waiting time obtained by the GA and SA method 
are worse than that obtained by our approach, they are 
still better than those obtained by the existing service 
disciplines as can be observed from Tables 2 and 3. This 
shows the superiority of the number-limited service policy. 
 
 
6.  Conclusion 
 
To cope with the computationally intractable stochastic 
simulation optimization problems, we have proposed an 
ordinal optimization approach to solve for a good enough 
solution using reasonable computation time. As for the 
performance of minimizing the weighting average waiting 
time, we have demonstrated that our approach drastically 
outperforms the existing service discipline. Regarding the 
computational efficiency and the quality of the obtained 
solution for solving a stochastic simulation optimization 
problem, we have demonstrated that our approach is much 
more superior than the GA and the SA method. 

 278



 
 
Acknowledgements 
 
This research work is supported in part by the National 
Science Council in Taiwan, R.O.C., under grant NSC94-
2213-E-009-044. 
 
 
References 
 
[1] F. Azadivar, Simulation optimization methodologies, 

Proceedings of the 1999 Winter Simulation 
Conference, Phoenix, AZ, 1999, 93-100. 

[2] J.R. Swisher, P.D. Hyden, S.H. Jacobson, & L.W. 
Schruben, A survey of simulation optimization 
techniques and procedures, Proceedings of the 2000 
Winter Simulation Conference, Orlando, FL, 2000, 
119-128. 

[3] S.M. Robinson, Analysis of sample-path optimisation, 
Mathematics of Operations Research, 21(3), 1996, 
513-528. 

[4] A.G. Greenwood, L.P. Rees, & F.C. Siochi, An 
investigation of the behavior of simulation response 
surfaces, European Journal of Operational Research, 
110, 1998, 282-313. 

[5] Y. Carson, & A. Maria, Simulation optimization: 
methods and applications, Proceedings of the 1997 
Winter Simulation Conference, Atlanta, GA, 1997, 
118-126. 

[6] R.L. Haupt, & S.E. Haupt, Practical genetic 
algorithms (2nd edition, Hoboken, NJ:John Wiley, 2004). 
[7] M. Locatelli, Simulated annealing algorithms for 
continuous global optimization: convergence conditions, 
Journal of Optimization Theory and Applications, 104(1), 
2000, 121-133. 
[8] D.T. Pham, & D. Karaboga, Intelligent optimisation 

techniques (London, Springer Verlag, 2000). 
[9] O. Hajji, S. Brisset, & P. Brochet, Comparing 

stochastic optimization methods used in electrical 
engineering, 2002 IEEE International Conference on 
Systems, Man and Cybernetics, 7, Hammamet, 
Tunisia, 2002. 

[10] F. Glover, J.P. Kelly, & M. Laguna, New advances 
and applications of combining simulation and 
optimisation, Proceedings of the 1996 Winter 
Simulation Conference, Coronado, CA, 1996, 144-
152. 

[11] H. Pierreval, & J.-L. Paris, Distributed evolutionary 
algorithms for simulation optimisation, IEEE 
Transactions on Systems, Man and Cybernetics, Part 
A, 30(1), 2000, 15–24. 

[12] T.W.E. Lau, & Y.C. Ho, Universal alignment 
probability and subset selection for ordinal 
optimisation, Journal of Optimization Theory and 
Applications,  39(3), 1997, 455-489. 

[13] Y.C. Ho, An explanation of ordinal optimization: 
Soft computing for hard problems, Information 
Sciences, 113(3-4), 1999, 169-192. 

[14] C.-H. Chen, S.D. Wu, & L. Dai, Ordinal comparison 
of heuristic algorithms using stochastic optimisation, 
IEEE Transactions on Robotics and Automation, 
15(1), 1999, 44–56. 

[15] S.-Y. Lin, & Y.C. Ho, Universal alignment 
probability revisited, Journal of Optimization Theory 
and Applications, 113(2), 2002, 399-407. 

[16] S.-Y. Lin, Y.C. Ho, & C.-H. Lin, An ordinal 
optimization theory based algorithm for solving the 
optimal power flow problem with discrete control 
variables, IEEE Transactions on Power System, 
19(1), 2004, 276-286. 

[17] K. Hornik, M. Stinchcombe, & H. White, Multilayer 
Feedforward Networks are Universal Approximators, 
Neural Networks, 2(5), 1989, 359-366. 

[18] C.G. Panayiotou, C.G. Cassandras, & W.B. Gong, 
Model abstraction for discrete event systems using 
neural networks and sensitivity information, 
Proceedings of the 2000 Winter Simulation 
Conference, 1, Orlando, FL, 2000, 335-341. 

[19] R.A. Kilmer, A.E. Smith, & L.J. Shuman, 
Computing confidence intervals for stochastic 
simulation using neural network metamodels, 
Computers and Industrial Engineering, 36(2), 1999, 
391-407. 

[20] M.F. Moller, A scaled conjugate gradient algorithm 
for fast supervised learning, Neural Networks, 6(4), 
1993, 525-533. 

[21] H. Takagi, Analysis and application of polling model. 
In: Performance Evaluation: Origins and Directions, 
eds. G. Haring, C. Lindemann and M. Reiser, 
Lecture Notes in Computer Science (Berlin, Springer, 
2000), 1769, 423-442. 

[22] H. Takagi, Analysis of polling systems with a 
mixture of exhaustive and gated service disciplines, 
Journal of the operations research society of Japan, 
32(3), 1989, 450-461. 

[23] L. Fujian, R.-H. Sun, C.-Z. Wu, & Z.-J. Liu, Cyclic 
Service Systems with Server Time-outs, 2nd IEEE 
Symposium on Computers and Communications, 
Alexandria, Egypt, 1997, 43-47. 
[24] T. Hirayama, S.J. Hong, & M. Krunz, A New 

Approach to Analysis of Polling Systems, Queueing 
Systems, 48(1-2), 2004, 135-158. 

 

 279


