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Abstract

Simulation optimization is one of the
most frontier research area in optimization.
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The main characteristics of simulation
optimization problem is the evaluation of the
objective function of an input-variable setting
requires lengthy simulation. Therefore we
cannot use the conventional optimization
techniques to solve them. There are various
types of simulation optimization problems
such as stochastic optimization problems
with huge input-variable space and large
scale optimization problems with decision
and discrete control variables.

In the first year of this project, We have
obtained two research results. In this year , we
have studied the simulation optimization
problem on polling system using k-limited
service discipline and use ordinal optimization
method to obtain a good enough solution.
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Figure.1.AG/G/1/K polling model
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The k-limited service discipline, that is
when the server attends the jth queue, it

will serve for m (<K) customers (jobs or



packets) or until the queue becomes empty,
whichever comes first. Thus, (m,m,,---,m,)
is a decision vector of our k-limited service
discipline. We assume that a customer that
completing the service will depart from the
system, and any customer being served but
yet completed will not be interrupted by any
reason. The switchover time of the cyclic
server switching to next queue is assumed to
be of normal distribution with mean s and
variance o?.

We denote the random variable w, as

the waiting time of a typical customer of the
jth queue at steady state. The waiting time is

defined as the time length from arrival instant
until the beginning of service. Then, EWw,]

represents the average waiting time of a
customer in the jth queue at steady state.

We let ¢ denote the weighting
. . . 1J
coefficient of queue j, then EJZ:;TJ'E[WJ']

denotes the weighting average waiting time
of the G/G/1/K polling system.

Now, we can formulate our stochastic
simulation optimization problem for the
G/G/1/K polling system as

min

1 J
m;, j=L...J FJZ:;TJ'E[WJ'] 1)
subject to the G/G/1/K polling model.

In other words, we are looking for an
optimal k-limited service discipline to
minimize the weighting average waiting time
of a G/G/1/K polling model. Suppose K =20,
then the size of the decision variable space of
(2) will be J* or 10® provided that J=10.
Note that m, is allowed to be more than K,

because during the period when the server
serves a customer, new customers may arrive;
however, such an m,(>K) should not be a

good choice unless the arrival rate is very
high. Thus, problem (1) is a stochastic
optimization problem with huge decision
variable space as depicted in (1) and is
especially suitable for the proposed ordinal

optimization approach to solve for a good
enough k-limited service discipline.
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ABSTRACT

In this paper, we propose an ordinal optimization
approach to solve for a good enough solution of the
stochastic simulation optimization problem with huge
decision-variable space. We apply the proposed ordinal
optimization algorithm to G/G/1/K polling systems to
solve for a good enough number-limited service discipline
to minimize the weighting average waiting time. We have
compared our results with those obtained by the existing
service disciplines and found that our approach
outperforms the existing ones. We have also used the
genetic algorithm and simulated annealing method to
solve the same stochastic simulation optimization
problem, and the results show that our approach is much
more superior in the aspects of computational efficiency
and the quality of obtained solution.

KEY WORDS

Ordinal optimization, stochastic simulation optimization,
neural network, genetic algorithm, polling system,
average waiting time.

1. Introduction

Simulation optimization problems could be viewed as
optimization problems of a simulated system whose
outputs can only be evaluated by simulations, which can
be either a real simulation of the simulated system or
simply a computer simulation [1]. Thus, the objective of
simulation optimization is to find the optimal settings of
the decision variables to the simulated system that makes
the output variables at their best or optimal conditions.
Various methods had been developed for this purpose
such as the Gradient Search based methods [2], the
Stochastic Approximation methods [3], the Response
Surface method [4], and Heuristic methods. These
methods had been thoroughly discussed in [5]. Among
them, the Heuristic methods including the Genetic
Algorithm (GA) [6], the Simulated Annealing (SA)
method [7], and the Tabu Search (TS) method [8] are
frequently used in simulation optimization [9]. Despite
the success of several applications of the above heuristic
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methods [10], many technical hurdles and barriers to
broader application remain as indicated in [11]. Chief
among these is speed, because using the simulation to
evaluate the output variables for a given setting of the
decision variables is already computationally expensive
not even mention the search of the best setting provided
that the decision-variable space is huge. Furthermore,
simulation often faces situations where variability is an
integral part of the problem. Thus, stochastic noise further
complicates the simulation optimization problem. The
purpose Of this paper is to resolve this challenging
stochastic simulation optimization problem efficiently and
effectively.

The considered stochastic simulation optimization
problem is stated in the following
min,.o E[J(6)] M)

where © is a huge decision-variable space, E[(-)] denotes
the expectation of (-), and J(-) denotes the output or a
function of outputs of the simulated system, and E[J(8)]

represents the objective function. To cope with the
computational complexity of this problem, we will
employ the Ordinal Optimization (OO) theory based goal
softening strategy [12]-[13], which efficiently seeks a
good enough solution with high probability instead of
searching the best for sure based on the observation that
the performance order of the decision-variable settings is
likely preserved even evaluated by a surrogate model.
From here on, we will use the word setting to represent the
setting of decision variables.

The basic idea of the OO theory based goal softening
strategy is to reduce the searching space gradually, and its
existing searching procedures can be summarized in the
following [12]: (i) Uniformly select N , say 1000, settings
from ®. (ii) Evaluate and order the N settings using a
surrogate model of the considered problem, then pick the
top S, say 35, settings to form the Selected Subset (SS),
which is the estimated Good Enough Subset (GS). (iii)
Evaluate and order all the S settings in SS using the exact



model, then pick the best setting among the S. The OO
theory had shown that for N =1000 in (i) and a surrogate
model with moderate noise in (ii), the best setting selected
from (iii) with S =35 must belong to the GS with
probability 0.95, where GS represents a collection of the
top 5% actually good enough settings among the N . This
means the best setting in SS selected from (iii) is among
the actual top 5% of the N settings with probability 0.95.
However, the good enough solution of problem (1) that
we are searching for should be a good enough setting in
® instead of the N settings unless @ is as small as N

[14]. As indicated in a recent paper by Lin and Ho [15],
under a moderate modeling noise, the top 3.5% of the
uniformly selected N settings will be among the top 5%
settings of a huge ® with a very high probability (>0.99),
and the best case can be among the top 3.5% settings of
O provided that there is no modeling error. However, for
©® with a size of 10*, a top 3.5% setting is a setting
among the top 3.5x10? ones. The solution among the top

3.5x10% of the 10* solutions is not convincing to be a

good enough solution with high probability in the sense of
practical applications. Therefore to apply the existing goal
softening searching procedures, we need to develop a new
scheme to select N roughly good settings from @ to
replace (i) so as to ensure the final selected-setting is an
actually good enough solution of (1) with high probability.

Heuristic methods for obtaining N roughly good settings
may depend on how well one’s knowledge about the
considered system. For instance in the optimal power flow
problems with discrete control variables, Lin, et al. [16]
proposed an algorithm based on the OO theory and
engineering intuition to select N roughly good discrete
control vectors. However, the engineering intuition may
work only for specific systems. Thus, in this paper, we
will propose an OO theory based systematic approach to
select N roughly good settings from ® and combine
with the existing goal softening searching procedures to
find a good enough solution of (1). The presentation of
this OO theory based algorithm to solve (1) for a good
enough solution is a novel approach in the area of stochastic
simulation optimization and is the contribution of this
paper. Application of the proposed algorithm to a
stochastic simulation optimization problem of a G/G/1/K
polling system, which will be introduced and formulated
in Section 4, is another contribution Of this paper.

We organize our paper in the following manner. In
Section 2, we will describe our approach for finding N
roughly good settings from ®. In Section 3, we will
present the proposed OO theory based algorithm to solve
for a good enough solution of the stochastic simulation
optimization problem. In Section 4, we will present the
G/G/1/K polling model and describe the corresponding
stochastic ~ simulation  optimization  problem  for
minimizing the weighting average waiting time. In
Section 5, we will compare the results obtained by our
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approach with those obtained by the existing service
disciplines. In addition, we will demonstrate the
computational efficiency and the quality of the obtained
good enough solution of our approach by comparing with
the genetic algorithm (GA) and simulated annealing (SA)
method. Finally, we will make a conclusion in Section 6.

2. Fiding N Roughly Good Settings from
Decision-Variable Space

As indicated in the OO theory [12]-[13], performance
“order” of the settings is likely preserved even evaluated
using a crude model. Thus, to select N(=1000) roughly

good settings from © without consuming much
computation time, we need to construct a surrogate model
that is computationally easy to estimate the objective
value of (1) for a given setting @, and use an efficient
scheme to select N roughly good settings. Our surrogate
model is constructed based on an ANN [17], and our
selection scheme is GA [6].

2.1 The Artificial
Model

Neural Network (ANN) Based

Considering the inputs and outputs as the settings 8 € ®
and the corresponding objective values E[J()] .
respectively, we can use an ANN to implement the
mapping from the inputs to the outputs [17]. First of all,
we will select a representative subset of ® by uniformly
picking M , say 500, settings from ®. Then we will
evaluate E[J(9)] of these M settings using an

approximate model, Which can be a stochastic simulation
with moderate number of random test samples, say 1000
random test samples, as indicated in [14]. These collected
M input-output pairs of (@, E[J(8)]) will be used to
train the ANN to adjust its arc weights. Once this ANN is
trained, we can input any setting @ to obtain an
estimation of the corresponding E[J(#)] from the output

of the ANN; in this manner, we can avoid an accurate but
lengthy stochastic simulation to evaluate E[J(6)] for a

given @ . This forms our surrogate model to estimate the
objective value of (1) for a given setting & roughly but
efficiently. ANN is considered to be a universal function
approximator [17] including the relationship between the
input and output of the discrete event simulated systems
as presented in [18] and [19], however, the approximation
accuracy is closely related to the complicacy of the
structure of the ANN. In other words, there is a tradeoff
between the accuracy and training time. Since what we
care here are the relative performance order of @ ’s rather
than the values of J(@)’s, we can employ a simple two-
layer feedforward ANN as our model. To speed up the

convergence, we employ the scaled conjugate gradient
algorithm [20] to train the ANN.



2.2 The Genetic Algorithm (GA)

By the aid of the above effective and efficient objective
value evaluation model, we can efficiently search N
roughly good settings from © using heuristic global
searching techniques. Since GA improves a pool of
populations from iteration to iteration, it should best fit
our needs. The population in GA terminology represents a
setting @ in our problem, and each setting is encoded by
a string of Os and 1s. We start from | , say 5000,
randomly selected settings from ® as our initial
populations. The fitness of each setting is set to be the
reciprocal of the corresponding objective value E[J(8)]

(provided that E[J(6)] >0, V6 € ©®) computed based on

the ANN. The members in the mating pool are selected
from the pool of populations using roulette wheel
selection scheme based on the fitness values. We set the
probability of selecting members in the mating pool to
serve as parents for crossover, p,, to be 0.7. We use a

single point crossover scheme and assume the mutation
probability to be 0.02. We stop the GA when the number
of generations exceeds 20. After the applied GA
converges, we rank the final | populations based on their
fitness values and pick the top N populations, which are
the N roughly good settings that we look for.

2.3 Searching the Good Enough Solution Among the
N

Starting from the selected N roughly good settings, we
will proceed directly with step (ii) of the existing goal
softening searching procedures described in Section 1. In
this step, we will evaluate the objective value of each
setting using a more refined model than the ANN, that is a
stochastic simulation with moderate number of random
test samples. We will then order the N settings based on
the estimated objective values and choose the top S
settings to form the Selected Subset (SS). Subsequently,
we will evaluate each of the S, say 35, settings using the
exact model of the considered problem as indicated in
step (iii) of the existing goal softening searching
procedures. The exact model is a stochastic simulation
with sufficiently large number of random test samples that
makes the value estimation of E[J(#)] for a given &

sufficiently stable. The setting associated with the
smallest objective value of (1) among the S is the good
enough solution that we seek.

3. The Ordinal Optimization (OO) Theory
Based Algorithm

3.1 The Algorithm

Now, our OO theory based algorithm to solve for a good
enough solution of (1) can be stated as follows.
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Step 1: Uniformly select M @ ’s from ® and use an
approximate model to compute the corresponding
E[J()] ’s using 1000 random test samples. Train an
ANN by adjusting its arc weights using the mapping
between the given M input-output pairs, that are the
M (6 ,E[J(0)]) pairs.

Step 2: Randomly select | settings from @ as the initial
populations. Apply a GA equipped with a simple roulette-
wheel selection scheme, p, =07 , a single-point

crossover scheme and a 0.02 mutation probability to these
populations by the aid of the efficient and effective
fitness-value evaluation model based on the ANN trained
in Step 1. After the GA evolves for 20 generations, we
rank all the final | populations based on their fitness

values and select the top N populations.

Step 3: Use a stochastic simulation with moderate number
of random test samples, say L random test samples, to

estimate the objective values of the N settings obtained
in Step 2. Rank the N settings based on their estimated
objective values and select the top S settings.

Step 4: Use the stochastic simulation with sufficiently
large number of random test samples, say L, random test

samples, to compute the objective values of the S
settings. The setting with the smallest objective value of
(1) is the good enough solution.

4. Application to G/G/1/K Polling Systems
4.1 Introduction

A polling model represents a system of multiple queues
served by a single server in a cyclic order [21]. The
studies of polling models had lasted for more than half
century, and various applications had been found such as
the computer network, communication network,
manufacturing systems, transportation systems, etc..
Typical service disciplines when server admits customers in
the attended queue are exfaustive (the server continues to
serve all customers at a queue until it empties), gated (the
server continuously serves only those customers that are
found at a queue when it is inspected), fmited (at most one
customer is served at a queue in a cycle) [21]-[22], and
time-limited (the server dwell certain amount of time at a
queue even if it is empty) [23]. Each service discipline
represents a decision strategy to achieve a certain
performance of the polling system, for example the average
waiting time. Numerous analysis techniques [21]-[24] have
been developed for computing the average waiting times
in polling models of different service disciplines. For the
sake of analysis, all these techniques assumed Poisson
arrival processes and infinite queue length for each queue,
which may not be valid in practice.



4.2 G/G/1/K Polling Model

The polling model considered here is a G/G/1/K polling
model, which accounts for general arrival processes,
general distribution of service time and finite queue
length for each queue. Assuming there are J queues and
each queue has length K, the G/G/1/K polling model is
shown in Fig. 1. This polling model is more realistic,
however it will cause vast difficulties for the existing
service disciplines mentioned in Section 4.1 to analyze the
system’s performance. Since it is hardly to get any
analytical formula for evaluating the system’s
performance using the existing service discipline, it would
be more practical to design a service discipline that can
obtain better system’s performance for the G/G/1/K
polling system.

The proposed service discipline is a number-limited
service discipline, that is when the server attends the jth

queue, it will serve for m,(<K) customers (jobs or

packets) or until the queue becomes empty, whichever
comes first. Thus, (m,,m,,---,m, ) is a decision vector of

our number-limited service discipline. We assume that a
customer that completing the service will depart from the
system, and any customer being served but yet completed
will not be interrupted by any reason. The switchover
time of the cyclic server switching to next queue is
assumed to be of normal distribution with mean & and

variance o2.

Arrival

%4

=
— [T~ 1T1]

—

Fig. 1. G/G/1/K Polling Model.

4.3 The Stochastic Simulation Optimization Problem

We denote the random variable W, as the waiting time of

a typical customer of the jth queue at steady state. The
waiting time is defined as the time length from arrival
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instant until the beginning of service. Then, EW,]

represents the average waiting time of a customer in the
j th queue at steady state. We let 7 denote the weighting

J
coefficient of queue j, then EZTJE[W;] denotes the
\] j:].

weighting average waiting time of the G/G/1/K polling
system.

Now, we can formulate our stochastic simulation
optimization problem for the G/G/1/K polling system as

min

1 J
Bl N _ 9
o TN, 5 2 EW] @
subject to the G/G/1/K polling model.

In other words, we are looking for an optimal number-
limited service discipline to minimize the weighting
average waiting time of a G/G/1/K polling model.
Suppose K =20, then the size of the decision variable

space of (2) will be K’ or 20 provided that J =10 .
Note that m; is allowed to be more than K, because

during the period when the server serves a customer, new
customers may arrive; however, such an m, (> K) should

not be a good choice unless the arrival rate is very high.
Thus, problem (2) is a stochastic optimization problem
with huge decision variable space as depicted in (1) and is
especially suitable for the proposed ordinal optimization
approach to solve for a good enough number-limited
service discipline.

Remark: The four existing service disciplines stated in
Section 1 can be viewed as special cases of the number-
limited service discipline. For examples, m; >>K for all
j=1,---,J corresponds to the exhaustive service
discipline; sufficiently large m; (< K) for all j=1,---,J
corresponds to the gated service discipline; m; =1 for all

j=1,---,J corresponds to the limited service discipline;

the time-limited service discipline is an inefficient scheme
from the number-limited service discipline viewpoint,
because the server has to stay at the queue before time out
expires even if the queue is empty.

5. Test Results and Comparisons

To test our approach, we set the parameters of the polling
model as follows: J =10, the arrival process of the jth

queue is Poisson with arrival rate A for j=1,.-,J as
shown in Table 1; the service time is of exponential
distribution with service rate =20 ; the mean and

standard derivation of the switchover time of normal
distribution are §=1/30sec and o =0.01, respectively;



the assumed weighting coefficients 7 for the 10 queues
are also shown in Table 1.

We set the following parameters in the OO theory based
algorithm: M =500 in Step 1, | =1000and N =1000 in
Step 2, L, =1000and s=35 in Step 3, and L =10000 in

Step 4.

The good enough decision vector of the number-limited
service discipline and the corresponding weighting
average waiting time obtained by our OO theory based
algorithm are shown in Table 2. The CPU time consumed
by our approach is only 3 minutes, which will meet the real
time application. We have also applied the exhaustive,
gated, limited, and time-limited (=3 seconds) disciplines
to the same polling system for the same number of
customers used in the exact model of Step 4. The
weighting average waiting time they obtained are shown
in Table 3. We also show the percentage of the weighting
average waiting time saved by our approach with respect
to the existing service disciplines in the last row of Table
3. From this row, we see that our approach drastically
outperforms the existing service disciplines.

Table 1 The Arrival Rates and Weighting
Coefficients of the 10 Queues

j |1]2|3| 4 |5 6 |[7]8]9] 10

Ao (171111 |1 1

r; (1|1|1] 10 [1| 50

Table 2 The Good Enough Decision Vector of the
Number-Limited Service Discipline and the
Corresponding Weighting Average Waiting Time
Resulted by Our Approach, GA and SA Method

. WAWT'| WAWT - #°
Method Decision vector (secs) | = 100%
00 |7|12|13|1|18|2|16| 9 |16|17|27.6278 0%
SA 17|10/ 9 |2]19|3]| 9 [18]11]15|40.1982 45.5%
GA |18|13|11|4|15|4({11]|14]17]|19|54.6926 97.9%

TWAWT: weighting average waiting time.
8 +: the WAWT obtained by our approach.

Table 3 The Weighting Average Waiting Time
Resulted by the Existing Service Disciplines

Discipline Exhaustive | Gated | Limited | Time-out
WAWT (secs.) | 62.7187 |80.1327 | 98.4026 | 126.3718
WAWTF '

-100% | 127.0% | 190.0% | 256.2% | 357.4%

TWAWT, *: same as in Table 2.
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Fig. 2. Comparison of the Computational Efficiency and
the Quality of the Obtained Solution of Our
Approach, GA and SA Method.

We have also used the GA and SA method to solve (2).
As we have indicated in Section 1 that these heuristic
global searching techniques are very time consuming, we
terminate the execution of these two methods when they
consume 3 hours of CPU time, which is 60 times of the
CPU time consumed by our approach. The resulting
decision vector of the number-limited service discipline
and the corresponding weighting average waiting time are
also shown in Table 2. We see that even when they
consume 60 times of the CPU time consumed by our
approach, the best-so-far weighting average waiting time
they obtained are still 45.5% (SA) and 97.9% (GA) more
than ours. In the meantime, we also show the progress of
the best-so-far weighting average waiting time versus the
CPU times consumed by the GA and SA method in Fig. 2.
From this figure, we can observe the sluggish
improvement of the best-so-far weighting average waiting
time of these two methods. Although the weighting
average waiting time obtained by the GA and SA method
are worse than that obtained by our approach, they are
still better than those obtained by the existing service
disciplines as can be observed from Tables 2 and 3. This
shows the superiority of the number-limited service policy.

6. Conclusion

To cope with the computationally intractable stochastic
simulation optimization problems, we have proposed an
ordinal optimization approach to solve for a good enough
solution using reasonable computation time. As for the
performance of minimizing the weighting average waiting
time, we have demonstrated that our approach drastically
outperforms the existing service discipline. Regarding the
computational efficiency and the quality of the obtained
solution for solving a stochastic simulation optimization
problem, we have demonstrated that our approach is much
more superior than the GA and the SA method.
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