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Abstract—Additional electron mobility due to remote scat-
terers in nt-polysilicon 1.65-nm gate oxide (SiO2) n-channel
metal-oxide—semiconductor field-effect transistors is experimen-
tally extracted at three different temperatures (i.e., 233, 263,
and 298 K). The core of the extraction process consists of
simulated temperature-dependent universal mobility curves and
Matthiessen’s rule in a mobility universality region. Resulting
additional mobility for the first time experimentally exhibits a
negative temperature coefficient, confirming interface plasmons
in a polysilicon depletion region to be dominant remote Coulomb
scatterers. We also present corroborative evidence as quoted in the
literature, including: 1) calculated temperature-dependent remote
Coulomb mobility due to ionized impurity atoms in a polysilicon
depletion region; 2) experimentally assessed additional mobility
at room temperature; and 3) simulated remote Coulomb mobility
due to interface plasmons in a polysilicon depletion region as well
as its temperature coefficient. Validity of Matthiessen’s rule used
in this paper is verified.

Index Terms—Gate oxide, high-k, interface plasmons, metal
gate, mobility, metal-oxide-semiconductor field-effect transistors
(MOSFETs), phonons, polysilicon, remote Coulomb, scattering,
surface roughness.

I. INTRODUCTION

N n™-polysilicon gate oxide n-channel metal-oxide—

semiconductor field-effect transistors (nMOSFETS),
Takagi et al. [1] have experimentally found that inversion layer
electron mobility is a combination of three distinct scattering
mechanisms: 1) Coulomb scattering due to ionized impurity
atoms in a substrate; 2) acoustic—optical phonon scattering
in an inversion layer; and 3) surface roughness scattering
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near a SiO,/Si interface. However, mobility degradation was
frequently encountered in a scaling direction, which means
that additional scattering mechanisms exist. On the one hand,
electron plasmons in a source/drain highly doped region can be
significant according to Fischetti and Laux [2], as demonstrated
in recent experiments by Cros et al. [3] and Barral et al. [4],
[5]. On the other hand, degraded mobility with decreasing gate
oxide thickness has been observed, particularly in moderate and
high vertical effective field regions [6]—-[8]. Because a long-
channel device was used in mobility measurement [6]—[8],
hence, the effect of source/drain electron plasmons can be
insignificant; scattering mechanisms responsible for observed
mobility degradation should in principle stem from scatterers
in a remote region situated away from that of Takagi et al. [1].

However, origins of remote scatterers remained contro-
versial in the past decades [7], [9]-[12]. In the beginning,
Krishnan e al. [9] ascribed remote scattering to ionized im-
purity atoms in a polysilicon depletion region. Following that,
Yang et al. [7] applied a remote Coulomb mobility model
due to Stern and Howard [13] and found that correspond-
ing remote Coulomb scattering (RCS) is too weak to consti-
tute measured mobility degradation. In contrast, Fischetti [10]
favored electron counterparts in a polysilicon depletion region,
which can act as plasmons at a poly/SiO, interface. Excita-
tion and absorption of interface plasmons will further affect
underlying 2-D electrons via long-range Coulomb interactions,
a well-known phenomenon also called the Coulomb drag ef-
fect [14]. Simulated remote Coulomb mobility in a coupled
interface plasmons/inversion layer system [10], [15] appeared
to elucidate observed mobility degradation in [7] and [8]. In
addition, the remainder of remote scatterers such as remote
surface roughness [16] received somewhat attention [11], [12].
Through Monte Carlo simulation, Gdmiz and Roldan [11]
argued that remote surface roughness scattering is insignificant
in moderate and high vertical electric field regions.

Recently, there have been two specially designed experi-
ments concerning validity of an interface plasmon or a drag
hypothesis [17], [18]. Again, these two experiments led to
controversial arguments. In the first experiment dedicated to
drag measurement, Solomon and Yang [17] claimed that in
a gate oxide thickness range of 1.9-2.5 nm, interface plas-
mons in a polysilicon region did not appear to explain oxide-
scaling-induced mobility degradation. Oppositely, throughout a
calibrated C'-V splitting technique, the second experiment by
Lime et al. [18] pointed out that mobility degradation is not due
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to increased surface roughness but due to interface plasmons,
which is valid for gate oxide thicknesses down to 1.2 nm.

Thus, reexamination of remote scattering sources in polysil-
icon ultrathin gate oxide nMOSFETs is essential and cru-
cial. Additionally, it is worth noticing that the aforementioned
experiments [6]-[8], [17], [18] were all conducted at room
temperature only. In other words, so far, temperature depen-
dence of remote scattering mechanisms was not experimentally
taken into account in the case of polysilicon ultrathin SiOq
gate stacks. However, a temperature-dependent experiment was
shown to be useful in an analysis of remote scatterers in high-k
gate stacks [19]-[21].

In this paper, we elaborate on a temperature-oriented exper-
imental method dedicated to polysilicon ultrathin gate oxide
stacks. The core of the method comprises two main parts:
simulated temperature-dependent universal mobility curves,
without conventional thick gate oxide test vehicle fabrication
[6]-[8], [17], [18], and Matthiessen’s rule, particularly in a
mobility universality region. Additional scattering of inversion
layer electrons by remote scatterers in a polysilicon region can
straightforwardly be assessed. For the first time, temperature
dependence of additional mobility is experimentally obtained,
making possible the clarification of remote scattering mecha-
nisms. In addition, presented is corroborative evidence in terms
of a remote Coulomb mobility model, as cited in [7]; simulated
values of the additional mobility and its temperature coefficient,
as drawn from [10]; and experimental mobility degradation data
at room temperature as available elsewhere [6]-[8]. Validity of
Matthiessen’s rule used in this paper is addressed as well.

II. EXPERIMENT, VALIDATION, AND EXTRACTION

An n-channel device under test was fabricated in a conven-
tional 90-nm process. In this process, a SiO» film was thermally
grown, followed by NO annealing. A measured C-V char-
acteristic is depicted in Fig. 1. A self-consistent Schrodinger
and Poisson’s equation solver, as constructed elsewhere [22],
was employed to fit the C-V data, leading to the following
process parameters of the device: the n™-polysilicon doping
concentration N1y = 9 X 10 cm™—3, the gate oxide thickness
tox = 1.65 nm, and the p-type substrate doping concentration
Ngup = 8 x 1017 cm~3. The fitting quality, as demonstrated
in Fig. 1, is good. In addition, shown in the figure for com-
parison is another fitting line by the available self-consistent
Schrodinger and Poisson’s equations solver Schred [23], with
the same process parameters as inputs. The channel width and
length of the device had the same value of 10 pum. Inversion
layer mobility was measured using a conductance method [1]
over two Vp points of 10 and 25 mV. Measured effective
mobility is plotted in Fig. 2 versus the vertical effective electric
field E.g for three measurement temperatures of 233, 263, and
298 K. Here, the formula E.q = ¢(0.5Niny + Ndaep)/cs Was
used, in which ¢, is the silicon permittivity, and the inversion
layer electron density Vi, and the depleted bulk density Ngey,
were both obtained through self-consistent Schrodinger and
Poisson’s equations solving [22].

To produce temperature-dependent universal mobility curves,
we performed the self-consistent Schrodinger and Poisson’s
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Fig. 1. Comparison of the measured (symbol) and simulated (lines) gate
capacitance versus gate voltage. The lines came from the self-consistent
Schrodinger and Poisson’s equation solvers [22], [23].
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Fig. 2. Measured electron effective mobility (solid lines with symbols) versus
vertical effective electric field for the three temperatures.

equations solving [22] to deliver subband levels and wave
functions. Straightforwardly, universal mobility was calculated
based on published formalisms of both phonon scattering and
surface roughness scattering [24], [25]. Material parameters
used were all the same as or close to those in [26]-[28],
e.g., the acoustic deformation potential D,. = 12 eV, the de-
formation potential of the kth intervalley phonon Dj = 8 x
10® eV/cm, the energy of the kth intervalley f-type phonon
Ex(r) =59 meV, and the energy of the kth intervalley g-type
phonon Ej,) = 63 meV. In a universal mobility calculation,
the following formula was used:

1 1 1
where g . is the universal mobility of the subband i due
to phonon and surface roughness scattering mechanisms, and
brackets () represent averaging over energy for the microscopic
phonon mobility !, and the surface roughness mobility 4.
Detailed simulation work can be found elsewhere [22]. The
resulting universal mobility for a correlation length of the
surface roughness A of 14.9 A and a root mean square height
of the surface roughness amplitude A of 2.4 A was found to fit
the experimental data well for two different temperatures [1], as
depicted in Fig. 3. This confirms the validity of the temperature-
dependent universal mobility simulation work. Since differ-
ent manufacturing processes may lead to different mobility
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Fig. 3. Comparison of the experimental (solid lines) electron universal mobil-
ity curves for two temperatures of 242 and 297 K [1] with the simulated ones
in this paper (dotted lines).

universality [29], the varying surface roughness amplitude A,
with the other material parameters kept unchanged, was taken
into account. Subsequently, we quoted a physically based
Coulomb-limited mobility model due to ionized impurity atoms
in a substrate [30] as follows:

1.1 x 102'7E° 1
In (1+73g) Noub

pe = 2

_ _Jn
L3y
where Y2y (= (2 x 10" /Ny, /2)T?) is the Brooks—Herring
coefficient, T;,(= T'/300 K) is the normalized temperature T
with respect to 300 K, and z is the average inversion layer
thickness as can be determined by simulated wave functions.
Consequently, the thick oxide effective mobility can be ob-
tained according to Matthiessen’s rule as
1 1 1

= —+ —. 3)
| %%} Huniv

Mthick

Care must be taken while experimentally applying
Matthiessen’s rule [31], [32]. This issue will be addressed later.
With the aforementioned process parameters as inputs, thick
oxide effective mobility was obtained for three temperatures of
233, 263, and 298 K, as plotted in Fig. 4, versus F.g for A of
1.4,1.6,1.8,and 2 A. It can be seen that for FEeg > 0.7MV/cm,
the calculated effective mobility approaches the universal one,
as expected. While comparing the measured effective mobility
Lot in the figure, the additional scattering of inversion layer
electrons by remote scatterers in the polysilicon region can be
assessed according to Matthiessen’s rule as follows:
1 — 1 + b 4)
Heft  Mthick  HMadd

where pgnick s the thick gate oxide mobility in the absence of
remote scatterers, and fi,qq 1S the additional mobility caused
solely by remote scatterers. Again, the validity of (4) will be
treated later. The resulting additional mobility values are shown
in Fig. 5 for the three temperatures versus F.g with the surface
roughness amplitude A as a parameter. In addition, produced
simultaneously is the temperature coefficient 7, as defined by

_ Hadd(233 K) — 1120 (298 K)
233 K — 298 K

(&)
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Fig. 4. Calculated effective mobility (solid lines), simulated universal mobil-
ity curves (dotted lines), and measured effective mobility (lines with symbols)
for the three temperatures of 233, 263, and 298 K, plotted versus vertical
effective electric field for (a) A = 1.4 A, (b)) A = 1.6 A, (¢c) A = 1.8 A, and
d)A=2A.
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Fig. 5. Experimentally assessed additional mobility for the three tempera-
tures, plotted versus the vertical effective electric field for (a) A = 1.4 A,
(b) A=16A,(c) A=18A, and (d) A =2 A. In addition, shown is the
calculated RCS-limited mobility (dotted lines) due to ionized impurity atoms
in a polysilicon depletion region for three different temperatures.
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Fig. 6. Comparison of the temperature coefficient of the extracted additional
mobility (solid lines) in this paper with that of the calculated RCS-limited
mobility (dotted lines) due to ionized impurity atoms in a polysilicon depletion
region. In addition, labeled is the possible range where the simulated tempera-
ture coefficient [10] yielded a value of —4.15 cm? /V-s-K.

The calculated temperature coefficient 7 is given in Fig. 6,
plotted versus F.g for different A values.

III. ORIGIN AND EVIDENCE

From Fig. 5, it can be seen that in a universal mobility domi-
nant region, as aforementioned ( Eeg > 0.7 MV/cm), additional
mobility increases with decreasing temperature, regardless of A
used. This constitutes the merits of the proposed method, with-
out the knowledge of realistic surface roughness parameters.
We attribute the observed increasing trend with decreasing tem-
perature to interface plasmons [6] in the presence of electrons
in a polysilicon depletion region. The explanations are given
below.

First, a positive temperature coefficient may be expected for
ionized impurity atoms in a poly side, but owing to decreased
screening with increasing temperature, the trend is likely to be
reversed [30]. To examine this, we quoted the detailed formula
by Yang et al. [7] to calculate remote-Coulomb-limited mobil-
ity due to ionized impurity atoms in a polysilicon depletion
region. The results are separately plotted in Figs. 5 and 6.
Fig. 5 clearly points out that the calculated remote-Coulomb-
limited mobility due to ionized impurity atoms in a poly side is
around two orders of magnitude larger than the experimentally
extracted one. In Fig. 6, the calculated n value due to ionized
impurity atoms in a polysilicon depletion region also exhibits
a large discrepancy. Thus, we must rule out the possibility of
ionized impurity atoms in a polysilicon depletion region.

Then, remote surface roughness scattering can be insignif-
icant in a mobility universality dominant region (Feg >
0.7 MV/cm), as drawn from the Monte Carlo simulation by
Gamiz et al. [11]. Thus, the origin of mobility degradation in
this paper is determined to be interface plasmons [6]. This is
reasonable because an increase in temperature can enhance ab-
sorption and emission of interface plasmons, which will in turn
reduce inversion layer mobility. Extra evidence does exist. First,
the published experimental [6]-[8] and simulated [10] mobility
degradation values at room temperature [6]—[8] can deliver the
additional mobility for comparison, as shown in Figs. 7 and 8.
In the two figures, one can see that these additional mobil-
ity data created from different sources [6]-[8], [10] are all
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comparable with or close to ours, within the error of
Matthiessen’s rule, as will be explained later. In addition,
it is noteworthy that the calculated remote Coulomb limited
mobility due to ionized impurity atoms in a polysilicon de-
pletion region is still too large to match the data [6]—[8], [10].
Particularly, we noticed that in the simulation study by Fischetti
[10], simulated temperature-dependent mobility was available
but only under limited conditions: the average electron density
ng of 3 x 10'° cm—3, the inversion layer electron density Njy.
of 10'3 cm2, and the gate oxide thickness ¢, of 1 nm. The
corresponding 7 value was estimated to be —4.15cm?/V - s - K
using the extracted values in [10]: 1(233 K) ~ 900 cm?/Vs and
(298 K) ~ 630 cm?/Vs. Strikingly, this value obtained in the
context of interface plasmons is quite close to ours as long as
the A value is smaller than 1.8 A, as demonstrated in Fig. 6.

Finally, we want to stress that the use of Matthiessen’s rule in
this paper is adequate. The primary reasons are that this paper is
focused on a high E.g value. To give a quantitative estimate of
the error, extra work was done in calculating universal mobility
according to Matthiessen’s rule as follows:

1

4
Fniv

(6)

u;h1<E> i <ul(E)>
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Fig. 9. (a) Comparison of the simulated universal mobility from two different
formalisms (1) and (6), plotted versus F.g with temperature as a parameter,
and (b) the corresponding errors.

The results are given in Fig. 9 for comparison with those
of (1), which are plotted versus F.g with temperature as a
parameter. Evidently, the maximum error of the universal mo-
bility caused by the use of Matthiessen’s rule is below merely
5%. This error is much less than the relative difference between
the measured effective mobility and the simulated universal
mobility in Fig. 3. Thus, the validity of Matthiessen’s rule
used in this paper is verified. Straightforwardly, the induced
error may lead to the uncertainty of the extracted additional
mobility. In this sense, the additional mobility data created
from different sources [6]—[8], [10] all fall within the error of
Matthiessen’s rule.

IV. CONCLUSION

We have experimentally extracted the temperature-dependent
additional electron mobility due to remote scatterers in
nT-polysilicon ultrathin gate oxide nMOSFETs. Experimen-
tally validated temperature-dependent universal mobility simu-
lation has been highlighted. The resulting additional mobility
has exhibited a negative temperature coefficient for the first
time, thus confirming interface plasmons in a polysilicon deple-
tion region to be the underlying remote Coulomb scatterers. The
experimental and simulation evidence, as quoted in the open
literature, has been demonstrated. The validity of Matthiessen’s
rule used in this paper has been verified.
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