行政院國家科學委員會補助專題研究計畫 🗾 成果報告

高分子間作用力的研究與應用(3/3)

- 計畫類別:■ 個別型計畫 🗌 整合型計畫
- 計畫編號: NSC 94-2216 E 009 002 -
- 執行期間:九十四年八月一日至九十五年七月三十一日

計畫主持人:張豐志 教授

成果報告類型(依經費核定清單規定繳交): □精簡報告 ■完整報告

本成果報告包括以下應繳交之附件:

□赴國外出差或研習心得報告一份

□赴大陸地區出差或研習心得報告一份

出席國際學術會議心得報告及發表之論文各一份

□國際合作研究計畫國外研究報告書一份

處理方式:除產學合作研究計畫、提升產業技術及人才培育研究計畫、 列管計畫及下列情形者外,得立即公開查詢 □涉及專利或其他智慧財產權,■二年後可公開查詢

執行單位:國立交通大學應用化學系

中華民國九十六年五月二十二日

中文摘要 (關鍵詞: 氫鍵作用力、活性聚合、序列分佈)

本研究分別利用陰離子聚合反應及自由基聚合反應將 MMA 和 tBOS 兩種單體合成 PtBOS-b-PMMA 及 PtBOS-r-PMMA,然後進行水解反應將 PtBOS 鏈段上的第三丁基打斷以 形成 OH 基,纯化後即為我們所需的 PVPh-b-PMMA 及 PVPh-r-PMMA;此兩種同組成但序 列分佈不同的 PVPh-co-PMMA 其性質當然也不相同, PVPh-co-PMMA 之 C=O 基產生氫鍵 的比例(fb)和玻璃轉移溫度(Tg)均高於相同 PVPh 含量組成的 PVPh/PMMA 聚摻系統,這 乃是因為高分子聚摻系統內鏈段旋轉的自由度不同於共聚高分子系統,同時,由於單聚的 高分子鏈段以共價鍵連結相同的單體,因此架構上與共聚高分子並不相同,以致於會有分 子內屏幕及官能基親合穩定效應。

我們以 PCAM 對 fb 作曲線擬合,發現 PVPh-r-PMMA 之分子間作用平衡常數比 PVPh-b-PMMA 的分子間作用平衡常數大,扣除掉分子內屏幕效應後 PVPh-b-PMMA 的 KA 值為 67.3 與 PVPh-r-PMMA 之實驗值 67.4 相當的接近,使我們想到具相同形成氫鍵官能基 (hydrogen bonded donor and acceptor)的團聯式共聚高分子與雜亂式共聚高分子,其 "有效 的"分子間作用平衡常數是可以相互轉換的;由陰離子聚合反應合成的 PVPh-b-PMMA 之 PDI 非常小,而以 Kwei equation 擬合後,可發現其 q 值為所有系統中最大的。

Abstract (Keywords: Hydrogen bonding, Living polymerization, Sequence distribution)

A series of poly(vinylphenol-*co*-methyl methacrylate) (PVPh-*co*-PMMA) block and random copolymers were prepared through anionic and free radical polymerizations, respectively, of 4-*tert*-butoxystyrene and methyl methacrylate and subsequent selective hydrolysis of the 4-*tert*-butoxystyrene protective groups. Analysis of infrared spectra suggests that the random copolymer possesses a higher fraction of hydrogen-bonded carbonyl groups and a larger interassociation equilibrium constant relative to those of a block copolymer containing similar vinylphenol content because of the different sequence distribution that may arise from the so-called intramolecular screening effect. In contrast, the glass transition temperature of the block copolymer, which has the lower polydispersity index, is higher than that of the random copolymer at the same composition.

報告內容

文獻探討與研究目的

近幾年來,最被廣為研究的含氫鍵作用力之高分子聚掺系統就屬 poly(vinylphenol)/poly(methyl methacrylate)聚掺系統,即PVPh/PMMA聚掺系統。如Sermal 等人研究PVPh/PMMA聚掺系統的相行為,基於DSC的分析結果,他們發現PVPh和PMMA 是互溶的,且PVPh上的OH基與PMMA上的C=O基其分子間作用平衡常數 (inter-association equilibrium constant)K_A為37.4。同時,Zhang等人利用¹³C的交錯極化/ 魔術角旋轉(CP/MAS)的固態核磁共振光譜儀(Solid-state NMR)來分析PVPh/PMMA聚掺 系統的相溶性,判斷PVPh/PMMA聚掺系統是不互溶的,而此矛盾的結果乃歸因於聚掺時 使用的溶劑不同所致。這指出若PVPh/PMMA聚掺系統為互溶的;若使用的溶劑為口酮(methyl ethyl ketone,MEK),此時PVPh/PMMA聚掺系統為互溶的;若使用的溶劑為四氫呋喃 (tetrahydrofuran,THF),則PVPh/PMMA聚掺系統為不互溶。

Katime 等人研究 poly(vinyl acetate-co-vinyl alcohol)系統中的氫鍵強度¹⁶,並且發現由 酸水解反應所得到的共聚物較偏向雜亂式共聚物,且 C=O 基和 OH 基產生氫鍵作用會與 OH 基自身產生氫鍵作用競爭,而也證明了其與共聚物上的序列分布有著很大的關係。此 外 · 由 本 實 驗 室 發 表 的 一 篇 文 獻 指 出 由 酸 和 鹼 作 部 份 水 解 的 poly(vinylphenol-co-acetoxystyrene),其得到的產物序列分布是不同的,且因為由酸水解得 到的共聚物序列分布較趨向雜亂式共聚物,因此其 C=O 基產生氫鍵的比例、玻璃轉移溫度 及分子間作用平衡常數都較由鹼水解得到的共聚物高。此外, Painter 和 Coleman 也提出氫 鍵官能基形成氫鍵的數目會受到分子內屏幕及官能基親合穩定效應所影響,他們以紅外線 光譜儀來測定 PVPh與 poly(ethyl methacrylate)(PEMA)聚摻系統中不同溫度及組成下 C=O 基產生氫鍵的比例,並與相近的系統 ethyl methacrylate-random-vinylphenol (EMAVPh)、 PVPh/ethyl isobutyrate (EIB)之溶液和小分子量的4-ehtylphenol (EPh)/EIB 之混合溶液來比 較,而發現在相同溫度及相等的當量濃度下,這些系統的分子間產生氫鍵之作用平衡常數 是不相同的。此外,根據 Painter-Coleman 作用模型(PCAM),可得知 EMAVPh 之雜亂式共 聚高分子其分子間作用平衡常數 K_A為 67.4,高於 PVPh/PEMA 聚摻系統之 K_A(37.4),這 乃是因為分子內屏幕效應、空間上的擁擠及立體障礙使得氫鍵官能基旋轉的自由度下降, 所以 PVPh/PEMA 系統的 K_A 會較小。於本研究中,我們將探討序列分布對 PVPh-co-PMMA 系統氫鍵強度的影響,然而,我們可以發現過去只有少數幾篇文獻探討過序列分布對共聚 物系統中氫鍵強度的影響。

然而,這幾篇文獻都是探討由不同的水解方式得到不同序列分布的共聚物,並沒有人 針對團聯式共聚高分子來做研究,因此,我們以陰離子聚合反應合成 poly(vinylphenol-b-methyl methacrylate)、以自由基聚合反應合成 poly(vinylphenol-*r*-methyl methacrylate)及以原子轉移自由基聚合反應合成 poly(vinylphenol-b-methyl methacrylate), 在加上 PVPh/PMMA 聚掺系統,探討共聚物系統中序列分布對氫鍵作用力強度的影響,以 微分掃描熱卡計(DSC)及紅外線光譜儀(FT-IR)測其玻璃轉移溫度、C=O 基產生氫鍵的比 例,探討序列分布的影響,並以 Painter-Coleman 作用模型(PCAM)為基準計算其分子間作 用平衡常數。

1

研究方法

本研究係以陰離子聚合反應合成 PtBOS-b-PMMA、以自由基聚合反應合成 PtBOS-r-PMMA 及以原子轉移自由基聚合反應(ATRP)合成 PAS-b-PMMA,然後再分別進行水解,得到不同序列分佈之 PVPh-co-PMMA。

(1)陰離子聚合合成 PVPh-b-PMMA、PMMA 及 PVPh

首先將已除氣過的溶劑四氫呋喃及第三丁基氧苯乙烯單體注入反應瓶中,接著加入起 始劑 2-丁基鋰,整個反應在-78℃進行 2 小時, 2 小時後加入甲基丙烯酸甲酯單體,再繼續 反應 2 小時,最後以甲醇來終止反應。純化後得白色粉末,即為 PtBOS-b-PMMA。

取部分的 PtBOS-b-PMMA 於 500mL 雙頸瓶中,於瓶中加入大量的 1,4-二氧六圜及適量的 37% 鹽酸,然後在氫氣下以 80℃反應 24 小時。反應結束後,待反應液冷卻至室溫, 慢慢滴入甲醇與水體積比為 3:7 的共溶劑中,再用 10%的氫氧化鈉水溶液中和上述溶劑, 使用抽氣過濾將沉澱物濾出後,將最後收集的沉澱物放入 80℃真空烘箱抽真空烘 24 小時 以上,待其完全乾燥後,即為 PVPh-b-PMMA(Anionic)。

並以陰離子聚合合成 PMMA 與 PVPh 之單聚高分子,用來與 PVPh-co-PMMA 比較。

(2)原子轉移自由基聚合(ATRP)合成 PVPh-b-PMMA

首先秤取 0.0793g 的溴化銅於 100mL 之雙頸瓶中,加入 24.97mL 已除去氧氣的二甲苯 及 10g(10.62mL)的甲基丙烯酸甲酯單體,取 0.092g(68.46 µ L)之 1-Bromoethyl benzene 與 0.0883g(106.4µL)的螯合基緩緩注入雙頸瓶中,於氫氣下,90℃油浴中反應 8 小時,去除 反應液中的銅離子。最後將反應液慢慢進行再沉澱,過濾後得白色粉末狀產物,真空烘乾 24 小時後,即為末端帶有溴基的聚甲基丙烯酸甲酯(PMMA-Br)。

量秤 0.072g 的溴化銅和 0.7g 的巨起始劑 PMMA-Br 一起加入 100mL 之雙頸瓶中,加入 7.35mL 已除去氧氣的溶劑二甲苯及 1.707g(1.611mL)的乙醯氧基苯乙烯單體,再取 0.0884g(106.53 μL)的螯合基,110℃油浴中反應 96 小時,待瓶中反應溶液變得較黏稠且呈 深綠色,將反應液慢慢進行再沉澱,過濾後得白色粉末狀產物,真空烘乾 24 小時後,即為 PAS-*b*-PMMA。

取部分的 PAS-b-PMMA 於 250mL 之雙頸瓶中,以 1,4-二氧六圜溶解,並緩慢滴入 0.3N 的氫氧化鈉水溶液,於氫氣下,以油浴 90℃反應 5 小時。5 小時後,待反應液冷卻至室溫, 將其慢慢滴入乙醚進行再沉澱,然後過濾收集沉澱物,再以 Soxhelt Extraction 纯化,以水 當洗劑,約 72 小時,以確保移除殘留的氫氧化鈉,最後以真空烘箱烘至隔天,即為最終產 物 PVPh-b-PMMA_(ATRP)。

(3)自由基聚合合成 PVPh-r-PMMA

將甲基丙烯酸甲酯單體與第三丁基氧苯乙烯單體注入反應瓶內,加入適量的溶劑苯,待 其攪拌混合均勻後,再加入起始劑 AIBN,在氫氣下以 70℃反應 12 小時,並在反應轉化率 約 4-9%時,抽出少量反應液用來分析、決定兩種單體之反應活性比(reactivity ratio)。

反應結束後,用水與甲醇作為共溶劑進行數次再沉澱,以確保將為反應之單體去除, 過濾、乾燥後,即得 PtBOS-r-PMMA。後續的水解步驟,已於前面詳述過,在此便不再重 複,水解後,即為我們所要的 PVPh-r-PMMA。

(4)聚掺(Blend)

聚掺部分是用單聚的 PMMA 與 PVPh 以丁酮作為溶劑,攪拌 6-8 小時均勻混合之,然 後成膜於鐵氟龍盤上,然後靜置在室溫下約一天,待大部分之溶劑自然揮發後,再將鐵氟 龍盤放入真空烘箱內,以 50℃抽真空 2 天,除去殘留之丁酮,將樣品從鐵氟龍盤上取下, 即完成聚摻所需之樣品 PVPh/PMMA。

結果與討論

PVPh-co-PMMA 於紅外線光譜中,有數個特徵吸收峰會受到氫鍵作用 (Hydrogen-bonding interaction)影響, PMMA 的 C=O 特徵吸收峰在 1730 cm⁻¹處, 對於 PVPh-co-PMMA 而言,此特徵吸收峰會因鏈段組成的比例及序列分佈的不同而大大的改 變,自由的 C=O 基特徵吸收峰位於 1730 cm⁻¹,而產生氫鍵的 C=O 基特徵吸收峰位於 1705 cm⁻¹, 兩吸收峰皆可定量地用高斯函數(Gaussian functiom)曲線擬合(curve fitting)得到。隨 著 VPh 含量的增加, C=O 基與 OH 基形成氫鍵的數量也會增多, 若想得知產生氫鍵的 C=O 吸收峰和自由的 C=O 基吸收峰的比例,必須考慮其吸收係數(lpha)之比,文獻中 Moskala 等 人之研究指出 $\alpha_{HB}/\alpha_{F}=1.5$,產生氫鍵的C=O基吸收峰強度為自由的C=O基吸收峰之1.5 倍,我們必須把產生氫鍵的 C=O 基吸收峰除以 1.5 倍後,才可用來與自由的 C=O 基吸收峰 作比較。以曲線擬合法分析 PVPh-b-PMMA、PVPh-r-PMMA 及 PVPh/PMMA 聚摻系統三 者之產生氫鍵的 C=O 基與自由的 C=O 基兩吸收峰的數據,由 Table 4-5 我們可清楚觀察到, 不論是 PVPh-b-PMMA、PVPh-r-PMMA 或是 PVPh/PMMA 聚掺系統, C=O 基與 OH 基產 生氫鍵的比例隨著 VPh 比例的增加而增大,此外,於相同比例的 VPh 合量下, PVPh-b-PMMA 與 PVPh-r-PMMA 內產生氫鍵之 C=O 基的比例均大於 PVPh/PMMA 聚掺系統內之產生氫鍵 之 C=O 的比例,這是由於單聚高分子與共聚高分子其高分子鏈內連接的情形(chain connectivity)與結構不同導致分子內屏幕(intramolecular screening)和官能基親合穩定效應 (functional group accessibility effect),導致欲產生氫鍵作用的官能基在 PVPh-co-PMMA 與 在 PVPh/PMMA 聚掺系統裡可旋轉之自由度(degrees of rotational freedom)有不同的程度, 在 PVPh/PMMA 聚掺系統內的 PVPh 因共價鍵的連結導致同一條鏈上的 OH 基接觸的機會 變多,所以與 PVPh-b-PMMA 與 PVPh-r-PMMA 相較之下,其 OH 基與 OH 基產生氫鍵作 用機會較小,鏈連接效應與分子內屏幕效應在 PVPh/PMMA 聚摻系統內造成的影響較嚴 重。分子內屏幕效應為當高分子鏈上許多相同的分子連結在一起,而鏈彎曲摺疊時會使一 些相同的分子被包在裡面,以致於損失了一些可產生氫鍵作用的官能基;因此在高分子聚 掺系統內,分子內屏幕效應會降低分子間氫鍵形成的數目,所以 PVPh/PMMA 聚掺系統內 分子間氫鍵形成之密度相對地小於 PVPh-co-PMMA。除了分子內屏幕效應外,於單聚高分 子鏈上官能基間的距離過近以及立體障礙也會使分子間氫鍵形成之密度下降,也就是所謂 的官能基穩定效應,此效應主要歸因於立體空間上造成的擁擠與遮蔽。綜合上述之因素, 可說明於相同比例之組成下, PVPh/PMMA 聚摻系統內 C=O 基產生氫鍵之比例必小於 PVPh-co-PMMA 內 C=O 基產生氫鍵之比例。

為了合成單一分子量分布的 PVPh 鏈段,聚合之前必須有一保護基於 OH 基上,否則 將會導致反應鏈的末端終止反應,許多不同的保護基可以用來保護 OH 基並可成功地應用 於陰離子聚合與自由基聚合反應上,本研究將 MMA 和 tBOS 兩種單體分別利用連續的陰 離子聚合反應反應合成 PtBOS-b-PMMA,實驗中可明顯看出從 PtBOS 聚合成

3

PVPh-b-PMMA 後分子量的變化,以及狹小的分子量分布。而自由基聚合以 AIBN 作為反 應起始劑聚合 PtBOS-r-PMMA, 並依 Kelen-Tüdös 方法分別計算出 MMA 和 tBOS 的反應活 性比 r1 與 r2,乃表示兩種單體在聚合時跟自身反應和跟另一種單體反應的速率比,且所有 以自由基聚合的 PtBOS-r-PMMA 均於相同的條件及狀態下反應聚合,且為了降低單體進料 比的差異造成的誤差,我們控制在反應轉化率低於10%時即終止反應。實驗成果做圖以計 算求得 PtBOS-co-PMMA 之 r_{PMMA}=0.8、r_{PtBOS}=0.28,且從圖中可清楚看出數據成一線性關 係,表示本研究中的 PMMA 與 PtBOS 兩者的共聚關係遵循 two-parameter model,而當 r1 與 r2 的乘積介於 0.18-0.25 之間,此共聚物的序列分佈會區向於隨機(random)分佈;最後將 上述兩種不同方法製備的高分子進行水解反應將 PtBOS 鏈段上的第三丁基打斷以形成 OH 基,纯化後即為我們所需的 PVPh-b-PMMA 及 PVPh-r-PMMA, 並由高解析核磁共振光譜儀 (High resolution NMR)測其氫譜(¹H)與碳譜(¹³C)來驗證為了確認保護基完全去除且轉變 成為 OH 基,且可分別定出兩鏈段間的比例。然而,此兩種同組成但序列分佈不同的 PVPh-co-PMMA 其性質當然也不相同,此外, PVPh-co-PMMA 之 C=O 基產生氫鍵的比例 (fb)和玻璃轉移溫度(Tg)均高於相同 PVPh 含量組成的 PVPh/PMMA 聚掺系統,這乃是因 為高分子聚摻系統內鏈段旋轉的自由度不同於共聚高分子系統,同時,由於單聚的高分子 鏈段以共價鍵連結相同的單體,因此架構上與共聚高分子並不相同,以致於會有分子內屏 幕及官能基親合穩定效應。

我們以 PCAM 對 fb 作曲線擬合,發現 PVPh-r-PMMA 之分子間作用平衡常數比 PVPh-b-PMMA 的分子間作用平衡常數大,而扣除掉分子內屏幕效應後 PVPh-b-PMMA 的 K_A 值為 67.3 與 PVPh-r-PMMA 之實驗值 67.4 相當的接近,這使我們想到具相同形成氫鍵 官能基(hydrogen bonded donor and acceptor)的團聯式共聚高分子與雜亂式共聚高分子,其 "有效的"分子間作用平衡常數是可以相互轉換的;由陰離子聚合反應合成的 PVPh-b-PMMA 之 PDI 非常小,高分子的 Tg 會受到 PDI 的大小所影響,而根據本研究的結 果,我們更確定 Tg 及 q 值不只是受到氫鍵強度的影響,其也和共聚高分子之 PDI 有關, 換句話說,當由自由基聚合反應合成的 PVPh-r-PMMA 與用原子轉移自由基聚合反應合成 的 PVPh-b-PMMA 兩者的 PDI 大小差不多,此時 fb 較大者其 Tg 也會較高;而相同組成但 具最小 PDI 的 PVPh-b-PMMA 其 Tg 為所有系統中最高的,因此,我們認為 Kwei equation 中的 q 參數也會受到共聚高分子系統中高分子之 PDI 影響。

參考文獻

- 1. Serman, C. J.; Painter, P. C.; Coleman, M. M., Polymer 1991, 32, 1049.
- 2. Zhang, X.; Takegoshi, K.; Hikichi, K., Macromolecules 1991, 24, 5756.
- 3. Li, D.; Brisson, J., Macromolecules 1996, 29, 868.
- 4. Dong, J.; Ozaki, Y., Macromolecules 1997, 30, 286.
- 5. Serman, C. J.; Xu, Y.; Painter, P. C.; Coleman, M. M. Macromolecules 1989, 22, 2015.
- 6. Li, D.; Brisson, J. Polymer 1998, 39, 793.
- 7. Li, D.; Brisson, J. Polymer 1998, 39, 801.
- 8. Hsu, W. P. J. Appl. Polym. Sci. 2002, 83, 1425.
- 9. Jong, L.; Pearce, E. M.; Kwei, T. K. Polymer 1993, 34, 48.

- 10. Hsu, W. P.; Yeh, C. F. J. Appl. Polym. Sci. 1999, 73, 431.
- 11. Xu, Y.; Graf, J.; Painter, P. C.; Coleman, M. M. Polymer 1991, 32, 3103.
- 12. Wang, L. F.; Pearce, E. M.; Kwei, T. K., J. Polym. Sci., Polym. Phys. Ed. 1991, 29, 619.
- Painter, P. C.; Coleman, M. M. Polymer Blends; Paul, D. R., Ed.; John Wiley & Sons: New York, 2000; Vol. 1.
- 14. Coleman, M. M.; Xu, Y.; Painter, P. C. Macromolecules 1994, 27, 127.
- 15. Coleman, M. M.; Graf, J. F.; Painter, P. C. "Specific Interactions and the Miscibility of Polymer Blends. Technomic Publishing", Lancaster, PA, **1991**.
- 16. Isasi, J. R.; Cesteros, L. C.; Katime, I. Macromolecules 1994, 27, 2200.
- 17. Kuo, S. W.; Liu, W. P.; Chang, F. C. Macromolecules 2003, 36, 5165.

成果發表論文

- Chen, J. K.; Ko, F. H.; Chan, C. H.; Huang, C. F.; <u>Chang, F. C.</u> Using imprinting technology to fabricate three-dimensional devices from moulds of thermosetting polymer patterns. *Semiconductor Science and Technology* **2006**, 21, 1213-1220.
- (2) Chen, W. Y.; Ko, S. H.; Hsieh, T. H.; Chang, F. C.; Wang, Y. Z. Simultaneous preparation of PI. *Macromolecular Rapid Communications* 2006, 27, 452-457.
- (3) Huang, C. F.; Kuo, S. W.; Lin, F. J.; Huang, W. J.; Wang, C. F.; Chen, W. Y.; <u>Chang, F. C.</u> Influence of PMMA-chain-end tethered polyhedral oligomeric silsesquioxanes on the miscibility and specific interaction with phenolic blends. *Macromolecules* **2006**, 39, 300-308.
- (4) Huang, C. F.; Kuo, S. W.; Lin, F. J.; Wang, C. F.; Hung, C. J.; <u>Chang, F. C.</u> Syntheses and specific interactions of poly (hydroxyethyl methacrylate-b-vinyl pyrrolidone) diblock copolymers and comparisons with their corresponding miscible blend systems. *Polymer* 2006, 47, 7060-7069.
- (5) Ko, F. H.; Chen, J. K.; <u>Chang, F. C.</u> Fabricating and characterizing oblique polymer structures by electron beam writing on resist-coated SiO2 wafers. *Microelectronic Engineering* **2006**, 83, 1132-1137.
- (6) Kuo, S. W.; Huang, C. F.; Lu, C. H.; Lin, H. M.; Jeong, K. U.; <u>Chang, F. C.</u> Syntheses and specific interactions of poly(epsilon-caprolactone)-block-poly(vinyl phenol) copolymers obtained via a combination of ring-opening and atom-transfer radical polymerizations. *Macromolecular Chemistry and Physics* **2006**, 207, 2006-2016.
- (7) Kuo, S. W.; Huang, C. F.; Tung, Y. C.; <u>Chang, F. C.</u> Effect of bisphenol A on the miscibility, phase morphology, and specific interaction in immiscible biodegradable poly(epsilon-caprolactone). *J Appl Polym Sci* 2006, 100, 1146-1161.
- (8) Kuo, S. W.; Lin, H. C.; Huang, W. J.; Huang, C. F.; <u>Chang, F. C.</u> Hydrogen bonding interactions and miscibility between phenolic resin and octa(acetoxystyryl) polyhedral oligomeric silsesquioxane (AS-POSS) nanocomposites. *Journal of Polymer Science Part B-Polymer Physics* 2006, 44, 673-686.

- (9) Kuo, S. W.; Tung, P. H.; <u>Chang, F. C.</u> Syntheses and the study of strongly hydrogen-bonded poly(vinylphenol-b-vinylpyridine) diblock copolymer through anionic polymerization. *Macromolecules* **2006**, 39, 9388-9395.
- (10) Lee, H. F.; Kuo, S. W.; Huang, C. F.; Lu, J. S.; Chan, S. C.; Wang, C. F.; <u>Chang, F. C.</u> Hydrogen-bonding interactions mediate the phase behavior of an A-B/C block copolymer. *Macromolecules* 2006, 39, 5458-5465.
- (11) Lee, Y. J.; Kuo, S. W.; Huang, C. F.; <u>Chang, F. C.</u> Synthesis and characterization of polybenzoxazine networks nanocomposites containing multifunctional polyhedral oligomeric silsesquioxane (POSS). *Polymer* **2006**, 47, 4378-4386.
- (12) Lin, C. L.; Chen, W. C.; Kuo, S. W.; <u>Chang, F. C.</u> Sequence distribution affect the phase behavior and hydrogen bonding strength in blends of poly(vinylphenol-co-methyl methacrylate) with poly(ethylene oxide). *Polymer* **2006**, 47, 3436-3447.
- (13) Lin, H. C.; Kuo, S. W.; Huang, C. F.; <u>Chang, F. C.</u> Thermal and surface properties of phenolic nanocomposites containing octaphenol polyhedral oligomeric silsesquioxane. *Macromolecular Rapid Communications* 2006, 27, 537-541.
- (14) Lin, H. M.; Wu, S. Y.; Huang, P. Y.; Huang, C. F.; Kuo, S. W.; <u>Chang, F. C.</u> Polyhedral oligomeric silsesquioxane containing copolymers for negative-type photoresists. *Macromolecular Rapid Communications* **2006**, 27, 1550-1555.
- (15) Liu, Y. L.; Chang, G. P.; Hsu, K. Y.; <u>Chang, F. C.</u> Epoxy. Journal of Polymer Science Part A-Polymer Chemistry 2006, 44, 3825-3835.
- (16) Tung, P. H.; Huang, C. F.; Chen, S. C.; Hsu, C. H.; <u>Chang, F. C.</u> Regular honeycomb porous polymer films based on amphiphilic block copolymer. *Desalination* **2006**, 200, 55-57.
- (17) Wang, C. F.; Chiou, S. F.; Ko, F. H.; Chou, C. T.; Lin, H. C.; Huang, C. F.; <u>Chang, F. C.</u> Fabrication of biomimetic super-amphiphobic surfaces through plasma modification of benzoxazine films. *Macromolecular Rapid Communications* **2006**, 27, 333-337.
- (18) Wang, C. F.; Su, Y. C.; Kuo, S. W.; Huang, C. F.; Sheen, Y. C.; <u>Chang, F. C.</u> Low-surface-free-energy materials based on polybenzoxazines. *Angewandte Chemie-International Edition* **2006**, 45, 2248-2251.
- (19) Wang, C. F.; Wang, Y. T.; Tung, P. H.; Kuo, S. W.; Lin, C. H.; Sheen, Y. C.; <u>Chang, F. C.</u> Stable superhydrophobic polybenzoxazine surfaces over a wide pH range. *Langmuir* 2006, 22, 8289-8292.
- (20) Yei, D. R.; Fu, H. K.; Chen, W. Y.; <u>Chang, F. C.</u> Synthesis of a novel benzoxazine monomer-intercalated montmorillonite and the curing kinetics of polybenzoxazine. *Journal of Polymer Science Part B-Polymer Physics* 2006, 44, 347-358.

<u>計畫成果自評</u>

縱觀上述研究成果,我們發表了 20 篇 SCI 國際期刊,對於高分子氫鍵作用力的領域有 重要貢獻。對於不同作用型態的共聚高分子及高分子聚掺的性質分析,我們更使用微分掃 描熱卡計(DSC)分析,PVPh-co-PMMA 及 PVPh/PMMA 聚掺系統之 DSC 熱分析圖譜中, 可看到所有系統及比例之 DSC 圖均只有單一的玻璃轉移溫度(glass transition temperature, T_g),而單一的玻璃轉移溫度表示這些系統均為完全互溶的且呈均一熔融相(homogeneous amorphous phase),通常一互溶的高分子聚掺系統於 DSC 圖譜上會有較寬的 T_g 轉變狀態, 而相反地,共聚高分子系統會有分布較狹窄的 T_g 轉變狀態;雜亂式共聚高分子的 T_g 轉變狀 態為三者中最狹窄的,因為其 A 與 B 兩單體相鄰機率大且分布均勻。由此可知,雜亂式共 聚高分子的同質性(homogeneity)比團聯式共聚高分子好。

不論是 PVPh-b-PMMA、PVPh-r-PMMA 或是 PVPh/PMMA 聚掺系統,其各比例的 T_g 隨著 PVPh 含量的增加而上升,此現象可歸因於 PVPh 上的 OH 基與 PMMA 上的 C=O 基產 生分子間氫鍵及 PVPh 上 OH 基自身產生氫鍵作用所致;另外, PVPh/PMMA 聚摻系統各比 例的 T_g 為三系統中最低的,而於相同比例的 PVPh 含量下, PVPh-b-PMMA 之 T_g 出人意 外地比 PVPh-r-PMMA 之 Tg 高出許多,雖然先前有提到不論是 C=O 基產生氫鍵的比例或是 K_A 值 PVPh-r-PMMA 都比 PVPh-b-PMMA 大,但此兩種不同鏈段分布的共聚高分子在 T_g 方面卻不如我們所預測的趨勢。一般而言,玻璃轉移溫度不只是受到高分子內的特殊作用 力所影響,其也和高分子一些物理和化學性質有關,例如:分子量(molecular weight)、分 子量分布 PDI(polydispersity)、高分子鏈段的彈性與柔軟度(chain flexibility)、高分子鏈段 的分枝及交聯狀態(branching and crosslinking);而此研究中 PVPh-r-PMMA 與 PVPH-b-PMMA的 T_g 可能是受到分子量分布之大小的影響,因為由陰離子聚合反應合成的 團聯式共聚高分子其 PDI 大約為 1.05-1.2, 必小於由自由基聚合反應合成的雜亂式共聚高 分子之 PDI 約為 1.5-2.0, 而較大的 PDI 會造成高分子有外加的作用能量(additional interaction energy)及較大的旋轉半徑(radius of gyration)出現,這樣一來就會影響到高分子 鏈段的摺疊且導致較低的 Tg 出現。為了進一步得確認此論點,本研究另採用原子轉移自由 基聚合反應合成 PDI 較大的 PVPh-b-PMMA,因其合成時 PAS 單體無法完全纯化,所以合 成出來的 PVPh-b-PMMA 其 PDI 約為 1.6,可用來和由陰離子聚合反應合成的 PVPh-b-PMMA 做比較。

近幾年來有許多公式陸續發表於期刊上,這些公式可用來預測不同組成之互溶性高分子的玻璃轉移溫度,其中最為普遍的則屬 Kwei equation,其公式如下:

$$T_{g} = \frac{W_{1}T_{g1} + kW_{2}T_{g2}}{W_{1} + kW_{2}} + qW_{1}W_{2}$$

 W_1 、 W_2 為兩高分子組成的重量比, T_{g1} 、 T_{g2} 代表兩高分子之玻璃轉移溫度,而k和q 乃為 曲線擬合時所使用的常數(fitting constant)。本研究實驗的數據均可以不同的q值用 Kwei equation 作曲線擬合,詳細數據如 PVPh-r-PMMA 時以q=50、由陰離子聚合反應合成的 PVPh-b-PMMA 以q=94、PVPh/PMMA 聚掺系統時以q=-16、由原子轉移自由基聚合反應合 成的 PVPh-b-PMMA 以q=0分別代入式中擬合;原本q為一參數用來反映共聚高分子或高 分子聚掺系統內氫鍵的強度,及表現出系統中自身氫鍵作用的斷裂與分子間作用氫鍵的形 成之平衡關係,但令人訝異的是,即使由陰離子聚合反應合成的 PVPh-b-PMMA 其 C=O 基 產生氫鍵的比例(f_b)大於 PVPh-r-PMMA,但其q值在卻是所有 PVPh-co-PMMA 中最大的; 如先前提到的,高分子的 T_g 會受到 PDI 的大小所影響,而根據曲線擬合的結果,我們更確 定 T_g及q值不只是受到氫鍵強度的影響,其也和共聚高分子之 PDI 有關。於本研究中,當 由自由基聚合反應合成的 PVPh-*r*-PMMA 與用原子轉移自由基聚合反應合成的 PVPh-*b*-PMMA 兩者的 PDI 大小差不多,此時*f*_b較大者其 T_g也會較高;而相同組成但具最 小 PDI 的 PVPh-*b*-PMMA 其 T_g為所有系統中最高的,因此,我們實證出 Kwei equation 中 的 q 參數亦會受到共聚高分子系統中高分子之 PDI 影響,為本研究最重要的貢獻。

可供推廣之研發成果資料表

可申請專利	🗌 可技術移轉	日期: <u>96</u> 年 <u>5</u> 月 <u>22</u> 日
國科會補助計畫	計畫名稱:高分子間作用力的研究與應用 計畫主持人:張豐志 教授 計畫編號:NSC 94- 2216 - E - 009	(3/3) - 002 -學門領域:
技術/創作名稱	高玻璃轉移溫度之聚甲基丙烯酸甲酯	
發明人/創作人	張豐志 教授	
技術説明	中文: 玻璃轉移溫度是高分子材料非常重要的一個 身的熱性質及材料的應用範圍。近年來高玻 料對於學術界及工業界的研究者都是一位 題。本研究以聚甲基丙烯酸甲酯(PMMA)為 鍵作用力的共聚高分子系統,達到了高玻璃 低成本高分子材料,其吸濕性可低於純的 度卻遠高於純的 PMMA,此等特性使這些 於一般 PMMA 均聚體的應用,並可使傳統 價值之光學材料的開發,極具商業化潛力。 英文: The glass transition temperature (Tg) of a intrinsic property that influences the material its potential applications. Recently, the temperature and cost-effective polymers prov in material science and industry due to str arising from their potential applications. In hydrongen bonding poly(methyl methac polymer systems were prepared. We of cost-effective, light weight, high visible birefringence, high Abbe coefficient, high w resistance and good electric insulating prop copolymer system possess low moisture abs higher Tg than pure PMMA. These poly opportunity to replace the pure PMMA in trad its high optical performance.	固性質,它影響到材料本 語轉移溫度的高分子材 固非常有趣及實用的問 方主,製備了一系列具氫 為轉移溫度、低吸濕性的 PMMA 但其玻璃轉移溫 供聚物極有潛力來取代 法產業轉型升級至高附加 o polymer is an important ls thermal properties and higher glass transition ride the attractive interest rong economic incentive our research, a series of crylate)-based (PMMA) obtained a transparent, light transmittance, low veathering and yellowing perties. We found some sorption and possess the mer materials have the litional application due to
可利用之產業	此產品的特色為質輕、可見光透光率高、值 學係數、耐候/耐黃變性及高的電氣絕緣等。	氐雙折射率、高 Abbe 光 特性。我們可應該用光
义 可開發之產品	學材料上,如:光碟片、光玻璃/透鏡、光: 值產品。	學纖維/膜…等高附加價
技術特點	我們能以簡單的化學方法來製備低成本高	附加價值的光學級聚甲
	基丙烯酸甲酯共聚體,我們並可藉由不同單	¹ 體含量的控制,來改變
	玻璃轉移溫度、透光率、吸水性及折射率,	來做有效的成本控制,
	以期達商業化的目的。	