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中文摘要 

近幾年來隨著車輛數量的大幅成長，駕駛員所可能遇到的行車疲勞之負擔與行車安全

之威脅也相對地越來越高，所以車輛的行車安全考量問題就顯得日益重要。本子計畫開發

一自我建構模糊類神經網路控制(self-structuring fuzzy neural network control)法則，讓所有受

控車輛都可以與前車保持固定車距，如此將能夠提高道路運輸效率並降低交通事故發生，

所開發設計之控制法則包含一類神經控制器(neural control)與強健控制器(robust control)，其

中類神經控制器使用一具有自我網路架構建構能力之模糊類神經網路，主要用來線上學習

近似一理想控制法則，強健控制器主要用來克服類神經網路近似誤差所造成之影響。而所

開發具有自我網路架構建構能力之模糊類神經網路，整個網路學習部分包誇類神經網路架

構學習部分與類神經網路參數學習部分，且整個所設計之控制器參數均由李亞普諾夫穩定

理論所推導之自我學習法則調整。最後，本研究子計畫經由模擬結果顯示所提出來的控制

系統，除了可以得到良好且安全的自動跟車防撞效能，而且網路架構可以自我建構出所需

之最少類神經元數目。 
關鍵詞：自動跟車、網路架構自我建構、模糊類神經網路、強健控制 
 
Abstract 

Transportation technology is one of the most influential areas on the human life. Therefore, 
researchers have been involving in wide scope of related research activities aiming to enhance 
efficiency, comfort, and safety of transportation systems. Due to the ever growing number of 
vehicles on the roads, urban highways are congested and need additional capacity. Upon entering 
the intelligent automated highway system, the longitudinal control of the car-following collision 
prevention system will drive a vehicle along the fully automated highway. To achieve this 
objective, this subproject proposes a self-structuring fuzzy neural network control (SSFNNC) 
system for the vehicle platoons system. The proposed SSFNNC system is comprised of a neural 
controller and a robust controller. The neural controller using a self-structuring fuzzy neural 
network (SFNN) is designed to mimic an ideal controller, and the robust controller is designed to 
achieve 2L  tracking performance with desired attenuation level. The adaptation laws of the 
control system are derived in the sense of Lyapunov stability theorem, so that the stability of the 
control system can be guaranteed. Moreover, the learning phase of the SFNN is considered about 
structure and parameter learning phases. The structure learning phase possesses the ability of 
online generation and elimination of fuzzy rules to achieve optimal neural structure, and the 
parameter learning phase adjusts the interconnection weights of neural network to achieve 
favorable approximation performance. Finally, some simulation scenarios are examined to 
verify the effectiveness of the proposed SSFNNC system.  
keywords：car-following, self-structuring learning phase, fuzzy neural network, robust control 
 
I. Introduction 

Transportation technology is one of the most influential areas in the human life. Many 
researchers have been involved in a wide scope of related research activities aiming to enhance 
efficiency, comfort, and safety of transportation systems. Among them, the traffic congestion is a 
global problem. One solution of this problem is to increase the traffic flow by decreasing the 
inter-vehicular spacing. To achieve this objective, car following for traffic safety has been an 
active area of research [1, 2]. However, human driving involves reaction time, delay, and human 
error that affect safe driving adversely. One way to eliminate human error and delay in vehicle 



following is to integrate an automated car-following control system in the driving system. Inside 
the vehicle platoon, all the vehicles follow the leading vehicle with a small intraplatoon 
separation. To enable this, each vehicle will be equipped with control systems which coordinate 
control between the brakes, engine and steering subsystems. 

The neural-network-based control techniques have been used as an alternative design 
method for identification and control of dynamic systems [3-6]. The key element of the neural 
network is the capability of approximating mapping through choosing adequately learning 
method. Based on this property, the neural-network-based controllers have been developed to 
compensate for the effects of nonlinearities and system uncertainties, so that the stability, 
convergence and robustness of the control system can be improved. Although the control 
performances in [3-6] are acceptable, the learning algorithm only includes the parameter learning 
phase, and they have not considered the structure learning phase of the neural network. If the 
number of the hidden neurons is chosen too large, the computation loading is heavy so that they 
are not suitable for online practical applications. If the number of the hidden neurons is chosen 
too small, the learning performance may be not good enough to achieve desired control 
performance. 

To solve this problem, several self-structure neural-network-based control have been 
developed [7-9]. However, some of them use the gradient descent method to derive the parameter 
learning algorithms which can’t guarantee the system stability. Some of them use the Lyapunov 
function to derive the parameter learning algorithms; however, the neurons in the hidden layer 
only can automatic spilt-up to achieve satisfactory performance without considering how to 
eliminate the neuron. 

This paper combines the advantages of the self-structuring fuzzy neural network (SFNN) 
approach and adaptive control technique to develop an intelligent longitudinal control for vehicle 
platoon systems. The proposed self-structuring fuzzy neural network control (SSFNNC) system is 
comprised of a neural controller and a robust controller. The neural controller exploiting a SFNN 
is the principal controller. The SFNN is used to online estimate the ideal controller with the 
structure and parameter learning phases, simultaneously. The structure learning phase possesses 
the ability of online generation and elimination of fuzzy rules to achieve optimal neural structure, 
and the parameter learning phase adjusts the interconnection weights of neural network to 
achieve favorable approximation performance. The robust controller is used to achieve 2L  
tracking performance with desired attenuation level. Moreover, all the parameter learning 
algorithms are derived based on the Lyapunov function, thus the system stability can be 
guaranteed. Finally, two simulation scenarios (one-vehicle following scenario and multi-vehicles 
following scenario) are examined to verify the effectiveness of the proposed SSFNNC system. 

 
II. Problem Formulation 
A. Platoon Dynamic 

Figure 1 describes a platoon of N vehicles following a lead vehicle on a straight lane of 
highway. The position of the rear bumper of the ith vehicle with respect to a fixed reference point 
O on the road is denoted by ix . The position of the lead vehicle’s rear bumper with respect to the 
same fixed reference point is denoted by lx . From the platoon configuration, the spacing error 

ie  can be written as 
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where iH  denotes the safety spacing of the ith vehicle in the platoon. In the following, the 
variables and parameters are assumed to be associated with the ith vehicle, unless subscripts 
indicate otherwise. 
B. Vehicle Model 

The dynamics of the car following system for the vehicle in a platoon are modeled as 
follows 

 )(1 u+−= ξ
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ξ  (2) 
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where ξ  denotes the driving force produced by the vehicle engine; τ  denotes the engine time 
lag to the vehicle; u  denotes the throttle command input to the vehicle’s engine (if 0 >u , then 
it represents a throttle input and if 0 <u , it represents a brake input); m  denotes the mass of 
the vehicle; dK  denotes the aerodynamic drag coefficient for the vehicle; and md  denotes the 
vehicle’s mechanical drag. Equation (2) represents the vehicle’s engine dynamics, and (3) 
represents Newtons’s second law applied to the vehicle modeled as a particle of mass. 
Differentiating both sides of (3) with respect to time and substituting the expression for ξ  in 
term of v  and a , yields 
 uavfa g),( +=  (4) 
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 is a nonlinear function, 
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constant, v  denotes the velocity of the vehicle, and a  denotes the acceleration of the vehicle. 
 

Leading Vehicle

Direct of motion
....

1st  Following 
Vehicle

2nd  Following 
Vehicle

Nth  Following 
Vehicle

O 1x lx2xNx ....

1H2HNH
Ne 2e 1e

Leading Vehicle

Direct of motion
....

1st  Following 
Vehicle

2nd  Following 
Vehicle

Nth  Following 
Vehicle

O 1x lx2xNx ....

1H2HNH
Ne 2e 1e

 
Fig. 1. Configuration of car-following platoon. 

 
III. Control Algorithm Design 

The control objective is to design a control system such that the tracking error e  can be 
driven to zero. Assume that the parameters of the platoon system in (4) are well known, an ideal 
controller of the following vehicle can be constructed as [10]  
 )(g 123

)3(
1

1* ekekekxfu i ++++−= −
− . (5) 

Substituting (5) into (4), gives the following equation 
 0123

)3( =+++ ekekeke . (6) 
If 1k , 2k  and 3k  are chosen to correspond to the coefficients of a Hurwitz polynomial, then it 
implies 0lim =

∞→
e

t
. However, the system dynamics f  and g  always cannot be precisely 

obtained in the real-time practical applications, thus the ideal controller *u  in (5) is always 
unachievable.  
A. Structure of SSFNN 

A self-structuring fuzzy neural network (SFNN) is shown in Fig. 2, which is comprised of 
the input, the membership, the rule and the output layers. The interactions for the layers are given 
as follows. 
Layer 1 - Input layer: For every node i in this layer, the net input and the net output are 
represented as 
 11

ii xnet =  (7) 
 ( ) 1111

iiii netnetfy == , li ,...,2,1=  (8) 
where 1

ix  represents the i-th input to the node of layer 1. 
Layer 2 - Membership layer: In this layer, each node performs a membership function and acts as 
an element for membership degree calculation, where the Gaussian function is adopted as the 
membership function. For the j-th node, the reception and activation functions are written as 
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where ijm  and ijσ  are the mean and standard deviation of the Gaussian function in the j-th 

term of the i-th input linguistic variable 2
ix , respectively, and m  is the total number of the 

linguistic variables with respect to the input nodes. 
Layer 3 - Rule layer: Each node k in this layer is denoted by ∏ , which multiplies the incoming 
signals and outputs the result of the product. For the k-th rule node 
 ∏=

j
jk xnet 33  (11) 
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where x j
3  represents the j-th input to the node of layer 3. 

Layer 4 - Output layer: The single node o in this layer is labeled as Σ , which computes the 
overall output as the summation of all incoming signals 
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where the link weight 4
kw  is the output action strength associated with the k-th rule, 4

kx  
represents the k-th input to the node of layer 4, and 4

oy  is the output of the SOFNN. For ease of 
notation, by defining vectors m  and σ  collecting all parameters of SOFNN, the output of the 
SOFNN can be represented in a vector form 
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B. Structure Learning of SFNN 

The first step in the structure learning phase is to determine whether or not to add a new 
node (membership function) in layer 2 and the associated fuzzy rule in layer 3, respectively. In 
the rule generating process, the mathematical description of the existing rules can be expressed as 
a cluster. Since one cluster formed in the input space corresponds to one potential fuzzy logic rule, 
the firing strength of a rule for each incoming data 1

ix  can be represented as the degree that the 
incoming data belong to the cluster. The firing strength obtained from (11) is used as the degree 
measure 
 3

kk y=β , )(...,,2,1 tnk =  (16) 
where )(tn  is the number of the existing rules at the time t. According to the degree measure, 
the criterion of generating a new fuzzy rule for new incoming data is described as follows. Find 
the maximum degree maxβ  defined as 
 ktnk

ββ
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≤≤
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It can be observed that if the maximum degree maxβ  is smaller as the incoming data is far away 
the existing fuzzy rules. If thββ ≤max  is satisfied, where )1,0(∈thβ  a pre-given threshold, then 
a new membership function is generated. The mean and the standard deviation of the new 
membership function and the output action strength are selected as follows: 
 1

i
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 0=neww  (20) 
where ix  is the new incoming data and iσ  is a pre-specified constant.  

Next the structure learning phase is considered to determine whether or not to eliminate the 
existing fuzzy rules which are inappropriate. A significance index is determined for the 
importance of the k-th rules can be given as follows 
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where kI  is the significance index of the k-th rule its initial value is 1, ρ  is the elimination 
threshold value and τ  is the elimination speed constant. The proposed elimination algorithm is 
derived from the observation that if the significance index gets fading when the rule firing weight 

kβ  is smaller than elimination threshold value ρ . 
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Fig. 2. Self-structuring fuzzy neural network. 
C. SSFNNC Design 

The proposed SSFNNC system, comprised of a neural controller and a robust controller, for 
the vehicle platoon is shown in Fig. 3, where a tracking error index is defined as 
 τdekekekes

t

∫+++=
0123 . (22) 

The control law of the intelligent longitudinal controller is taken as 
 rcnc uuu +=  (23) 
where ncu  is the neural controller and rcu  is the robust controller. By substituting (23) into (4), 
it is revealed that 
 )g( rcnc uufa ++= . (24) 

Multiplying (5) with 1g −
i , adding to (20) and using (7), the error equation can be obtained as 

 )( *
rcnc uuugs −−= . (25) 

By the universal approximation theorem, an optimal SOFNN can be designed to approximate the 
controlled system dynamics, such that [11] 
 ∆+= **

ncuu ∆+= ),( **** σmΦw T  (26) 
where ∆  is the approximation error, *w  and *Φ  are the optimal parameter vectors of w  

and Φ , respectively, and *m  and *σ  are the optimal parameters of  m  and σ , respectively. 
Let the number of optimal neurons be *n  and the neurons be divided into two parts. The first 
part contains n  neurons which are the activated part and the secondary part contains nn −*  
neurons which do not exist yet. Thus, the optimal weights *w , *Φ , *m  and *σ  are classified 
in two parts such as 
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where *
aw , *

aΦ , *
am  and *

aσ  are activated parts, and *
iw , *

iΦ , *
im  and *

iσ  are inactivated 
parts, respectively. Since these optimal parameters are unobtainable, a SFNN is defined as 
 )ˆ,ˆ(ˆˆˆ aaaa σmΦwT
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where aŵ , aΦ̂ , am̂  and aσ̂  are the estimated values of *
aw , *

aΦ , *
am  and *

aσ , respectively. 
Define the estimated error u~  as 
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where aaa www ˆ~ * −=  and aaa ΦΦΦ ˆ~ * −= . Some adaptive laws will be proposed to on-line tune 
the mean and standard deviation of the Gaussian function of the SFNN to achieve favorable 
estimation of the dynamic function. The Taylor expansion linearization technique is employed to 
transform the nonlinear radial basis function into a partially linear form, i.e. 
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Substituting (30) into (29), it is obtained that 
 ∆+++++= aaaaaaa ΦwhσBmAwΦw ~~)~~(ˆˆ~~ TTTTTu  

 ε+++= aaaaaa wBσwAmΦw ˆ~ˆ~ˆ~ TTT  (33) 
where aaaa wAmmAw ˆ~~ˆ TTT =  and aaaa wBσσBw ˆ~~ˆ TTT =  are used since they are scales; and the 

uncertain term ∆+++≡ **~~ˆ iiaaa ΦwΦwhw TTTε . 
From (25), the error equation can be rewritten as 
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Then, the following theorem can be stated and proven. 
Theorem 1: Consider a car-following system represented by (4). The vehicle’s control law is 
designed as rcnc uuu += . The neural controller ncu  is designed as (28), in which the parameter 
vectors are tuned by 
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where 1η , 2η  and 3η  are the learning-rates. The robust controller rcu  is designed as 
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where δ  is a prescribed attenuation constant. Then the stability of the intelligent longitudinal 
control system can be guaranteed. 
Proof: Consider a Lyapunov function candidate in the following form 
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Differentiating (39) with respect to time and using (34), it gives 
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Assume ),0[2 TL∈ε , ),0[ ∞∈∀T , integrating the above equation from 0=t  to Tt = , yields 
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Since 0)( ≥TV , the above inequality implies the following inequality 
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If the system starts with initial conditions 0)0( =s , 0~ =aw , 0)0(~ =am  and 0)0(~ =aσ , the 

2L  tracking performance can be rewritten as 
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Fig. 3. Self-structuring fuzzy neural network control for the longitudinal system. 

 
IV. Simulation Results 

To investigate the effectiveness of the proposed intelligent longitudinal control system, two 
simulation scenarios are carried out. The specific constants of the vehicle parameters used in this 
paper are chosen as 2.0=τ , kgm 916= , 22 /44.0 mNsKd =  and 7.67=md Nm. For both 
scenarios, the control parameters of SSFNNC are selected as 21 =k , 52 =k , 43 =k , 



1000321 === ηηη , 5.0=δ , 0.2=iσ , 6.0=thβ , 01.0=τ , 3.0=ρ , and 01.0=thI . These 
parameters are chosen through some trials to achieve satisfactory transient control performance.  

In scenario 1, assumes that one following vehicle (FV) follows the leading vehicle (LV). The 
safety spacing is initialized with 1H =10m first, and after the 15th, 30th, 45th, 60th, and 75th 
seconds the safety space is changed between 1H =5m and 1H =10m, respectively. The initial 
values of the LV and FV are chosen as sec/20)0( mvl = , 2sec/0)0( mal = , sec/20)0(1 mv =  
and 2

1 sec/0)0( ma =  and the LV in the platoon has no acceleration. The simulation results of 
intelligent longitudinal control for scenario 1 are shown in Fig. 4. The safety spacing of the FV is 
shown in Fig. 4(a), the vehicle of the FV is shown in Fig. 4(b), the control input of FV is shown 
in Fig. 4(c), and the rule number of SFNN is shown in Fig. 4(d). From the simulation results, it 
can be seen that the proposed SSFNNC system can achieve satisfactory performance for the 
one-vehicle following system even in the change of the safety spacing command.  

In scenario 2, assumes that three FVs follow the LV with the safety space iH =15m. The 
vehicle acceleration and velocity of the LV are shown in Fig. 5(a) and 5(b), respectively. For 
numerical simulations, the initial values of the vehicle following system are chosen as 

sec/20)0( mvl = , 2sec/0)0( mal = , sec/20)0( mvi =  and 2sec/0)0( mai = . The simulation 
results of intelligent longitudinal control for scenario 2 are shown in Fig. 6. The safety spacing of 
the FV is shown in Fig. 6(a), the vehicle of the FV is shown in Fig. 6(b), the acceleration of the 
FV is shown in Fig. 6(c), the control input of FV is shown in Fig. 6(d), and the rule number of 
SFNN is shown in Fig. 6(e). From the simulation results, it can be seen that the proposed 
SSFNNC system can also achieve satisfactory performance even in the changes of acceleration 
and velocity of the LV. 
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Fig. 4. Simulation results for scenario 1. 
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Fig. 5. Leading vehicle’s acceleration and velocity time profile for scenario 2. 
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Fig. 6. Simulation results for scenario 2. 

 
V. Conclusions 

This paper has successfully developed an intelligent longitudinal control system via the 
self-structuring fuzzy neural network (SFNN) approach and adaptive control approach for the 
vehicle-following system. The on-line adaptation laws of the proposed self-structuring fuzzy 
neural network control scheme are derived based on the Lyapunov stability theorem, so that the 
tracking stability can be guaranteed for the control system. In the SFNN design, a dynamic rule 
generating/elimination mechanism is developed to cope with the tradeoff between the 
approximation accuracy and computational loading. Finally, two different simulation scenarios 
are carried out and simulation results have demonstrated that the proposed control system can 
achieve favorable tracking performance for the vehicle-following control even under the leading 
vehicles safety space change and acceleration maneuver. 
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